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Molecular dynamics (MD) 
 MD is a computational method for simulating time evolution 

of a collection of interacting atoms by numerically integrating 
Newton’s equation of motion. 

Set initial positions and velocities of each atom 

Evaluate forces on each atom F=-∇U(r) 

Move atoms using Newton‘s equation of motion 

105-109 
cycles! 



Evaluation of the potential energy 
 Ab initio methods: 

  based on rigorous principles of quantum mechanics  
  accurate description of a PES 
  not practical for MD simulations because of their computational 

expense. 
 Empirical potentials: 

  simple analytical approximation to U(r)   
  computationally efficient  
  not capable of describing chemical transformations 

 Alternatives? Combine the accuracy of an ab initio 
description of a PES with the computational efficiency of 
empirical potentials. 



Neural network representation 
J. Behler, M. Parrinello,  PRL, 98, 146401 (2007). 
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Artificial neural network (NN) 
 Artificial NN is a mathematical and computational model 

inspired by the functional aspects of biological structures 
in the brain that is able to capture and represent complex 
input-output relationships. 
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 The Cybenko theorem: A neural network represented 
by the equation above is capable of approximating any 
continuous, multivariate function to any desired degree of 
accuracy. 



Schematic representation of a NN 
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General approach 
 Calculate accurate ab initio 

energies for a number of 
atomic configurations. 

 Fit a highly-flexible 
analytical function 
represented by a neural 
network to reproduce ab 
initio energies for these 
configurations. 

 Use this function to perform 
interpolation and obtain 
energy and forces for new 
configurations encountered in 
the course of lengthy MD 
simulations. 

XYZ MAPPING E 



NN fitting of a 2D function 

Target Function NN representation Fitting Error 



NN representation of PESs 
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2.  Preserves symmetries: energy 
are invariant to rotations, 
translations and order of atoms. 

3.  Analytical: forces and stress 
tensor are readily available. 

4.  Computationally efficient.  
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Neural network representation 
J. Behler, M. Parrinello,  PRL, 98, 146401 (2007). 
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Structure of an atomic NN 
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Advantages of using NNs 
 NNs completely obviate the problem of guessing a 

complicated functional form of the PES. This form is 
determined automatically by the NN. 

 The entire training process is automated so that months 
of human effort are replaced with a short computer 
calculation. 

 Accurate mapping ensures that all properties determined 
by the topology of the PES are described with the 
accuracy comparable with that of ab initio calculations. 



NN potential for Na and C 
Sodium Carbon 

Reference energies PBE density functional 

Pseudopotential Ultrasoft  
(2s,2p)-semicore 

Dispersion corrected 
HGH 

Convergence  (PW cutoff, k-
point mesh, etc.) 

1.0 meV/atom 1.0 meV/atom 

Training set 
17,000 DFT energies 

(350,000 config.) 
60,000 DFT energies 

(700,000 config.) 

Pressure range 0-120 GPa 0-80 GPa 

Fitting error of an independent 
test set 

RMSE: 0.9 meV/atom RMSE: 3.9 meV/atom 

R.Z. Khaliullin, H. Eshet, T. Kuhne, J. Behler, M. Parrinello, PRB, 81, 100103 (2010).  
H. Eshet, R.Z. Khaliullin, T. Kuhne, J. Behler, M. Parrinello, PRB, 81, 184107 (2010). 

Sodium Carbon 

Reference energies PBE density functional 

Pseudopotential Ultrasoft  
(2s,2p)-semicore 

Dispersion corrected 
HGH 

Convergence  (PW cutoff, 
k-point mesh, etc.) 1.0 meV/atom 1.0 meV/atom 

Training set 
17,000 DFT energies 

(350,000 config.) 
60,000 DFT energies 

(700,000 config.) 

Pressure range 0-120 GPa 0-80 GPa 

Fitting error of an 
independent test set 0.9 meV/atom 3.9 meV/atom 



Graphite-to-diamond transition 
 Severe restrictions on the maximum system size and time 

scale accessible in simulations have limited theoretical 
studies of the mechanism to collective transformations.  

 Many aspects of the transition cannot be explained by the 
mechanism of collective transformations: 
  the formation of the metastable hexagonal diamond phase, 
  the observation that the transition pressure is considerably 

higher than the graphite-diamond coexistence pressure: 
diamond formation is not observed below ~10 GPa 

 The NN potential enables us to perform the first 
atomistic study of homogeneous diamond nucleation 
from graphite. 



Barriers for collective paths 

Lines – DFT; Dots - NN 



Enthalpy of the interfaces 

[001]G interface 
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a small nucleus 



Model system 
 145,000 C atoms arranged 

in the graphite lattice 
 Seed a diamond nucleus by 

constraining interlayer 
distances between atoms 
within pre-defined radius R. 

 Heat system to T=1500K 
 Minimize enthalpy at T=0K 

and constant pressure 

R.Z. Khaliullin, H. Eshet, T. Kuhne, J. Behler, M. Parrinello, Nature Mat, 10, 693, (2011).  



Nucleation barriers 
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ΔG =Vg + Sσ

R.Z. Khaliullin, H. Eshet, T. Kuhne, J. Behler, M. Parrinello, Nature Mat, 10, 693, (2011).  



Structure of diamond nuclei 

Graphite Diamond 

R.Z. Khaliullin, H. Eshet, T. Kuhne, J. Behler, M. Parrinello, Nature Mat, 10, 693, (2011).  



Thermodynamics of nucleation 

 Nucleation is thermodynamically possible if the term in the 
parenthesis is negative. 

 At low pressure (below 10 GPa) misfit strain energy is very 
large due to large differences in c-axis of graphite and diamond 
crystals. This explains why diamond formation is not observed 
below 10 GPa in static compression experiments. 

Difference in free-
energy density of 
bulk diamond and 

graphite 

POSITIVE 
Misfit strain 
energy per 

particle volume 

POSITIVE 
Surface term 



Enthalpy barriers 
Pressure Concerted ΔH‡, 

meV/atom 
Nucleation ΔH‡, 

meV/atom 

Cubic Hexagonal 

30 GPa × 130 × 185   70-90 

40 GPa  × 80 × 140   40-60 

50 GPa    50 × 93 × 110-280 

R.Z. Khaliullin, H. Eshet, T. Kuhne, J. Behler, M. Parrinello, Nature Mat, 10, 693, (2011).  



Graphite-to-diamond transition: 
conclusions 

 The transformation does not 
occur at the graphite–diamond co-
existence pressure because of the 
prohibitively large strains 
accompanying the formation of 
diamond nuclei.  

 At higher pressures, the nucleation 
mechanism is favored over the 
concerted transformation.  

 At yet higher pressures, the 
transition is continuous and 
proceeds without formation of a 
well-defined graphite–diamond 
interface. 



Sodium phase diagram 
Experiment NN simulations 

  Sodium undergoes a series of solid-solid phase transitions: bcc → fcc → cI16. 
  Nature of the unprecedented pressure-induced drop in melting T is unknown. 



Accuracy of the NN potential 
Liquid Na, 30 GPa Tm Liquid Na, 60 GPa Tm 
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Accuracy of the NN potential 
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Accuracy of the NN potential 
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J.-Y. Raty, et al, Nature, 449, 448 (2007). 
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Jellium model 

Electron gas with density ρ 

Na Na 

R 



“Jellium” pair potential 



Physical interactions in sodium 
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Accuracy of the pair potential 
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Accuracy of the pair potential 
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Anomalous melting of Na: 
conclusions 

 We reconstructed the phase diagram and showed that 
the pressure-induced drop in melting temperature is not 
a consequence of structural transitions in the liquid as 
previously assumed.   

 We demonstrated that the reentrant behavior instead 
results from the screening of interionic interactions by 
conduction electrons, which at high pressure induces a 
softening in the short-range repulsion. 
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NN implementation 
  Interfaced with DLPOLY 

 Thermodynamic 
integration 

 Metadynamics 

 Atomic partitioning of 
the total energy enables 
efficient parallel 
execution 
  now 500-1000 CPUs 

 106 atoms can be treated 
 One-component systems   



Timing: NN vs. ab initio 
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Timing: NN vs. ab initio 
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Conclusions 
 NN potentials enabled us to perform molecular dynamics 

simulations of high-pressure high-temperature processes 
in carbon and sodium on previously inaccessible time and 
length scales.  

 Our simulations offer new insights into the atomistic 
mechanism of the graphite-to-diamond phase transition 
and the electronic-structure origin of the anomalous 
melting behavior of dense sodium. 

 NN potentials is an emerging methodology that combines 
the accuracy of first-principle methods with the high 
computational efficiency of empirical potentials.  
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