
Swiss Center for
Scientific Computing

Centre Svizzero di
Calcolo Scientifico

An Implementation of the

V. R. Deshpande, W. B. Sawyer and D. W. Walker

4.5

4

3.5

3

g3 2.5

Q
u:
0 2

1.5

1h

0.5

LU for various grid sizes on thin-node SP-2

Grid = 4x8

Grid = 4x4

Solid line == MPI-BLACS (UTK)
Dashed line = MPi-BLACS (CSCS-ORNL)
Dotted line = MPL-BLACS

2000 4000 6000 8000 10000 12000 14000
Problem Size

TR-96-11 May 1996

OTHER PUBLICATIONS BY CSCS/SCSC

Annual Report:

CrosSCutS (triannually):
yearly review of activities and projects

newsletter featuring announcements relevant to our users as

well as research highlights in the field of high-performance

computing

Speedup Journal (biannually): proceedings of the SPEEDUP Workshops on Vector and

Parallel Computing, published on behalf of the SPEEDUP
Society

User's Guide: manual to hardware and software at CSCS/SCSC

To receive one or more of these publications, please send your full name and complete address

to:

Library
cscs/scsc
via Cantonale

CH-6928 Manno

Switzerland

Fax: +41 (91) 610 8282

E-mail: library@cscs.ch

Technical Reports are also available from:

http://www.cscs.ch/0fficial/Publications.html

A list of former IPS Research Reports is available from:

http://www.cscs .ch/Official/IPSreports.html

An MPI Implementation of the

V. R. Deshpande1, W. B. Sawyer1 and D. W. Walker2

TR-96-11, May 1996

Abstract. In this report, an M.P1 implementation of the Basic Linear Communi-

cation Subprograms (BLACS) is presented. A wide spectrum of MPI functionality
has been used to implement BLACS as succinctly as possible, thus making the im-

plementation concise, but still yielding good performance. We discuss some of the

implementation details and present results for several different architectures with

different MPI libraries. Finally, we gather our experiences in using MPI, and make

some suggestions for the future functionality in MPI-2.

The MPI-BLACS library is available free under copyright for research purposes.

Keywords. MPI, BLACS, parallel architectures, libraries

This work was performed as part of the Joint CSCS/NEC Collaboration in Parallel Processing

and will be presented at the MPI Developers Conference, 1996.

1 Swiss Center for Scientific Computing (CSCS/SCSC-ETH),
Via Cantonale, CH-6928 Manno, Switzerland

vaibhav@cscs.ch and sawyerOcscs . ch

2 Dept. of Computer Science, University of Wales College of Cardiff, P 0 Box 916, Cardiff,

Wales, CF2 3XF
David.W.Walker@cs . cf . ac .uk

CSCS/SCSC TECHNICAL REPORT

V. DESHPANDE ET AL. AN MPI IMPLEMENTATION OF THE BLACS

Contents

1 Introduction 3

2 Design 4

3 Implementation 5
3.1 Grid Initialization 5

3.2 Grid Coordinate Information 6

3.3 Point-to-Point Communication 6

3.4 Collective Communication 7

4 Results

5 MPI Evaluation

8

12

List of Figures

1 Performance of the ScaLAPACK LU factorization with our MPI-BLACS

aud Intel NX-BLACS on the Intel Paragon and also with our MPI-BLACS

on the NEC Cenju-3. 10

2 Performance of the ScaLAPACK LU factorization on the IBM SP2 with
our MPI-BLACS, UTK MPI-BLACS and MPL-BLACS 11

3 Implementation of BLACS-GRIDINIT 15

4 Implementation of BLACS_GRIDMAP 15

5 Macro for grid creation 16

6 Macros for Cartesian coordinate to system ID mappings 16

7 Macro to send a trapezoidal submatrix 17

8 Implementation of global summation routines 18

9 Implementation of global MAX routine 19

10 MLACS-REDUCE-LOC macro for combine routines 20

List of Tables

1 Performauce of the ScaLAPACK LU factorization with our MPI-BLACS

and Intel NX-BLACS on the Intel Paragon 8

1 Introduction

In this report an MPI [(MP95], implementation of the Basic Linear Algebra Commumca-

tion Subprograms (BLACS) is presented. The BLACS are message passing routines that

communicate matrices among processes arranged in a two-dimensional virtual process

topology. It forms the basic communication layer for ScaLAPACK [CDPW94, CDO+94].
MPI provides the most suitable message-passing layer for BLACS, since it is widely avail-

able, has high level functionality to support the BLACS communication semantics as

discussed in [DW95],and also has several advantages over other available commumcation

libraries like PVM [GBD+94].

This implementation builds on the design suggested in [Wal94], which exploits high-
level MPI routines to realize BLACS functionality succinctly. The BLACS communication

context for the grid is defined as an MPI communicator which is created with a Cartesian

topology. Its use ensures that messages meant for receipt in. one phase of an application

are not incorrectly received in another phase. In addition, communicators are defined for

the BLACS communication context along a given row or column of the logical process

grid, and are associated with the grid context as MPI attributes. General datatypes in

MPI are used to describe the square and trapezoidal sub-matrices to be communicated.

Extensive use is made of high-level MPI routines for collective communication, making

the design clean, and concise. We summarize the design of BLACS in Sect. 2.

In order to realize this basic design, numerous additional issues are addressed. The

ability in the B LACS to assign an arbitrary system process to a position in the grid is

elegantly realized, requiring a permutation of processes from the default row-major order-

ing in MPI. In addition, recent alteratious to the BLACS interfaces [DW95] necessitated

the change of some parts of the original design. Efficiency of the implementation is also

addressed, resulting in the use of macros which inherit the functionality of the previously

defined MPI Linear Algebra Communication Subroutines (MLACS). The implementation

is discussed in Sect. 3.

At least one other MPI implementation [Wha95b] of the BLACS is currently available.
This implementation is highly optimized and makes extensive use of topology informa-

tion, which can either be provided upon compilation of the library, or when the BLACS

collective communication routines are called. Such an approach is necessary for simpler

message-passing paradigms such as Intel NX and exploits basic sends and receives to

implement collective communication. On the other hand, one should anticipate that in

future, all levels of an MPI implementation are optimized for a given architecture, in-

dicating the close mapping of the BLACS routines to the corresponding high-level MP1

routines. The importance of ScaLAPACK warrants a look at different approaches to the

MPI implementation of B LACS and thus the issues involved in both versions are discussed

in Sect 4 and some conclusions are drawn from available performance data.

In addition to its use in supporting ScaLAPACK, our BLACS library has proven to

be a demanding test of various MPI implementations on different architectures, due to

the wide spectrum of functionality used. In Sect. 5 we discuss the problems encountered

and indicate possible new functionality for MPI-2, such as better support for Cartesian

topologies and dynamic process allocation.

CSCS/SCSC TECHNICAL REPORT TR-96-11, MAY 1996

V. DESHPANDE ET AL.

2 Design

In [Wal94] Walker suggests an implementation of the BLACS as a layer built on the
MPI Linear Algebra Communication Subprograms (MLACS). MLACS make use of the
extensive functionality available in MPI for process groups, communicator management,

and attribute caching. In this design, the communication context for a given virtual

process mesh corresponds to an MPI communicator A having two-dimensional Cartesian

topology. As communication may take place along any given row or column of the process

grid, communicators 'R and C with a one-dimensional Cartesian topology are defined

which contain all processes in given row or column, respectively. Use is made of MPI's

caching facility to associate these communicators with the communicator A.

BLACS allows a flexible mapping of system process numbers to positions in the virtual

process grid, thus allowing the user to exploit the underlying physical processor configu-

ration. Not only does BLACS-GRIDINIT allow row-major or column-major ordering of the

system processes, but BLACS_GRIDMAP allows an arbitrary mapping of the system pro-

cesses to grid positions. Ou the other hand, MPI's Cartesian coordinate functionality is

based on row-major ordering. The column-major and arbitrary mappings can be realized

with the MPI-COMM-SPLIT routine, which creates a new communicator with permuted

ranks. The Cartesian topology is then imposed on this new communicator as indicated

previously.

The BLACS point-to-pomt routines can be implemented by using A with appropriate

process ranks for the sender and receiver, which can be determined by Cartesian coordi-

nate conversion routines in MPI. MPI datatypes are defined for the square or trapezoidal

matrices which are to be communicated. One element of a given type is then sent or
received.

BLACS broadcast routines require a scope, namely either all processes in the grid, or

all those in a given row or column. Depending on the scope, either MPI-BCAST is used with

the communicator A and the appropriate root process, or the 7?. or C communicator is

first uncached, and then a corresponding broadcast with that communicator is performed.

The BLACS combine routines are implemented in a way similar to the BLACS broad-

cast routines except that use is made of MPI global reduce operations. A combination of

predefined and user-defined operators fulfills the task of performing the required operation

and putting the result on the required process.

CSCS/SCSC TECHNICAL REPORT

AN MPI IMPLEMENTATION OF THE BLACS

3 Implementation

The implementation of MPI-BLACS is based on MLACS as suggested in [Wal94]. In
order to gain efficiency however, the MLACS routines were implemented as macros, and

thus the corresponding MLACS code is "inlined" in the optimized version. .This offers an

improvement in performance without the loss of the clean structure which the MLACS

prototype provides.

The fact that some 1VIPI iraplernentations do not allow the same pointer to be used for

the input and output buffers in collective communication routines (e.g., MPI_REDUCE)

necessitates the use of dynamic memory allocation for the combine routines a;GSUM2D,

a;GAMX2D, and a;GAMN2D. In addition, dynamically allocated work arrays are needed for

the point-to-point and broadcast routines dealing with trapezoidal matrices. Considering

these requirements, we assume the availability of a Fortran 90 compiler, or at least a

Fortran 77 compiler which supports dynamic memory allocation.

The resulting BLACS implementation is highly compact, consisting of less than a few

thousand lines of code. This succinctness is due, on the one hand, to the use of high level

M.P1 functionality to support Cartesian grids, process groups, attributes and user-defined

types and operators. On the other hand, the macro language GNU m4 [Sei94] is used

to allow generation of the Fortran routines for all data types, and to insert debugging

macros, etc. Each communication routine cousists of a single macro, and thus it is easy

to make any changes to the library.

The error handling mechanism implemented in BLACS makes use of the MPI-ABORT

routine to abort the particular process with a specific error code.

Although our BLACS implementation follows the MLACS design closely, certain rou-

fines were restructured considerably, and others which were not included in [Wal94] where

designed and implemented. We subsequently discuss these additions individually in the

following sections.

3.1 Grid Initialization

The BLACS have two general purpose routines BLACS-SET and BLACS-GET to set and

obtain information about various BLACS internals. These routines are commonly used

to retrieve a default system context for input into BLACS_GRIDINIT or BLACS-GRIDMAP.

For it to include all the existing MPI processes, the default system context returned in

BLACS-GET corresponded to MPI-COMM-WORLD.

For grid initialization itself, an additional complexity was incurred with the most re-

cent release of the BLACS User's Guide [DW95], which specified that BLACS-GRIDINIT

should support column-major mapping along with the previously specified row-major

mapping of system processes to grid locations. Since MPI's Cartesian topology supports

only row-major ordering, BLACS_GRIDINIT's implementation therefore requires the per-

mutation of system process ranks, just as BLACS-GRIDMAP did.

The similarity of BLACS_GRIDINIT (Fig. 3) and BLACS_GMDMAP (Fig. 4) is apparent.

Both rely on the macro MLACS_GRIDCREATE (Fig. 5) to perform the permutation, create

the communicators A, 'R. and C with the proper Cartesian topology, and cache % and C.

lThis requirement is not clearly stated in the MPI standard, but is imposed in MPICH, et al.

TR-96-11, MAY 1996 5

