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1 Introduction

The main justification for investing development effort in producing a parallel program
is usually the desire to handle large/ or even huge/ problems. Or to put it another way,

to deal with very large amounts of data. Managing the sheer quantity of data itself
is a major challenge for the program developer — and often also for the computer

system as well — but when the data has to be partitioned and distributed in a manner

which the computer can handle efficiently/ the real challenge has only just begun. Users
expect appropriate tools which will help them to take care of their data and program
development needs.

Compiler technology, however, remains a long way from being able to automati-

cally and effectively parallelize run-of-the-mill sequential programs/ even those written

in modern languages and ignoring the ubiquitous legacy codes. Current technology
requires programmers to explicitly write parallel programs/ or at least provide appro-

priate directives/ or 'hints/ informing the compiler of potentially exploitable parallelism
or the best-suited data layouts. Recently standardized examples of each of these ap-

preaches are the High-Performance Fortran (HPF) language based on directives/ and

Message-Passing Interface (MPI) communication libraries which are used for explicit
message passing between node programs (or within libraries) expressed in sequential
languages.

Whether a program has been written from scratch with parallelism in mind/ or

based on the parallelization of a sequential program, the challenge of managing very
large amounts of distributed data remains daunting. This is especially the case during
program development, when cycles of debugging and performance analysis punctuate

the algorithm development process. Tools are required which efficiently present data in

forms which are easily and quickly interpreted/ and preferably presented in a manner
which closely relates to the programmer's conception of their program and data objects.

The fact that large amounts of data, and possibly large numbers of processors, are

involved shouldn't interfere with this process, at least not until it becomes necessary

for the programmer to consider these 'details/

Graphical views of distributed data sets and performance data collected from as-
semblies of processors are natural mechanisms to reduce large quantities of information

to more readily managed and easily interpreted forms. Many different views of the
same or slightly different data are possible, and indeed, the effectiveness of a graphical
presentation depends strongly on the correct combination of the right view with the
relevant data. Interactive browsing of such views/ however/ quickly and conveniently

locates points of interest/ which stand out by being different.

Dumping large amounts of raw data from many processors, often through a sequen-

tial bottleneck such as some file-systems/ and to then process this data and reduce it to a

presentable form/ is not only extremely slow but terribly inefficient. For graphical data

reduction to be done effectively, it has to be incorporated within the run-time support

system of a parallel program/ and much of the reduction has to be done in parallel

on the same processors where the parallel program resides. Of course, this additional

processing has a cost/ in terms of unavoidably intrusive effects on the user program,

but since in the first instance it is essential to debug and perform basic tuning of the
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parallel program, the intrusion can be appropriately dealt with later.

The Annai integrated tool environment [CEF+95], developed as part of the Joint
CSCS/NEC Collaboration in Parallel Processing [CDD+96], was designed to provide a
comprehensive program development environment for distributed-memory computer

systems. After briefly introducing Anna! and its tool components/ for which detailed
accounts are separately available/ attention is focussed on the run-time libraries which

do much of the /behind-the-scenes' processing/ and which together make interactive

high-level debugging and performance analysis possible. An example session follows
which demonstrates the effective implementation of these ideas/ as seen by users

engineering large-scale parallel applications.

CSCS/SCSC TECHNICAL REPORT
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2 Anna! integrated tool environment

The Annai environment offers integrated tools for parallelization/ debugging, and per-

formance monitoring and analysis/ with common user and machine interfaces. Build-

ing on agreed international standards/ 'high-level' extended High Performance Fortran

(HPF) and 'low-leveF explicit message-passing programs (based on MPI) are handled
by all of the tools, supporting application flexibility and portability. Through user-
driven/ application-oriented development in a series of prototypes, ease-of-use for

non-expert parallel programmers and scalable functionality to handle actual user (and

program) requirements are refined.

PST/ the Parallelization Support Tool, extends the current HPF definition by pro-
vidtng language constructs and extensive run-time support for the parallelization of

irregular computations [MR95]. These PST extensions support dynamic data distri-
buttons and run-time preprocessing of critical code sections, and are currently being

investigated in conjunction with the High Performance Fortran Forum. Along with
comprehensive compilation support for mbced-language program sources — such as

any combination of HPF/ HPF with PST extensions/ Fortran/MPI/ and C/MPI — ap-
plications are also (optionally) instrumented to generate information for use by the
other tools.

PDT/ the Parallel Debugging Tool, is a conventional source-level symbolic debug-

ger, enhanced to support different levels of abstraction [CFR95]. At the data-parallel
level/ PDT provides coherent graphical representations of large/ distributed data-sets

(both views of the data values and the data distribution itself)/ and control- and data-
breakpomts with global break conditions. At the message-passing level, PDT assists
programmers with deadlock and race detection/ and deterministic execution replay.

PMA/ the Performance Monitor and Analyzer, exploits profile summary and trace

information from interactively specified source code regions where instrumentation is

inserted and data collected during the execution of a parallel program [WE96]. PMA
then assists with the performance timing and interpretation of program execution

through visualization and analysis of this information. Different levels of abstraction
are supported/ from execution summary profiles and global views of time-varying

behavior down to individual processes and analysis of communication events and

memory utilization.

Figure 1 is a diagram of the interaction between different An n a i tool components.
PDT and PMA have a common interface to the parallel computing platform via the Tool
Service5 Agent (TSA), which provides basic/ low-level functions for controlling parallel
program execution. An OSF/Motif User Inter face (Ul) to the run-time environment and

Annai tool components primarily consists of source code listing and program structure

browsers which can also be directed and annotated by the other tools. These interactive

components run on Unix workstations.

Within the parallel machine user programs execute utilizing the MPI/ HPF/ and
Annai tool libraries, where bulk information from the executing program may also be

processed. Optimized implementations have been developed for the NEC Cenju-3

distributed-memory parallel computer, along with versions for Unix workstations and

workstation clusters. Annai cross-development utilities allow the specialized parallel

TR-96-04/ APRIL 1996 - -3
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Figure 1: Anna! tool environment overview (with detail ofrun-time libraries)

computer systems to be dedicated to final development/ performance tuning and pro-

duction use, whereas Annai provides a complete code development and debugging

environment for any of these systems. Applications developed with Annai (and its
run-time libraries)/ based on both PST/HPF and MPI, have also run readily on Intel
Paragon and Gray T3D systems/ verifying their portability [CEF+95].
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3 Annai run-time libraries

3.1 Organization

The modular construction of the Annai interactive user environment from a number of

component tools also applies to the Annai run-time system of libraries linked with the
user program and running on the parallel computer system. The Annai libraries are

organized as shown in the detail box of Figure 1.
The most basic configuration/ corresponding to that for fully-optimized explicitly-

parallelized programs without detailed debugging and performance analysis support/
only uses the standard run-time and system libraries. These include the MPI communi-

cation library, optimized for the target system, which handles all of the inter-processor
communication requests, buffering and routing messages as required.

HPF programs need run-time support to manage distributed data, and perform au-

tomatic message routing to maintain data consistency. Programs using PST extensions

for irregular computations also require additional functionality for run-time analysis

(discussed later when considering PSTIib). In the Anna! environment all communica-
tion within the HPF and PST libraries [SKS+95] is based on MPI.

When requested by the programmer, the Annai compilation system incorporates

additional run-time libraries, which assist with detailed debugging and performance
analysis of programs which aren't fully-optimized. These libraries are considered

together/ even though their modularity would allow them to be used independently
for their different purposes. This provides the most general convenience to the user/

avoiding the need to recompile or modify compiler flags when switching between
debugging and performance analysis during the program development process. If
desired for 'production' use/ recompilation with the highest optimization level can be

done when development is complete.

3.2 Functionality

The main Annai run-tune libraries are those associated with the different tool com-

ponents. Portable versions of these libraries are often complemented by optimized

implementations for particular parallel systems. In each case, the library is based on a

scalable design with clean functional interfaces.

An additional support library/ known as TSAIib, provides implementations of (or
interfaces to) system-specific functions which interact with the operating system. Ex-

amples include tuning and clock synchronization functions/ and support for special

'lightweight' breakpoints which are notified directly to the run-time library and pro-
cessed locally on the respective processor. These breakpoints are set like normal break-

points/ but don't halt all of the processors nor interact with Anna! via TSA. This

avoids unnecessary synchronization and interference with other processors/ providing

a convenient mechanism for modifying instrumentation and performing other recon-

figuration actions during execution.
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Figure 2: Annai finite-element application engineering session. The main Annai/UI window
(top left) includes a source listing browser, which is complemented with a customizable program
structure browser (lower left). Output from the previous execution of the loaded program,
'PFE16cj3/ appears in a separate window (lower right). PDT has already been used to set
breakpoints and check distributed arrays, and PMA run-time library configuration is in progress.
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3.2.1 PSTIib

The core of the PST library provides run-time analysis support for PST/HPF pro-
grams, automatically managing shared and distributed variables by constructing and
controlling essential message transfers (via communication patterns), and handling

the execution of parallel loops. (For a thorough exposition and implementation details
refer to [MR95] and references therein.)

In addition to run-time support for PST/HPF programs/ the PST run-time library
also provides basic support for debugging and performance analysis of such programs.

In general, PST only knows at run-time how (or even whether) an array has been

partitioned, and where the different fragments are located. Support for dynamic

array allocation/ dynamic array re-alignment and re-distribution/ assumed-size array

arguments, user-defined and inherited data distributions all mean that representations

of distributed arrays and symbol tables are complex structures which have to be set

up at run-time. Functions are therefore provided by the PST run-time library which

allow access to distributed arrays and their structure and distribution information. In

this way, distributed array fragments can be reconstituted for presentation or treated

as united objects by PDT.
Information about the static structure of the source program/ and how this relates to

the transformed code actually running on the nodes of the parallel machine, allows PDT

and PMA to relate low-level events to the corresponding high-level source statements.

Examples where such information is essential are matching addresses of breakpoint

locations or MPI message-passing events to the appropriate line (or lines) of PST/HPF
program source.

A specification of the static program structure is also incorporated within source

objects during compilation, and after linking constituted into a complete specification
added as an extra 'section' of the executable. This mechanism ensures that the speci-

fication is always consistent with the corresponding source files, and that it is readily
accessible to Annai interactive components (such as the Program Structure Browser,

which is based on this information).

3.2.2 PDTIib

PDT is able to reconstruct a distributed array from the fragments on each processor

using the array distribution information available from the PST run-time library. This

'raw7 data is most conveniently processed within the parallel machine/ to extract rele-

vant parts for subsequent analysis or to reduce the quantity of data to an appropriate

amount for presentation.

Data breakpoints/ or /watchpoints/ specify a break condition in terms of the pro-

gram s memory state, e.g., when an array is modified or an element becomes zero, and

provide an indispensable debugging service when tracking down run-time violations

when they first occur. The PDT run-time library includes a scalable mechanism where

all memory updates performed by the program are checked locally on each processor.

Store operations are instrumented to determine whether the address is within the range

of an array section to which a predicate has been specified, and then, if appropriate,

TR-96-04, APRIL 1996 7
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Figure 3: PDT Distributed Data Visualizer views of an array section from a PLUMP
application with PST extended BLOCK_GENERAL distribution. The data map visualizer (top
left) shows clearly how array elements are allocated to processors, and the same color-coding

to distinguish processors is used in the other data views. To examine array elements closely, a

tabular value browser is provided (top right), and this is complemented with a graphical value
browser for quick overviews (bottom). In the three-dimensional graphs, the heights of the bars
correspond to the data values, and these may be interactively re-oriented and rescaled for better

views. The progressive reduction of the residual validates the solver, seen by comparing the
main view of the initial state with those of the next two iterations: the small graphs are in pairs
using the same scale as the first view and rescaled for close inspection.
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the value itself is also examined. If necessary, an exception is signaled for execution to

halt, otherwise the store is performed and the program continues.

Messages in distributed systems are considered to race if they are simultaneously in

transit and the order of receipt at a single point is not completely defined. Re-runnmg a

program which has races complicates debugging, since execution is non-deterministic.

The PDT run-time library uses vector timestamps sent with each message to determine

on receipt whether a race has occured, and such cases are noted for later reporting to

the user. On subsequent re-execution, the trace of messages which raced can be used to

enforce determmistic replay/ or a choice of alternative execution paths can be followed.

(For a thorough exposition of these topics and PDT library implementation details
refer to [CFR95] and [CFMR95] and references therein.)

3.2.3 PMAIib

During program execution/ the PMA library is responsible for managing profile sum-
mary and event trace collection from instrumented MPI communication library func-

tions and instrumentation inserted in the program by the compilation system. Users

can also choose to add extra instrumentation of their own. Initial library configu-

ration determines what classes of information are gathered/ and how this should be

processed. This 'base' instrumentation can be flexibly modified by specifying different
instrumentation for selected program regions.

The state and utilization of the message-passing system is straightforwardly deter-

mined from the instrumented communication functions. Similarly, the instrumenta-

tion inserted by the compilation system, makes it possible to determine the program

state in terms directly related to the user's view of the program structure/ i.e./ rou-

tines, loops/ etc. Additional information is also provided by the compilation system

about parallelization overheads, such as run-time analysis, (explicit and implied) data

re-distributions, and extra storage for communication buffers. Memory utilization pro-

vided by these means, and other system information/ including the message-passing

events, can always be related to the familiar program framework.

Two complementary performance information formats are supported by the PMA

run-time library. The simplest is an event trace log which is kept in a buffer on each

processor, to be processed and transferee! to a trace file or directly to the interactive

part of PMA within Annai on demand when the buffers become full/ or at the end of
program execution. Complete tracing of large-scale parallel programs is typically only

appropriate (and even necessary) for detailed analysis of limited parts of program exe-

cution, such as particular routines or loops. A more convenient and scalable alternative

is a profile summary, accumulated as the program rims, which keeps track of essential

execution statistics. These summaries build up statistics such as the execution time

and count, the number and volume of communication events, and memory utilization

— as totals, averages and extreme cases — for each entity of the program structure on

each processor. Profiles of the current execution status can be presented graphically on

demand/ or summarize the complete execution when the program finishes.

Knowledge of the processing overheads associated with an implementation of the

instrumentation functions allows PMA to estimate (or, in important cases, measure)
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program execution intrusion for presentation as part of subsequent analyses. Execu-

tion interruptions/ such as breakpoints, can be presented in a similar way, or used

to invalidate measurements which are directly affected by them. (For a thorough ex-

position of these topics and PMA library implementation details refer to [EW96] and

references therein.)

3.3 Interaction

The modular design of the Annai run-time libraries allows them to be used indepen-
dently of each other/ but more importantly was done so that the functionality was
clearly separated. Interaction is through cleanly defined interfaces/ which allows each

library to be separately developed and optimized for different target platforms.
During a debugging session the PDT run-time library can use PSTIib to access

the relevant parts of distributed arrays, for reduction and presentation to users as

single consistent objects. The array distribution itself is also often important and can

be presented separately or together with array values. Similarly, during program
execution message events related to the MPI communication library can be checked by

PDTIib to determine whether a race has occured and/or noted by PMAIib as part of its
execution record. Low-level events such as this are efficiently related to the appropriate

high-level source via PSTIib program structure mapping information.
Interaction between the interactive components and their associated system-specific

run-time libraries is handled by the TSA portable machine interface. Where appropri-
ate/ files written directly by the run-time libraries (such as execution trace fragments)
are used to return or directly store bulk information. TSA also does not interact directly
nor share functionality with TSAIib, since in this case the similarity of names refers to
their common but distinct service and portability interface roles for the other tools.

3.4 Operation

PDTlib and PMAIib would have significantly intrusive effects, on each other as well as
the user program, if all of their functionality were always enabled. Their functionality

is, however, only latent, requiring appropriate configuration by Annai at run-time:

when latent the intrusiveness is generally minimal.

When debugging, PDT can activate the PDTIib functionality to enable message-race
checking/ or to configure watched memory regions. Alternatively, during performance

analysis/ PMA will activate profiling and/or tracing and configure the various types of
instrumentation managed by PMAIib.

Both PDT and PMA use the common facilities provided by TSA, the only part of
Annai which interacts directly with the parallel program on the target platform. In
addition to controlling program execution, TSA is able to read from and write into the

program's address space, enabling it to configure the Annai run-time libraries. TSA

also allows PDT and PMA to specify breakpoints and (where appropriate) subsequently
informs the high-level tools of breakpoint hits which they can then process as they wish.
At any time program execution has been halted/ the run-time library configurations

can be further modified by TSA: tables of memory regions corresponding to arrays
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Figure 6: Annai/PMA Processor Balance Display output graphs, showing profiles of the
total execution time of routine PARDDDT on 64 and 128 processors, with breakdown of MPI
communication overhead and idle time when blocked (red). Although computation time (green,
at the bottom of each bar) is reasonably well balanced in both cases, synchronization overheads
become increasingly dominant and unbalanced on larger numbers of processors leading to poor

overall efficiency.
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Figure 7: Annai/UI Program Structure Browser with PMA execution statistics annotations.

This concise representation of the loaded program is synchronized with the main source browser

and annotated by PDT and PMA. It also provides convenient customization facilities to
fold/unfold routines or loop blocks, and to mask/filter or sort chosen entries.
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which should be watched with associated predicates/ and instrumentation actions and

configurations to be applied at 'lightweight' breakpoint hits, can be updated.

Programs developed partially, or entirely/ with explicit MPI message-passing can
also benefit from the support provided by the PDT and PMA run-time libraries/ though
generally not to the same extent that PST/HPF programs are supported. .For example,

logical 'arrays' which have been partitioned and distributed manually/ cannot easily

be reconstructed for viewing and consideration during debugging as a single object.
Mapping functions/ which programmers could use to describe how array fragments

should be reconstituted/ could probably be provided/ but would inevitably be both
complex and error prone. Additionally/ performance analyses would need to be en-

hanced to provide selection and filtering facilities based on individual or groups of
processors which have executed different code.

4 Use of Annai .in parallel program engineering

Figure 2 shows a typical session with Annai, interactively debugging and analyzing
the performance of an application using a Parallel Library for Unstructured Mesh
Problems (PLUMP) [BLM+95] on 16 processors of a NEC Cenju-3 distributed-memory
parallel computer (host-name /uji/). The library is based on the PST BLOCK_GENERAL
data distribution/ which extends the HPF BLOCK distribution by allowing blocks to
be specified at run-time with variable sizes and potentially unused elements between

blocks. Such /oversized/ arrays are useful when the problem size varies dynamically

during program execution. For demonstration purposes a small problem is considered

here: details of the Annai-assisted parallelization and development of an eigensolver

m this library for 128 processors were reported previously [CDD+96].
The main point of reference is the original PST/HPF program source shown in

Annai's source browser (top left of the figure). Also part of this window is a message
area for tool status information and the controls for loading and running the program

on the target parallel machine: program output appears in a separate window (bottom
right). A customizable structured overview of the program is provided by the Program

Structure Browser (shown in the lower, left corner) to complement the source listing

browser. Control windows for Annai component tools — PST (or more accurately a

shell where compilation is performed)/ PDT and PMA — also instantiated from the
main Ul/ are here iconized at the top of the figure.

4.1 Interactive debugging

During debugging with PDT/ a section of the residual was selected from the Anna!/U!
source browser and analyzed with the Distributed Data Visualizer shown in Figure 3.

From these graphical views of the residual/ where color distinguishes the allocation of

array elements to processors, algorithm. correctness and convergence are verified.

Since the Annai/PST compilation system guarantees that HPF/PST programs are
deadlock- and race-free/ in this case there was no need to use that functionality of the
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PDT run-time library. Where users choose to incorporate their own explicit message-

passing code/ whether as an EXTRINSIC routine, a library, or even a whole program,

such debugging support can be easily activated through a PDT library configuration
dialog (not shown). Similarly, P DTs memory watching functionality can be configured
to check array (write) accesses for undesirable conditions.

4.2 Interactive performance

Progressing to initial performance analysis, the Annai run-time libraries have been

reconfigured to enable profiling and set desired classes of instrumentation (using the
dialog on the right in Figure 2). This reconfiguration avoided recompiling/rebuilding
the program and even the need to reload it, accumulating a profile summary during
program execution for later writing to file.

Profile summaries are rendered by PMA's Execution Statistics Display (Figure 4)/
where different execution metrics can be browsed: from an initial overview of the

execution time of all routines, graph (a), ranking and filtering isolates the key routines/
graph (b)/ or analysis can quickly switch to show the communication volume for each
routine/ graph (c). The main view shown presents average execution time, for each

program routine and with parallelization overheads distinguished: routines where

distributed arrays have been analyzed at run-time and the associated message routing

are found to be the most critical/ particularly routine EBEAMUX which has then been
examined in more detail. By focusing on (or 'zooming' into) this routine, graph (d)
shows the same information with respect to each of the constituent loop blocks. Further

restriction selects the statistics for individual processors/ such as PE#1 in graph (e).
Using the associated Processor Balance Display, which collectively graphs selected

statistics for all processors, the execution time of the EBEAMUX routine of PE#1 is seen

to be considerably different from the others. This potentially serious inefficiency can
be located to the main loop nest, labeled with identifier 10 and using iterator ISLIDE.
This processor-based profile' display is a natural progression from the program-based

profile/ the one complementing the other. Figure 6 demonstrates how such displays
also scale well to large numbers of processors, when it becomes even more valuable

for quickly identifying and isolating inefficiencies due to load imbalance.
In addition to producing graphs for reference purposes/ PMA can'also transfer

data from its analysis displays to the Annai Program Structure Browser, to appear as
annotation columns in its tabular display directly associated with the related program
source/ as shown in Figure 7.

Having identified critical routines, the PMA run-time library can be again reconfig-

ured to generate a more detailed profile or an event trace of those key routines. The

PMA Evolution Time-line Display provides an interactively rescalable and scrollable
trace visualization chart. Vertical scales (progressing downwards) are annotated both

with time and program structure information — additional 'landmark' annotations

appear at higher resolution scales. Various charts of tmie-varying behavior can be

combined, such as a processor interaction summary and a graph of memory utiUza-

tion/ as shown in Figure 5. Compared with the scalable statistics summary profiles/ for

detailed analysis a reduced number of processors and a shorter execution are favored.
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5 Comparison to related work

Integrated environments for parallel systems have recently become a matter of con-

siderable user and developer interest. Thinking Machines Corporation's commercial

Prism environment [SAB+92] successfully demonstrated the principle/ and motivated
research groups to investigate similar support environments for Fortran D [HKTW94]
and Vienna Fortran [PZ95]/ as well as other programming languages. Numerous more

restricted efforts have also partially-mtegrated various editors/ compilers/ debuggers

and analysis tools in research and commercial contexts/ some now coordinated under

the auspices of the Parallel Tools Consortium [Ptools] (who maintain an up-to-date list
of current and former activities).

Annai is the practical realization of the further development of these ideas in a con-
sistent/ easy-to-use environment. The latest parallelization, debugging, performance

monitoring and analysis techniques have been incorporated in integrated tools/ pro-

viding comprehensive scalable support for flexible data-parallel and explicit message-
passing application development with standardized languages and portable machine
interfaces. This provision of key functionality and adherence to accepted standards are
two of the criteria which came through most strongly in recent recommendations from

the high-performance computing user community to those who develop and provide

system software and tools for parallel and distributed computer systems [PBF95].

6

Anna! has developed into a comprehensive environment supporting the parallelization,
debugging and performance analysis of large-scale programs. Graphical displays, cou-

pled with compilation system support (and high-level language features when neces-
sary)/ provide appropriate metaphors for user interaction/ but also place considerable

demands on the run-time system. The design of the Annai run-time libraries/ such that

they can handle distributed events and process huge amounts of data — from both

the user program and the system itself — in a scalable fashion, ensures support for

interactive parallel program analysis.

Based on feedback from pilot users, the key usability feature is essential source

reference for low-level events and distributed program objects. Also appreciated is

the convenience of being able to switch between debugging and performance analysis

without even needing to reload the executable, supported via dynamic configuration of

the run-time libraries. The most significant benefits of the integration of individually
powerful tools, however/ are the complementary treatments of subtle/ yet critical/

parallelization aspects/ and the consistent user presentations and interaction which

result.
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