
Swiss Center for
Scientific Computing

Centro Svizzero di
Calcolo Scientifico

for

of

Christian Clemen^on, Akiyoshi Endo, Josef Fritscher,
Miiller & J. N. Wylie

Sources

F77+MPI

C+MPI-

HPF
HPF+MPI-

HPF+PST"

:of]t{»i
^1 &,

ill

ffSSysMs^''!'r^SW^^

^WK^liiSi^S
iiWS!iSSSiSii^s
^j^^j;;j;g^j^ jj

^?vS H

Workstation

il IISIIIBIillBB

%wf •ylt;C'lBFK^l£^ ';i£i^w?ff%£?^

^ ^^f
11..111111
Ill ill!5:!1!

KmX''XS?
Ill ili;?^'?:l^!l:?::^:':':':S^?^i;S5i;;S:iSS

DMPP

Detail:

Anna! run-time libraries

(HPFIib+PSTIib)

MPIIib) (TSAIib+Os)

Communication event processing
Compilation system access/info
On-node breaicpoint handling

TR-96-04

OTHER PUBLICATIONS BY CSCS/SCSC

Annual Report: yearly review of activities and projects
CrosSCutS (triannually): newsletter featuring announcements relevant to our users as

well as research highlights in the field of high-performance

computing
Speedup Journal (biannually): proceedings of the SPEEDUP Workshops onvectorand

Parallel Computing, published on behalf of the SPEEDUP

Society
User's Guide: manual to hardware and software at CSCS/SCS'C

To receive one or more of these publications, please send your full name and complete address

to:

Library
cscs/scsc
via Cantonale
CH-6928 Manno
Switzerland

Fax: +41 (91) 610 8282

E-mail: library@cscs.ch

Technical Reports are also available from:

http://www.cscs.ch/Official/Publications .html

A list of former IPS Research Reports is available from:

http://www.cscs .ch/Official/IPSreports.html

for

of

Christian Clemengon1, Akiyoshi Endo2/ Josef Fritscher1,
Andreas Muller1 & Brian J. N. Wylie1

TR-96-04,Aprill996

Abstract. The Annai tool environment helps exploit distributed-memory parallel
computers with High Performance Fortran and/or explicit communication, using
MPI as a portable machine interface. Integration within a unified environment

allows the component parallelization and compilation support, debugging and
performance tools to synergetically use common facilities. Additionally, massive
quantities of partitioned data and execution information, from large-scale applica-
tions on multiple processors, needs to be effectively managed and presented during
program engineering. This has been achieved by scalable design and cooperative
integration of tool component run-time libraries, and interactive debugging and
performance analysis is demonstrated with a representative user session.

Keywords, parallel program development environment; integrated tools and run-time support

libraries; distributed data management and visualization; multi-level execution performance

data browsing; HPF and MPI.

To appear in series Lecture Notes in Computer Science, Proceedings of EuroPar'96 (Lyon, France),
Springer-Verlag, August 1996.

For further information see URL http: //www. cscs. ch/Official/Project_CSCS-NEC .html

1 Centro Svizzero di Calcolo Sdentifico (CSCS/SCSC)
2 NEC European Supercomputer Systems/ Swiss Branch

Via Cantonale, CH-6928 Manno, Switzerland

clemencon | endo | fritscher | mueller | wylie Ocscs.ch

CSCS/SCSC TECHNICAL REPORT

C. CLEMEN^ON/ A. ENDO, J. FRTISCHER/ A. MULLER & B. J. N. WYLIE

Contents

1 Introduction 1

2 Anna! integrated tool environment 3

3 Annai mn-time libraries 5
3.1 Organization 5

3.2 Functionality 5

3.2.1 7

3.2.2 7

3.2.3 10

3.3 Interaction 12

3.4 Operation 12

4 Use of Annai in parallel program engineering 14
4.1 Interactive debugging 14

4.2 Interactive performance analysis 15

5 Comparison to related work 16

6 Conclusion 16

of

1 Annai tool environment overview (with detail of run-time libraries) ... 4

2 Annai application engineering session with PLUMP-based program ... 6

3 PDT Distributed Data Visualizer views of an array section from a PLUMP
application with PST extended BLOCK-GENERAL distribution 8

4 PMA Execution Statistics Display and coupled Processor Balance Display
during profile browsing 9

5 PMA Evolution Time-line Display execution charts of PLUMP applica-
tion processor interaction summaries and memory utilization graphs . . 11

6 Annai/PMA Processor Balance Display output graphs 13
7 Annai/UI Program Structure Browser with PMA statistics annotations . 13

n CSCS/SCSC TECHNICAL REPORT

Annai SCALABLE RUN-TIME SUPPORT FOR LARGE-SCALE PARALLEL PROGRAMS

1 Introduction

The main justification for investing development effort in producing a parallel program
is usually the desire to handle large/ or even huge/ problems. Or to put it another way,

to deal with very large amounts of data. Managing the sheer quantity of data itself
is a major challenge for the program developer — and often also for the computer

system as well — but when the data has to be partitioned and distributed in a manner

which the computer can handle efficiently/ the real challenge has only just begun. Users
expect appropriate tools which will help them to take care of their data and program
development needs.

Compiler technology, however, remains a long way from being able to automati-

cally and effectively parallelize run-of-the-mill sequential programs/ even those written

in modern languages and ignoring the ubiquitous legacy codes. Current technology
requires programmers to explicitly write parallel programs/ or at least provide appro-

priate directives/ or 'hints/ informing the compiler of potentially exploitable parallelism
or the best-suited data layouts. Recently standardized examples of each of these ap-

preaches are the High-Performance Fortran (HPF) language based on directives/ and

Message-Passing Interface (MPI) communication libraries which are used for explicit
message passing between node programs (or within libraries) expressed in sequential
languages.

Whether a program has been written from scratch with parallelism in mind/ or

based on the parallelization of a sequential program, the challenge of managing very
large amounts of distributed data remains daunting. This is especially the case during
program development, when cycles of debugging and performance analysis punctuate

the algorithm development process. Tools are required which efficiently present data in

forms which are easily and quickly interpreted/ and preferably presented in a manner
which closely relates to the programmer's conception of their program and data objects.

The fact that large amounts of data, and possibly large numbers of processors, are

involved shouldn't interfere with this process, at least not until it becomes necessary

for the programmer to consider these 'details/

Graphical views of distributed data sets and performance data collected from as-
semblies of processors are natural mechanisms to reduce large quantities of information

to more readily managed and easily interpreted forms. Many different views of the
same or slightly different data are possible, and indeed, the effectiveness of a graphical
presentation depends strongly on the correct combination of the right view with the
relevant data. Interactive browsing of such views/ however/ quickly and conveniently

locates points of interest/ which stand out by being different.

Dumping large amounts of raw data from many processors, often through a sequen-

tial bottleneck such as some file-systems/ and to then process this data and reduce it to a

presentable form/ is not only extremely slow but terribly inefficient. For graphical data

reduction to be done effectively, it has to be incorporated within the run-time support

system of a parallel program/ and much of the reduction has to be done in parallel

on the same processors where the parallel program resides. Of course, this additional

processing has a cost/ in terms of unavoidably intrusive effects on the user program,

but since in the first instance it is essential to debug and perform basic tuning of the

TR-96-04, APRIL 1996 1

C. CLEMEN(;ON, A. ENDO/ J. FRITSCHER, A. MULLER & B. J. N. WYUE

parallel program, the intrusion can be appropriately dealt with later.

The Annai integrated tool environment [CEF+95], developed as part of the Joint
CSCS/NEC Collaboration in Parallel Processing [CDD+96], was designed to provide a
comprehensive program development environment for distributed-memory computer

systems. After briefly introducing Anna! and its tool components/ for which detailed
accounts are separately available/ attention is focussed on the run-time libraries which

do much of the /behind-the-scenes' processing/ and which together make interactive

high-level debugging and performance analysis possible. An example session follows
which demonstrates the effective implementation of these ideas/ as seen by users

engineering large-scale parallel applications.

CSCS/SCSC TECHNICAL REPORT

Anna! SCALABLE RUN-TME SUPPORT FOR LARGE-SCALE PARALLEL PROGRAMS

2 Anna! integrated tool environment

The Annai environment offers integrated tools for parallelization/ debugging, and per-

formance monitoring and analysis/ with common user and machine interfaces. Build-

ing on agreed international standards/ 'high-level' extended High Performance Fortran

(HPF) and 'low-leveF explicit message-passing programs (based on MPI) are handled
by all of the tools, supporting application flexibility and portability. Through user-
driven/ application-oriented development in a series of prototypes, ease-of-use for

non-expert parallel programmers and scalable functionality to handle actual user (and

program) requirements are refined.

PST/ the Parallelization Support Tool, extends the current HPF definition by pro-
vidtng language constructs and extensive run-time support for the parallelization of

irregular computations [MR95]. These PST extensions support dynamic data distri-
buttons and run-time preprocessing of critical code sections, and are currently being

investigated in conjunction with the High Performance Fortran Forum. Along with
comprehensive compilation support for mbced-language program sources — such as

any combination of HPF/ HPF with PST extensions/ Fortran/MPI/ and C/MPI — ap-
plications are also (optionally) instrumented to generate information for use by the
other tools.

PDT/ the Parallel Debugging Tool, is a conventional source-level symbolic debug-

ger, enhanced to support different levels of abstraction [CFR95]. At the data-parallel
level/ PDT provides coherent graphical representations of large/ distributed data-sets

(both views of the data values and the data distribution itself)/ and control- and data-
breakpomts with global break conditions. At the message-passing level, PDT assists
programmers with deadlock and race detection/ and deterministic execution replay.

PMA/ the Performance Monitor and Analyzer, exploits profile summary and trace

information from interactively specified source code regions where instrumentation is

inserted and data collected during the execution of a parallel program [WE96]. PMA
then assists with the performance timing and interpretation of program execution

through visualization and analysis of this information. Different levels of abstraction
are supported/ from execution summary profiles and global views of time-varying

behavior down to individual processes and analysis of communication events and

memory utilization.

Figure 1 is a diagram of the interaction between different An n a i tool components.
PDT and PMA have a common interface to the parallel computing platform via the Tool
Service5 Agent (TSA), which provides basic/ low-level functions for controlling parallel
program execution. An OSF/Motif User Inter face (Ul) to the run-time environment and

Annai tool components primarily consists of source code listing and program structure

browsers which can also be directed and annotated by the other tools. These interactive

components run on Unix workstations.

Within the parallel machine user programs execute utilizing the MPI/ HPF/ and
Annai tool libraries, where bulk information from the executing program may also be

processed. Optimized implementations have been developed for the NEC Cenju-3

distributed-memory parallel computer, along with versions for Unix workstations and

workstation clusters. Annai cross-development utilities allow the specialized parallel

TR-96-04/ APRIL 1996 - -3

C. CLEMENCON/ A. ENDO/ J. FRITSCHER, A. MULLER & B. J. N. WYLIE

Sources

F77 + MPI

C+MPI

HPF

HPF + MPI

HPF + PST

monitor

/

\

user

program

PST lib

PDTIib'

MPI

node
kernels

^

Workstation DMPP

Detail:

Annai nm-time libraries

(HPFIib+PSTIib^)

(PMAIib)

(PDTIib)
MPIIib) (rSAIib+OS)

Communication event processing
^— Compilation system access/info
— On-node breakpoint handling

Figure 1: Anna! tool environment overview (with detail ofrun-time libraries)

computer systems to be dedicated to final development/ performance tuning and pro-

duction use, whereas Annai provides a complete code development and debugging

environment for any of these systems. Applications developed with Annai (and its
run-time libraries)/ based on both PST/HPF and MPI, have also run readily on Intel
Paragon and Gray T3D systems/ verifying their portability [CEF+95].

CSCS/SCSC TECHNICAL REPORT

Annai SCALABLE RUN-TIME SUPPORT FOR LARGE-SCALE PARALLEL PROGRAMS

3 Annai run-time libraries

3.1 Organization

The modular construction of the Annai interactive user environment from a number of

component tools also applies to the Annai run-time system of libraries linked with the
user program and running on the parallel computer system. The Annai libraries are

organized as shown in the detail box of Figure 1.
The most basic configuration/ corresponding to that for fully-optimized explicitly-

parallelized programs without detailed debugging and performance analysis support/
only uses the standard run-time and system libraries. These include the MPI communi-

cation library, optimized for the target system, which handles all of the inter-processor
communication requests, buffering and routing messages as required.

HPF programs need run-time support to manage distributed data, and perform au-

tomatic message routing to maintain data consistency. Programs using PST extensions

for irregular computations also require additional functionality for run-time analysis

(discussed later when considering PSTIib). In the Anna! environment all communica-
tion within the HPF and PST libraries [SKS+95] is based on MPI.

When requested by the programmer, the Annai compilation system incorporates

additional run-time libraries, which assist with detailed debugging and performance
analysis of programs which aren't fully-optimized. These libraries are considered

together/ even though their modularity would allow them to be used independently
for their different purposes. This provides the most general convenience to the user/

avoiding the need to recompile or modify compiler flags when switching between
debugging and performance analysis during the program development process. If
desired for 'production' use/ recompilation with the highest optimization level can be

done when development is complete.

3.2 Functionality

The main Annai run-tune libraries are those associated with the different tool com-

ponents. Portable versions of these libraries are often complemented by optimized

implementations for particular parallel systems. In each case, the library is based on a

scalable design with clean functional interfaces.

An additional support library/ known as TSAIib, provides implementations of (or
interfaces to) system-specific functions which interact with the operating system. Ex-

amples include tuning and clock synchronization functions/ and support for special

'lightweight' breakpoints which are notified directly to the run-time library and pro-
cessed locally on the respective processor. These breakpoints are set like normal break-

points/ but don't halt all of the processors nor interact with Anna! via TSA. This

avoids unnecessary synchronization and interference with other processors/ providing

a convenient mechanism for modifying instrumentation and performing other recon-

figuration actions during execution.

TR-96-04/ APRIL 1996

C. CLEMEN^ON/ A. ENDO, J. FRITSCHER, A. MULLER & B. J. N. WYLIE

ZT ANNAT:TFE16cj3

File Tools

[-Source Browser-

Rle:fllome/NECfdemo/apps/PLUMPZ/PFE/matn(iap.F Goto

181
182
1B3
184
1B5
1B6
1B7
188
189
19D
191
192
193
191
195
196
197
198
199

B 20D

integer vector_slze

integer vector_map(2*nrproc)

double precision x(vector_size }
!PST$ DISTRIBUTE x(BLOCK_GENERAL (vector_map))

double precision xmat(20 , 20)
!PST$ DISTRIBUTE xmat(BLOCK_GENERAL (vector_map)

lent - 1
jcnt = 1

!PST$ ALIGN 100 WITH x(i)
do 100 i-1, vector size

lent - MOD(i-l, 20) + 1
Jcnt - (i-1) / 20 + 1
xmatficnt, jcnt) = x(i)

100 continue

ac

Message Window -

CSCS BST/HPF Frontend SRevision: 5.5 S (c) 1994/199S CSCS-ETH
PST Run-Time Library $Revi3ion: S. 11 $, (c) 1994-95 CSCS-ETH

DETACH Attached to u)l:1G processors RUN | 'PFE16cj3-Is ready to

Help

PMAIib Configuration

r-Pfoflllng

H Run-time Profile Accumulation

K Cofteet 'ThVttt Eftfi>mwtii)»

Profile Ftlenane; |pro<il»,|iri

r- Information Classes

II ParallBljzatiDn System

V Communication Events

r_J Data Tr»«s1»r E»<3fEm^

•• Memory Utilization

Base Level: ! Outer Loops

[-Tracing-

Status: | Prepared =1 |

Trace Buffer Size (KB/PE): | booo

RflHr^cs (:lHl7(irA<;thm; ; Flush U

Trace Flush Mode: ^ Parallel _i

Tr<y;o BIen<^e; HrHRli::

Execution Commentary: i None

Apply I dose | Reset Help

I] Program Structure Browser

Pie View Options Annotations Help

BI I li Structure Conponent

<statBmerrt-s>

LOOP I from 1 to VECTOR_SIZE

<statenents>

<sfcatements>

ROUTINE EBEflMUK
ROUTINE EBEPREC

u

EL Jg

c^~

File

Program Output

HPF/Cenju3(MPI): Revision 2.2 : Copyright (c) NEC Corporat i
mbf start: OxOOSffOOO, chunk Ingth: Ox000003fc, ^chunks - 1;;
MPIX/Cenju3 ^Revision: 5.19.1.15 $, Copyright (c) 1993 CSCS;
PDTIib/Cenju3 (Revision: 5.0 }, Copyright (c)1993-95 CSCS.;
PMAllb/cenjus ^Revision: 5.3 $, copyhght (c)1933-95 CSCS
****** 16 processes forked i

[PMAIib: profiling & .'tracing]
PST library ^Revision: 5.11 $, Copyright(c)1994-95 CSCS I|
Calling ebeinitmap :
[0] Benchmark started for 2 D rectangular grid 20 x 20 .
[0] "* ehejnsertsetup •"'total time: 1 .G7913393999BBZ4;;
[0] "* ebejnsertsllde *** total Ume: 5.51399999994828Z4(|
[0])Wpard(tot(x,x)- 4.0000000000000000e^OZ ;

1-3- J

Figure 2: Annai finite-element application engineering session. The main Annai/UI window
(top left) includes a source listing browser, which is complemented with a customizable program
structure browser (lower left). Output from the previous execution of the loaded program,
'PFE16cj3/ appears in a separate window (lower right). PDT has already been used to set
breakpoints and check distributed arrays, and PMA run-time library configuration is in progress.

CSCS/SCSC TECHNICAL REPORT

Anna! SCALABLE RUN-TIME SUPPORT FOR LARGE-SCALE PARALLEL PROGRAMS

3.2.1 PSTIib

The core of the PST library provides run-time analysis support for PST/HPF pro-
grams, automatically managing shared and distributed variables by constructing and
controlling essential message transfers (via communication patterns), and handling

the execution of parallel loops. (For a thorough exposition and implementation details
refer to [MR95] and references therein.)

In addition to run-time support for PST/HPF programs/ the PST run-time library
also provides basic support for debugging and performance analysis of such programs.

In general, PST only knows at run-time how (or even whether) an array has been

partitioned, and where the different fragments are located. Support for dynamic

array allocation/ dynamic array re-alignment and re-distribution/ assumed-size array

arguments, user-defined and inherited data distributions all mean that representations

of distributed arrays and symbol tables are complex structures which have to be set

up at run-time. Functions are therefore provided by the PST run-time library which

allow access to distributed arrays and their structure and distribution information. In

this way, distributed array fragments can be reconstituted for presentation or treated

as united objects by PDT.
Information about the static structure of the source program/ and how this relates to

the transformed code actually running on the nodes of the parallel machine, allows PDT

and PMA to relate low-level events to the corresponding high-level source statements.

Examples where such information is essential are matching addresses of breakpoint

locations or MPI message-passing events to the appropriate line (or lines) of PST/HPF
program source.

A specification of the static program structure is also incorporated within source

objects during compilation, and after linking constituted into a complete specification
added as an extra 'section' of the executable. This mechanism ensures that the speci-

fication is always consistent with the corresponding source files, and that it is readily
accessible to Annai interactive components (such as the Program Structure Browser,

which is based on this information).

3.2.2 PDTIib

PDT is able to reconstruct a distributed array from the fragments on each processor

using the array distribution information available from the PST run-time library. This

'raw7 data is most conveniently processed within the parallel machine/ to extract rele-

vant parts for subsequent analysis or to reduce the quantity of data to an appropriate

amount for presentation.

Data breakpoints/ or /watchpoints/ specify a break condition in terms of the pro-

gram s memory state, e.g., when an array is modified or an element becomes zero, and

provide an indispensable debugging service when tracking down run-time violations

when they first occur. The PDT run-time library includes a scalable mechanism where

all memory updates performed by the program are checked locally on each processor.

Store operations are instrumented to determine whether the address is within the range

of an array section to which a predicate has been specified, and then, if appropriate,

TR-96-04, APRIL 1996 7

C. CLEMEN^ON, A. ENDO/ J. FRITSCHER/ A. MULLER & B. J. N. WYLIE

~^] Distibuted Data Visualizer (DDV) :

I File View Colors

</] ^^^^^^^^^•^'.
:£ ,«.^^^^^^^U-s"^^^^T
^- ^^^^^^^^B ;. •>•

11-^^^^^^^^^M

'w

,*

-u

i > IP 13 an

columns

XMAT

ElQQE3

Help

15
14
13
12
11
ID

9
8
7
6
5
4
3
2
1
0

Jj Value Browser :XMAT

5 ;-:

e
7;

.s;-..

3 •',.:

10
11
w~
13
14
15
16

1^,.;.

ja:

7

Goto I 11

j8; ':.;:- ;|S';.'

1>.;;<

5301.22
?^|B93.2-

;i
!^|

^
n^piaT

m~'^tt3^
KSF^^^T'

P'~','"I«Swk"

4751.09

':yl

•<;

5431.B4
5540.05
5494.07
545S.74
5659.56
58S6.71
5715.69

5828.26
60B6.2

G094.73

•^

jj 3d Graph Browser :XMAT

File Options

^^

Figure 3: PDT Distributed Data Visualizer views of an array section from a PLUMP
application with PST extended BLOCK_GENERAL distribution. The data map visualizer (top
left) shows clearly how array elements are allocated to processors, and the same color-coding

to distinguish processors is used in the other data views. To examine array elements closely, a

tabular value browser is provided (top right), and this is complemented with a graphical value
browser for quick overviews (bottom). In the three-dimensional graphs, the heights of the bars
correspond to the data values, and these may be interactively re-oriented and rescaled for better

views. The progressive reduction of the residual validates the solver, seen by comparing the
main view of the initial state with those of the next two iterations: the small graphs are in pairs
using the same scale as the first view and rescaled for close inspection.

CSCS/SCSC TECHNICAL REPORT

Annai SCALABLE RUN-TIME SUPPORT FOR LARGE-SCALE PARALLEL PROGRAMS

1-'3PMA/ESD : PFE16cj3.prf
—--"-- - -"-'-u-

j File OpUons Metric

Average of Total Time (All

Program Routines

EBECG-

PARDAXF^

PARDNRM2

(Other)!

CGREVCOM-

11111111 •I

11 PEs)

PARDDOT^^^^^^^B

PARFE^

EBEAMUX^^^^^^^^^^^^^^^n^K:^?'7^

0.0 0.1 0.2 0.3

Time (s)

Help

• (Other)
S Routing
• Analysis]

0.4
E^lusrue

Accumulation

Metric Tear-off

Metric Selection

•AEi{Bcution Time

Execution Count

Comm Count

Comm Volume

Comm Size Maximum

Comm Size Minimum

Comm Size Average

^S'teiHi

StoCfjVB

TMjgfe "J

Memory User Data

Memory Overhead

Mesnory Tote!

Average of Total Time (All PEs]

Routine EBEAMUX

(d)
0.00 0,02 0.04 0.06 O.OB

Time (s)

.13 0.20

Acajmulaton

Total Time (PE#1]

Routine EBEAMUX

0.00 0.02 0.04 0.06 0.06 0.10 0.12 E3.14 0.16 0.18 0.20

^•'•i to&£."

r^ PMA/ESD Processor Balance Display

Routine EBEAMUX

Time (s)

0.41

• Exec. Time CTotaI)
• Excc. Time (L 10)

Comm. Vol (L 10) VoL (hB)

Q.3

0.2

0.11

0.0

.•..•..•.. .•. •..•..•. .<*>. .^. .•..•..•..•.

•<•*. ••»+•»+•*•'*<*•»

11111111111111 I

80

60

40

20

01 234 567 8 9 Ift tl 12 13 14 15

Proeassor(e)

Figure 4: PMA Execution Statistics Display (top), associated Processor Balance Display
(bottom right), and assorted additional graphs produced during profile browsing.

TR-96-04/APRIL 1996 9

C. CLEMEN^ON, A. ENDO/ J. FRTTSCHER/ A. MULLER & B. J. N. WYLIE

the value itself is also examined. If necessary, an exception is signaled for execution to

halt, otherwise the store is performed and the program continues.

Messages in distributed systems are considered to race if they are simultaneously in

transit and the order of receipt at a single point is not completely defined. Re-runnmg a

program which has races complicates debugging, since execution is non-deterministic.

The PDT run-time library uses vector timestamps sent with each message to determine

on receipt whether a race has occured, and such cases are noted for later reporting to

the user. On subsequent re-execution, the trace of messages which raced can be used to

enforce determmistic replay/ or a choice of alternative execution paths can be followed.

(For a thorough exposition of these topics and PDT library implementation details
refer to [CFR95] and [CFMR95] and references therein.)

3.2.3 PMAIib

During program execution/ the PMA library is responsible for managing profile sum-
mary and event trace collection from instrumented MPI communication library func-

tions and instrumentation inserted in the program by the compilation system. Users

can also choose to add extra instrumentation of their own. Initial library configu-

ration determines what classes of information are gathered/ and how this should be

processed. This 'base' instrumentation can be flexibly modified by specifying different
instrumentation for selected program regions.

The state and utilization of the message-passing system is straightforwardly deter-

mined from the instrumented communication functions. Similarly, the instrumenta-

tion inserted by the compilation system, makes it possible to determine the program

state in terms directly related to the user's view of the program structure/ i.e./ rou-

tines, loops/ etc. Additional information is also provided by the compilation system

about parallelization overheads, such as run-time analysis, (explicit and implied) data

re-distributions, and extra storage for communication buffers. Memory utilization pro-

vided by these means, and other system information/ including the message-passing

events, can always be related to the familiar program framework.

Two complementary performance information formats are supported by the PMA

run-time library. The simplest is an event trace log which is kept in a buffer on each

processor, to be processed and transferee! to a trace file or directly to the interactive

part of PMA within Annai on demand when the buffers become full/ or at the end of
program execution. Complete tracing of large-scale parallel programs is typically only

appropriate (and even necessary) for detailed analysis of limited parts of program exe-

cution, such as particular routines or loops. A more convenient and scalable alternative

is a profile summary, accumulated as the program rims, which keeps track of essential

execution statistics. These summaries build up statistics such as the execution time

and count, the number and volume of communication events, and memory utilization

— as totals, averages and extreme cases — for each entity of the program structure on

each processor. Profiles of the current execution status can be presented graphically on

demand/ or summarize the complete execution when the program finishes.

Knowledge of the processing overheads associated with an implementation of the

instrumentation functions allows PMA to estimate (or, in important cases, measure)

10 CSCS/SCSC TECHNICAL REPORT

Annai SCALABLE RUN-TIME SUPPORT FOR LARGE-SCALE PARALLEL PROGRAMS

PMA/ETD : PFEScJS.trf

me OpUuns Display Navigate Help

Start (s): End (s): Scale (s): Maiker (s): Res. (pixel);

0.000000 I 10.479241 | |p.47924] |t),479241

TDtt (SEC)

D.DOOOOO

PROCESSOR ID

234567

VBWKC (MB)

0246

PAKFE start

EBEAMUX start

EBEAKUX end

EBEFKEC end
IBEAMUX

EBEAHUX
EBEAMUX
CHECKTUL

CTEAMIK
CTBWUX
CHECKTOL

^T PMA/ETD : PFE8cJ3.trf

File Options Dte[llay Navigate Help

Start (s): End (s): Scale (s): Marker (s): Res. (phel):

D.ODODDD | 10.479241 | 0.03080 | |D.1B0112 | |:-1

^J

EBEAMUX start

inn (SEC) ERDCESSDR m >mmtr (HB) imas

01234567 0246

D.150000^

^Analysis

Routing

Analysis start

Analysis end

DO.5,surer

DO.10,ISLIDE

EBEAMOX end

Figure 5: PMA Evolution Time-line Dis-
play execution charts of PLUMP application
processor interaction summaries and memory

utilization graphs. The top-level view of the
complete trace (left) highlights times where
different amounts of communication occur,

resolved into individual message transfers in
the expanded time-scales of the two lower

views. The first and second instances ofrou-

tine EBEAMUX are shown scaled differently to
completely show the whole routine execution.

Costly run-time analysis and routing infor-

motion exchange — requiring two phases to

handle indirect array accesses, and additional

working memory — dominates the first in-

stance (bottom left), but is efficiently reused in
later instances. Skew associated with PE#0

(bottom right) shows synchronization prob-
lems have arisen, however, limiting the overall

effectiveness.

ZT PMA/ETD : PFEScJS.trf

Rte Options Display Navigate Help

Start (s): End (s): Scale (s): Miuker (s): Res. (pixel):

IO.OOODOD I 10.47924]]]B.01ZD3 | |n.30D015

TIME (SEC)

0.288000

PROCESSOR ID

01Z34S67
MEMDRV (MB) LABB.S (1)

0246

0.294000

J 0.2S5DOO

0.296000

0.297000

•^

M

LJ u-k

BEAMUX start

DO, 5, DUW

DO,10,ISLIDE start|

DO,10,ISLIDE end

EBEJWUK end

TR-96-04, APRIL 1996 11

C. CLEMEN^ON, A. ENDO/ J. FRTTSCHER, A. MULLER & B. J. N. WYLIE

program execution intrusion for presentation as part of subsequent analyses. Execu-

tion interruptions/ such as breakpoints, can be presented in a similar way, or used

to invalidate measurements which are directly affected by them. (For a thorough ex-

position of these topics and PMA library implementation details refer to [EW96] and

references therein.)

3.3 Interaction

The modular design of the Annai run-time libraries allows them to be used indepen-
dently of each other/ but more importantly was done so that the functionality was
clearly separated. Interaction is through cleanly defined interfaces/ which allows each

library to be separately developed and optimized for different target platforms.
During a debugging session the PDT run-time library can use PSTIib to access

the relevant parts of distributed arrays, for reduction and presentation to users as

single consistent objects. The array distribution itself is also often important and can

be presented separately or together with array values. Similarly, during program
execution message events related to the MPI communication library can be checked by

PDTIib to determine whether a race has occured and/or noted by PMAIib as part of its
execution record. Low-level events such as this are efficiently related to the appropriate

high-level source via PSTIib program structure mapping information.
Interaction between the interactive components and their associated system-specific

run-time libraries is handled by the TSA portable machine interface. Where appropri-
ate/ files written directly by the run-time libraries (such as execution trace fragments)
are used to return or directly store bulk information. TSA also does not interact directly
nor share functionality with TSAIib, since in this case the similarity of names refers to
their common but distinct service and portability interface roles for the other tools.

3.4 Operation

PDTlib and PMAIib would have significantly intrusive effects, on each other as well as
the user program, if all of their functionality were always enabled. Their functionality

is, however, only latent, requiring appropriate configuration by Annai at run-time:

when latent the intrusiveness is generally minimal.

When debugging, PDT can activate the PDTIib functionality to enable message-race
checking/ or to configure watched memory regions. Alternatively, during performance

analysis/ PMA will activate profiling and/or tracing and configure the various types of
instrumentation managed by PMAIib.

Both PDT and PMA use the common facilities provided by TSA, the only part of
Annai which interacts directly with the parallel program on the target platform. In
addition to controlling program execution, TSA is able to read from and write into the

program's address space, enabling it to configure the Annai run-time libraries. TSA

also allows PDT and PMA to specify breakpoints and (where appropriate) subsequently
informs the high-level tools of breakpoint hits which they can then process as they wish.
At any time program execution has been halted/ the run-time library configurations

can be further modified by TSA: tables of memory regions corresponding to arrays

12 CSCS/SCSC TECH^JICAL REPORT

Annai SCALABLE RUN-TIME SUPPORT FOR LARGE-SCALE PARALLEL PROGRAMS

Total Time of Program Routine
PARDDOT

Time (s)
E jOlher)

MPI Overhead
MPt Ml*

012345678 9101112131415161718192021222324252627282930313233343536373839404142434445464748495081525334565657585960616263

Total Time of Program Routine
PARDDOT

Time (s)
g (Other)

MPI Overhaad
MPI Idle

3.0'

H!IIU UlumiU
23 27 31 35 39 43 47 51 55 59 67 71 75 79 83 87 91 95 90 103 107 111 115 119 123 127

Figure 6: Annai/PMA Processor Balance Display output graphs, showing profiles of the
total execution time of routine PARDDDT on 64 and 128 processors, with breakdown of MPI
communication overhead and idle time when blocked (red). Although computation time (green,
at the bottom of each bar) is reasonably well balanced in both cases, synchronization overheads
become increasingly dominant and unbalanced on larger numbers of processors leading to poor

overall efficiency.

r^ Program Structure Browser

Pie View Options Annotations Help

B

L

Structure Gonponent

ROUTINE CHECKTOL
ROUTINE EBECG
ROUTINE REIW
ROUTINE CGREVCOH

LOOP IROM from 1 to EBE_HflX_NROWS

LOOP IROH from 1 to EBE_NSROMS

LOOP ISLIDE from 1 to EBE_MfW_NSLIDES
LOOP ISCOL from 1 to EBE_NSCOLS
LOOP ISROH from 1 to EBE_NSROHS

ROUTINE EBEPREC
ROUTINE PflRDNRH2
ROUTINE PflRDflKPY
ROUTINE PflRDCOPY
ROUTINE PflRDDOT
ROUTINE PflRDGEMV

EH.Count

304
16

304
944

En.Tine /s

0.008504

0.017311

0.032457

Con.Vol /kB

656
656
656

262400
262400

16
352
696
320
640

0

0.000724
0.021929

0.122884

0.113239

0.028944

0.025517

0.008892

0.121673
0.000000

0
0

304.040

129.960

11.264

0
0

20,4SO

0

Figure 7: Annai/UI Program Structure Browser with PMA execution statistics annotations.

This concise representation of the loaded program is synchronized with the main source browser

and annotated by PDT and PMA. It also provides convenient customization facilities to
fold/unfold routines or loop blocks, and to mask/filter or sort chosen entries.

TR-96-04/ APRIL 1996 13

C. CLEMEN^ON/ A. ENDO/ J. FRTTSCHER, A. MULLER &B.J.N.WYLIE

which should be watched with associated predicates/ and instrumentation actions and

configurations to be applied at 'lightweight' breakpoint hits, can be updated.

Programs developed partially, or entirely/ with explicit MPI message-passing can
also benefit from the support provided by the PDT and PMA run-time libraries/ though
generally not to the same extent that PST/HPF programs are supported. .For example,

logical 'arrays' which have been partitioned and distributed manually/ cannot easily

be reconstructed for viewing and consideration during debugging as a single object.
Mapping functions/ which programmers could use to describe how array fragments

should be reconstituted/ could probably be provided/ but would inevitably be both
complex and error prone. Additionally/ performance analyses would need to be en-

hanced to provide selection and filtering facilities based on individual or groups of
processors which have executed different code.

4 Use of Annai .in parallel program engineering

Figure 2 shows a typical session with Annai, interactively debugging and analyzing
the performance of an application using a Parallel Library for Unstructured Mesh
Problems (PLUMP) [BLM+95] on 16 processors of a NEC Cenju-3 distributed-memory
parallel computer (host-name /uji/). The library is based on the PST BLOCK_GENERAL
data distribution/ which extends the HPF BLOCK distribution by allowing blocks to
be specified at run-time with variable sizes and potentially unused elements between

blocks. Such /oversized/ arrays are useful when the problem size varies dynamically

during program execution. For demonstration purposes a small problem is considered

here: details of the Annai-assisted parallelization and development of an eigensolver

m this library for 128 processors were reported previously [CDD+96].
The main point of reference is the original PST/HPF program source shown in

Annai's source browser (top left of the figure). Also part of this window is a message
area for tool status information and the controls for loading and running the program

on the target parallel machine: program output appears in a separate window (bottom
right). A customizable structured overview of the program is provided by the Program

Structure Browser (shown in the lower, left corner) to complement the source listing

browser. Control windows for Annai component tools — PST (or more accurately a

shell where compilation is performed)/ PDT and PMA — also instantiated from the
main Ul/ are here iconized at the top of the figure.

4.1 Interactive debugging

During debugging with PDT/ a section of the residual was selected from the Anna!/U!
source browser and analyzed with the Distributed Data Visualizer shown in Figure 3.

From these graphical views of the residual/ where color distinguishes the allocation of

array elements to processors, algorithm. correctness and convergence are verified.

Since the Annai/PST compilation system guarantees that HPF/PST programs are
deadlock- and race-free/ in this case there was no need to use that functionality of the

14 CSCS/SCSC TECHNICAL REPORT

Annai SCALABLE RUN-TIME SUPPORT FOR LARGE-SCALE PARALLEL PROGRAMS

PDT run-time library. Where users choose to incorporate their own explicit message-

passing code/ whether as an EXTRINSIC routine, a library, or even a whole program,

such debugging support can be easily activated through a PDT library configuration
dialog (not shown). Similarly, P DTs memory watching functionality can be configured
to check array (write) accesses for undesirable conditions.

4.2 Interactive performance

Progressing to initial performance analysis, the Annai run-time libraries have been

reconfigured to enable profiling and set desired classes of instrumentation (using the
dialog on the right in Figure 2). This reconfiguration avoided recompiling/rebuilding
the program and even the need to reload it, accumulating a profile summary during
program execution for later writing to file.

Profile summaries are rendered by PMA's Execution Statistics Display (Figure 4)/
where different execution metrics can be browsed: from an initial overview of the

execution time of all routines, graph (a), ranking and filtering isolates the key routines/
graph (b)/ or analysis can quickly switch to show the communication volume for each
routine/ graph (c). The main view shown presents average execution time, for each

program routine and with parallelization overheads distinguished: routines where

distributed arrays have been analyzed at run-time and the associated message routing

are found to be the most critical/ particularly routine EBEAMUX which has then been
examined in more detail. By focusing on (or 'zooming' into) this routine, graph (d)
shows the same information with respect to each of the constituent loop blocks. Further

restriction selects the statistics for individual processors/ such as PE#1 in graph (e).
Using the associated Processor Balance Display, which collectively graphs selected

statistics for all processors, the execution time of the EBEAMUX routine of PE#1 is seen

to be considerably different from the others. This potentially serious inefficiency can
be located to the main loop nest, labeled with identifier 10 and using iterator ISLIDE.
This processor-based profile' display is a natural progression from the program-based

profile/ the one complementing the other. Figure 6 demonstrates how such displays
also scale well to large numbers of processors, when it becomes even more valuable

for quickly identifying and isolating inefficiencies due to load imbalance.
In addition to producing graphs for reference purposes/ PMA can'also transfer

data from its analysis displays to the Annai Program Structure Browser, to appear as
annotation columns in its tabular display directly associated with the related program
source/ as shown in Figure 7.

Having identified critical routines, the PMA run-time library can be again reconfig-

ured to generate a more detailed profile or an event trace of those key routines. The

PMA Evolution Time-line Display provides an interactively rescalable and scrollable
trace visualization chart. Vertical scales (progressing downwards) are annotated both

with time and program structure information — additional 'landmark' annotations

appear at higher resolution scales. Various charts of tmie-varying behavior can be

combined, such as a processor interaction summary and a graph of memory utiUza-

tion/ as shown in Figure 5. Compared with the scalable statistics summary profiles/ for

detailed analysis a reduced number of processors and a shorter execution are favored.

TR-96-04/ APRIL 1996 15

C. CLEMEN^ON, A. ENDO/ J. FMTCCHER/ A. MULLER & B. J. N. WYLIE

5 Comparison to related work

Integrated environments for parallel systems have recently become a matter of con-

siderable user and developer interest. Thinking Machines Corporation's commercial

Prism environment [SAB+92] successfully demonstrated the principle/ and motivated
research groups to investigate similar support environments for Fortran D [HKTW94]
and Vienna Fortran [PZ95]/ as well as other programming languages. Numerous more

restricted efforts have also partially-mtegrated various editors/ compilers/ debuggers

and analysis tools in research and commercial contexts/ some now coordinated under

the auspices of the Parallel Tools Consortium [Ptools] (who maintain an up-to-date list
of current and former activities).

Annai is the practical realization of the further development of these ideas in a con-
sistent/ easy-to-use environment. The latest parallelization, debugging, performance

monitoring and analysis techniques have been incorporated in integrated tools/ pro-

viding comprehensive scalable support for flexible data-parallel and explicit message-
passing application development with standardized languages and portable machine
interfaces. This provision of key functionality and adherence to accepted standards are
two of the criteria which came through most strongly in recent recommendations from

the high-performance computing user community to those who develop and provide

system software and tools for parallel and distributed computer systems [PBF95].

6

Anna! has developed into a comprehensive environment supporting the parallelization,
debugging and performance analysis of large-scale programs. Graphical displays, cou-

pled with compilation system support (and high-level language features when neces-
sary)/ provide appropriate metaphors for user interaction/ but also place considerable

demands on the run-time system. The design of the Annai run-time libraries/ such that

they can handle distributed events and process huge amounts of data — from both

the user program and the system itself — in a scalable fashion, ensures support for

interactive parallel program analysis.

Based on feedback from pilot users, the key usability feature is essential source

reference for low-level events and distributed program objects. Also appreciated is

the convenience of being able to switch between debugging and performance analysis

without even needing to reload the executable, supported via dynamic configuration of

the run-time libraries. The most significant benefits of the integration of individually
powerful tools, however/ are the complementary treatments of subtle/ yet critical/

parallelization aspects/ and the consistent user presentations and interaction which

result.

16 CSCS/SCSC TECHNICAL REPORT

Annai SCALABLE RUN-TEME SUPPORT FOR LARGE-SCALE PARALLEL PROGRAMS

Acknowledgements Roland Ruhl played an integral part in the design and imple-
mentation of Annai and its run-time libraries. NEC (Tokyo) provided the PST compiler
front-end/ the code generator and run-time library for standard HPF subroutines, as

well as specific support for the optimized Cenju-3 run-time libraries. Additional tool
development work was also performed by Jim Blandy, Maung Ting Nyeu/ Emanuele
La Cognata, Umesh Krishnaswamy/ Mike Meehan, Andreas Gutzwiller, Paulo Lorenzo

and Ramprasad Sampath during the 1993-1995 CSCS Summer Student Internship
Programs. Karsten M. Decker/ and the other project members/ Vaibhav Deshpande,

Gabrielle Jost, Norio Masuda/ Will Sawyer, Eric de Sturler and Frank Zunmermann

have patiently used and evaluated our prototypes.

References

[BLM+95] Ivan Beg/ Wu Ling/ Andreas Miiller/ Piotr Przybyszewski/ Roland Ruhl/
and William Sawyer. PLUMP: Parallel Library for Unstructured Mesh
Problems. In Alfonso Ferreira and Jose D. P. Rolim/ editors/ Parallel Algo-

rithmsfor Irregular Problems: State of the Art, pages 45-67. Kluwer Academic
Publishers/ Dordrecht, Netherlands/ August 1995. [ISBN: 0-7923-3623-2].

[CDD+96] Christian Clemen^on/ Karsten M. Decker/ Vaibhav R. Deshpande/ Akiyoshi
Endo/ Josef Fritscher, Paulo A. R. Lorenzo, Norio Masuda, Andreas Miiller,

Roland Riihl/ William Sawyer/ Brian J. N. Wylie, and Frank Zimmermann.

Tool-supported development of parallel application kernels. In Proc. 15th
Int. Phoenix Conf. on Computers and Communications (Phoenix, AZ, USA),

pages 294-302. IEEE Comp. Soc. Press/ March 1996. [ISBN: 0-7803-3255-5].
Further details in CSCS-TR-95-03.

[CEF+95] Christian Clemen^on/ Akiyoshi Endo, Josef Fritscher/ Andreas Miiller,
Roland Ruhl, and Brian J. N. Wylie. The 'Annai' environment for portable

distributed parallel programming. In Proc. 28th Hawai'i Int. Con/, on System

Sciences (HICSS-28, Vol. II), pages 242-251. IEEE Comp. Soc. Press, January
1995. [ISBN: 0-8186-6935-7].

[CFMR95] Christian Clemengon, Josef Fritscher/ Michael J. Meehan/ and Roland Riihl.
An implementation of race detection and determmistic replay with MPI.
In Proc. EURO-PAR'95 (Stockholm, Sweden), Lecture Notes in Computer

Science 966, pages 155-166. Springer- Veriag/ August 1995. [ISBN: 3-540-
60247-X]. Further details in CSCS-TR-95-01.

[CFR95] Christian Clemen^on, Josef Fritscher, and Roland Riihl. Visualization/
execution control and replay of massively parallel programs within Annai's

debugging tool. In Proc. High Performance Computing Symposium, (HPCS'95,
Montreal, Canada), pages 393-^04. Centre de recherche informatique de

Montreal (GRIM)/ July 1995. [ISBN: 2-921316-12-9]. Further details in CSCS-
TR-94-09.

TR-96-04/ APRIL 1996 17

C. CLEMEN^ON/ A. ENDO/ J. FRITSCHER/ A. MULLER & B.J. N. WYLIE

[EW96] AkiyoshiEndo and Brian J. N. Wylie. Annai/PMA mstrumentation intrusion
presentation. In Proc. 4th Int. Work. on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS'96, San Jose, CA, USA),
pages 51-57. IEEE Comp. Soc. Press/ February 1996. [ISBN: 0-8186-7235-8].

Further details in CSCS-TR-95-05.

[HKTW94] Seema Hiranandani/ Ken Kennedy, Chau-Wen Tseng, and Scott Warren.

The D Editor. A new interactive parallel programming tool. In Proc.

Supercomputing'94 (Washington DC). IEEE Comp. Soc. Press/ November
1994.

[MR95] Andreas Miiller and Roland Riihl. Extending High Performance Fortran
for the support of unstructured computations. In Proc. 9th Int. Con/, on

Supercomputing (ICS'95, Barcelona, Spain), pages 127-136. ACM Press, July
1995. [ISBN: 0-89791-728-6]. Further details in CSCS-TR-94-08.

[PBF95] Cherri M. Pancake/ Bruce Blaylock/ and Robert Ferraro. Guidelines for
writing system software and tools requirements for parallel and clustered

computers. Technical Report 95-80-11/ Oregon State University Depart-

ment of Computer Science, Corvallis/ OR 97331, USA, November 1995.
http: //www. nero ,net/~pajicalce/SSTguidelines/.

[Ptools] The Parallel Tools Consortium (Ptools). http: //www-ptools. llnl.gov/.

[PZ95] Mario Pantano and Hans P. Zima. An integrated environment for the

support of automatic compilation. In Jack J. Dongarra et al/ editors. High

Performance Computing: Technology, Methods and Applications, pages 159-
176. Elsevier Science B.V./1995.

[SAB+92] Steve Sistare, Don Alien/ Rich Bowker, Karen Jourdenais/ Josh Simons,
and Rich Title. Data visualization and performance analysis in the Prism

programming environment. In Nigel Topham et al./ editors/ Programming

Environments for Parallel Computing, pages 37-52. North-Holland/1992.

[SKS+95] Yoshiki Seo/ Tsunehiko Kamachi/ Kenji Suehiro, Masanori Tamura/ An-
dreas Miiller/ and Roland Riihl. Kemari: a portable HPF system for dis-

tributed memory parallel machines. Tech. Rep. CSCS-TR-95-04, May 1995.

Revised version to appear in Scientific Programming.

[WE96] Brian J. N. Wylie and Akiyoshi Endo. Annai/PMA multi-level hierarchical
parallel program performance engineering. In Proc. 1st Intl. Work. on High-

Level Programming M.odels and Supportive Environments (HIPS'96, Honolulu,

USA), pages 58-67. IEEE Comp. Soc. Press/ April 1996. [ISBN: 0-8186-7567-
5]. Further details in CSCS-TR-94-07.

18 CSCS/SCSC TECHNICAL REPORT

RECENT CSCS/SCSC TECHNICAL REPORTS

1994

TR-94-06 R. GRUBER: PE2AR: Program Environments for Engineering Applications and

Research. (August 1994)
TR-94-07 B. J. N. WYLIE AND A. ENDO: Design and Realization of the Annai Integrated

Parallel Programming Environment Performance Monitor and Analyzer.

(August 1994)
TR-94-08 A. MULLER AND R. RUHL: Extending High Performance Fortran for the Support of

Unstructured Computations. (November 1994)
TR-94-09 C. CLEMEN^ON, J. FRITSCHER AND R. RUHL: Visualization/ Execution Control and

Replay of Massively Parallel Programs within Annai's Debugging Tool.

(November 1994)
TR-94-10 E. GERTEISEN: Implementation of Finite Volume Fluid Solvers into the PE2AR

Database Environment. (December 1994)
TR-94-11 E. GERTEISEN: A Generic Data Structure for the Communication of Arbitrary

Domain Splitted Mesh Topologies. (December 1994)

1995

TR-95-01

TR-95-02

TR-95-03

TR-95-04

TR-95-05

TR-95-06

TR-95-07

1996

TR-96-01

TR-96-02

TR-96-03

C. CLEMEN(;ON, J. FRITSCHER, M. MEEHAN, AND R. RUHL: An Implementation of

Race Detection and Deterministic Replay with MPI. (January 1995)
K. DECKER AND S. FOCARDI: Technology Overview: A Report on Data Mining.

(February 1994)
C. CLEMEN<;ON/ K. DECKER, V. DESHPANDE, A. ENDO, J. FMTSCHER, N. MASUDA,

A. MULLER, R. ROHL, W. SAWYER, B. J. N. WYLIE, AND F. ZlMMERMANN:

Tool-Supported Development of Parallel Application Kernels. (April 1995)

Y. SEO, T. KAMACHI, K. SUEHIRO, M. TAMURA, A. MULLER/ AND R. RUHL: Kemari: a

Portable HPF System for Distributed Memory Parallel Machines, (fune 1995)

A. ENDO AND B. J. N. WYLIE: Annai/PMA Instrumentation Intrusion Management

of Parallel Program Profiling. (November 1995)

P. ACKERMANN AND U. MEYER: Prototypes for Audio and Video Processing in a
Scientific Visualization Environment based on the MET++ Multimedia
Application Framework. (June 1995)

M. GUGGISBERG, I. PONTIGGIA AND U. MEYER: Parallel Fractal Image Compression

Using Iterated Function Systems. (May 1995)

W. P. PETERSEN: A General Implicit Splitting for Stabilizing Numerical
Simulations of Langevin Equations. (February 1996)

C. CLEMEN^ON, K. M. DECKER/ V. R. DESHPANDE/ A. ENDO/ J. FRITSCHER,

P. A. R. LORENZO/ N. MASUDA/ A. MULLER, R. ROHL, W. SAWYER, B. J. N. WYLIE,

AND F. ZlMMERMANN: Tools-supported HPF and MPI Parallelization of the NAS
Parallel Benchmarks. (March 1996)
B. J..N. WYLIE AND A. ENDO: Annai/PMA Multi-level Hierarchical Parallel
Program Performance Engmeering. (April 1996)

CSCS/SCSC — Via Cantonale — CH-6928 Manno — Switzerland

Tel: +41 (91) 610 8211 — Fax: +41 (91) 610 8282

CSCS/SCSC — ETH Zentrum, RZ — CH-8092 Zurich — Switzerland
Tel: +41 (1) 632 5574 — Fax: +41 (1) 632 1104

CSCS/SCSC WWW Server: http://www.cscs.ch/

