Microscopic origins of complex behavior in carbon and sodium

Rustam Z. Khaliullin University of Zürich

Molecular dynamics (MD)

 MD is a computational method for simulating time evolution of a collection of interacting atoms by numerically integrating Newton's equation of motion.

Evaluation of the potential energy

• Ab initio methods:

- based on rigorous principles of quantum mechanics
- accurate description of a PES
- not practical for MD simulations because of their computational expense.

• Empirical potentials:

- simple analytical approximation to U(r)
- computationally efficient
- not capable of describing chemical transformations
- Alternatives? Combine the accuracy of an *ab initio* description of a PES with the computational efficiency of empirical potentials.

Neural network representation

J. Behler, M. Parrinello, PRL, 98, 146401 (2007).

Artificial neural network (NN)

 Artificial NN is a mathematical and computational model inspired by the functional aspects of biological structures in the brain that is able to capture and represent complex input-output relationships.

$$F(x_1, x_2, \dots, x_N) = \sum_{i=1}^{M} w_{i0} g(\sum_{j=1}^{N} w_{ij} x_j + w_{0j}), \text{ with } g(x) = \prod_{j=1}^{M} w_{jj} x_j + w_{0j}$$

• The Cybenko theorem: A neural network represented by the equation above is capable of approximating any continuous, multivariate function to any desired degree of accuracy.

Schematic representation of a NN

General approach

- Calculate accurate *ab initio* energies for a number of atomic configurations.
- Fit a highly-flexible analytical function represented by a neural network to reproduce ab initio energies for these configurations.
- Use this function to perform interpolation and obtain energy and forces for new configurations encountered in the course of lengthy MD simulations.

NN fitting of a 2D function

Target Function

NN representation

Fitting Error

NN representation of PESs

Input

Neural network representation

J. Behler, M. Parrinello, PRL, 98, 146401 (2007).

Structure of an atomic NN

Advantages of using NNs

- NNs completely obviate the problem of guessing a complicated functional form of the PES. This form is determined automatically by the NN.
- The entire training process is automated so that months of human effort are replaced with a short computer calculation.
- Accurate mapping ensures that all properties determined by the topology of the PES are described with the accuracy comparable with that of *ab initio* calculations.

NN potential for Na and C

	Sodium	Carbon
Reference energies	PBE density functional	
Pseudopotential	Ultrasoft (2s,2p)-semicore	Dispersion corrected HGH
Convergence (PW cutoff, k-point mesh, etc.)	1.0 meV/atom	I.0 meV/atom
Training set	17,000 DFT energies (350,000 config.)	60,000 DFT energies (700,000 config.)
Pressure range	0-120 GPa	0-80 GPa
Fitting error of an independent test set	0.9 meV/atom	3.9 meV/atom

R.Z. Khaliullin, H. Eshet, T. Kuhne, J. Behler, M. Parrinello, PRB, 81, 100103 (2010). H. Eshet, R.Z. Khaliullin, T. Kuhne, J. Behler, M. Parrinello, PRB, 81, 184107 (2010).

Graphite-to-diamond transition

- Severe restrictions on the maximum system size and time scale accessible in simulations have limited theoretical studies of the mechanism to collective transformations.
- Many aspects of the transition cannot be explained by the mechanism of collective transformations:
 - the formation of the metastable hexagonal diamond phase,
 - the observation that the transition pressure is considerably higher than the graphite-diamond coexistence pressure: diamond formation is not observed below ~10 GPa
- The NN potential enables us to perform the first atomistic study of homogeneous diamond nucleation from graphite.

Barriers for collective paths

Lines – DFT; Dots - NN

Enthalpy of the interfaces

Model system

- I45,000 C atoms arranged in the graphite lattice
- Seed a diamond nucleus by constraining interlayer distances between atoms within pre-defined radius R.
- Heat system to T=1500K
- Minimize enthalpy at T=0K and constant pressure

R.Z. Khaliullin, H. Eshet, T. Kuhne, J. Behler, M. Parrinello, Nature Mat, 10, 693, (2011).

Structure of diamond nuclei

R.Z. Khaliullin, H. Eshet, T. Kuhne, J. Behler, M. Parrinello, Nature Mat, 10, 693, (2011).

Thermodynamics of nucleation

- Nucleation is thermodynamically possible if the term in the parenthesis is negative.
- At low pressure (below 10 GPa) misfit strain energy is very large due to large differences in c-axis of graphite and diamond crystals. This explains why diamond formation is not observed below 10 GPa in static compression experiments.

Enthalpy barriers

Pressure	Concerted ∆H [‡] , meV/atom		Nucleation ∆H [‡] , meV/atom
	Cubic	Hexagonal	
30 GPa	× 130	× 185	√ 70-90
40 GPa	× 80	× 140	√ 40-60
50 GPa	√ 50	× 93	× 110-280

R.Z. Khaliullin, H. Eshet, T. Kuhne, J. Behler, M. Parrinello, Nature Mat, 10, 693, (2011).

Graphite-to-diamond transition: conclusions

- The transformation does not occur at the graphite—diamond coexistence pressure because of the prohibitively large strains accompanying the formation of diamond nuclei.
- At higher pressures, the nucleation mechanism is favored over the concerted transformation.
- At yet higher pressures, the transition is continuous and proceeds without formation of a well-defined graphite-diamond interface.

Sodium phase diagram

Experiment

NN simulations

- Sodium undergoes a series of solid-solid phase transitions: bcc \rightarrow fcc \rightarrow cl16.
- Nature of the unprecedented pressure-induced drop in melting T is unknown.

Accuracy of the NN potential

Liquid Na, 30 GPa T_m

Liquid Na, 60 GPa T_m

Accuracy of the NN potential

Accuracy of the NN potential

Structural transitions in liquid?

Ist, 2nd, 3rd ... neighbors

Electronic DOS

J.-Y. Raty, et al, Nature, 449, 448 (2007).

Structure of liquid Na

Previous simulations

NN simulations

Electronic DOS of liquid Na

Previous simulations

NN simulations

Jellium model

"Jellium" pair potential

Physical interactions in sodium

$$\phi(r) = \frac{A \exp(-k_0 r)}{r} + \frac{B \cos(2k_F (r - r_0))}{r^m}$$

Accuracy of the pair potential

Accuracy of the pair potential

Softening in the repulsive wall

Anomalous melting of Na: conclusions

- We reconstructed the phase diagram and showed that the pressure-induced drop in melting temperature is not a consequence of structural transitions in the liquid as previously assumed.
- We demonstrated that the reentrant behavior instead results from the screening of interionic interactions by conduction electrons, which at high pressure induces a softening in the short-range repulsion.

NN implementation

- Interfaced with DLPOLY
 - Thermodynamic integration
 - Metadynamics
- Atomic partitioning of the total energy enables efficient parallel execution
 - now 500-1000 CPUs
- 10⁶ atoms can be treated
- One-component systems

Timing: NN vs. ab initio

Timing: NN vs. ab initio

Conclusions

- NN potentials enabled us to perform molecular dynamics simulations of high-pressure high-temperature processes in carbon and sodium on previously inaccessible time and length scales.
- Our simulations offer new insights into the atomistic mechanism of the graphite-to-diamond phase transition and the electronic-structure origin of the anomalous melting behavior of dense sodium.
- NN potentials is an emerging methodology that combines the accuracy of first-principle methods with the high computational efficiency of empirical potentials.

Acknowledgements

- Hagai Eshet
- Thomas Kühne
- Jörg Behler
- Michele Parrinello

CSCS and HPC group of ETH Zurich for computer time