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Abstract: The Joint CSCS-ETH/NEC Collaboration in Parallel Processing comprises the
development of an integrated tool environment together with applications and algorithms for

distributed memory parallel processors (DMPPs). Tool and application developers interact

closely: the requirements of the tools are defined by the needs of the application developers,

and once an application requirement becomes an integral part of the tool environment, the tools

ease parallelization of similar applications and whole application classes. Additional features

of the project are the use of a standardized DMPP high-level programming language (HPF)
and low-level message passing interface (MPI). The tool environment integrates parallelization

support, a parallel debugger, and a performance monitor and analyzer. Applications already

investigated include some of those currently considered difficult to parallelize on DMPPs.

In this paper we summarize the tool and application development eiForts and show prelimi-

nary performance results of three applications eifectively parallelized on two DMPP platforms

with the assistance of our tool environment.
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2. THE TOOL ENVIRONMENT

(MPI) [MPI93]. The applications can either be developed using MPI, or at a higher level using
our parallelization support tool, i.e., a compiler for High Performance Fortran (HPF) [HPF93]

and a few extensions defined by us. Although our first major development platform is a NEC

Cenju-3 DMPP, we prove portability of tools and applications by also supporting networks of

workstations for development. An Intel Paragon has also been available for validation of appli-

cations developed using our compilation system. First performance measurements presented in

this paper were collected on the NEC Cenju-2 (an experimental prototype of the Cenju-3), and

on the Intel Paragon.

This paper summarizes our current tool and application development efforts, with emphasis

on the interaction between tool and application developers. We first outline the integrated tool

environment and its components. Then the work on applications and algorithms is summarized

by describing how several example applications were parallelized both by using low-level message

passing and by using high-level data parallel programming. Finally, performance measurements

on the above two DMPP platforms are shown to demonstrate the practical portability of our

software, and how application developers influence the functionality of the tool environment.

2 The Tool Environment

2.1 Design Objectives

Our major objectives in designing the tool environment can be summarized as follows:

• Application-oriented tool design. That is, the tools are developed in a sequence of pro-

totypes, and a team of application developers continuously provide feedback when using

and testing the prototypes.

• Designing and implementing an integrated tool environment which supports parallel pro-

gram development in a high-level data-parallel MIMD language and/or using explicit

low-level message passing.

• Use of standardized programming languages and machine interfaces. At the high level,

HPF and possible future HPF extensions are supported. At the low level, MPI serves as

the machine interface.

• Proposing and implementing HPF language extensions and tool features to also provide

parallelization, debugging, performance monitoring, and analysis support for scientific

applications considered today difficult to parallelize on DMPPs (e.g., unstructured sparse

matrix computations).

Some of the above goals are also met by tool environments offered by some DMPP vendors

and other research groups. Meiko and Intel, for instance provide instrumented versions of the

proprietary message passing libraries, CSN and NX respectively. Instrumented programs drive

modified versions of the ParaGraph [HF93] trace visualization tool. Both vendors also provide

parallel debuggers with their machines — Intel ipd, and Meiko the pdb debugger. Thinking
Machines offer an integrated environment called Prism [ABJ+91] for program debugging and vi-

sualization on their CM series ofDMPPs in their proprietary Fortran and C language variants.

Distributed data can be visualized during program execution, or performance data analyzed

after execution completes. On their CM-5 series, individual nodes can open separate debug-

ger windows. Applied Parallel Research market an interactive Fortran program browser and
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analyzer, called Forge [APR93], which can also assist parallelizing programs for a number of

distributed- and shared-memory platforms. This tool has been recently enhanced to support

HPF, and can assist conversion of Fortran programs to (and from) HPF. We can only summa-

rize functionality for current DMPP environments which we consider most important. Many

other such environments exist and for a more complete overview of existing tools, the reader is

referred for instance to [Che93].

However we believe that our main goals, i.e., portable programming using both standardized

message passing and data-parallel programming interfaces, support of irregular computations,

and most important application-driven tool design, together are not targeted by vendors and

other research groups.

2.2 Overview

There are three component tools within our tool environment, sharing a common User Interface

(UI): a Parallelization Support Tool (PST), a Performance Monitor and Analyzer (PMA), and
a Parallel Debugging Tool (PDT).

The integrated environment accepts high-level extended HPF programs and low-level mes-

sage passing code. PST acts mainly as a compiler for both paradigms. PMA and PDT are

designed with the same philosophy, i.e., it will be possible for the user to obtain information

at different levels of abstraction. The lowest level of abstraction, providing the most detailed

information, is as close as possible to the DMPP's hardware. Since we are also interested in

porting the environment to several DMPPs, this lowest level of abstraction is the common

communication platform (MPI) installed on all machines considered. For instance, a detailed

break-down of parallelization overhead in communication, computation, and idle times on all

processors will be provided at any time of program execution. A higher level of abstraction

is provided by considering features of the high-level language, such as global name space and

data distribution, or data parallel execution mode which appears to the user as a single pro-

gram thread. The inter-relationship of the components within the tool environment is shown

in Fig. 1.

PST aims to provide extensive run-time support for scientific applications today considered

difficult to parallelize on massively parallel distributed systems. Working as a preprocessor on

source programs, the application sources will be instrumented to generate both performance

information for PMA and debugging information for PDT.

PMA utilizes trace information generated during the execution of a parallel program, and

assists the performance tuning and interpretation of program execution through visualization

and analysis of this information. Different levels of abstraction are supported, from the analysis

of communications and memory utilization of individual processes through to global views of

the data-parallel execution.

PDT similarly supports debugging at different levels of abstraction, often with support from

PST and PMA. Debugging of single node programs at the source level through to high-level

support of the parallel distributed program (mostly) presented as a single-thread is planned.

The user interface provides a single interface between the component tools and the user. It

primarily consists of a source code browser, which can also be directed (and possibly annotated)

by PM.A and PDT to show features or source regions of interest. Output from a running

program, sent to both standard output and error streams by processor nodes, is also displayed

under the control of the UI in a separate window.

The UI also directs the operation of the other tools and controls parallel program construc-

tion and execution. This latter role is performed in conjunction with the Tool Services Agent
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2.5 The Performance Monitor and Analyzer (PMA)

PMA provides facilities to assist with the instrumentation and analysis of program execution.

Initially, PMA is used to configure parallel program instrumentation. Subsequently it interprets

trace information generated during execution, assisting with performance tuning and interpret-

ing program execution through visualization and analysis of this information. Different levels

of abstraction are supported, from the analysis of communications and memory utilization of

individual processes through to global views of the "data-parallel" execution.

In the first prototype, PMA drives a collection of ParaGraph displays after the execution

of a parallel program has completed and execution trace information from the instrumented

communications library has been collated. Later prototypes include additional performance

statistics generated (as a first step) by post-processing the trace files. Information provided

by PST, concerning memory consumption and dynamic data distributions, is also included as

additional statistics. Customized displays are being designed, to provide increased insight into
the program execution. These displays can be interactively rescaled, to allow the resolution of

-finer details, or to provide a more general impression of program behavior. One such display

can show each thread of the parallel program represented by its own utilization time-line, with

communication highlighted between threads. Other metrics can also be selectively combined

in the display, sharing the same annotated time-axis to facilitate the correlation of associated

properties.

PMA sets instrumentation "checkpoints," i.e., source lines defining regions where communi-

cation tracing is switched, possibly specified in conjunction with the source browser of the UI.

These instrumentation regions, with an appropriate instrumentation level (from a simple execu-

tion path to a detailed performance profile), are configured by PMA in liaison with the TSA. It is
the TSA which modifies the program instrumentation state and maintains the instrumentation

of the parallel program during execution.

It should be noted that our final target is interactive (rather than post-mortem) profiling of

parallel programs. To minimize PMA's impact on program execution, and reduce the amount of

trace information which might otherwise burden the system I/O and disk capacity, efforts will be
made to process the communication traces in parallel on the distributed memory platform. This

will also remove some sequential bottlenecks in trace data transfer and processing, providing

scalable support for larger systems.

2.6 The Parallel Debugging Tool (PDT)

PDT is as a source-level, interactive parallel debugger. The first prototype consisted of a wrap-

per to TSA. It offered the same functionality and commands as a standard sequential source-level

debugger, plus a few extensions required for debugging parallel programs on DMPPs. Com-

mands are provided to attach to and detach from the target platform, to open a partition,

to load and run a parallel program, to deal with global break-points and exceptions, and to

switch from one processor to another when the program is stopped for stack, registers and data

examination. This functionality is similar to that supported by Meiko's pdb for the CS-1 and

Thinking Machines' Prism debugger for the CM-5.

Later prototypes address more specifically each programming level supported by the tool

environment. At the high-level we plan to fully support source-level debugging of PST programs

presented as single-threaded programs, and we will facilitate interpretation of large distributed

arrays by providing graphical views of the data layout (such as views supported by Prism and

Forge) and how it is redistributed as the program executes. At the message-passing level, we are
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adding facilities for run-time deadlock detection, conditional break-pointing, and race condition
detection.

2.7 The User Interface (UI)

The UI currently supports browsing through program source files, selecting break-points and

checkpoints, possibly invoking diiferent compilers (i.e., C, Fortran 77, and PST, with automatic

selection of appropriate compilation flags and libraries). It allows PDT and PMA to be invoked
and managed from the one unifying interface.

Future enhancements to UI will provide feedback between PMA and UI to allow, for instance,

direct display of the most important global performance statistics in the source browser beside

related lines of source code, or annotations of an interactive program call-graph structure display.

3 Parallelization of Applications and Algorithms

3.1 Overview

Application developers in the project are currently concerned with parallelizing a wide range of

applications on a number of platforms. In order to better evaluate the environment provided

by the tool developers and the underlying machine architectures, we have set up an applica-

tion suite, which consists of a wide range of existing sequential research codes as potential
parallelization candidates.

The research emphasis of the group lies in parallelizing unstructured problems, typically

those which are arise from the solution of partial diiFerential equations solved with irregular

grids. This is reflected in our choice of codes discussed in this section. Similar research on this

topic is taking place at other institutions, see [SG93, Sim91, SS86, SaaQO], et al.

As a first step, we have parallelized several programs in order to gain experience in both

low-level message passing techniques and data parallel programming on the available platforms.

Strong emphasis has been placed on producing portable message passing and data parallel code

on several architectures, as will be described.

The long term objectives are the following:

• Parallelization of further algorithms using PST and MPI, as described in our application
suite document [JMSd93].

• The design and implementation of a library of parallelized routines, solvers, etc, in order

to have plug-in building blocks for applications.

® Development of software for dynamic mesh partitioning. This is strongly linked to the

introduction of directives in PST by the tool developers to supplement those in HPF.

3.2 Application Suite

The application suite consists of roughly 20 different existing applications to be ported to
parallel platforms using the tool environment. These include several finite element packages, an

electronic structure code, a ray-tracing application, and several molecular dynamics codes.

The application suite document specifies further the approach taken to parallelizing appli-

cations, which we summarize in six points:

1. The application is ported in a bottom-up approach by rewriting it in HPF/PST. The
underlying algorithms are not changed.
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2. The parallelized code is debugged with PDT.

3. The performance of the code is analyzed with PMA.

4. Commonly used routines are marked to be optimized later in a library, possibly using

low-level MPI routines.

5. The tool environment is evaluated with respect to the parallelization effort required, the

program performance and the software portability.

6. Weak points of the underlying architecture are identified.

We elaborate this process here in some detail. The parallelization depends mainly on the

structure of the program and the data structures used. General issues are clear: to match data

and work distribution in order to preserve (or enforce) locality as much as possible. How to do

this is still up to the creativity and skill of the programmer. The approach to the parallelization

will be determined by the most time consuming parts of the code. One should keep in mind

that these may differ from sequential to parallel computers.

The code is first analyzed with respect to the most time consuming parts of the algorithm,

the interaction between algorithms and data structures, and distribution or replication of data

structures. Algorithms are often determined by the data structures used — this may require

changes for a parallel implementation. Apart from the efficiency of the algorithms using these

data structures, consideration should also be given to memory usage and scalability. Replicating

large data objects can result in very efficient code, but it limits the problem size to that which

can be stored on a single processor (irrespective of the number of processors used), and therefore

restricts scalability.

After this analysis, the parallelization tool (PST) is used for an initial parallelization of the

code. The resulting parallel code may be investigated and debugged with the parallel debugger
(PDT), and the performance monitor (PMA) used to find inefficiencies: communication bottle-

necks, load imbalances, or excessive overhead introduced by the compiler (e.g., in computing a

communication pattern). This information can be used to make modifications to the data and

work distribution, and to help the compiler with further optimizations by adding directives to
specify independencies and invariants in the code.

3.3 Feedback to Tool Developers and System Desigaers

Along with regular releases by the tool developers, there is timely feedback from the appli-

cation developers. Feedback not only consists of bug reports and requests for optimizations,

but especially identifies desired tool functionality enhancements. This has already resulted in

performance optimizations in PST, higher usability in PDT, and the provision of additional
information by PMA.

The inclusion of new functionality is necessary for our research in unstructured problems.

Currently support for such problems is provided mainly by external libraries, e.g., [BSS91]. We

feel that it is imperative for the paralleiization tool environment itself to provide functionality

to support irregularly distributed code and data structures, to debug parallel code efficiently,

and to visualize sparse matrices and their distribution. Response from the tool developers has

been positive and such functionality is planned for incorporation into future versions of the tool

environment.

The feedback to the system designers is the desire for low message latencies and high com-

munication bandwidths, hardware support for global communications primitives such as broad-

casts, and a high resolution timer to properly monitor program execution. Proper treatment of
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these issues is necessary for the development and efficient execution of a wide range of applica-

tions.

3.4 Overview of Applications Tested

From a range of benchmark codes available to us, for this paper we chose to concentrate on

two commonly addressed benchmarks from a standard suite, and a third commercial bench-

mark application (in two problem sizes). This was primarily done in order to investigate and

demonstrate some of the interesting aspects ofPST, namely user-defined mappings and multiple

communication patterns which can be saved and reused independently.

PST accepts a user-defined function for the mapping of global array indices to local array

indices and the processor number on which the data resides. This feature is very important in

unstructured problems for which the standard HPF data distribution directives are insuificient,

and existing codes which utilize packed data representations. In addition, routines working on

distributed data require a different communication pattern instance at every grid level. Saving

these patterns, as discussed in the PST description, can give huge performance savings when

the entire procedure is repeated many times.

NAS Kernels

The Numerical Aerodynamics Simulation kernels (hereafter NAS kernels) are widely accepted
and implemented benchmarks for a variety of computers — not only the current generation

supercomputers, but also the shared and distributed memory multiprocessing supercomputers.

Therefore these benchmarks are suitable as one means to evaluate our effort in the ongoing

project.

The NAS benchmark kernels consist of eight codes, known as Embarrassingly Parallel (EP),

Multigrid (MG), Conjugate Gradient (CG), 3DFFT PDE (FT), Integer Sorting (IS), LU-solver
(LU), Pentadiagonal Solver (SP), and Block Tridiagonal Solver (BT) [BBDS92].

Here, we consider two codes among them:

MG; calculates an approximate solution to the discrete Poisson problem using four iterations

of the V-cycle multigrid algorithm on a nxnxngrid with periodic boundary conditions.
The NAS MG benchmark deals with a maximum grid size of n = 256, though for our

benchmarks we used n = 64, which was more appropriate to the size of the machines

which we had available at the time.

CG; CG finds an estimate of the largest eigenvalue of a symmetric positive definite sparse

matrix with a random pattern of non-zeros using the inverse power method. The sparse

matrix used in our benchmarks has 14,000 columns and 1,853,104 non-zeros ("Class A").

A Finite Element Code for Unstructured Problems

This application, made available to us by Electricite de France (EDF), solves the two-dimensional

heat equation with mixed Dirichlet and van Neumann boundary conditions on a rectangular

plate using a finite element method (see [Esc93]). The resulting sparse linear system is solved by
the conjugate gradient (CG) method [HS52, GL89], and requires indirect addressing because of
the sparse matrix storage. Both a stationary and a time-dependent problem are solved, and the

average performance is shown. We consider a small problem (FE1) with approximately 7,000
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unknowns and a larger problem (FE2) with approximately 110,000 unknowns. The problem

differs from the NAS CG kernel in that the structure results from a finite element grid.

3.5 Benchmark Parallelization

Multigrid NAS Kernel (MG)

The V-cycle multigrid algorithm is applied to a n x n x n grid in order to approximate the
discrete Poisson problem Au == v over the unit cube with periodic boundary conditions, and an

irregular grid-point initialization. The description of the algorithm can be found in [Hac85].

The parallelization of this benchmark arises directly from the nature of the problem: the

cubic grid is partitioned into blocks. The communication required is then only the exchange of

elements between adjacent block faces. The most efficient blocks have been found empirically

to be "matchsticks": all grid points in one dimension are on one processor and distributed

blockwise in the other two dimensions.

A first version of MG was parallelized using explicit MPI routines (in a complementary

project [Kuh93]) and where the code was rewritten in a highly optimized fashion.

The second approach used PST to parallelize the original Fortran code supplied by NAS.
In the original code, all levels of the grid are kept in one long array and the amount of data

for each subsequent grid decreases exponentially. In the PST code, each grid level in this long

array is distributed regularly in the matchstick fashion. A user-defined mapping was used to

map each global index to the index of the local data element in the appropriate grid. Since the

mapping is only occasionally used when accessing one pointer to the current grid level, it is not

expensive to use function calls instead of table lookups.

In addition, loop distribution directives were applied to all of the loops over the entire cube

on each grid level. These loops do not need to be synchronized due to the absence of data

dependencies — this fact can be specified in PST for further efficiency. The streamlining of

the code in this fashion is illustrated in the trace of Fig. 5, where the lack of synchronization

between processors during the last three V-cycles is shown by the fact that each can immediately

continue to subsequent sections (i.e., the horizontal bars don't line up vertically).

Conjugate Gradient NAS Kernel (CG)

The conjugate gradients method is well described in the literature [HS52, GL89]. Our approach
to parallelization of the NAS CG kernel was the same in both the MPI and PST versions:

starting with the example Fortran source code, the sparse matrix was generated by sorting

elements by their column index. Matrix columns are then distributed over all the processors,

either in a cyclic fashion (round-robin) or blockwise.

The principal difference between the MPI and PST versions is in the referencing of the data

structure: the former has local indexing written into the code, while the latter accesses global

indices, as in the original, but has a user-defined global-to-local mapping to determine local

indices.

In the most efficient implementation all processors keep a full copy of all ?z-vectors (five

of which are necessary for the conjugate gradient iteration) local to all processors. The only

communication is in the matrix-vector multiplication: scalar products of matrix rows and the

incoming vector are constructed; portions of the resulting vector are gathered on all processors,

so that each has its own copy.
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The MPI version takes advantage of the HPI^AllgatherQ global communication routine

to efficiently redistribute the resultant vector. The PST split-by-column version has a very

simple user-defined mapping which requires almost no additional memory. Function calls for

the global-to-local mapping cannot be used, because the matrix data structure is referenced

frequently.

Since the CG "Class A problem is also fairly dense, the cost of having local n-vectors

(i.e., sequentially executed BLAS1 routines [LHKK79]) is not appreciable when compared to
the matrix-vector multiplication. The final MPI and PST versions are both surprisingly simple,

since all n-vectois are local and the only communication occurs in the matrix-vector multipli-

cation. Unfortunately, the lack of data locality requires this communication to be global.

Finite Element Application

We developed two parallel versions of the code. One was obtained using the PST directives, the

other has the communication hand-coded using MPI routines. The most time-consuming part

is the matrix-vector multiplication in CG which uses indirect addressing, because the sparse

matrix is stored in compressed form (ITPACK format [KRYG82]).

For the MPI version, we used the so-called replicated data approach. That means that all

processors hold all data. The computation itself is decomposed in the sense that each processor

updates only a certain subdomain. In our case, the replicated data approach has the advantage

that the program can be parallelized with minimal alterations to the code. A drawback of the

approach is obvious: we are limited to problems that fit in the local memory of one processor.

The time-dependent case FE2 could not be solved on the Paragon for this reason.

Each processor is responsible for the update of vector elements corresponding to a block

of rows of the matrix. There are two routines which require communication. The first is

the calculation of dot-products, which requires a global sum, done using an MPI reduction

routine. The second is the matrix-vector multiplication which requires indirect addressing: a

processor might access an element which has not been locally updated. To implement an efficient

communication scheme, we take advantage of the sparsity of the matrix. Before the iteration

we determine the pattern of the necessary communication, which remains the same during the

iterations, and then we perform only the necessary point-to-point communication within each

iteration.

In the parallelization with PST a domain decomposition approach is used. The unknowns

are distributed over the processors, and the rows of the matrix are distributed correspondingly.

This leads to an implementation with (in principle) a minimal overhead in memory usage and

computation.

Efficient memory utilization was important because PST can have considerable memory

overhead (beyond that of an explicit parallelization). It turns out, however, that this overhead

was not too large; it ranges from 40% on 4 processors to 70% on 64 processors. Communication is

only required for the inner products and the matrix-vector multiplication. The communication

in the inner products does not reduce the performance significantly on a small number of

processors. The matrix-vector multiplication only needs communication between neighboring

sub-domains/processors. Therefore, communication costs can be kept relatively low. Most of

the overhead is nevertheless generated in the matrix-vector multiplication in the form of integer

arithmetic in address computations. Using PST this overhead can be considerably reduced by

indicating with an annotation that a given assignment only operates on local data.
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4 Results

Two distinct platforms were chosen to evaluate our work: to demonstrate the portability, and to

compare the performance and effectiveness, of parallelization in a high-level language (using PST

as opposed to manual-coding using explicit function calls). There was no intention to compare

the different hardware architectures themselves, nor were any specific application optimizations

undertaken for either machine — the same code was executed on both.

4.1 Basic Platforms

The NEC Cenju-2

The current Cenju-2 configuration used for the performance measurements described in this

section consists of 16 computational nodes, featuring a MIPS R3000 chip-set and 64 Mbytes of
memory. Each CPU runs at 25 MHz and has two 64 Kbyte caches for data and instructions,

respectively. The nodes are connected with a multi-stage shuffle-exchange network built of

4x4 switching units. A processor interfaces to the network with two Direct Memory Access

Controllers (DMACs). Although each switching unit has a bandwidth of 32 Mbytes/s for each
of the four channels, the two DMACs provide a bi-directional hardware bandwidth of 12.5

Mbytes/s. Our Cenju-2 is operating in multi-user space-shared mode.

The Fortran compiler we used was the native compiler on the Cenju-2 host, an NEC En-

gineering Workstation (EWS4800 series), running OS version Release 6.1 Revision 07. As C
compiler and back-end to PST the GNU C compiler gcc version 2.5.7 was used.

Intel Paragon

The Intel Paragon XP/S 5+ used features 96 Intel i860 XP processors. The processing nodes

are connected in a rectangular mesh pattern, unlike the hypercube inter-connection pattern

used in the earlier Intel iPSC/860. The node processor chips operate at 50 MHz, contain
16 Kbyte data and instruction caches, and can issue a multiply and add instruction in one

cycle. The maximum bandwidth from cache to floating point unit is 800 Mbytes/s. Hardware

communication bandwidth between any two nodes is 200 Mbytes/s full duplex. Each node of

the machine used also had 32 Mbytes of memory.

As C compiler and back-end to PST, the PGI compiler version 4.1.1 is used under operation

system release OSF AD version 1.1.4.

Message Passing Interface

On the Cenju-2, an efficient MPI subset has been implemented in three layers. The lowest layer

consists of three hardware-dependent basic functions, i.e., non-tagged send, receive and poll

operations which are partially supported by the operating system. The second layer consists of

12 operations for tagged point-to-point communication of contiguous data streams, i.e., blocking

receives combined with non-blocking sends, blocking receives combined with blocking sends,

and higher level (tagged) poll operations. On top of these, the third layer consists of 14 global
communication operations implementing barrier, one-to-all and all-to-all broadcast, gather and

scatter, all-to-one and all-to-all reduction, and multicast operations.

On the Intel Paragon the whole MPI subset was implemented on top of the native NX

communication library. Note that most of our MPI functions had an NX equivalent, and could

therefore be implemented with pre-processor macros. Note also that the achieved performance
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CG : NEC Cenju-2
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Figure 2: The MPI CG version compiled with the Cenju's native Fortran compiler (light), and
also with PST (dark), i.e., without using the global name space supported by P ST, but explicit

message passing calls.

from this approach is quite likely to be inferior to a more direct use of the machine and vendor-

provided functions.

4.2 Comparative Evaluation of Different Benchmark Versions

In the parallelization of our three benchmarks we are concerned with several issues. The princi-

pal interest is a comparison of the codes parallelized with the high-level data-parallel program-

ming tool PST and low-level message-passing techniques (MPI). The criteria for this comparison

are the ease and comfort of parallelization, the scalability of the two versions, especially for large

problems, and, finally, absolute performance. We feel that the last is a significant, but not the

only, consideration in such an evaluation, particularly when the development time for paral-

lelization is considered.

The MPI versions of CG, FE1, and FE2 are written in Fortran 77 extended with calls to
the MPI library. MG is written in C with MPI. The PST versions are all written in Fortran 77
with parallelization directives: PST translates this annotated Fortran code into C with MPI

communication routine calls. PST can also be used to translate the MPI Fortran codes into

MPI C codes, just as it can compile sequential Fortran programs.

In order to put the MPI-PST comparison on an equal basis, we compare the MPI version

translated by the PST front-end to the C compiler with the pure PST version. The quality

of the PST generated C code is illustrated well in Fig. 2, where the performance of the MPI
version of the CG benchmark compiled on the Cenju-2 with PST is compared to the same

benchmark compiled with the Cenju's native Fortran compiler. Compilation with PST yields
10-20% slower code for the range of machine sizes considered.

4.3 Message Passing vs. PST Global Name Space
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(a) NAS Multigrid
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(b) NAS Conjugate Gradient
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Figure 3: MG and CG were parallelized with MPI calls, and also using PST's global name space

support. Performance of both versions is measured on both the Cenju-2 and on the Paragon

with several machine sizes. M.PI performance is depicted in light grey, and PST global name

space performance in dark grey. [Note the different scaling of the axes.]
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(a) EDF Benchmark FE1

FE1 : NEC Cenju-2
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(b) EDF Benchmark FE2
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Figure 4: The FE benchmark was parallelized with MPI calls, and also using PST's global

name space support. Two different sizes of problem were considered, referred to as FE1 and

FE2. Performance of both versions is measured on both the Cenju-2 and on the Paragon and

several machine sizes. MPI performance is depicted in light grey, and PST global name space

performance in dark grey. The FE2 MP1 Paragon graph does not include the results for the

time-dependent case. [Note the different scaling of the axes.]
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Figure 5: The upper part of the figure shows a task Gantt chart, of the first four V-cycles of

MG. Each of the 6 main routines is depicted in a different color. Symbol-handler overhead is

depicted in red. It can be seen that this overhead only occurs during the first V-cycle, although

the main routines are called with different parameters throughout the V-cycles. The lower two

figures show a communication space-time diagram of a matrix-vector multiplication during CG:

on the left, the communication pattern generated by PST is shown, while on the right, the pattern

underlying the M PI routine MPIJlllgather is shown.
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MG (Multigrid)

The current PST version supports a global name space only through the previously described

run-time mechanism. In contrast to the other benchmark programs, for MG the global name

space could be supported through compile-time analysis only. PST will be enhanced with such

static analysis as soon as it is incorporated into the NEC HPF system.

As shown in Fig. 3(a), the performance achieved with the data-parallel program compiled

by PST is much less than that of the MPI benchmark version, but as already mentioned,

we do not consider it indicative for performance achieved with MG compiled by future PST

versions. However, the benchmark uses multiple communication patterns for all its critical code

segments: the main subroutines are called with exponentially decreasing or increasing problem

size as the program steps through one V-cycle. Since a larger number of V-cycles is typically

required to compute the solution of a given problem (the "Class B" problem is defined to use 20

V-cycles) the overhead to generate such communication patterns in the first V-cycle becomes

small compared to the overall execution time. This is shown in Fig. 5, where a task Gantt

chart of the first four V-cycles of a program run is depicted. Performance measurements of

Fig. 3(a) refer to the steady state, i.e., the overhead of the symbol-handler is not included in

the measurements.

Note that the problem size considered (n = 64) is small. For larger problems, however,

we expect the code to run more efficiently, since the block surface (communication) to volume

(computation) ratio decreases as 1/n.

On the basis of analysis such as the one depicted in Fig. 5, requests for optimizations could

be quickly incorporated into the tool environment. The performance thus improved to the point

where it is comparable to the highly optimized MPI code.

CG (Conjugate Gradient)

As already mentioned in section 3.5, the MPI version takes advantage of the MPIJ^llgatherO

routine to efficiently redistribute the resultant vector. As can be seen from the trace displays

in Fig. 5, the communication pattern generated by PST to gather the resultant vector on all

processors is almost as efficient as the butterfly pattern underlying our implementation of the

MPIJlllgatherO global communication routine.

The results in Fig. 3(b) for the Cenju-2 and Paragon show strong similarity over the range

of problems on 1 to 64 processors, and indicate that PST has managed to create near optimal

communication patterns for this problem. The performance curve on the Paragon appears to

flatten off faster than that of the Cenju-2: this can be explained through differences in the

communication/computation ratio [APR89, AR92].

FE1 and FE2 (Finite Element)

Fig. 4 shows the performance measured for the finite-element application. We see that on the

Cenju-2 the performance of the MPI versions are about a factor of two better than that of

the PST versions. On the Paragon the differences are slightly smaller. Note that the PST

benchmark version has much smaller memory requirements than the MPI version. Depending

on the problem size this can lead to problems on DMPPs featuring small local memories. A more

storage-efficient MPI version could be written, but this would lead to a much more complicated

program. Moreover, this program would be more expensive in address computations as well.

The PST versions have a large initial parallel overhead in address computations, however, this

CSCS-TR-94-01 17
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overhead involves only local computation and therefore becomes increasingly less significant for

larger numbers of processors. Very good relative speedup figures are observed, especially the

run-times for FE2 on the Cenju-2 which indicate almost linear speed-up.

5 Conclusions

The Joint CSCS-ETH/NEC Collaboration in Parallel Processing has produced first prototypes
of tools within an integrated environment, which have successfully been used in the effective

parallelization of a number of applications on various DMPPs. As the project continues, the

tools are becoming more powerful and refined, and more useful to the application developers,

based partly on suggestions which arise from their experiences with the tools and new applica-

tions. The hardware and system software has also benefitted from the experiences of those who

made -first extensive use of them.

The major characteristics of the project are:

• Joint development of tools and applications to provide mutual interaction between the

two parts of the project. The requirements of the tool environment are determined by

abstraction from applications of scientific interest, an approach which ensures that the

tools really give support for problems which are important in practice. On the other

hand, once an application requirement has been built into a tool environment, it can

likely be re-used to efficiently parallelize other similarly structured applications, and the
general programmability of the underlying DMPP is significantly enhanced.

• Use of standardized programming languages and machine interfaces for portability. At

the high level HPF and at the low level MPI are used.

• Parallelization of applications known today to be difficult to parallelize on DMPPs. In our

opinion, part of these difficulties stem from missing or inappropriate tool and high-level

language features. In our project, both application developers and tool designers interact

to define and include support for such new features in all tool environment components.

To demonstrate the importance of these characteristics of our project, we have shown prelim-

inary performance measurements of three application programs on two DMPP systems, a NEC

Cenju-2 and an Intel Paragon. The programs were parallelized both using low-level message-

passing primitives and high-level data parallel language constructs. All but one of the programs

are based on irregular sparse matrix computations. Compiler-generated parallel programs were

not expected to perform as well as the hand-parallelized and optimized benchmark versions, but

this is more than compensated by the additional comfort of a high-level programming interface

as provided by our integrated tool environment.
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