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Abstract. In this report, an M.P1 implementation of the Basic Linear Communi-

cation Subprograms (BLACS) is presented. A wide spectrum of MPI functionality
has been used to implement BLACS as succinctly as possible, thus making the im-

plementation concise, but still yielding good performance. We discuss some of the

implementation details and present results for several different architectures with

different MPI libraries. Finally, we gather our experiences in using MPI, and make

some suggestions for the future functionality in MPI-2.
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1 Introduction

In this report an MPI [(MP95], implementation of the Basic Linear Algebra Commumca-

tion Subprograms (BLACS) is presented. The BLACS are message passing routines that

communicate matrices among processes arranged in a two-dimensional virtual process

topology. It forms the basic communication layer for ScaLAPACK [CDPW94, CDO+94].
MPI provides the most suitable message-passing layer for BLACS, since it is widely avail-

able, has high level functionality to support the BLACS communication semantics as

discussed in [DW95],and also has several advantages over other available commumcation

libraries like PVM [GBD+94].

This implementation builds on the design suggested in [Wal94], which exploits high-
level MPI routines to realize BLACS functionality succinctly. The BLACS communication

context for the grid is defined as an MPI communicator which is created with a Cartesian

topology. Its use ensures that messages meant for receipt in. one phase of an application

are not incorrectly received in another phase. In addition, communicators are defined for

the BLACS communication context along a given row or column of the logical process

grid, and are associated with the grid context as MPI attributes. General datatypes in

MPI are used to describe the square and trapezoidal sub-matrices to be communicated.

Extensive use is made of high-level MPI routines for collective communication, making

the design clean, and concise. We summarize the design of BLACS in Sect. 2.

In order to realize this basic design, numerous additional issues are addressed. The

ability in the B LACS to assign an arbitrary system process to a position in the grid is

elegantly realized, requiring a permutation of processes from the default row-major order-

ing in MPI. In addition, recent alteratious to the BLACS interfaces [DW95] necessitated

the change of some parts of the original design. Efficiency of the implementation is also

addressed, resulting in the use of macros which inherit the functionality of the previously

defined MPI Linear Algebra Communication Subroutines (MLACS). The implementation

is discussed in Sect. 3.

At least one other MPI implementation [Wha95b] of the BLACS is currently available.
This implementation is highly optimized and makes extensive use of topology informa-

tion, which can either be provided upon compilation of the library, or when the BLACS

collective communication routines are called. Such an approach is necessary for simpler

message-passing paradigms such as Intel NX and exploits basic sends and receives to

implement collective communication. On the other hand, one should anticipate that in

future, all levels of an MPI implementation are optimized for a given architecture, in-

dicating the close mapping of the BLACS routines to the corresponding high-level MP1

routines. The importance of ScaLAPACK warrants a look at different approaches to the

MPI implementation of B LACS and thus the issues involved in both versions are discussed

in Sect 4 and some conclusions are drawn from available performance data.

In addition to its use in supporting ScaLAPACK, our BLACS library has proven to

be a demanding test of various MPI implementations on different architectures, due to

the wide spectrum of functionality used. In Sect. 5 we discuss the problems encountered

and indicate possible new functionality for MPI-2, such as better support for Cartesian

topologies and dynamic process allocation.
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2 Design

In [Wal94] Walker suggests an implementation of the BLACS as a layer built on the
MPI Linear Algebra Communication Subprograms (MLACS). MLACS make use of the
extensive functionality available in MPI for process groups, communicator management,

and attribute caching. In this design, the communication context for a given virtual

process mesh corresponds to an MPI communicator A having two-dimensional Cartesian

topology. As communication may take place along any given row or column of the process

grid, communicators 'R and C with a one-dimensional Cartesian topology are defined

which contain all processes in given row or column, respectively. Use is made of MPI's

caching facility to associate these communicators with the communicator A.

BLACS allows a flexible mapping of system process numbers to positions in the virtual

process grid, thus allowing the user to exploit the underlying physical processor configu-

ration. Not only does BLACS-GRIDINIT allow row-major or column-major ordering of the

system processes, but BLACS_GRIDMAP allows an arbitrary mapping of the system pro-

cesses to grid positions. Ou the other hand, MPI's Cartesian coordinate functionality is

based on row-major ordering. The column-major and arbitrary mappings can be realized

with the MPI-COMM-SPLIT routine, which creates a new communicator with permuted

ranks. The Cartesian topology is then imposed on this new communicator as indicated

previously.

The BLACS point-to-pomt routines can be implemented by using A with appropriate

process ranks for the sender and receiver, which can be determined by Cartesian coordi-

nate conversion routines in MPI. MPI datatypes are defined for the square or trapezoidal

matrices which are to be communicated. One element of a given type is then sent or
received.

BLACS broadcast routines require a scope, namely either all processes in the grid, or

all those in a given row or column. Depending on the scope, either MPI-BCAST is used with

the communicator A and the appropriate root process, or the 7?. or C communicator is

first uncached, and then a corresponding broadcast with that communicator is performed.

The BLACS combine routines are implemented in a way similar to the BLACS broad-

cast routines except that use is made of MPI global reduce operations. A combination of

predefined and user-defined operators fulfills the task of performing the required operation

and putting the result on the required process.

CSCS/SCSC TECHNICAL REPORT
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3 Implementation

The implementation of MPI-BLACS is based on MLACS as suggested in [Wal94]. In
order to gain efficiency however, the MLACS routines were implemented as macros, and

thus the corresponding MLACS code is "inlined" in the optimized version. .This offers an

improvement in performance without the loss of the clean structure which the MLACS

prototype provides.

The fact that some 1VIPI iraplernentations do not allow the same pointer to be used for

the input and output buffers in collective communication routines (e.g., MPI_REDUCE)

necessitates the use of dynamic memory allocation for the combine routines a;GSUM2D,

a;GAMX2D, and a;GAMN2D. In addition, dynamically allocated work arrays are needed for

the point-to-point and broadcast routines dealing with trapezoidal matrices. Considering

these requirements, we assume the availability of a Fortran 90 compiler, or at least a

Fortran 77 compiler which supports dynamic memory allocation.

The resulting BLACS implementation is highly compact, consisting of less than a few

thousand lines of code. This succinctness is due, on the one hand, to the use of high level

M.P1 functionality to support Cartesian grids, process groups, attributes and user-defined

types and operators. On the other hand, the macro language GNU m4 [Sei94] is used

to allow generation of the Fortran routines for all data types, and to insert debugging

macros, etc. Each communication routine cousists of a single macro, and thus it is easy

to make any changes to the library.

The error handling mechanism implemented in BLACS makes use of the MPI-ABORT

routine to abort the particular process with a specific error code.

Although our BLACS implementation follows the MLACS design closely, certain rou-

fines were restructured considerably, and others which were not included in [Wal94] where

designed and implemented. We subsequently discuss these additions individually in the

following sections.

3.1 Grid Initialization

The BLACS have two general purpose routines BLACS-SET and BLACS-GET to set and

obtain information about various BLACS internals. These routines are commonly used

to retrieve a default system context for input into BLACS_GRIDINIT or BLACS-GRIDMAP.

For it to include all the existing MPI processes, the default system context returned in

BLACS-GET corresponded to MPI-COMM-WORLD.

For grid initialization itself, an additional complexity was incurred with the most re-

cent release of the BLACS User's Guide [DW95], which specified that BLACS-GRIDINIT

should support column-major mapping along with the previously specified row-major

mapping of system processes to grid locations. Since MPI's Cartesian topology supports

only row-major ordering, BLACS_GRIDINIT's implementation therefore requires the per-

mutation of system process ranks, just as BLACS-GRIDMAP did.

The similarity of BLACS_GRIDINIT (Fig. 3) and BLACS_GMDMAP (Fig. 4) is apparent.

Both rely on the macro MLACS_GRIDCREATE (Fig. 5) to perform the permutation, create

the communicators A, 'R. and C with the proper Cartesian topology, and cache % and C.

lThis requirement is not clearly stated in the MPI standard, but is imposed in MPICH, et al.
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The extra processes which do not constitute a grid are returned with a MPI-COMM-NULL

and are carried until BLACS-GRIDEXIT is called. These processes cannot participate in

any MPI calls for the given grid, therefore it is mandatory to check for MPI_COMM-NULL
in every BLACS communication routine.

Despite the underlying complexity of these operations, the resulting code is concise

due to the availability of Cartesian topologies, communicator "splitting" and attribute

caching in MPI.

3.2 Grid Coordinate Information

The permutation of system process numbers, introduces an additional problem, namely

that BLACS-PCOORD must return the proper coordinates of a given system process and

BLACS-PNUM the system process number of the given coordinates. Clearly these oper-

ations must take the mapping introduced by BLACS-GRIDINIT or BLACS-GRIDMAP into

account.

The mapping information can be retrieved with MPI_GROUP_TRANSLATEJRANKS as

illustrated in Fig. 6. The MPI group groupworld is defined in the initialization of BLACS
as the group of processes in MPI_COMM_WORLD. The actual MPI Cartesian mapping

routines MPI_CART_COORDS and MPI_CART_RANK assume a row-major ordering of the

process ranks within group and, although they do not incur a large overhead, could be

replaced by the corresponding mapping.

3.3 Point-to-Point Communication

A point-to-pomt communication consists of the following stages,

(i) check communicator, validate input parameters; (ii) translate between process

coordinates and rank; (iii) create data type for the communication; (iv) call MPI routine

to communicate data; (v) free the general datatype.

Pomt-to-point communication makes use of the communication context A to transfer a

trapezoidal or rectangular matrix between two processes in the corresponding grid. Since

A is itself an MPI communicator, there is no need to uncache it, thus slightly reducing the

overhead inherent in [Wal94]. Translating from process coordinates to rank is performed

in INITIALIZE-POINT which ultimately calls the routine MPI-CART-RANK.

The actual send primitive is the buffered-mode MPI-BSEND operation, which avoids po-

tential deadlock situations that may arise from cy die communication patterns. These lo-

cal completion semantics correspond to the locally blocking mechanism required by [DW95].

MPI-BSEND does however need buffer space allocated with MPI-BUFFER-ATTACH during

the imtialization of BLACS which is then deallocated in BLACS_EXIT.

This mechanism is illustrated in the MLACS-SEND_TRAP macro used by 2TRSD2D in.

Fig. 7. In this case, a stencil for the MPI datatype for a trapezoidal matrix is created

in SETUP_INDEXED, which is theu manipulated with the routines MPI_TYPE_INDEXED,

MPI_TYPE-COMMIT, and freed later with MPI_TYPE_FREE.
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3.4 Collective Communication

While BLACS' broadcast routines a;GEBS2D, a;GEBR2D, 3TRBS2D and aTRBR2D are im-

plemented as suggested in [Wal94], the reduction routines a;GAMX2D, a;GAMN2D and

a;GSUM2D required redesign.

A temporary, dynamically allocated work array was introduced in the global summa-

tion a;GSUM2D (Fig. 8), since in some MPI libraries, the underlying MPI-ALLREDUCE and

MPI-REDUCE require that the pointers to the input and output buffers be different. The

macros MLACS-REDUCE and MLACS_ALLREDUCE perform the combine operation on the

root (rroot, croot) or on every processor, respectively.

The 2;GAMX2D and a;GAMN2D were redefined slightly in [DW95] from the original
a;GMAX2D and 2;GMIN2D. The use of the MINLOC operation provided for MPI_REDUCE as

suggested in [Wal94] is not sufficient. Instead a compare operation for the absolute value

of all types is now defined using the MPI_OP_CREATE primitive. The implementatiou of

the absolute maximum BLACS routines can be seen in Fig. 9. The MLACS_REDUCEJ.OC

macro, which determines the location of the maximum or mimraum along with the supre-

mum itself, is illustrated in Fig. 10.
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4 Results

The performance of the BLACS library was investigated on the IBM SP2 with the
MPICH [GLDS95], Intel Paragon (with the recently developed NMPI library) and the
NEC Cenju-3 with the prototype MPI/DE [KTK95] library using the ScaLAPACK LU
factorization routiue.

Figure 1 shows the performance of the LU factorization on the Intel Paragon which

is i860 XP/S-22MP model with three 75 MFlop/s Processors per node with 64MB mem-
ory. The CPU includes separate 16 KB data and instruction caches, and the bandwidth

between the floating point unit and the data cache memory peaks at 1.2 GB/sec. The

latency is 41 microsec with a bandwidth of 130 MB/sec. The standard OSF UNIX kernel
is used for all tests.

Our MPI-BLACS library was compared against the native Intel NX-BLACS based

on the underlying NX communication layer for optimum block size (ranging from 8 to

20). The Paragon performance is significantly less than that reported in [CDO+94], the

reasons for which are not known.

For the optimal mesh, performance of the MPI-BLACS and NX-BLACS version de-

viate only slightly, indicating that the overhead of NMPI, which is based on NX is small.

Non-optimal mesh sizes reveal a much larger discrepancy in performance as shown in

Table 1, possibly indicating the lack of a pipelining topology [Wha95a] in our version.

Table 1: Performance of the ScaLAPACK LU factorization with our MPI-BLACS library and
Intel NX-BLACS on the Intel Paragon.

Grid NX-BLACS MPI-BLACS
PxQ N MFlop/s MFlop/s

4x4

2x16

4x8

-500-

1000
2000
~500~

1000
2000
~5or

1000
2000

76.09
204.03
380.40
~97M~

283.79
619.12

85.74
263.63
569.83

40.IT
123.06
266.80

53.52
162.04
394.38

42.63
142.67
350.76

Figure 1 also shows the performance with optimal block size with our MPI BLACS

library on the NEC Cenju-3 machine. Cenju-3 is a distributed memory parallel machine

with up to 256 processor elements, each having a MIPS R4400 running at 75MHz clock

and local memory connected by multlstage network based on 4x4 switches. The point-to-

point throughput of the network is 40 Mbytes/sec. The MPI implementation on Cenju-3,

called MPI/DE [KTK95], is a part of a parallel operating system DenEn based on CM:U
Mach microkernel. It attains 40 microseconds for the minimum latency and 20 Mbytes/sec

for the maximum throughput. These performances are modest but should be considered

in light of the prototype nature of the DenEn operating system and the MPI/DE library.

Also, in the absence of a Fortran compiler which could support dynamic memory allocation

in some of the BLACS routines, the library was passed through a Fortran to C converter

8 CSCS/SCSC TECHNICAL REPORT
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and compiled using a C compiler which might have affected the performance.

Finally, our MPI-BLACS implementation has been compared with the BLACS version

described in Wha95b using both, MPICH and native MPL for message-passing on the

IBM SP2. The results in Fig. 2 indicate that the additional complexrty, e.g'., the support

of pipelining topologies, of the latter indeed provides some additional performance. The

absence of such a support for topology in our BLACS implementation is based on the as-

sumption. that the MPICH library is optimized for all high-level collective communication

routines on the IBM SP2 which may not be appropriate.

The native MPL-BLACS results are considerably better than either MPI version,

except for very large problem sizes, where a limitation on message buffer size might play

a role.

We feel the positive performance results indicate that it is possible to implement a

complicated software package like BLACS succinctly, efficiently, and allowing for porta-

bility using the wide spectrum of MPI functionality.
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5 MPI Evaluation

Our experiences with MPI were positive — no other message-passing library could have

provided the functionality to implement the BLACS in so few lines of code. Indeed,

certain functionality is crucial for proper implementation. For example, in MPI-BLACS,

the matrix parameters M and N can be varied by the user as long as Mx N is same on

all processors, unlike in PVM where the data must be unpacked in the same manner as

it is packed (see discussion in [DW95]), , restricting the means of changing the shape of

the matrix by varying only its leading dimension.

During the design, implementation and benchmarking of BLACS on the above men-

tioned machines using different MPI libraries, we encountered some MPI design and im-

plementatlon issues which, if improved upon, could allow a still cleaner implementation

of the BLACS library, and also might improve the performance.

® As mentioned earlier, MPI's Cartesiau coordinate functionality supports only row-

major ordering. This makes the implementation of column-major and arbitrary

mappings more complex affecting the performance due to the need of permutation

of ranks. Although this can be handled easily by MPI-GROUP-TRANSLATE-RANKS,

it could be more generally implemented by allowing a user mapping in a new func-

tion, e.g., MPI-CART-MAP, or by extending the reorder capability in the existing

MPI-CART-CREATE.

• In ScaLAPACK, there is a need to create grids with fewer processes from the number

of available processes. Those processes which do not form a grid are carried through-

out since there is no provision in MPI -to handle such processes effectively. The in-

corporation of dynamic allocation or spawning of processes as suggested in [(MP96]

should offer a much cleaner and more efficient alternative to the present design.

• According to (MP95 it is not possible to input MPI-GOMM_NULL, or any other

null handle arguments to MPI routines, even though this is allowed in some MPI

libraries. There is no clear rational given for this and we feel it is an unnecessary

limitation which should be removed in MPI-2.

• In our BLACS implementation, there is no explicit support for the TOP (topology)

argument which emulates the underlying network topology during communication.

The assumption that MPI is optimal for a given architecture justifies that there is

no need for one to know beforehand which topology is optimal for a given commu-

mcation.

To achieve maximum performance, we expect that in future, the MPI library on

every architecture will be optimized for all coimnumcation. Indeed, by default the

MPI-BLACS version [Wha95b developed at UTK, by default makes use of-the most

direct MPI functionality to implement BLACS communication, i.e., MPI-BCAST for

;eGEBS2D, etc.

If feasible, we propose to augment the M.P1 functionality to exploit user knowl-

edge of the underlying topology and reconfigurmg certain high-level communication

12 CSCS/SCSC TECHNICAL REPORT

AN MPI IMPLEMENTATION OF THE BLACS

routines at run-time to improve performance. If such functionality is realistically

implement able, we would recommend its integration into MPI-2.

In addition to the above suggestions about potential improvements to the MPI stan-

dard, our work yielded some experiences about existing MPI implementations, which are

summed below:-

• In some M.PI implementations, the input and output buffers in global reduction

operations like MPI-ALLREDUCE cannot be same, requiring the allocation of extra

memory. While this limitation is perhaps necessary for more complex collective com-

munication routines, e.g., MPI_ALLTOALLV, it is not specifically stated in [(MP95J.

In fact several MPI implementations do not have such a restriction. We feel that

the use of the same buffer should be allowed in routines where it; can be cleanly

implemented, and any limitations in its use need to be documented in the MPI

standard.

• In some MPI implementations, functionality for the derived data types or for com-

munication cannot handle arguments of length zero. This necessitates checking the

arguments for their length before passing them to the appropriate functions. This

limitation is not documented in [(MP95] and, in our opinion should not be imposed.

In addition to the above experiences, [Wha95c] discusses several proposed extensions

to MPI like interface inter-operability, communicator formation and non-blocking commu-

nication which are also of particular interest to us, and should be considered for integration

into MPI-2.
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Figure 3: Implementation of BLACS-GRIDINIT

subroutine BLACS_GRIDINIT(icontxt, order, nprow, npcol)
implicit none
integer icontxt, nprow, npcol
character*! order

integer myprow, mypcol, mypnum, nprocs, newrank, color, ierror

include "mpif.h"
include "mlacs.h"

MLACS_INIT
MLACS_PROCINFO

if (nprocs .ge. nprow*npcol) then
color = MPI_UNDEFINED

if (mypnum .It. nprow*npcol) then
if (order .eq. "C" .or. order .eq. "c") then

newrank = (mypnum/nprow) + mod(mypnum, nprow)*npcol
elseif (order.eq. "R" .or. order .eq. "r") then

newrank = mypnum
else

newrank = mypnum
end if
color = 0

end if
MLACS_GRID_CREATE

else

ierror = -1

endif
MLACS_DEBUG(ierror, '.ne.
return

_&ILCL

0, BLACS_GRIDINIT_ERR)

Figure 4s Implementation of BLACS-GRIDMAP

subroutine BLACS_GRIDMAP(icontxt, usermap, Idu, nprow, npcol)
implicit none
integer icontxt, Idu, nprow, npcol
integer usermap(ldu,*)
integer myprow, mypcol, mypnum, nprocs, newrank, color, ierror
integer li, jj
include "mpif.h"
include "mlacs.h"

MLACS_INIT
MLACS_PROCINFO
if (nprocs .ge. nprow*npcol) then

color = MPI_UNDEFINED

do jj = 1, npcol
do ii = 1, nprow

if ( mypnum .eq. usermap( ii, jj ) ) then
newrank = (ii-1 ) * npcol + ( jj - 1 )
color = 0

end if
end do

end do
MLACS_GRID_CREATE

else
ierror = -1

endif
MLACS_DEBUG(ierror, -.ne.-, 0, BLACS_GRIDMAP_ERR)
return

-&Djl.
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Figure 5s Macro for grid creation

{define(MLACS_GRID_CREATE,'
dims(1) = nprow
dims(2) = npcol

reorder = .FALSE.

periods(1) = .FALSE.
periods(2) = .FALSE.
if (icontxt .ne. HPI_COMM_NULL) then

MPI_CALL('MPI_COMM_SPLIT (icontxt, color, newrank, comm, ierror)')
if ( comm .ne. MPI_COMM_NULL ) then

MPI_CALL('MPI_CART_CREATE(comm, 2, dims, periods, reorder,
& icontxt, ierror)")

MPI_CALL('MPI_COMM_FREE (comm, ierror)')
if (color .eq. 0) then

HLACS_TOPO_TEST(icontxt, status, ierror)
MLACS_CART_2D_TEST(icontxt, ierror)

remaindims(l) = .FALSE.
remaindims(2) = .TRUE.
MPI_CALL('MPI_CART_SUB (icontxt, remaindims, comm, ierror)')
CACHE_COMMUNICATOR( icontxt, rkey, conun, ierror)

remaindims(l) = .TRUE.
remaindims(2) = .FALSE.
MPI_CALL('MPI_CART_SUB(icontxt, remaindims, comm, ierror)')
CACHE_COMMUNICATOR(icontxt,ckey,comm,ierror)

end if
else

icontxt = MPI_COMM_NULL
end if

end if

Figure 6: Macros for Cartesian coordinate to system ID mappings

ftefine(MLACS_CART_COORDS,'
if (icontxt .eq. HPI_COMM_NULL) then

prow = -1

pcol = -1

else
MLACS_CART_2D_TEST(icontxt, ierror)
MPI_CALL('MPI_COMM_GROUP (icontxt, group, ierror)')
MPI_CALLCMPI_GROUP_TRANSLATE_RANKS (groupworld, 1, pnum,

& group, rankall, ierror)')
MPI_CALL(VMPI_CART_COORDS(icontxt, rankall, 2, coords, ierror)')
prow = coords(l)
pcol = coords(2)

end if
I')

define(MLACS_CART_RANK,'
if (icontxt .eq. MPI_COMM_NULL) then

pnum = -1

else
MLACS_CART_2D_TEST(icontxt, ierror)
coords(l)=prow
coords(2)=pcol
MPI_CALL('MPI_CART_RANK(icontxt, coords, rankall, ierror)')
MPI_CALL('MPI_COMH_GROUP (icontxt, group, ierror)')
MPI_CALL('MPI_GROUP_TRANSLATE_RANKS (group, 1, rankall,

& groupworld, pnum, ierror)')
end if

rL
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Figure 7; Macro to send a trapezoldal submatrix

^ef ine(MLACS_SEND_TRAP,'
if (icontxt .eq. MPI_COMM_NULL) return

INITIALIZE_POINT(icontxt, rdest, cdest, rank, ierror)
SETUP_INDEXED
nn = n
if (m.lt.n .and. (diag.eq."U".or. diag.eq."u")) then

nn= n - 1

endif

MPI_CALL('MPI_TYPE_INDEXED(nn, workl, work2, datatype,
& mtype, ierror)')
HPI_CALL('MPI_TYPE_COMMIT(mtype, ierror)')

MPI_CALL('MPI_BSEND (a, 1, mtype, rank, tag, icontxt, ierror)')
MPI_CALL('MPI_TYPE_FREE (mtype, ierror)')

'_L
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Figure 8s Implementation of global summation routines

kiefine(xGSUM2D,'
subroutine $1GSUM2D (icontxt, scope, top, m, n, a, Ida,
& rroot, croot)
implicit none
integer icontxt, m, n, Ida, rroot, croot

$2 a(lda,*), work(M)
character*! scope, top

integer nprow, npcol, datatype, optype, ierror
integer myprow, mypcol
include "mpif.h"
include "mlacs.h"

if(m.eq.O.or.n.eq.O) return

datatype = $3
optype = MPI_SUM

if (rroot .ge. 0 .and. croot .ge. 0) then

MLACSJIEDUCE
else if (rroot .eq. -1 .or. croot .eq. -1) then

MLACS_ALLREDUCE
else

ierror = -1

end if
MLACS_DEBUG(ierror, '.ne.', 0, $1GSUM2D_ERR)

return

end
')

define(MLACS_REDUCE,'
if (icontxt .eq. MPI_COMH_NULL) return
INITIALIZE_COLLECTIVE(icontxt, scope, rroot, croot, rank, comrn,.ierror)

HPI_CALL('MPI_COMM_RANK(comm, locid, ierror)')
do i=l, n

MPI_CALL('MPI_REDUCE(a(l,i),work,m,datatype,optype,rank,comm,ierror)')
if (locid .eq. rank) then

do j=l, m
a(j,i) = work(j)

end do
endif

end do
')

xGSUM2D('I', -integer', 'MPI_INTEGER')
xGSUM2D(SS', 'real', -MPI_REAL')
xGSUM2D('D', 'double precision', %MPI_DOUBLE_PRECISION')
xGSUM2D('C', 'complex', 'MPI_COMPLEX')
xGSUM2D('Z', 'double complex', 'MPI_DOUBLE_COMPLEX')
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Figure 9: Implementation of global MAX routine

[define(xGAMX2D,
subroutine $1GAMX2D (icontxt, scope, top, m, n, a, Ida, ra, ca,

& rcflag, rroot, croot)
implicit none

integer icontxt, m, n, Ida, rcflag, rroot, croot
$2 a(lda,*), work(M)
integer ra(rcflag,*), ca(rcflag,*), iwrk(M)
character*! scope, top

integer da-tatype, optype, ierror
integer nprow, npcol, myprow, mypcol

include "mpif.h"
include "mlacs.h"

if(m.eq.O.or.n.eq.O) return

dat at ype = $3
optype = $4
if (rcflag .gt. 0) then

MLACS_GRIDINFO
if (rroot .ge. 0 .and. croot .ge. 0) then

MLACS_REDUCE_LOC
else if (rroot .eq. -1 .or. croot .eq. -1) then

MLACS_ALLREDUCE_LOC
else

ierror = -1

end if
else if (rcflag .eq. -1) then

if (rroot .ge. 0,.and. croot .ge. 0) then

MLACS_REDUCE
else if (rroot .eq. -1 .or. croot .eq. -1) then

MLACS_ALLREDUCE
else

ierror = -1

end if
else

ierror = -1

end if
MLACS_DEBUG(ierror. '.ne.', 0, $1GAMX2D_ERR)
return
end

')

kiefine(xAMXOP,'
SUBROUTIWE $1ABSMAX( invec, inoutvec, len, type )
$2 invec(len), inoutvec(len)
INTEGER len, type
INTEGER i
do i=l, len

if (ABS(inoutvec(i)).lt.ABS(invec(i))) inoutvec(i)=invec(i)
end do
return

end

11.
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Figure 10; MLACS-RBDUCEJLOC macro for combine routines

|definelMLACS_REDUCE_LOC,'
if (icontxt .eq. MPI_COMM_NULL) return
INITIALIZE_COLLECTIVE(icontxt, scope, rroot, croot, rank, comm, ierror)

MPI_CALL('MPI_COMM_RANK(comm, locid, ierror)')

do i = 1, n

MPI_CALL('MPI_ALLREDUCE(a(l,i), work, m, datatype, optype,
& comm, ierror)')

do j = 1, m
ra(j,i) = -1
ca(j,i) = -1
if (a(j,i) .eq. work(j)) then

ra(j,i) = myprow
ca(j,i) = mypcol

end if
if (locid .eq. rank) then

a(j,i) = work(j)
end if

end do
MPI_CALL('MPI_REDUCE(ra(l,i), iwrk, m, MPI_INTEGER, MPI_MAX,

& rank, comm, ierror)')

do j = 1, m
if (locid .eq. rank) then

ra(j,i) = iwrk(j)
end if

end do
MPI_CALL('MPI_REDUCE(ca(l,i), iwrk, m, MPI_INTEGER, HPI_MAX,

& rank, comm, ierror)')

do j = 1, m
if (locid .eq. rank) then

ca(j,i) = iwrk(j)
end if

end do
end do

I")
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