
w

ĥcd^•̂
f
l

^1—
1

a>
^

™
i

'dJ3fc

0̂^^^^-aQ^^3-+
->

u?̂+
3w^^^.0

ts

^;_)
^fc

wf̂ld(^ĉo0)

Qtf>

?-i
QJ
M!-i

m
9

0

i-1(D>
.

^
'

^TOm^s-i
QPIttl
Cfi
Q)

fc

(DCT>
m^

iiis'M
|s.

m<0osa

OTHER PUBLICATIONS BY CSCS/SCSC

Annual Report:

CrosSCutS (triannually):
yearly review of activities and projects

newsletter featuring announcements relevant to our users as

well as research highlights in the field of high-performance
computing

Speedup Journal (biannually): proceedings of the SPEEDUP Workshops on Vector and
Parallel Computing, published on behalf of the SPEEDUP
Society

User's Guide: manual to hardware and software at CSCS/SCSC

To receive one or more of these publications, please send your full name and complete address

to:

Library

cscs/scsc
via Cantonale

CH-6928 Manno

Switzerland

Fax: +41 (91) 610 8282

E-mail: library@cscs.ch

Technical Reports are also available from:

http://www.cscs .ch/Official/Publications.html

A list of former IPS Research Reports is available from:

http://www.cscs.ch/Official/IPSreports.html

for
(PLUMP)

0. Broker1

P. Messmer2

V. R. Deshpande2

W. B. Sawyer2

TR-96-15, May 1996

Abstract. The growing class of applications which solve partial differential equa-

tions (PDEs) on unstructured adaptive meshes are considered. Solution to such

sparse, non-symmetric and in most cases ill-conditioned systems is often obtained

using iterative methods. The programming complexity of such applications on

parallel architectures is well known. The development of a Parallel Library for

Unstructured Mesh Problems (PLUMP), which supports the transparent use of

parallel machines for such applications, is addressed. PLUMP exploits the com-

man denominators in such problems, provides key kernels such as the matrix-vector

product and preconditioners for a wide range of iterative solvers, and supports the

parallelization of this class of applications in a clean and concise manner.

The PLUMP library is implemented in C and FORTRAN77 using the Message-
Passing Interface (MPI) and is available free under copyright for research purposes.

Keywords. PDE, unstructured adaptive meshes, preconditioner

This work was performed as part of the Joint CSCS/NEC Collaboration in Parallel Processing.

German National Research Center for Computer Science (GMD),

SchloB Birlinghoven, D-53754 Sankt Augustin, Germany

2 Swiss Center for Scientific Computing (CSCS/SCSC),

Via Cantonale, CH-6928 Manno, Switzerland

CSCS/SCSC TECHNICAL REPORT 1

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

Contents

1 Introduction 4

1.1 Related Work and Motivation for PLUMP 4

1.2 Underlying Graph, of an Unstructured Mesh Applicatiou 6

2 Application Assumptions and Requirements 8

2.1 Requirements of Sequential Application 9

2.2 Requirements of Parallel Application 9

3 Functionality 10
3.1 Data Initialization 10

3.2 Vertex Operations 11

3.3 Vector Operations 11

3.4 Element Operations 12

3.5 Operations on the Global Matrix 12

3.6 Solvers 12

3.7 Boundary Conditions 13

4 Performance Results 15

5 Possible Extensions of PLUMP 16

A Functional Specification 18
A.l Vertex Manipulation 18

A.2 Vector Operations 20

A.3 Distributed ITPACK Storage (DIS) Format 22

A.4 Element-by-element Storage (EBE) Format 27

A.5 Auxiliary Routines 30

B Implementation Issues . 31

B.l Internal Data Structures 31

B.1.1 Vertex Handle 31

B.1.2 Vector Handle 31

B.1.3 DIS Handle 32

B.1.4 EBE Handle 33

B.2 DIS Matrix-Vector Product 33

B.3 Parallel Sparse Approximate Inverse Preconditioner: PARSPAI 35

C Example 36

CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

List of Figures

1 Mesh refinement around an aerofoil using hanging nodes. 6

2 Mesh-based prediction of pressure field around aerofoil. 7

3 Matrix Partitioning 7

4 Communication between Processing Elements during a Vector Exchange . 15

5 Speedup for solving a rectangular Mesh Problem on Cenju-3 16

6 Distributed ITPACK (DIS) Storage 22

7 Element-by-Element (EBE) Storage 27

List of

1 Matrix-vector Product ou Cenju-3 (disaraux) 15

TR-96-15, MAY 1996

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

1

There are many advantages in using unstructured meshes for field and flow solvers, includ-

ing ease of automatic grid generation, ability to accurately grid complex geometries and

ease of local adaption. However they require complex data structures and are less intuitive

than structured grids. The growing class of applications which solve partial differential

equations (PDEs) on unstructured adaptive meshes are considered. Such applications

are common in various fields such as semiconductor device simulation and computational

fluid dynamics (CFD). Even though unstructured grids provide the flexibility to cluster

or expand the grids, the interesting problems in this class still manage to exceed the

limits of today s most powerful computers. The central, most time-consuming portion

of such problems is the solution of a very large system of linear equations. The matrix

resulting from such a system is sparse, non-symmetric, and often ill-conditioned. Due

to their large size, these systems are solved with iterative methods. Depending upon the

desired accuracy of the solution, mesh refinement is done in certain regions in the physical

domain, resulting in changes in the underlying data structure.

The programming complexity of such a,pplications is well known, and results in a

large development investment to port applications to parallel architectures. In view of

this large effort in numerous research groups, a parallel library for unstructured mesh

problems (PLUMP) is proposed to provide a transparent use of parallel machines to solve

such PDE problems on unstructured grids.

To support all applications on unstructured grids would require a much too wide

spectrum of functionality. By collecting common attributes and making some reasonable

assumptions, PLUM.P supports a large subset in a straightforward manner. The report

is organised as follows - After a brief description of some related work, we introduce in

Sect. 1.2, the concept of sparse matrix description through graph interpretation, which

makes the design decisions of PLUMP more lucid. In Sect. 2 we consider the applica-

tion requirements which the library needs to support, and enumerate the assumptions

made about them. Section 3 describes the functionality of PLUMP and in Sect. 4 we

present some initial results for a relatively large size problem and summarize the poten-

tial usefulness of PLUMP for other applications. The PLUMP interfaces are specified in

Appendix A with a complete description of all the arguments. Appendix B contains a

detailed discussion of the implementation issues of the library.

1.1 and Motivation for

Ivlany of today's computer simulations are described through a set of partial differential

equations based on the underlying physical problem. Analytic solutions are generally uot

obtainable, therefore the continuous domain is approximated by a discrete set of inter-

connected points, on the assumption that the error due to this discretization is negligible.

We usually refer to this set of points as a mesh or grid. The resulting system of dis-

crete equations is then solved, resulting in an approximation of the analytic solution.

Several discretization methods exist, e.g., the finite-difference, the finite-volume and the

fimte-element method.

While the grids must approximate the problem domain -D, they may be structured

4 CSCS/SCSC TECHNICAL^REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

or unstructured, coarse or fine, as long as the set of equations can be satisfied on the

given set of grid points with a desired accuracy. It is very desirable to have a grid

resolution as high as possible, although using a regular grid can lead to large data sets and

equations. Solving such systems on computers can lead to huge storage and computation

requirements. Furthermore, to obtain an answer in reasonable time, more sophisticated

methods must be used, or a compromise between the accuracy of the solution and the

required computing resources needs to be made.

To partially overcome the effect of the available computing resources on the desired

accuracy of the solution, unstructured grids have proven very useful, especially when

the physical properties are highly disparate in small portion, of the domain, but nearly

homogenous in a large portion. It is fruitful to work with a grid that has a high resolution

in concentrated areas while maintaining a low but sufficient resolution in other regions

which do not alter the final result. A good example is the investigation of shocks (see

Figs. 1 and 2) created around airplane wings. Since the areas that need a high resolution

are generally not known a prior!, it is very useful to use adaptive solution methods that

refine the grid based on intermediate results, while coraputiug the solution.

Algorithms for unstructured grids are becomiug increasingly popular, especially with

the CFD community where the geometrical flexibility of unstructured grids enables com-

plex geometry to be modeled easily. The resulting calculations are often huge and so

there is a need to fully exploit modern parallel hardware.

Writing an individual, machine-specific parallel program is time consuming, expen-

sive and difficult to maintain. Therefore there is a need for tools to simplify the task

and generate very efficient parallel implementations. There has been various efforts by

different groups to ease the parallelization task of mesh based problems. DIME from Cal-

tech [W1188], PARTI from ICASE [DS93] and OPlus [BCG94] from Oxford being some of
the packages on distributed machines. Each one offers a range of attractive features for

parallelization of unstructured mesh problems on parallel machines

The PLUMP framework has been formulated to enable parallelization of a large class

of applications using unstmctured adaptive grids. PLUMP exploits the common denom-

inators in such problems, provides key kernels such as the matrix-vector product and

precouditioners for a wide range of iterative solvers, and supports the parallelization of

this class of applications in a clean and concise manner. It supports the manipulation of

the mesh by insertion or deletion of elements and thus supports mesh adaptation. The

interface to the user is through simple data structures, such as local stiffness matrices

or even individual matrix entries. The user calls appropriate PLUMP procedures which

create, update and manage the distributed internal representation of the sparse matrix.

The key point is that sparse matrices arising from the discretizatlon methods can be easily

cast into the internal format and the iterative methods are implemented to be optimal

for this storage. The present implementation is for distributed memory machines, but an

implementation for shared memory machines would be straightforward.

10ne of the applications where high resolution would be desirable is weather-forecasting. The under-

lying model is a set of partial differential equations (e.g., the Navier-Stokes-Equation) and the domain
is the earth's atmosphere. To obtain reasonable results for a 10 day weather forecast, one needs an ap-

proximate maximum distance between discrete grid points in an order of magnitude of 1km. This leads

to a number of grid points in the order of 107 to describe the entire earth.

TR-96-15, MAY 1996 5

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

Figure 1: Mesh refinement around an aerofoil using hanging nodes.

1.2 Underlying Graph of an Unstructured Mesh Application

Irrespective of the type of PDE being solved on a grid using a given method for given

boundary conditions, there is an underlying graph of the resulting sparse matrix which is

closely related to the grid employed as shown in Fig. 3. The graph is based on a discrete

set of verfcices V = {vi, v^..., Vn\. Every vertex has a unique label i G {1,..., n} and

can always be identified through this label. In addition there are a number of interactions

between vertices described by the set of directed edges, E. If these edges are weighted,

then the matrix can be completely described by the graph G = {V, E).2

In applications using grids, individual edges (i.e., matrix entries) may be too simplistic

to describe the interactions between a number of vertices. For example, a finite element

will define edges between all its constituent vertices. Therefore a more natural basis for

such problems is to define element graphs to describe the interactions of larger components.

A element graph consists of a subset of vertices Vk c V with their interactions. In

the limitmg case, this consist of two vertices and constitute a graph edge. There is

no limitation on the number of constituent vertices of Vk, but in practice it will be

bounded implicitly by the use of a discrete operator (e.g., the type of finite elements

employed). Associated with the element vertices Vk is a set of weighted directed edges

£k which describe the interactions between vertices in Vk- The resulting element graph

2Weighted undirected self-edges which denote the matrix's diagonal elements must also be allowed.

6 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

Figure 2: Mesh-based prediction of pressure field around aerofoil.

•

Cfc,

v
^

*^Sk'
'1^,%,^1

•~*w

Figure 3: A matrix can be represented by its connectivity graph (at right), whose edges
indicate that each that corresponding vertices mutually interact, i.e., the matrix is structurally

symmetric, although the outgoing and incoming edges may be weighted different, i.e., the matrix

may be non-symmetric. The graph can be partitioned (right), and the incoming edges (or matrix
row entries) kept on the processing element which owns that vertex (at left).

TR-96-15, MAY 1996

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

Qk = (14; ^fc) completely describes a element's contribution to the overall matrix.3

The index k enumerates the set of element graphs EG = U^(?fc, where m is the total

number of element graphs. Note that EG is similar but not identical to C?, since EG

can have multiple directed edges between two given vertices. Weights of multiple edges

need to be summed to find the contribution of the single direct edge in G. It should be

remembered that the graph G correspouding to EG can be determined without difficulty,

and that the element graph is only an aid.

The element graph EG will generally change with time, and we require a series of

element-graphs -EG-i, EG-i,..., £G'(, IVIesh refinement can thus be described as a mod-

ification of the element-graph:

EGw = {EGt\EGi^J U EG,add

where EGt^^ is the union of all element graphs to be refined (removed) and -BG't

is the union of all element graphs to be added at time t. Despite the conceptual straight-

forwardness, mesh refinement proves to be difficult task, particularly in parallel environ-

ments, since the underlying data structures are quite complex (see appendix B.l).

2 Application Assumptions and Requirements

The goal of PLUMP is to offer a relatively simple library for developers of mesh-based

applications to utilize the potential of parallel distributed-memory computers for the most

time-consuming portion of their code: the solution of a large, sparse, non-symmetric (often

structurally symmetric) system of linear equations.

For such applications, we generally assume that the inexpensive portions of the code,

e.g., the insertion and deletion of elements, are running in a replicated fashion, i.e., all the

data used in those portions is duplicated on all processors. This mode of operation works

well if nearly all of the execution time is spent in the solver. As a direct consequence

of this data replication, users can develop their code in a sequential mode and switch to

parallel implementation at a later stage.

Of course, in recent years much effort has gone into parallelizing parts of fimte-element

applications, in particular the generation of the global stiffness matrix. Such development

effort should be encouraged, and therefore PLUMP also includes several "expert" routines

for applications which do not replicate all the work and data for non-solver code portions.

3There are several reasons why the vertices may not correspond exactly to the joints of finite elements,

and the graph-elements Gk likewise not to the finite elements themselves. For example, sometimes

'hanging" joints are used, which are involved in the element integration, but are removed before the

calculation of the global matrix. The graph-elements, therefore are based only on the actual vertices of

the final graph. Secondly, boundary conditions can cause joints to be removed from the final graph.

4The reader should be aware that other graphs can also be considered in mesh problems, e.g., the

graph of connectivity between finite-elements, important for the partitioning of the problem. If the type

of graph is not specified, it should be assumed that a graph of vertex connectivity is meant.

8 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

2.1 Requirements of Sequential Application

A number of assumptions need to be made about the underlying unstructured mesh

application in order to decide about numerous implementation details. These assumptions

resulted from an analysis of several finite-element programs, among them SESES [Kor93

and FEEL [Sug95], as well as extensive discussions with application developers.

1. All the vertices are uniquely labeled i £ {1 • • • n^^}. Likewise all the elements are

uniquely labeled in the set k G {1 • • • mmax}- An application always accesses a given

vertex or element through its unique label.

2. The label to element or vertex mappings are not necessarily surjective, i.e., some

labels might not refer to any vertex or element. It is the application's .responsibility

not to reference these undefined labels.

3. The application is expected to first specify an initial element graph EG^ and compute

the required variables on this graph. Based on the results of these calculations, the

application iteratively refines the mesh, i.e., deleting some vertlces and elements and

inserting others, to form a new grid EGt+i- At a given mesh level the application

defines the local stifFness matrices for each of the elements.

4. The label must be unique (at any one time) as indicated in 1, however a given label

may represent different vertex or element in different point in time. This might

occur if the labels of deleted vertices or elements are reused for the insertion of new

vertices or elements. On the other hand, an application which does not reuse labels

should also be supported as memory availability permits.

5. The application may or may not keep a record of each element which it inserts, i.e.,

we cannot rely on the application being able to supply PLUMP with the element

more than once. This implies that PLUMP cannot rely on receiving another copy

of the element when, for example, the element needs to be removed from EG.

2.2 Requirements of Parallel Application

While PLUMP is designed for the transparent parallelization of a given sequential un-

structured mesh problem, developers might have already given thought to their code

parallelization, or even have parallelized certain parts of the code.

Any such considerations by the developers toward a parallel implementation should

be exploited to the greatest extent possible. On the other hand, certain realistic require-

ments must be met by the parallel code to allow the use of PLUMP. We therefore make

the following additional assumptions about a parallel application which calls PLUMP

routines.

1. In the parallel implemention, all processing elements (PEs) must synchronously call

all PLUMP routines. This is a necessary condition, as all PEs must participate in

internal communication, even if one or the other PE may have no work to do.

TR-96-15, MAY 1996 9

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

2. The application may or may not know how the vertices and elements should be

distributed to the PEs. If it does, this information should be utilized.

3. In general, the application does not know where the vertices and elements should be

inserted. Therefore all PEs should have identical sets of elements and vertices upon

calling the insertion routines. That is, all PEs have access to all the data, although

they may choose to ignore certain data. On the other hand, if the application

allows an individual PE to determine a subset of the vertices and elements, routines

should be present to insert them into EG. Note that the latter case might occur if

the element generation has been parallelized.

4. The uniqueness assumption 1 in the case of parallel implementation implies that

the global labels will be mapped in some way to a PE number and to local labels

on each PE. The application should only know about this mapping if it is truly

necessary.

5. The application may wish to explicitly redistribute the elements and vertices. For

example, if a poor load balance is determined, the application, probably assisted by

repartitioning software, might wish to suggest a better distribution of the elements

and vertices and may want to redistribute them explicitly. On the other hand, if

the application is "naive" about the parallel implementation, PLUMP itself should

decide whether redistribution is necessary.

6. If the application generates the elements in parallel, it does so in a consistent way,

i.e., in a way that supports a global label space for vertices and elements. A given

PE may, however, impose a local numbering scheme for given global labels for its

local vertices and elements.

The assumptions 1 and 6 put some restrictions, on the use of PLUMP as some parallel

implementations may work asynchronously and might not define a global label space. On

the other hand, they make the implementation of PLUMP relatively easy.

3

We consider minimal functionality as attractive for the developer, and try to support

only those features which will enable a large subset of the target applications to perform

well in parallel. While it is clear that additional functionality is desirable, a large class of

applications could be tackled by tha functionality described in this report.

3.1 Data Initialization

Fundamental routines are called to perform the initialization of the PLUMP data struc-

tures for the vertex mapping, the global matrix and the set of elements.

10 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

3.2 Vertex Operations

Before any consideration of elements can take place, a "pool" of vertices Vi must be

defined. These need to be mapped to the PEs in some way, although it is nearly impossible

to choose a good mapping until the elements are defined, which gives rise to the graph G

and thus the connectivity of the problem.

Vertex Insertion The application must first insert the mesh vertices Vi into the data

structure. The application can either specify the PE on which a vertex should reside or

PLUMP will choose a PE through a heuristic method. In addition, the "smart" parallel

application may even specify the mapping of the global labels to the local labels of vertices

each PE owns. Later, an incremeutal set of vertices Vi can be added in the same way.

Note that no graph connectivity information needs to be specified at this stage. This

function will create a global-to-local and global-to-PE label mapping for each vertex.

Vertex Deletion Vertex deletion frees a vertex label. The application takes responsi-

bility for not referencing labels of deleted vertices. If a vertex is removed, the application

should immediately remove all the elements which reference it. On the other hand, the

application can re-insert the vertex (i.e., recycle) at any time, and thereafter insert ele-

ments which reference it. The routine to delete vertices merely resets the global-to- local

and global-to-PE mappings, but does not deallocate the vertex (this would be expensive

and is generally counterproductive if the vertices are being recycled).

Vertex Information The application may need to use the mapping information stored

in the vertex data structure, for example, the number of vertices on a given PE, in order

to perform local vector operations. In addition, the application also might need to know

the global labels of certain local vector entries (i.e., determine the reverse mapping), in

order, for example, to correctly describe the solution vector.

3.3 Vector Operations

Vectors are the numerical counterpart of the set of vertices and their distribution is thus

determined by the vertex mapping. Typically an application will allocate and perform a

wide variety of operations on many vectors. In sequential applications such vector-vector

operations are commonly supported in the level-1 BLAS [LHKK79].

It is important to continue to exploit the functionality of the BLAS in the paral-

lel code. This can be done, since vectors are still represented as an array of double

precision numbers, albeit only the portion local to one PE, allowing the use of several

(communication-free) BLAS routines. On the other hand, certain routines, such as scalar

products and norms inherently require communication. Thus some additional function-

ality is needed to supplement the BLAS.

Vector Initialization Vectors often need to be set to some constant value, e.g., zeroed

out. It may also be necessary to set specified elements of the vector to different values,

e.g., setting to a unit vector.

TR-96-15, MAY 1996 11

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

Vector Norm and Scalar Product A Euclidean norm of a vector or a scalar product

of two vectors requires a global summation and therefore commuuication. In addition,

such routines need to ignore any dereferenced (deleted) vertices.

3.4 Element Operations

After a pool ofvertices has been defined, the application can insert the set of elements EG\.

This set is successively altered as the mesh is refined. The application is responsible for

ensuring that any vertices needed during element operations have already been inserted.

Element Insertion The application can insert new elements at any time as long as the

vertices they reference exist. Either all PEs know all of the elements to be inserted (i.e.,

that information is replicated on every PE) or each PE has a local set to insert.

Element Deletion Elements can be removed by indicating the appropriate global el-

ement label, which is then available for reuse. As its counterpart for vertices, the corre-

spending routine merely resets the element's global-to-local and global-to-PE mappings,

but does not deallocate the element (this would be expensive and is generally counter-

productive if the elements are being recycled).

Element Refinement Element refinement could be seen as an element deletion fol-

lowed by several element insertions. However, it should be supported separately since

garbage collection is not needed: one of the sub-elements can replace the deleted element.

Resulting load balance problems is addressed with other functionality.

3.5 Operations on the Global Matrix

Some applications may wish to access the global matrix directly. In addition to the need

to insert elements directly into the global matrix, it may be necessary to insert individual

matrix entries, e.g., if the matrix already exists in a triplet form of a row index, column

iudex and a matrix entry.

3.6 Solvers

Mesh based computational applications invariably require the solution to a system Ax = 6,

which represent the discretization of the equations governing the physical processes. Since

the matrix A can be extremely large, sparse and possibly non-symmetric, direct methods

tend to more demanding of memory and less efficient when dealing with such problems.

An appropriate way to solve the system is to use iterative solvers, e.g., linear system

solvers available in the TEMPLATES [BBC+94] library. These solvers differ in their

convergence properties, their robustness, the amount of memory they require, whether

they need the matrix transpose (AT), and whether A can be non-symmetric.

They require at least two things to be defined: a matrix-vector product and a precon-

ditioner to ensure efficient convergence. We have parallelized the solvers CG, CGS, BICG,

12 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

BICGSTAB, GMRES and QMR from TEMPLATES using MPI [MPI95] and integrated them
into PLUMP.

Each of these solvers consists of a data structure dependent driver, and an indepen-

dent solver kernel, which communicates with the driver through a reverse communication

protocol, indicating what application dependent operations, e.g., matrix-vector product

or preconditioner step, it requires. The solver kernels themselves need only few alterations

from the sequential version to run in parallel — they require only a parallel implementa-

tion of the scalar product and 2-norm in the case of GMRES. All other vector operations

are communication free aud the standard BLAS routines can be used.

Matrix-vector product A standard implementation of a sparse matrix-vector multi-

plication does not exhibit good data locality and uses a large amount of indirect address-

ing. Hence some effort was invested in the parallel implementation of the matrix-vector

product to make it as efficient as possible. The matrix-vector product calculates y <~ Aa-,

and requires a syntax which is compatible with the solvers. The internal data structure

is updated by insertions and deletions of vertices and elements. A routine to compute

the matrix-vector product first checks for the data consistency with the current set of

V{. Consistency implies that the communication pattern is up-to-date and need not be

recalculated, meaning that the matrix-vector product will be as efficient as possible. Oth-

erwise, the communication pattern is updated to make it consistent and then the product

is computed.

Preconditioners Iterative methods have the disadvantage that they often do not con-

verge (quickly) for real-life problems. This problem can be alleviated to some extent

with the use of preconditioners [BBC+94], which convert the system to a related, but

better-conditioned problem with improved convergence properties.

PLUMP also supplies a preconditioner PARSPAI [DGMS96] which may work well
for ill-conditioned problems. Its interface has been desgined to be compatible for the

parallel TEMPLATES solvers mentioned above.

3.7 Boundary Conditions

The solution of PDEs on meshes require the specification of boundary conditions to solve

them. There are three possible types of boundary conditions: Dirichlet, Neumann and

Robin (mixed) and their implementation in PLUMP is described below.

Dirichlet Boundary Conditions Dirichlet boundary conditions assign the function

at a vertex which lies on the boundary a certain value (equal to zero if the boundary

conditions are homogeneous). Conceptually, either the vertex can be removed from the

system, or the corresponding row of the matrix can be "zeroed out" in the following way:

TR-96-15, MAY 1996 13

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

A=

* ... * * * . .. *

0 ... 0 1 0 ... 0

* ... * * * ... *

fc

The appropriate value bk is then inserted to the right-hand side.

Unfortunately, since the stifFness matrices are distributed, it is not a trivial task to zero

out matrix entries. Hence in the current implementation, a method of tagging vertices

ki,..., km with boundary conditions is used such that the matrix-vector product produces

the required result after filtration of these vertices. Thus,

*

*

Xki

*

*

Xkm

*

*

A

Xl

a-fcl-1

Xkt

Xki-1

xkm-l

Xk^

xkm+l

Xn

(1)

In particular, 1 is fulfilled for the solution vector, uamely Ax^ = b.

The Dirichlet boundary conditions are inserted by forcing function values into the

right-hand side 5 and tagging vertices having the boundary condition. The matrix-vector

multiplication then traverses the list of Dirichlet boundary conditions to determine which

entries in the multiplicand x need to be passed through and which need to be filtered out.

Neumann Boundary Conditions Neumann boundary conditions indicate the incom-

ing or outgoing flux on the boundary, and therefore can be described with alterations to

the right-hand side of the equation. The application can therefore rely on normal BLAS

and PLUMP vector routines to manipulate the right-hand side as necessary.

Robin Boundary Conditions Robin or mixed boundary conditions impose both a

Dirichlet and Neumann conditions in mesh points on the boundary. These are more

difficult to handle and i-fc is currently up to the application to separate these into Dirichlet

or Neumann conditions individually (e.g., as done in SESES [Kor93]), and to use the
previously discussed functionality to support them.

14 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

4 Performance Results

The performance of the PLUMP library in conjunction with the PARSPAI preconditioner

was investigated on a wide variety of problems. The NEC Cenju-3, a distributed-memory

machine with up to 128 nodes, each having a R4400 processor and 64MB memory was

used for this purpose with the NEC-CSCS MPI library.

Very often in the calculation, a nearest-neighbor communication takes place in which

a given PE needs to send very little data to only a few neighboring PEs, but keeps a

large chunk of data for itself (see Fig. 4). Because of its frequent use in PLUMP, this

communication kernel has been optimized using high-level MPI routines.

Figure 4: Commonly in applications with a high degree of data locality, a PE must send a small

amount of data to a few neighboring PEs, but keeps a large chunk for itself. This operation has

been optimized with non-blocking MPI communication primitives for optimum performance.

Table 1 shows the performance of the matrix-vector multiplication for a relatively large

matrix (n = 160'OOQ) on the. Cenju-3. The efficient implementation of the matrix-vector

product in indeed of utmost importance for proper scaling of the solvers.

No of Processors

time (ms)

8
224

16

116

32

67

64

51

128

35

Table 1: Cenju-3 matrix-vector product performance (n = 160,000 with 16 nonzeros/row).

Figure 5 shows the performance of PLUMP using the PARSPAI preconditioner and the

cgs solver when applied to a large system of liuear equations {n = 16,384) as resulting

from PDE on a rectangular mesh. This problem could not be solved on a single processor

because of memory limitations, hence the speedup is computed using 16 PEs as a base.

The scaling behavior of the solver, which depends almost entirely on the performance

of the matrix-vector product and the calculation of the preconditioner, seems to be promis-

ing for tackling larger size systems. A good partitioning of the mesh, however, is impor-

tant to exploit the data locality on each processor and to ensure a good compute-to-

communication ratio on distributed-memory parallel machines. The performance of the

preconditioner could be substantially improved by optimizing the communication, tuning

the different parameters and by improvement of the basic algorithm used in PARSPAI.

TR-96-15, MAY 1996 15

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

128
Number of Processors

Figure 5: Speedup for solving a rectangular mesh problem on Cenju-3, n = 16/384

5 Extensions of PLUMP

The MPI-based PLUMP is a prototype library, the design and implementation of which

was based on [BLM+95j. Most of the functionality mentioned in this report has been

implemented and tested. Some additional functionality could be incorporated in the

library to enhance its use and is discussed in the following sections:

Eigensolvers Several applications often require that eigenvalues in a critical region and

their eigenvectors be determined, e.g., A, and x, in the eigenvalue equation AX{ = \iXi.

Currently the most efficient way to determine these is with Arnoldi-based eigenvalue

solvers, such as those available in the ARPACK library [Sor92]. Like their relatives in the

TEMPLATES library, these routines require a matrix-vector product y -t— Ax and could

be implemented in parallel based on PLUMP.

Redistribution and Remapping of Domain At some point, the application might

realize that the underlying graph needs to be repartitioned in order to reduce communi-

cation, improve load balance, or both. Thus the vertices and therefore the global stiffness

matrix need to be remapped onto the parallel machine. In this case, the application can

supply the global-to-PE mapping for all active vertices Vi, and PLUMP will remap the

vertices and then redistribute the internal matrix representation appropriately.

A future extension of PLUMP will be to interface the library to a repartitioning

software package like MeTiS [KK]. Thus, the application will be able to redistribute the

data transparently, i.e., without the application having to worry about which data should

go where. As redistribution is expensive to perform, it will also check if the partitioning

is still acceptable, as it might have been influenced only to a small extent by the addition

of new elements through mesh refinement.

16 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

References

[BLM+95] I. Beg, W. Ling, A. Miiller, P. Przybyszewski, R. Ruhl, and W. Sawyer. PLUMP:

Parallel Library for Unstructured M.esh Problems. In A. Ferreira and J. D. P. Rolim,

editors, Parallel Algorithms for Irregular Problems: State of the Art, chapter 3, pages

45-67. Kluwer Academic Publishers, Aug. 1995. [ISBN: 0-7923-3623-2].

[BBC+94] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst. TEMPLATES for the Solution of Linear

Systems: Building Blocks for Iterative Methods. SIAM Publications, 1994.

[BCG94] D. A. Burgess, P. I. Crumpton, and M. B. Giles. A parallel framework for un-

structured grid solvers. In Proceedings of the Second European Computational Fluid

Dynamics Conference. John Wiley and Sons, September 1994.

[DGMS96] V. Deshpande, M. J. Grote, P. Messmer, and W. Sawyer. Parallel sparse approximate

inverse preconditioner. Technical Report CSCS-TR-96-14, Centro Svizzero di Calcolo

Scientifico, CH-6928 Manno, Switzerland, May 1996.

[DS93] R. Das and J. Saltz. Parallelizing molecular dynamics codes using the parti software.

In Proceedings of the Sixth SIAM' Conference on Parallel Processing for Scientific

Computing, pages 187-192, March 1993.

[GH96] M. J. Grote and T. Huckle. Parallel Preconditioning with Sparse Approximate In-

verses. SIAM Journal on Scientific Computing, 1996. To appear.

[KK] G. Karypis and V. Kumar. MeTiS: Unstructured Graph Partitioning and Sparse
Matrix Ordering System. Available from http://www.cs.umn.edu/~karypis/

metis/references.html.

[Kor93] J. Korvink. An Implementation of the Adaptive Finite Element M'ethod for Semicon-

ductor Sensor Simulation. PhD thesis, ETH-Ziirich, Nov. 1993. Verlag der Fachvere-

ine Zurich, Bericht Nr. 8.

[LHKK79] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra

Subprograms for Fortran Usage. Transactions on M'athematical Software, 5(3):308-

323, Sept. 1979.

[MPI95] Message Passing Interface Forum (MPIF). MPI: a M:essage-Passing Interface stan-

dard (version 1.1). Revision of article appearing in the International Journal of

Supercomputing Applications, 8(3/4):157-416, 1994, June 1995.

[Sor92] D. C. Sorensen. Implicit Application of Polynomial Filters in a k-step Arnoldi

Method. SIAM' Journal on lAatrix Analysis and Applications, 13(1):357-385, Mar.

1992.

[Sug95] K. Sugihara. FEEL documentation. Computer Systems Research Lab., NEC Cor-

poration, Tokyo, Japan, 1995.

[Wil88] R. D. Williams. DIME: A programming environment for unstructured triangular

mesh6s on a distributed-memory parallel processor. In G. C. Fox, editor, 3rd Conf.

on Hypercube Concurrent Computers and Applications, volume 2, pages 1770-1787.

ACM Press, Jan. 1988.

TR-96-15, MAY 1996 17

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

A Functional Specification

In PLUMP, a distinction is made between four fundamental types of operations: those

which manipulate (insert/delete) vertices, those which work with vectors, those which

manipulate elements and those which work on the global stiffness matrix — stored in a

distributed ITPACK [BBC+94] storage (DIS) format. Each of these classes work on a
corresponding data structure which is described thoroughly in appendix B.l.

Vertex manipulation is the first step in an application: before any elements are defined,

vertices have to be specified. Subsequently, either the application can manipulate the DIS

format directly, referring even. to matrix entries themselves, or it can utilize the element-

by-element (EBE) format which is more flexible since a record is kept of each element.

The latter is needed, for example, for deletion of elements from EG.

A.l Vertex Manipulation

As a first step, the application must insert vertices into a "pool" before elements can be

inserted and the underlying graph treated. This can be done in several ways, depending on

how much information the application can supply about the distribution of the problem.

The following routines must be called by all PEs in unison. Unless otherwise specified,

all routines are called with replicated data. The vector handle which maintains the data

mapping is discussed in appendix B. 1.2.

mitvertices(vertexJiandle, nmax, ierr)

This routine performs all initialization necessary for the vertex mapping.

Argument Intent Type Meaning

vertexJiandle out

maxvertices in

ierr out

see Data Formats Handle to vertex distribution

integer Maximum number of vertices

integer Error flag

declarevertices(vertexJiand!e, n, ierr)

This routine is the simplest way to declare vertices, and should be used only when the

total number is constant throughout and is known a prior!. The heuristic used is very

simple (based on the fact that neighboring vertices often have a label which is quite close).

It may only be called once for a given mesh, as it initializes the mapping before inserting

the vertices.

Argument Intent Type Meaning
vertexJiandle

n

1 err

out

in

out

see Data

integer

integer

Formats Handle to vertex distribution

Total number of vertices

Error flag

18 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

msertvertices(vertexJiandle, n, vertexlabels, useruaapping, pcs, ierr)

Inserts vertices into the pool. This routine will use a heuristic to distribute the vertices

to the PEs, if the application does not; specify a partition of the vertices. It uses the same

heuristic as in the declarevertices routine and will most likely lead to a non-optimal

partitioning of the final mesh, implying that it will be needed to be repartitioned at some

point. While this routine must be called with replicated data, it may be called multiple

times as the mesh is refined. The user can also supply the global-to-PE mapping.

Argument Intent Type Meaning

vertexJiandle

n

vertexlabels

usermapping

pes

lerr

inout

in

in

in

in

out

see Data Formats

integer

integer(n)
logical
integer(n)
integer

Haudle to vertex distribution

Number of vertices to insert

Global indices of the vertices

TRUE if user has defiued pes
PE ownership of corresp. vertices

Error flag

mapvertices(vertexJiandle, nlocal, vertexlabels, localindices, ierr)

This routine also inserts vertices into the pool and can be called multiple times. In contrast

to insertvertices however, there is no replication of data. Each PE forces the mapping

of a local number nlocal of globally labeled vertices to the localindices specified. The

forced mapping means that the application can refer to individual vector entries in the

local vector segment — opening numerous possibilities. However it is advisable to be used

by an application which has knowledge about the underlying distribution of the data.

Argument Intent Type Meaning

vertexJiandle inout

nlocal in

vertexlabels in

localindices in

i err out

see Data Formats

integer

integer(n)
integer(n)
integer

Handle to vertex distribution

Number of local vertices to insert

Global indices of the vertices

Local indices of corresp. vertices

Error flag

deletevertices(vertexJiandle, n, vertexlabels, ierr)

Delete the n vertices associated with the corresponding array of labels, replicated on

all PEs. Note that the application is responsible for assuring that a given vertex is no

longer referenced (i.e., any elements referencing the vertex have been removed). PLUMP

does not actually delete the vertex (this would require too much array management), but

marks it as unreferenced. The application should therefore try to "recycle" dereferenced

vertices as far as possible.

Argument Intent Type .Meaning

vertexJiandle

n

vertexlabels

1 err

inout

in

in

out

see Data Formats

integer

integer(n)
integer

Handle to vertex distribution

Number of vertices to delete

Global indices of the vertices

Error fla{

TR-96-15, MAY 1996 19

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

dirichletvertices(vertex-handle, n, vertexlabels, ierr)

Specify the n vertices associated with the corresponding array of labels as having Dirichlet

boundary conditions. These vertices will then. be fully active in the application, but will

be filtered in the calculation of the matrix-vector product (disamux and ebeamux) as

described in Sect. 3.7.

Argument Intent Type Meaning

vertexJiandle

n

vertexlabels

1 err

inout

in

in

out

see Data Formats

integer

integer(n)
luteger

Handle to vertex distribution

Number of dirichlet vertices

Global indices of the vertices

Error flag

numberlocaIvertices(vertexJiandle, result, ierr)

Returns the number of vertices in each of local PE s segment. This number also includes

the dereferenced vertices, therefore caution should be exercised when making use of the

returned value.

Argument Intent Type Meaning

vertexJiandle

result

1 err

in

out

out

see Data

integer

integer

Formats Handle to vertex distribution

Number of vertices on local PE

Error flag

globallabelvertices(vertex_handle, vertexlabels, ierr)

Given the vertex mapping, this routine returns the corresponding global labels which

are represented by each of the local vector entries. This is required, for example, wheu

considering the solution vector. A call to numberlocalvertices should preceed this call

to determine how long the vertexlabels vector should be.

Argument Intent Type Meaning

vertexJiandle

vertexlabels

1 err

in

out

out

see Data

integer(*

integer

Formats

)
Handle to vertex distribution

Global labels of local vector entries

Error flag

A.2 Vector Operations

All vectors in an application are identically distributed arrays based on the vertex map-

ping. In general it should not be necessary for the application -to manipulate these

vectors directly (although this is possible if mapvertices has been used to define the

mapping), but rather vectors can be set, read and referenced using the functionality dis-

cussed here. On the other hand, the application can call B LAS routines which do not

require communication: first the length of the local data segment is determiued with

numberlocalvertices. Then the correspouding routine, e.g., dscal, daxpy, dcopy or

others, can be called using the local length as the first argumen.t. Thus the following

routines are only a necessary supplement for BLAS.

The following routines must be called by all PEs in unison with replicated input

arguments unless otherwise specified.

20 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

initvector(vertexJiandle, constant, x, ierr)

Set all the entries of the vector x to constant except any dereferenced (deleted) positions,

which are set to 0.

Argument Intent Type Meaning

vertexJiandle in

constant in

x ' out

i err out

see Data Formats Handle to vertex distribution

double The values to set into x

double(*) The vector x

integer Error flag

setvector(vertexJiandle, n, vertexlabels, values, x, ierr)

Set the values of x in the n positions specified by vertexlabels to the corresponding

values.

Argument

vertexJiandle

n

vertexlabels

values

x

Intent

in

in

in

in

inout

Type
see Data Formats

mteger

integer(n)
double(n)
double(*)

Meaning

Handle to vertex distribution

Number of vector entries to set

Global indices of the vertices

The values to set into x

The vector x

1 err out integer Error flag

dnrm2vector(vertexJiandle, x, result, ierr)

Calculate the Euclidean norm of the vector x.

Argument Intent Type Meaning

vertex_handle

x

result

1 err

in

in

out

out

see Data Formats Handle to vertex distribution

double (*) The vector x

double The Euclidean norm VXTX

integer Error flag

ddotvector(vertexJiandle, x, y, result, ierr)

Calculate the scalar product xTy.

Argument Intent Type Meaning

vertexJiandle

x

y
result

1 err

in

in

in

out

out

see Data Formats

double(*)
double(*)
double

integer

Handle to vertex distribution

The vector x

The vector y

The scalar product x y.

Error flag

TR-96-15, MAY 1996 21

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

A.3 Distributed ITPACK Storage (DIS) Format

Within PLUMP, the data is held in an internal format which offers a high degree of

transparency to the user. The distributed ITPACK storage (see appendix B) employs

the basic ITPACK scheme which assumes that there are a maximum number of non-zero

entries per row of the global matrix. As long as neither this maximum, nor the maximum

number of rows on any one processor is exceeded, new elements are accommodated as the

mesh is refined.

This distribution assures that the kernel operation for the solver y <— Ax can be

implemented relatively easily, and that communication can be partially overlapped with

computation.

Global view mapping Local view

global
counter

max. columns

Column indices Values Column indices Values

Figure 5: The distributed ITPACK storage assumes that there is a maximum number of matrix

entries per row, and that the graph is adequately partitioned such that no PE fills its local two-

dimensional array. For each entry in the matrix value array, there is an array containing the

corresponding column indices in each row.

The following routines must be called by all PEs in unison with replicated input

parameters, unless otherwise specified. The handles are discussed in appendix B.

disinit(dis_handle, maxrows, maxlocwidth, maxextwidth, ierr)

This routine performs all initialization necessary for the DIS format.

Argument Intent Type Meaning
disJiandle out

maxrows in

maxlocwidth in

maxextwidth in

ierr out

see Data Formats

integer

integer

integer

integer

Handle to matrix iuformation

Max. number of rows

Max. number of local neighbors

Max. number of external neighbors

Error flag

22 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

dismsertentries(dis_handle, vertexJiandle, n, rind, cind, entries, ierr)

This routine inserts individual matrix entries into the DIS format. The input is in the

triplet form (row iudex, column index, entry value). All PEs must call this routine in.

unison and all the data must be replicated. The application which generates entries in a

distributed fashion should call disinsertlocalentries.

Argument Intent Type Meaning

disJiandle

vertexJiandle

n

rind

cind

entries

inout

in

in

in

in

in.

see Data Formats

see Data Formats

integer

mteger(n)
mteger(n)
double(n)

1 err out mteger

Handle to matrix information

Handle to vertex distribution

Number of entries to insert

Global row index to insert

Global column index to insert

Matrix entries corresp. to indices

Error flag

disinsertlocalentries(dis_handle, vertexJiandle, nlocal, rind, cind, entries, ierr)

This routine inserts individual matrix entries into the DIS format. The input format

is the triplet form (row index, column index, entry value). Although all PEs must call

this routine in unison, different PEs can insert different entries, i.e., the data need not be

replicated. This is extremely powerful if the application can generate different parts of the

global stiffness matrix indepeudently on different PEs, but it should be used with some

consideration for the vertex mapping, since it can generate enormous communication.

Argument Intent Type Meaning

disJiandle

vertexJiandle

nlocal

rind

cind

entries

1 err

mout

in

in

in

in

in

out

see Data Formats

see Data Formats

mteger

integer(ulocal)
integer(nlocal)
double (nlocal)
integer

Handle to matrix information.

Haudle to vertex distribution

Number of local entries to insert

Global row index to insert

Global column index to insert

Matrix entries corresp. to indices

Error flag

dismsertelements(dis_handle, vertexJiandle, n, size, vertices, elements, ierr)

This routine inserts elements into the graph, as described by the vertices which form its

corners and its local stiffness matrix. The application is responsible for ensuring that the

vertices referenced by an element have been added to the vertex pool. The application

which generates elements in a distributed fashion should call disinsertlocalelements.

TR-96-15, MAY 1996 23

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

Argument Intent Type Meaning

disJiandle inout see Data Formats Haudle to matrix information

see Data Formats Handle to vertex distributionvertexJiandle in

n in

size m

vertices in

elements in

ierr out

integer

integer

integer(size*n)
double(slze2*n

integer

Number of elements to insert

Size of each element to insert

Global vertices of elements

Local stiffness matrices of elements

Error flag

disinsertlocalelements(dis_handle, vertexJiandIe, nlocal, size, vertices, ele-

ments, ierr)

This routine inserts elements into the graph, as described by the vertices which form its

corners and its local stiffness matrix. Although all PEs must call this routine in unison,

different PEs can insert different elements, i.e., the data need not be replicated. The

application is responsible for ensuring that the vertices referenced by an element have

been added to the vertex pool.

Argument Intent Type Meaning

disJiandle

vertexJiandle

nlocal

size

vertices

elements

1 err

inout

inout

in

in

in

in

out

see Data Formats

see Data Formats

integer

integer

mteger(size*nlocal)

double(size2*nlocal)
integer

Handle to matrix information

Handle to vertex distribution

Number of elements to insert

Size of each element to insert

Row iudices of the element

Local stiffness matrices

Error flag

disredistribute(dis-handle, vertexJiandle, vertexlabels, usernaapping, pes,

ierr)

This routine redistributes the vertices specified by their global labels, and their new PE

ownership. It also makes the corresponding changes to the DIS format. Currently only

usermapping = TRUE is implemented, and the application must find the PE ownership

by using a repartitioning software package externally.

Alternatively, if the subsequently described EBE format is used — which does not use

the vertex mapping — it is possible to redistribute the vertices by explicit calls to the

vertex manipulation routines and then to create the DIS format when it is needed with

ebetodis.

Argument Intent Type Meaning

disJiandle

vertexJiandle

vertexlabels

usermapping

pes

1 err

inout

inout

in

in

inout

out

see Data Formats

see Data Formats

integer(n)
logical
mteger(n)
inteeer

Handle to matrix information

Handle to vertex distribution

Global indices of the vertices

TRUE if user has defined pes

PE ownership of corresp. vertices

Error flag

24 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

disamux(dis_handle, alpha, x, beta, y, ierr)

Multiply the global matrix by a vector, scale it by a and add it to the scaled vector f3y.

This routine is highly optimized, overlaps communication with calculation. All PEs must

call this routine in unison. The vectors x and y are distributed (see appendix B).

Argument Intent Type Meaning

disJiandle

alpha

x

beta

in

in

in

in

see Data Formats

double
double(*)
double

Handle to matrix information

Scaling factor of x

Incoming vector

Scaling factor of y

1 err

inout double(:f

out luteger

Resultant vector y <— aAx + f3y

Error flag

disatmux(dis_handle, alpha, x, beta, y, ierr)

Multiply the trauspose of the global matrix by a vector, scale it by a and add it to

the scaled vector fty. This routiue is highly optimized, overlaps communication with

calculation, and should be used as disamux in solvers which require it. The vectors x and

y are distributed (see appendix B).

Argument Inteut Type Meaning

disJiandle

alpha

x

beta

y

1 err

in

in

in

in

inout

out

see Data Formats

double

double(*)
double

double(*)

integer

Handle to matrix information

Scaling factor of x

Incoming vector

Scaling factor of y

Resultant vector

y <— aA x + Ry

Error flat

disformprec(dis_handle, dis-prec_handle, spai_maxsteps, spai_epsilon,

spaLbeta, ierr)

Determine a PARSPAI [DG]V[S96] preconditioner from the global stif&iess matrix. This pre-

conditioner assumes that the matrix is structurally symmetric — a condition which is not

assured if the matrix was inserted with disinsertentries or disinsertlocal entries.

The application must specify a tolerance 0 < e < 1.0 which determines the quality of

the preconditioner — smaller the epsilon, the better the preconditioner. Maxsteps is

the maximum number of steps for determining each row of the preconditioner — if the

e criterion is not met, PARSPAI takes the last approximation as the best estimate. The

beta factor is used to multiply the average residual from the neighbors and choosing only

those ones whose residue is less than this quantity.

Note that the dis-precJiandle has the same structure as the disJiandle and thus

the preconditioner M is actually applied with a call to disamux to form y <— M.x.

TR-96-15, MAY 1996 25

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

Argument

disJiandle

dis-precJiandle

spai-maxsteps

spai-epsilon

spai_beta

1 err

Intent

in

out

in

in

in

out

Type
see Data Formats

see Data Formats

double

double

double

integer

Meaning

Handle to matrix information

Handle to preconditioner

information

Max. number of iterations

per row

Quality factor of preconditioner

Criteria for selection of neighbors

Error flag

dissolver(dis_handle, solver_method, x, y, iter, resid, prec_method,

spaLmaxsteps, spaLepsilon, spai_beta, info)

Solves a given linear system Ax == y for x by using a given iterative solver and applying

a preconditioner if required.

Argument Intent Type Meaning

disJiandle

solver-method

x

y
iter

resid

prec_method

in

in

inout

in

in

in

in

spai_maxsteps in

spai-epsilon

spai_beta

info

in

in

inout

see Data Formats Handle to matrix information

integer

double(*^

double (*'

mteger

double

integer

integer

double

double

mteger

Selects the requested solver

*) Initial guess and resultant vector

x = A-ly

*) Right hand side vector
Number of solver iterations

Residue as convergence criteria

Preconditioning method .

Number of refinements in SPAI

Quality factor of the preconditioner

Criteria for selection of neighbors

Status flag

To choose between the different solvers, the following values can be defined for solvei

Symbol
CG
CGS
BICG
BICGSTAB
GMRES

QMR

Value

1
2
3
4
5
6

Remark

PARSPAI can not be applied

info contains number of restarts

To choose between the different preconditioning methods, the following values are de-

fined for prec-method:

Symbol Value Remark

PRECJTONE 0
PREC_JACOBI 1

PREC_SPAI 2

No preconditioner is applied

Jacobi preconditioner

PARSPAI [DGMS96] preconditioner

26 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

A.4 Element-by-element Storage (EBE) Format

The element-by-element (EBE) storage format should be thought of as an. additional

wrapper around the more fundamental DIS format. It is useful if the application does not

keep track of the elements and needs to delete and insert elements due to mesh refinement.

The elements are assigned to PEs through a very simple heuristic which, does not take the

vertex mapping into account. Thus a change in the vertex mapping, e.g., a remapping of

the vertices will not directly affect the data in the EBE storage format.

J Indices

Values

of A ' A ' A

Figure 6: The EBE storage is useful for mesh manipulation at element level

Even though a matrix-vector product ebeamux using the EBE format is supplied, this

should only be used if memory is at a premium, and performance is not a key consideration

this operation is much less ef&cient than its DIS counterpart. Applications which

require efficient matrix-vector products should convert the elemeuts to DIS format with

ebetodis whenever the element graph is frozen, i.e., wheu EGt is set, aud then use

disamux.

The following routines have many similarities with the vertex operations. In deed

the distribution mechanism of both is identical, and an element can be considered as a

"vertex with baggage, i.e., not only do the elements require global-to-local and global-

to-PE mappings, but also data structures for the set of constituent vertices and the local

stiffness matrix must be kept. All routines must be called by all PEs in unisou. The

handles are discussed in appendix B. Unless otherwise specified all the arguments must

be replicated.

ebemit(ebeJiandle, maxelements, maxsize, ierr)

This routine performs all initialization necessary for the EBE format.

Argument Intent Type IVIeaning
ebeJiandle

maxelements

maxsize

1 err

out

in

in

out

see

inte

inte

inte

Data

ger

ger

ger

Formats Handle to element information

Max.

Max.

Error

number of elements

vertices per element

flag

TR-96-15, MAY 1996 27

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

ebeinsertelenaents(ebeJiandle, n, size, elementlabels, vertices, elements,

usermapping, pes, ierr)

Insert elements belonging to EGt. This routine uses a heuristic to distribute the elements

to the PEs, if the application does not specify a partition of the elements. .The heuristic

is very simple and does not depend on the vertex mapping, since that might change with

time.

Argument Intent Type .Meaning

Argument Intent Type Meaning

ebeJiandle

n

size

elementlabels

vertices

elements

usermapping

pes

1 err

inout

in

in

in

in

in

in

inout

out

see Data Formats

integer

integer

integer(n)
integer(size n)
double(size2*n)
logical
integer(n)
integer

Handle to element information

Number of elements to insert

Size of each element to insert

Global labels of the elements

Global vertices of elements

Local stifFness matrices

TRUE if user has defined pes
PE ownership of the elements

Error flag

ebedeleteelements(ebeJiandle, n, elementlabels, ierr)

Delete the n elements associated with the corresponding labels. Note that the appli-

cation is responsible for first removing the elements before the corresponding vertices

are deleted (dereferenced). PLUMP does not; actually delete the elements (this would

require too much array management), but marks them as unreferenced. The applica-

tion should therefore try to "recycle" elements as far as possible, or, preferably, use the

eberefineelements routine which avoids the management problem.

Argument Intent Type M.eaning

ebeJiandle inout

n in

elementlabels in

ierr out

see Data Formats

integer

integer(n)
integer

Handle to element information

Number of elements to delete

Global indices of the elements

Error flag

eberefiiieelements(ebeJiandle, n, m, size, elementlabels, vertices, elements,

ierr)

This routine refines n elements into m subelements each. The same could be achieved

by a set of element deletions and insertions, however it is better to use. this routine,

since the number of elements can only grow and no "garbage collection" is required. The

application cannot specify the PE owner and there is no checking that the new vertices

are correct with respect to the old element.

ebeJiandle inout

n in

m in

size in

element labels in

vertices in

elements in

ierr out

see Data Formats

integer

integer

integer

integer(n)
integer(size*n*m)

double(size2*n*m)

luteger

Handle to element information

Number of elements to refine

Refinement elements per element

Size of each element to insert

Global indices of elements to refine

Global vertices of elements

Local stiffness matrices

Error flag

ebemapelements(ebeJiandle, nlocal, size, elementlabels, vertices, elements,

localindices, ierr)

This routine also inserts elements into EGf and can be called multiple times. In contrast

to ebeinsertelements, however, the arguments need not be replicated: each PE inserts

a local number of globally labeled elements into the EBE format. This routine is therefore

only to be used by an application which understands much about the underlying distribu-

tion of the data, and should be thus programmed only by expert users. This routine can

also be used for refining elements, as there is no checking if existing elements are being

overwritten.

Argument Intent Type Meaning

ebeJiandle

nlocal

size

elementlabels

vertices

elements

localindices

1 err

inout

in

in

in

in

in

in

out

see Data Formats

integer

integer

mteger(nlocal)
integer(size*nlocal)

double(size2*nlocal)

integer(nlocal)

integer

Handle to element information

Number of vertices to iusert

Size of each element to insert

Global indices of the vertices

Global vertices of elements

Local stiffhess matrices I

PE ownership of the resp.

elements

Error flag

ebeamux(ebeJiandle, alpha, x, beta, y, ierr)

Multiply the global matrix by a vector, scale it by a and add it to the scaled vector /3y.

Note that it would be more ef&cient to first convert the EBE to DIS format and then

perform, disamux, since EBE format has inherent redundancy and only contains global

vertex labels. On the other hand, if one cannot afford allocating the additional space,

or if only very few matrix-vector products are required, it is quite reasonable to use this

routine. While all PEs must call this routine in unison, the vectors x and y are distributed

(see appendix B).

28 CSCS/SCSC TECHNICAL REPORT TR-96-15, MAY 1996 29

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

Argument

ebeJiandle

alpha

x

beta

y
1 err

Intent

in

in

in

in

inout

out

Type _

see Data Formats

double
double(*)
double
double(*)
integer

Meaning

Handle to element

Scaling factor of x

Incoming vector

Scaling factor of y

Resultant vector y

Error flag

information

<— aAx + /3?/

ebetodis(ebeJiandle, vertexJiandle, dis_handle, ierr)

Translate the EBE format into fche DIS format. This is extremely useful if the system

of linear equations is solved with an iterative method requiring many optimized matrix-

vector products and the SPAI preconditioner.

Argument Intent Type Meaning

ebeJiandle in

vertexJiandle in

disJiandle out

ierr out

see Data Formats

see Data Formats

see Data Formats

integer

Handle to element information

Haudle to vertex distribution

Handle to matrix information

Error flag

A. 5 Auxiliary Routines

The following additional routines provide the user of PLUMP to get information about

the matrix and the internal storage.

disprmtmat(dis_handle, vertexJiandle, ierr)

Print the global matrix with global indices as row, column. and value.

Argument. Intent Type Meaning

disJiandle in

vertexJiandle in

ierr out

see Data Formats Handle to matrix information

see Data Formats Handle to vertex distribution

integer Error flag

dismemorymfo(dis-handle, vertexJiandle, ierr)

Print information about memory usage for every PE about the number of rows, number

of local and external columns, number of entries in receive and send cache, number of

entries in send and receive CSR buffer in absolute and in percentage of maximum.

Argument Intent Type Meaning

disJiandle in

vertexJiandle in

ierr out

see Data Formats Handle to matrix information

see Data Formats Handle to vertex distribution

integer Error flag

30 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

B Implementation Issues

B.l Internal Data Structures

The internal data structures used in PLUMP are specified in this section. Since the

library is currently compiled with FORTRAN77, the data structure consists of numer-

ous separate fields. To ensure modularity, these are declared in an include file (with

FORTRAN and C version), which is inserted at the proper place in the application code.

With the general availability of Fortran 90, the data could be implemented as a struc-

ture which is allocated dynamically (as opposed to the static declaration in the present

implementation) which further improves modularity.

B. 1.1 Vertex Handle

The vertex handle consists of the global-to-local and local-to-global mappings, as well as

the size of the local data segment. Due to the foreseeable large number of vertices in V,

all arrays of maximum length NMAX need to be distributed. The local2global array

is distributed exactly as any vector - thus the local PE only knows the global labels of

vertices it owns. The global2pe and global21ocal arrays are distributed in a round-

robin (or cyclic) fashion: PE 0 knows the mapping for global label 1, PE 1 for label 2,
etc. Thus, PE cf's request for a mapping of global label i is sent to the owner mod(i^p)

which then returns the actual coordinates PE owner, local index. Although this mapping

can involve lot of communication, it is only done when inserting elements into DIS format

or converting EBE format to DIS.

The following table shows all variables in the vertex handle. All variables are of type

integer and are local unless specified.

Variable Meaning

localsize(MAXPROCS
global2pe(NMAX)
global21ocal(NMAX)
local2global(NMAX)

Number of local vertices (Replicated)

Global-to-PE mapping

Global-to-local mapping

Local-to-global mapping

B. 1.2 Vector Handle

As mentioned in section 3.3, all vectors are distributed according to the distribution

of vertices. A vector therefore consists of only a pointer to the local data segment. Its

length can be determined via numberoflocalvertices, and the corresponding global

labels found with globallabelvertices.

Any number of vectors can be allocated by the applications using the maximum num-

ber of vertices NMAX.

TR-96-15, MAY 1996 31

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

B.1.3 DIS Handle

The DIS format is an extension of ITPACK storage. In a given row, nonzero elements

belonging to the PE are either local to the PE — defined by their values and column

location in the two arrays dis_loc_entries and disJ-oc-cols — or are non-local (ex-

ternal) and thus stored in the arrays dis-ext-entries and dis-ext-cols. In the latter

case, the entries can be considered as graph edges which span a partition boundary.

DIS format refers only to local vertex indices. Thus, disJ-oc-cols are the indices of

vertices on the local PE. The external indices, i.e., those in dis_ext_cols are pointers to

a lookup table dis_perecv or dis-inrecv. The array dis_ptrecv contains the inverse

lookup mapping. The corresponding lookup table of external entries to be sent to neigh-

boring processes is in dis_pesendor dis-insend, which can be constructed already as the

elements are inserted, if and only if the global stiffness matrix is constructed with either

disinsertentries or disinsertelements which require replicated data. These lookup

tables are compressed and sorted into compressed sparse row (CSR) arrays dis_recvia

and dis-recvja, or dis-sendia and dis_sendja when the actual data transfer is per-

formed. The following table describe all variables in the DIS format. All variables are of

type integer except for the actual matrix entries disJ-oc-entries and dis_ext-entries

and are local unless specified.

Variable Meaning

dis-nrows

disJoc-ncols(MAXROW)
disJoc-entries(MAXLOCCOL, MAXROW)
disJoc-cols(MAXLOCCOL, MAXROW)
dis_ext^icols(MAXROW)

dis-ext-entries(MAXEXTCOL, MAXROW)
dis_ext_cols(MAXEXTCOL, MAXROW)
dis-iptrecv

dis_perecv(MAXCACHE)
disJnrecv(MAXCACHE)
dis-ptrecv(MAXCACHE)
dlsJptsend

dis-pesend(MAXCACHE)
disJnsend(MAXCACHE)
dis_ptsend(MAXCACHE)
dis_recvia(MAXPROCS)
dis^-ecvja(MAXCSR)
dis-sendia(MAXPROCS)
dis-sendja(MAXCSR)
dis_consistent

Current uumber of rows in DIS

Number of local non-zeros per row

Local values

Local column indices

Number of external non-zeros

per row

External values

External column indices

Size of receive lookup table

PE ownership

Local index

Reverse mapping

Size of send lookup table

PE ownership

Local index

Reverse mapping

Receive count for each PE

Receive list in CSR format

Send count for each PE

Send list in CSR format
Consistency state between updates

32 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

B.1.4 EBE Handle

The EBE handle is structured similar to the vertex handle with additional data struc-

tures to hold the constituent vertices and the local stiffness matrices. The elements are

distributed in a cyclic manner which does not take the partitioning of the vertices into

account, i.e., the global labels of the vertices are always used ignoring their distribution

entirely. This means that operations on EBE format will be necessarily communication

intensive. Ideally, EBE format should be used only when a record of inserted elements is

needed and then. only as a wrapper around DIS format. Whenever the EGt is "frozen,"

the matrix should be translated to DIS form with a call to the ebe-bodis routine.

The following table shows all variables in the EBE handle. All variables are of type

integer except for the actual matrix entries in ebematrix and are local unless specified.

Variable Meaning

ebelocalsize(MAXPROCS)
ebeglobal2pe(NMAX)
ebeglobal21ocal(NMAX)
ebelocal2global(NMAX)
ebeelementsize(NMAX)
ebevertices(MAXBLOCK, NMAX)
ebematrix(MAXBLOCK, MAXBLOCK, NMAX)

B.2 DIS Matrix-Vector Product

No. of local elements (Replicated)

Global-to-PE mapping

Global-to-local mapping

Local-to-global mapping

Size of given element

Constituent vertices

Local stiffness matrix

The DIS matrix-vector multiplications disamux and disatmux are the workhorses of

the solvers and are highly optimized. In the first place, a high-quality partitioning of the

underlying mesh is assumed. This reduces the number of cut edges, thus minimizing the

amount of data in the dis-ext_JJJ data structure, and thereby the necessary communi-

cation. Furthermore, communication is overlapped with calculation in the following way

in Ax:

1. The vector y is scaled with f3.

2. Each PE determines the entries of x which are required by other PEs. These are

packed into separate buffers for each PE and non-blocking MPI send requests are

posted.

3. Each PE calculates the local portion yimp = aAiocaix, of the result.

4. Each PE receives the foreign entries of x sent in step 2.

5. Using the above data, the external portion aAextX is calculated, added to yimp which

is then added f3y.

Clearly step 3 can be performed while step 2 is pending.

TR-96-15, MAY 1996 33

0. BROKER, V. DESHPANDE, P. M:ESSMER AND W. SAWYER

Implementation of the matrix-vector product:

C Collect the entries which must be sent to other processes
call LoadDoubleVector(x, xext, dis_sendia, dis_sendja)

C Post the entries to other processes in a non-blocking fashion
call SendDoubleVector(xext, dis_sendia)

C Pre-scale y with beta
call dscal(dis_nrows, beta, y, 1)

C Perform local multiplication
do irow = 1, dis_nrows

do icol = 1, dis_loc_ncols(irow)
xtmp(icol) = x(dis_loc_cols(icol, irow))

end do
y(iron) = y(irow) + alpha * ddot(dis_loc_ncols(irow),

& xtmp, 1, dis_loc_entries(l, irow), 1)
end do

C Receive the needed entries from other processors and update the product
call RecvDoubleVector(xext, dis_recvia)
do irow = 1, dis_nrows

do icol = 1, dis_ext_ncols(irow)
xtmp(icol) = xext(dis_ptrecv(dis_ext_cols(icol, irow)))

end do
y(irow) = y(irow) + alpha * ddot(dis_ext_ncols(iron),

& xtmp, 1, dis_ext_entries(1, irow), 1)

end do

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

B.3 Parallel Sparse Approximate Inverse Preconditioner: PARSPAI

The PARSPAI preconditioner is a high-quality parallel preconditioner based on the

SPAI [GH96] algorithm, modified for structurally symmetric matrices.

The main idea of SPAI is to approximate the inverse of the matrix A in a given norm,

e.g. to reduce the residual

r = A* M - I.

If the Frobenius Norm. is chosen as the criteria, then the above problem splits into n

independent least squares problems, which can fully be solved in parallel:

mm||A * M - I\\2p = ^ min ||A * mk - efc||| = ^
k=l

mm rfc
fc=l

-The main problem consists in determining a good sparsity pattern for m,k. The PAR-

SPAI algorithm starts with a diagonal pattern as initial sparsity and computes an initial

residual r^. It then tries to add those elements to m^, which help to reduce the initial

residual by maximum amount. This is done by solving a 1-dimensional minimizatiou

problem. With this new sparsity pattern, the least squares problem is solved again to

decrease the residual still further. This loop is repeated until the residual-norm satisfies

a given criterion rfc 2 ^ e; or the number of refinements exceed a given limit.

As this process has to be done for every column m^ of M and as the determination

of every column is independent, the algorithm scales very well, as long as the additional

comm.unication overhead does not exceed the computational time.

Implementation of PARSPAI and performance results on various problems are discussed

in [DGMS96].

34 CSCS/SCSC TECHNICAL REPORT
TR-96-15, MAY 1996 35

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

C Example

cc
c
C This example program shows the use of PLUMP calls to insert vertices
C and elements in a 2-D rectangular mesh and to insert element stiffness
C matrices in the DIS data structure used by PLUMP. It then solves the
C system of linear equations Ax=B by using parallel iterative solver CGS.
C The system is preconditioned using the PARSPAI preconditioner.
c

program grid

implicit none

C Include the MPI and plump related include files
c
#include "mpi_context.incl"
#include "plump.incl"
#include "dis_declaration.incl"

#include "vertex_declaration.incl"

C-Define the mesh size
#define PRB_XSIZE
#define PRB_YSIZE
#define PE_NUM_X
#define PI

no of processors in X direction
100
100
4
3.141592654

integer total_no_of_vertices, err

call mpi_init(err)
call mpicontext
if(myid.eq.0)print *, "Benchmarking BIG problems"
total_no_of_vertices = PRB_XSIZE * PRB_YSIZE

C Initialize the PLUMP vertex data structure and get back a handle

call initvertices(
#include "vertex_handle.incl"

& total_no_of_vertices, err)

C Call a routine to insert vertices in the pool, ie. to map them
C according to the partition of the mesh (userdefined or PLUMP defined).

call setvertices(
#include "vertex_handle.incl"

& PRB_XSIZE, PRB_YSIZE, PE_NUM_X,err)

C One can also call the following routine to declare the vertices.
c print *, "declarevertices"

c call declarevertices(
c#include "vertex_handle.incl"

c & total_no_of_vertices,

c & err

c &)

C Initialize the DIS structure
call disinit(

ffinclude "dis_handle.incl"

& total_no_of_vertices, MAXLOCCOL, MAXEXTCOL,
& err

&)

36 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED M.ESH PROBLEMS (PLUMP)

C Call a routine to generate the element stiffness matrices and solve the
C system of linear equations.

call test(
#include "dis_handle.incl"
#include "vertex_handle.incl"

& err)

end

C ——end-of-grid———————————————————————————

subroutine test(
#include "dis_handle.incl"

#include "vertex_handle.incl"

& err)

implicit none

#include "mpi_context.incl"

#include "plump.incl"
#include "dis_declaration.incl"
#include "vertex_declaration.incl"

^include "solver_meth.h"

#define ELEMENT_SIZE
#define VECTOR_SIZE
#define. dis_max_nrows

#define PI

(PRB_XSIZE*PRB_YSIZE)
(PRB_XSIZE*PRB_YSIZE)
3.141592654

double precision x(VECTOR_SIZE), y(VECTOR_SIZE)
double precision dis_checksum, sum, gsum

integer irow,isrow, iscol
integer prb_xsize, prb_ysize, ix, iy, dx, dy
parameter(prb_xsize = PRB_XSIZE, prb_ysize = PRB_YSIZE)
double precision slide(ELEMENT_SIZE, ELEMENT_SIZE), cut

integer s_row(ELEMENT_SIZE)
integer slide_row(ELEMENT_SI2E, ELEMENT_SIZE)
integer slide_col(ELEMENT_SIZE, ELEMENT_SIZE)
integer solver_method, info, prec_method, SPAI_maxsteps

double precision resid, SPAI_epsilon, SPAI_beta
integer k, iter
integer err

integer iseed(4)
integer entr
integer row_buf(MAXLEN), col_buf(MAXLEN)
double precision entry_buf(MAXLEN)

double precision parddot
external parddot

TR-96-15, MAY 1996 37

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

C Generate a matrix problem with rectangular grid

#define nodeind(ix, iy) (ix + (iy-1) * prb_xsize)

cut = l.OdO
entr = 0

do 510 iy = 1, prb_ysize-l
do 520 ix = 1, prb_xsize-l

C Generate a slide, ie. element stiff ness matrix
isrow = 1
do dx = 0, 1

do dy = 0, 1
s_row(isrow) = nodeind(ix+dx, iy+dy)
isrow = isrow + 1

end do
end do

c *** Real values of the slide ***
do isrow = 1, ELEMENT_SIZE

do iscol = 1, ELEMENT_SIZE
slide_row(isrow, iscol) = s_row(isrow)
slide_col(iscol, isrow.) = s_row(isrow)

eec now some data has to be inserted in the structure, e.g. the edges have
eec to be weighted. On way is to use a kind of Hesseberg matrix

slide(isrow, iscol) = 1.Od0/(cnt+isrow+iscol)

end do
end do
cnt=cnt+1.0d0

c

c Insert the buffer of element matrices (if they are full) into the PLUMP DIS
c format
c

if(entr + ELEMENT_SIZE * ELEMENT_SIZE .ge. MAXLEN) then
call disinsertentries(

#include "dis_handle.incl"

#include "vertex_handle.incl"

& entr, row_buf, col_buf, entry_buf, err)

entr = 0

end if

c Pack the new element matrices into the buffers so that we can insert them
c simultaneously in the DIS format
c

do isrow = 1, ELEMENT_SIZE * ELEMENT_SIZE
entr = entr + 1

row_buf(entr) = slide_row(isrow)
col_buf(entr) = slide_col(isrow)
entry_buf(entr) = slide(isrow)

end do

520 end do
510 end do

38 CSCS/SCSC TECHNICAL REPORT

PARALLEL LIBRARY FOR UNSTRUCTURED MESH PROBLEMS (PLUMP)

c Insert the buffer into the DIS format in PLUMP

c

call disinsertentries(
#include "dis_handle.incl"
#include "vertex_handle.incl"

& entr, rowjauf, col_buf, entry_buf, err)

C Initialize the vectors
do 730 irow = 1. dis max_nrows

x(irow) = l.dO
y(irow) = O.dO

730 end do

C Do Matrix-vector multiplication with the matrix in DIS format to check
C the integrity of the matrix.
c

call disamux (
#include "dis_handle.incl"

& l.OdO, x, O.OdO, y, err)

C Check the 2-norm of the vector generated by matrix-vector product.

call dnrm2vector(
#include "vertex_handle.incl"

& y, dis_checksum, err)

dis_checksum = parddot(VECTOR_SIZE, y, 1, y, 1)

C Generate the right-hand side vector y=A*x

do 950 k = 1, VECTOR_SIZE
x(k) = l.OdO
y(k) = O.OdO

960 continue

call disamux (
#include "dis_handle.incl"

& l.OdO, x, O.OdO, y, err)

C Give the initial guess

do 960 k = 1, VECTOR_SIZE
x(k) = k

960 continue

C Print the input matrix in matlab format if required

call dispriirtmat(
#include "dis_handle.incl"
#include "vertex_handle.incl"

& err)

C Get the memory info about the Internal DIS data structure
call dismemoryinfo(

#include "dis_handle.incl"
#include "vertex_handle.incl"

& err)

TR-96-15, MAY 1996 ~39

0. BROKER, V. DESHPANDE, P. MESSMER AND W. SAWYER

C Specify the PARSPAI preconditioner parameters and the solver to be used.
solver_method = CGS
iter = 8000
info = 100
resid = l.Od-08

prec_method = PREC_SPAI
SPAI_epsilon =0.1
SPAI_maxsteps = 10
SPAI_beta =1.0d0 + l.Od-10

c Solve the system

call dissolver(
#include "dis_handle.incl"

$ solver_method, x, y, iter, resid, prec_method,

$ SPAI_maxsteps, SPAI_epsilon, SPAI_beta, info)

-End of subroutine test

subroutine setvertices(
#include "vertex_handle.incl"

& meshx, meshy, nx, err)

c Determine a partitioning of the mesh. The following divisions must
c have no remainder: nprocs/nx, meshy/riy, meshx/nx

#include "mpi_context.incl"

#include "vertex_declaration.incl"
integer meshx, meshy, nx, err

integer ny

integer vertexlabels(MAXLEN), pes(MAXLEN)
integer iproc, ype, ydim, xdim, i, pestart, entr, j
logical usermapping

usermapping = .true.

entr = 1

ny = nprocs / nx
ydim = meshy / ny
xdim = meshx / nx

do iproc = 0, nprocs - 1

ype = (iproc / nx)
pestart = ype * meshx * ydim + mod(iproc, nx)*xdim + 1
do i = 0, ydim - 1

do j = 0, xdim - 1
vertexlabels(entr) = pestart + i * meshx + j
pes(entr) = iproc
entr = entr + 1

if(entr .gt. MAXLEN) then
call insertvertices(

#include "vertex_handle.incl"

& entr - 1, vertexlabels, usermapping, pes, err)

entr = 1

end if
end do

end do
end do

call insertvertices(
#include "vertex_handle.incl"

& entr - 1, vertexlabels, usermapping, pes, err)

return

end
c————End of subroutine setvertices-

40 CSCS/SCSC TECHNICAL REPORT

RECENT CSCS/SCSC TECHNICAL REPORTS

1995

TR-95-03 C. CLEMENgoN, K. DECKER, V. DESHPANDE, A. ENDO, J. FRITSCHER,

N. MASUDA, A. MULLER, R. RUHL, W. SAWYER, B. J. N. WYLIE, AND

F. ZIMMERMANN: Tool-Supported Development of Parallel Application Kernels.

(April 1995)
TR-95-04 Y. SEO, T. KAMACHI, K. SUEHIR.O, M. TAMURA, A. M:OLLER, AND R. RUHL:

Kemari: a Portable HPF System for Distributed Memory Parallel Machines.

(June 1995)
TR-95-05 A. ENDO AND B. J. N. WYLIE: Annai/PMA Instrumentation Intrusion

Management of Parallel Program Profiling. (November 1995)
TR-95-06 P. ACKBRMANN AND U. MEYER: Prototypes for Audio and Video Processing

in a Scientific Visualization Environment based on the MET++ Multimedia
Application Framework. (June 1995)

TB-95-07 M:. GUGGISBERG, I. PONTIGGIA AND U. MEYER: Parallel Fractal Image

Compression Using Iterated Function Systems. (May 1995)

1996

TR-96-01 W. P. PETERSEN: A General Implicit Splitting for Stabilizing Numerical
Simulations of Langevin Equations. (February 1996)

TR-96-02 C. CLEMEN(;ON, K. M. DECKER, V. R. DESHPANDE, A. ENDO,

J. FRITSCHER, P. A. R. LORENZO, N. MASUDA, A. M:ULLER, R. RUHL,

W. SAWYER, B. J. N. WYLIE, F. ZIMMERMANN: Tools-supported HPF and

MPI Parallelization of the NAS Parallel Benchmarks. (March 1996)
TR-96-03 B. J. N. WYLIE AND A. ENDO: Annai/PMA Multi-level Hierarchical Parallel

Program Performance Engineering. (April 1996)

TR-96-04 C. CLEMEN<?ON, A. ENDO, J. FRITSCHER, A. MULLER, AND B. J. N. WYLIE:

Annai Scalable Run-time Support for Interactive Debugging and Performance

Analysis of Large-scale Parallel Programs. (April 1996)
TR-96-05 M. ROTH: A Visualization System for Turbomachinery Flow. (April 1996)
TR-96-06 W. P. PETERSEN: Some evaluations of Random Number Generators in real*8

Format. (April 1996)

TR-96-07 TETSUYA TAKAISHI: Heavy quark potential and effective actions on blocked

configurations. (April 1996)
TB-96-08 NORIO MASUDA AND FRANK ZIMMERMANN: PRNGlib: A Parallel Random

Number Generator Library. (May 1996)
TR-96-09 M. C. HOHENADEL AND P. PAGNY: X-OpenWave User's Manual. (May 1996)

TR-96-10 EDGAR A. GERTEISEN: Automatized Generation of Block-Structured Meshes

for a Parametric Geometry. (May 1996)

TR-96-11 V. DESHPANDE, W. SAWYER, AND D. W. WALKER: An MPI Implementation

of the BLACS. (May 1996)
TR-96-12 R. SAMPATH, J. FRITSCHER, AND B. J. N. WYLIE: Port of the Annai tool

environment to workstation clusters. (May 1996)

TR-96-13 P.. A. R. LORENZO, A. MULLER, Y. MURAKAMI, AND B. J. N. WYLIE: High

Performance Fortran interfacing to ScaLAPACK. (May 1996)
TR-96-14 VAIBHAV DESHPANDE, MARCUS J. GROTE, PETER MESSMER, AND WILLIAM

SAWYER: Parallel Sparse Approximate Inverse Preconditioner. (May 1996)

CSCS/SCSC — Via Cantonale — CH-6928 Manno — Switzerland

Tel: +41 (91) 610 8211 — Fax: +41 (91) 610 8282

CSCS/SCSC — ETH Zentrum, RZ — CH-8092 Zurich — Switzerland

Tel: +41 (1) 632 5574 — Fax: +41 (1) 632 1104

CSCS/SCSC WWW Server: http://www.cscs.ch/

^^gi^i^S^^s

