
Swiss Center for
Scientific Computing

Centro Svizzero di
Calcolo Scientifico

Parallel
Preconditioner

V. R. Deshpande

P. Messmer

M. J. Grote

W. B. Sawyer

0 100 200 300 400 500 600 700 800
.nz = 5970

0 100 200 300 400 500 600 700 800
nz=26816

TR-96-14 May 1996

OTHER PUBLICATIONS BY CSCS/SCSC

Annual Report:

CrosSCutS (triannually):

yearly review of activities and projects

newsletter featuring announcements relevant to our users as

well as research highlights in the field of high-performance

computing

Speedup Journal (biannually): proceedings of the SPEEDUP Workshops on Vector and

Parallel Computing, published on behalf of the SPEEDUP
Society

User's Guide: manual to hardware and software at CSCS/SCSC

To receive one or more of these publications, please send your full name and complete address

to:

Library
cscs/scsc
via Cantonale

CH-6928 Manno
Switzerland

Fax: +41 (91) 610 8282

E-mail: libraryQcscs. ch

Technical Reports are also available from:

http://www.cscs.ch/Official/Publications.html

A list; of former IPS Research Reports is available from:

http://www.cscs .ch/Official/IPSreports.html

Parallel
Preconditioner

V. R. Deshpande1

P. Messmer1

M. J. Grote2

W. B. Sawyer1

May 1996

Abstract. A parallel implementation of a sparse approximate inverse (spAl) pre-

conditioner for distributed memory parallel processors (DMPP) is presented. The

fundamental SPAI algorithm is known to be a useful tool for improving the conver-

gence of iterative solvers for ill-conditioned linear systems. The parallel implemen-

tation (PARSPAl) exploits the inherent parallelism in the SPAI algorithm and the data
locality on the DMPPs, to solve structurally symmetric (but non-symmetric) matri-

ces, which typically arise when solving partial differential equations (PDEs). Some
initial performance results are presented which suggest the usefulness of PARSPAI

for tackling such large size systems on present day DMPPS in a reasonable time.

The PARSPAI preconditioner is implemented using the Message Passing Interface

(MPl) and is embedded in the parallel library for unstructured mesh problems

(PLUMP).

Keywords. SPAI, PARSPAI, PDES, preconditioner, PLUMP, parallel architectures, DMPPS, MPI

This work was performed as part of the Joint CSCS/NEC Collaboration in Parallel Processing

and will be presented at the Third International Workshop on Parallel Algorithms for Irregularly
Structured Problems (Irregular'96), Santa Barbara, USA.

1 Swiss Center for Scientific Computing (CSCS/SCSC),
CH-6928 Manno, Switzerland

2 Courant Institute of Mathematical Sciences, New York, NY 10012, USA

CSCS/SCSC TECHNICAL REPORT

V. DESHPANDE, M. GROTE, P. MESSMER AND W. SAWYER

Contents

1 Introduction

2 SPAI Algorithm Review

3 Considerations for Parallel Implementation

4 Realization of PARSPAI

5 Results and Discussion

6 Conclusions

3

4

6

9

10

13

List of Figures

1 Distributed ITPACK Storage 6

2 Graph Propagation 8

3 ORSIRR_2: Matrix and Preconditioner 11

4 ORSIRR-2: Eigenvalue Spectra 11

5 ORSIRRJ2: Speedup 12

6 SHERMANx: Speedup 12

List of Tables

1 ORSIRR-2: Dependency of convergence one.................. 10

2 ORSIRR-2: Depeudency of couvergence on7.................. 10

3 SHERMANx: Dependency of convergence on 7 12

CSCS/SCSC TECHNICAL REPORT

PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONER

1 Introduction

We consider the linear system of equations

Ax =b, x,b^]R" . (1)

Here A is a large and sparse matrix and may be non-symmetric. Due to the size of A,

direct solvers become prohibitively expensive because of the amount of work and storage

required. As an alternative we consider iterative methods such as CGS, GMRES, BCG,

and BI-GGSTAB applied to the normal equations [2]. Given the initial guess a;o, these

algorithms compute iteratively new approximations Xk to the true solution x = A~lb. The

iterate Xm is accepted as a solution if the residual Tm = b— Axm satisfies ||?'m||/||&|| <: tol.

In general, the convergence is not guaranteed or may be extremely slow. Hence, the

original problem. (1) must be transformed into a more tractable form, by applying a

preconditioning matrix M either to the right or to the left of the linear system

AMy =6 , x = My , or MAx = Mb . (2)

M should be chosen such that AM (or MA) is a good approximation of the identity I.

As the ultimate goal is to reduce the total execution time, both the computation of M

aud the matrix-vector product My should be done in parallel. Since the matrix-vector

product must be performed at each iteration, the number of nonzero entries in M should

not greatly exceed that; in A.

The most successful preconditioning methods in reducing solver iterations, e.g., incom-

plete LU factorizations or SSOR, are notoriously difficult to implement on a parallel archi-

tecture, especially for unstructured rnatrices. ILU, for example, can lead to breakdowns.

In addition, ILU computes M. implicitly, namely in the form M = ^approx-^approx? and

its application therefore involves solving upper and lower triangular sparse linear systems,

which, are inherently sequential operations. Polynomial preconditioners with M = p(A),

on the other hand, are inherently parallel, but do not lead to as much improvement in

the convergence as ILU. For a complete discussion see [2].

A relatively new approach is to minimize AM — J in the Frobenius norm, an approach

with inherent parallelism, because the columns m^ of M can be computed independently

of one another. Indeed, since

UAM-ZU^^U(AM-J)e, 2
2 ?

k=l

the solution of (3) separates into n independent least squares problems

mm||Amfc - ek\\2 , k=l,...,n ,
"Ifc

(3)

(4)

where e^ = (0,..., 0,1,0,..., 0)T. Thus, we can solve (4) in parallel and obtain an explicit

approximate inverse M of A. If M is sparse, (4) reduces to n small least squares problems,

which can be solved very quickly [9,14]. Thus M is computed explicitly and is then applied

MAY 1996

V. DESHPANDE, M. GROTE, P. MESSMER AND W. SAWYER

with a sparse matrix-vector multiplication — an operation which can also be performed

in parallel.

The difficulty lies in determining a good sparsity structure of the approximate inverse,

otherwise the solution of (4) will not yield an effective preconditioner. Yeremin et al.

compute a factorized sparse approximate inverse [13, 12, 14], but only consider fixed

sparsity patterns. Simon and Grote [9] solve (4) explicitly, but only allow for a banded
sparsity pattern in M. The approach of Cosgrove, Diaz, and Griewank [5], Chow and

Saad [4], and Grote and Huckle [11, 10] all suggest methods which capture the sparsity
pattern of the main entries ofA-l automatically and at a reasonable cost, but stop short

of an actual parallel implementation. Gould and Scott [8] present results of a simulated

parallel implementation based on a shared-memory paradigm.

In this paper we build on the sequential version of Grote and Huckle [11, 10] and assume

that A is (nearly) structurally symmetric (true for partial differential equations solved on

meshes). The resulting PARSPAI algorithm offers a high degree of data locality, and its

implementation on a distributed memory parallel processor (DMPP) architecture with the

Message Passing Interface (MPl) [15] is described in detail. In Sect. 2 we review the SPAI

algorithm, which computes a sparse approximate inverse of A. In Sect. 3 we discuss some

of the numerous considerations in the parallel implementation. We briefly describe the

PARSPAI algorithm in Sect. 4 and present indications about the preconditioner's quality

and performance results on a DMPP in Sect. 5. Finally we draw some conclusions about

its usefulness in the parallel solution of partial differential equations PDEs on very large

unstructured meshes.

2 SPAI Algorithm Review

The SPAI algorithm is explained in detail in 11, 10 ; we summarize it here briefly for the

sake of completeness.

The matrix M is the solution of the minimization problem (4). Since the columns of M

are independent of one another, the algorithm, for only one of them, m^, is sufficient. An

initial sparsity of M is assumed, i.e., J is the set of indices j such that m,k{j) 7^ 0. In reality

the initial J could be very simple, e.g., J = {k}. The reduced vector of unknowns rrik{J}

is denoted by m,k- Next, let Z be the set of indices i such that A(», J") is not identically

zero, denote the resulting submatrix A(Z,J') by A, and define e^ = efe(Z) . Solving (4)

for m,k is equivalent to solving

mm
»»*

\Arhk - ek\\2 (5)
for rhk . The |Z| x \J\ least squares problem (5) is extremely small because A and M are

very sparse matrices. Equation (5) is solved, e.g., with the QR decomposition (among

other methods — see [7] for details) for each k = 1,..., n and mk{J} = rhk . This yields

an approximate inverse M, which minimizes ||AM — I\\p for the given sparsity structure.

The sparsity pattern J is then. augmented to obtain a more effective preconditioner by

reducing the current error ||AM — J||^, i.e., reducing the norm of the residual

r = A(.,J')mfc-efc . (6)

CSCS/SCSC TECHNICAL REPORT

PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONER

If r = 0, mfe is exactly the k-th column of A-l and cannot be improved upon. Otherwise,

since A and m^ are sparse, most components of r are still zero. C is the set of remaining

indices I for which r(£) -^ 0 (typically equal to Z). To every t G C. corresponds an index

set Mi, which consists of the indices of the nonzero elements of A{£,.) that are not in J

yet The potential new candidates to augment J are contained in

J=[j^. (7)
t^C

New indices j £ J are selected to achieve the largest possible reduction in ||r-||2 .

Grote and Huckle [11, 10] consider for each j £ J the one-dimensional minimization

problem

min||7' + ^jAe,
^

(8)
rTAe,

whose solution is f^j = - ^^2 • They then calculate for each j the 2-norm pj of the new

residual r + p-jAej , namely,

(rTAe,)2
,2 - IU|2

p~,=

l|Ae,||J ' (9)

and take those j which lead to smallest /?j, e.g., those whose pj is less than the mean p.

Gould and Scott in [8] suggest the more precise but expensive minimization of the

mm
z,^

\Az - efc + l^jAej\\i . (10)

Using the augmented set of indices J', the sparse least squares problem (4) is solved

again. This yields a better approximation mfc of the k-th column of A-l. This process is

repeated for each k == 1,... ,ra until the residual satisfies a prescribed tolerance ||r||2 ^ e

or a maximum amount of fill-in /;• has been reached in mfc . 1

The SPAI (Sparse Approximate Inverse) Algorithm:

For every column m^ of M:

(a) Choose au initial sparsity j7', e.g., J = {k}.

(b) Compute the row indices Z of the corresponding nonzero entries and the QR de-

composition (5) of A(Z, J^ . Then compute the solution m,k of the least squares

problem (4), and its residual r given by (6).

While ||r||2 > £ and \J\ ^ f, :

(c) Set C equal to the set of indices £ for which r(£) ^ 0.

(d) Set J equal to the set of all new column indices of A that appear in all £, rows

but not in J.

1 If the process is not stopped, the algorithm will eventually compute the k-th column of A-1 .

MAY 1996

V. DESHPANDE, M. GROTE, P. MESSMER AND W. SAWYER

(e) For each j: £ J solve the miniraization problem (8).

(f) For each j G J compute pj given by (9), and delete from J all but the most
profitable indices.

(g) Determine the new indices 1 and update the QR decomposition using (5). Then
solve the new least squares problem, compute the new residual r = Ami, — e^,

and set Z= ZUZand J = JU J.

3 Considerations for Parallel Implementation

While the least squares minimizations in (4) for each k clearly can be performed inde-

pendently on different processing elements (PE)s, each PE must have access to the data

required to solve its subproblem. Thus the parallel implementation on a shared-memory

machine is more straightforward than that on a DMPP, on which the algorithm is not

communication-free or even necessarily minimal in communication.

To consider problems of interest with n very large (e.g., > 100,000) on a DMPP, it must

be assumed that the matrix A and all the n-vectors used in the calculation are distributed

over all PEs. An expedient way is to distribute the vector element-wise over all PEs, and

distribute the rows of A in the same manner.

One possible approach is the use of the ITPACK 2 format in distributed form (Dis)

(see Fig. 1) which is used in the Parallel Library for Unstructured Mesh Problems [3]
PLUMP. This distribution assures that the kernel operation for the solver y <— Ax can be

implemented relatively simply, and that communication can be partially overlapped with

computation.

Global view mapping Local view

globa]

max. columns

Column indices Values Column indices Values

Figure 1: The distributed ITPACK storage assumes that there is a maximum number of matrix

entries per row, and that the graph is adequately partitioned such that no PE fills its local two-

dimensional array. In addition to the matrix value array, there is a corresponding array with

column indices for each matrix entry.

6 CSCS/SCSC TECHNICAL REPORT

PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONER

Given A in DIS format, step (d) in the SPAI algorithm implies that the residuals r or at

least the set J from any given PE s ongoing column m^ calculation has to be broadcasted

to all other PEs, since for this PE it is not known a priori whether rT Aej in (9) will be

non-zero, i.e., whether non-zero positions specified by the set C will correspond to non-

zero entries in the j111 column of A. Since all PEs are concurrently working on a different

mfc, this would mean a frequent all-to-all communication which would necessarily incur a

large amount of unscalable overhead.

For a very large class of problems, namely the solution of partial differential equations

over a (possibly unstructured) mesh, the above-mentioned problem is not as difficult to

overcome as it may seem. The problem to be solved is to find the function values u(x) G IR,

at any point x G IR" in the domain 0, where u fulfills

Lu=f. (11)

Here f(x) is defined in fi, and suitable boundary conditions are applied on 90,. A feature

of such problems is that, when Q is discretized into a finite number of mesh points and

the operator L described through a discrete operator, they lead to a nearly or entirely

structurally symmetric matrix A, i.e., A(?,j") ^ 0 -> A(j,i) ^ 0, even though A(i,j) -^

A(j,i). Such problems provide an opportunity to efficiently determine which columns

have to be evaluated, since now the index set Ati from (7) consists of the indices of the

nonzero elements of A(., I) (as well as A(J,.)) which all reside on one PE for given I. If, on

the other hand, A is sparse but not inherently structurally symmetric, the matrix can be

stored in a structurally symmetric form. by storing a zero in A(i,j) for A{j,i) JL 0. This

method requires additioual memory (at most twice as much), but provides important

graph information for later use. Usually in PDE problems, completing the structural

symmetry is only necessary for boundary vertices and therefore comes at small cost of

memory.

In fact, for such a PDE problem, for a given J the columns of the matrices which need

to be evaluated correspond to the set of the first and second nearest neighbors in the

connectivity graph of the matrix (see Fig. 2). As the set J grows in order to make the

preconditioner more precise, the set Z expands much like the propagation of a wavefront.

To ensure that the "wavefront" crosses a processor boundary as rarely as possible, we

assume that the mesh (which is highly correlated with the connectivity graph in Fig. 2)

is partitioned over the PEs in an efficient way, such that the load assigned to each PE

is roughly even, and the number of cut edges (or the "surface area") of the individual

partitions is minimum. As there is extensive literature on this subject [1, 16] we do not

expound on this topic here. 2 If the mesh is partitioned cleverly on many PEs, the PE

calculating mk will, even in the worst case — e.g., if a graph vertex is on a PE boundary —

communicates with one or a few other PEs, depending on how the wavefront progresses.

Even if A is an ill-conditioned matrix from a PDE problem, the wavefront is not expected

to propagate too far through the graph.

2Highly-efiicient graph partitioning software is available in the public domain, e.g., MeTiS available
from http://www.cs.umn.edu/~karypis/metis/metis.html

MAY 1996 7

V. DESHPANDE, M. GROTE, P. MESSMER AND W. SAWYER

12.

24.

29
32

31

Figure 2: In structurally symmetric problems the vertices J to evaluate are the set of first (in

black) and second (in white) neighbors of J (here J is the vertex marked 15).

In the continuous case, the solution of (11) with suitable boundary conditions can be

represented in terms of its Green's function G'(a;; y), which is defined by

u{x)=) G{x;y)f(y)dy .
'St

(12)

The Green's function is the continous counterpart of A~ , and the convolution in (12)

corresponds to the product A-l& in the discrete case. Therefore, the kt column of A-l is

a discrete approximation of g(y} == G(y,Xk)- Since G(x^y) typically decays rapidly with
increasing ||a; — y||, e.g., like 0(l/||a' — y||) for the Laplacian in IR , there is a reasonable
hope that a sparse approximation of A"1 exists, when A comes from the discretization of

a differential operator.

Firstly, the nearest neighbors of the graph vertex k are the best candidates for minimiziug

||Amfc—efc||2. Secondly, we expect the wavefront to fade out as it propagates, thus limiting

the range of partitions (and thus PEs) which have to be addressed.

Tests show that it is sufficient to consider the first nearest neighbors of the set J', i.e.,

the set C, — J ^ as possible extensions to the set J. If that set provides a preconditioner

of insufficient quality, the second nearest neighbors will most likely be evaluated in subse-

quent propagations of the wavefront. This is the basis of the simplification in the parallel

code which affects the quality and performance of the preconditioner compared to the

original SPAI implementation.

8 CSCS/SCSC TECHNICAL REPORT

PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONER

4 Realization of

The PARSPAI algorithm has been implemented in FORTRAN 77 using MPI. It is embedded

in the PLUMP library which provides a complete environment to describe a matrix A in DIS

format, solve the system of equations for a given finite element mesh problem and later

to support dynamic refiuement of the mesh. The implementation of PARSPAI is modular

enough to allow its usability with other distributed data formats with little effort. The
current implementation of PARSPAI can be outlined as follows:

On every PE for a set of m^ of M:

(A) Choose an initial sparsity 3' i e.g., J == {k}.

While r 2 > e and \J\ <_ fi and number of iterations ^ 7 :

(B) Given the set J", determine the new set Z to update the matrix A, using

the local entries of A or receiving them from other PEs. Set Z = Z U T and

J=J^J.

(C) Solve the least squares problem (5) and set C equal to the set of indices I for
which r{£) + 0.

(D) Send the residual r = Am^ — e^ and the set C to other PEs requiring them to

compute pj.

(E) Determine the local set J and for each j G J compute pj given by (9). Gather
pj from other PEs involved and compute p.

(F) SetJ={jeJ\pj<P-p}

In the above description, 7 denotes the maximum number of graph extensions for one rn,k.

The PEs which receive the residual r and the set J determine independently the sets

^fl and the solutions of the minimization problem (8). Where SPAI increases J at most

by a fixed number s during one iteration, PARSPAI considers all j with pj <^ j3 • p for a

given parameter /3. This allows to determine J on the involved PEs aud avoids additional

communication of J'.

In the above procedure, steps (B) and (D) involve exchange of variable amounts of

information among the different PEs. This can be realized by using the MPI function

MPI-Alltoallv. But as mentioned earlier, only nearest neighbors are considered for

graph extension. Hence a better approach would be to determine the subset of all PEs

which actually require the requisite information and then exchange it using MPI point-to-

point commumcation. primitives. The current implementation follows this approach and

to improve performance non-blocking send and receive operations are used. Although no

comparison has been made, the performance of the two approaches may vary, depending

on the underlying MPI library.

Substantial saving in computational effort could be achieved by solving the least squares

problem only for the updated part of A [11, 10] instead of solving the problem for the

entire updated matrix as in the current implementation.

MAY 1996 9

V. DESHPANDE, M. GROTE, P. MESSMER AND W. SAWYER

Table 1: Number of iterations for ORSIRR-2, using CGS and varying e: unpreconditioned (M=J)

and preconditioned (O.Ke^O.5, 7=4), comparison between SPAI and PARSPAI.

M=J
e=0.5

e=0.4

e=0.3

e=0.2

e=0.1

SPAI

653
70
41
32
18

PARSPAI

1 PE

722
55
41
33
30
27

2 PE

868
55
37
33
29
29

4 PE

691
58
40
32
32
29

8 PE

881
71
54
46
45
44

Table 2: Number of iterations for ORSIRR_2, using CGS for varying 7 (e=0.1)

7̂=3

7=4

_I=i

1 PE

148
55
27
17

2 PE

151
63
29
18

4 PE

165
55
29
22

8 PE

123
95
44
27

5 Results and Discussion

The implementation of PARSPAI as per its quality and performance was investigated on a

wide variety of problems, including test matrices from the Harwell-Boeing Collection [6].

The NEC Cenju-3, a distributed-memory machine with up to 128 nodes, each having a

R4400 processor and 64MB memory was used for this purpose with the NEC-CSCS MPI

library.

The following section discusses the results of three numerical experiments done on specific

test cases of the Harwell-Boeing Collection and on sparse matrices as resulting from PDEs

on a mesh.

Table 1 shows the convergence characteristics for the ORSIRR-2 886 x 886 matrix from

an oil reservoir simulation, for SPAI (taken from [11, 10]) and PARSPAI using CGS as the

solver. The initial guess was always .TO =0, ro=ro=b, and the stopping criterion

||6-Aa;^||2 < 10- X, :My^.

In line with the sequential SPAI algorithm, the number of iterations decreases as e is

reduced, confirming the robustness of the algorithm with respect to this parameter.

As per the discussion in Sec. 3, the performance of PARSPAI depends on the maximum

number of graph extensions 7. The numerical experiments (Tab. 2) confirm that increas-

ing 7 reduces the number of iterations.

10 CSCS/SCSC TECHNICAL REPORT

PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONER

0 100 200 300 400 500 600 700 800
nz = 5970

0 100 200 300 400 500 600 700 800
nz= 26816

Figure 3: ORSIRR-2 test case from the Harwell-Boeing collection: The matrix itself (left) and
the preconditioner as computed by PARSPAI with 7=4 and e=0.4.

The condition number obtained using PARSPAI (cond2(AM) = 84.8) compare favorably

with that of SPAI (cond2(AM) = 74.2) for the same value of e= 0.4. The sparsity pattern

and the amount of fill-in however varies considerably as seen in Fig. 3, reflecting again

the different approaches of augment J.

The quality of the parallel preconditioner was also assessed by evaluating the eigenvalue

spectrum of the preconditioned system AM. Since the methods to determine J are not

identical, the eigenvalue spectrum of SPAI and PARSPAI differ, as shown in Fig. 4.

The speedup for building the preconditioner using PARSPAI for ORSIRR-2 is shown in

Fig. 5. In spite of the small size of the test matrix, the results indicate good scaling

behavior of PARSPAI. Since the number of iterations remains fairly constant with an

Figure 4: The eigenvalue spectra of AMspAi (left) and AMpARSPAl (right) showing the similar
quality of both SPAI and PARSPAI (e=0.4 and 7=4) .

MAY 1996 11

V. DESHPANDE, M. GROTE, P. MESSMER AND W. SAWYER

Table 3: Number of iterations for SHERMANx, using CGS and varying 7 (e==0.1).

7=2

7=4

SHERMAN1

71
40

SHERMAN3

428
254

SHERMAN5

72
58

x4

^ x3

x2

x1

Number of Processors

Figure 5: Speedup for building the precon-

ditioner of the ORSIRR^Z matrix for 0.1 < e<

0.5 (7=4).

x3

x2 |-

x1

G—OSHERMAN1
13—B SHERMAN3
A—ASHERMAN5

Number of Processors

Figure 6: Speedup for building the precon-
ditioner of the SHERMANx matrices for e= 0.1,

7=4

increase in the number of PEs (Tab. 1), and because of the known scaling behavior of the

matrix-vector product in the CGS solver [3], a good speedup in the preconditioning phase

translates into reduced overall execution time.

As problem of medium size, the SHERMANx black oil simulators were chosen. The consid-

ered set consists of

SHERMAN1: a black oil simulator, shale barrier, 10 X 10 x 10 grid, 1 unknown, of size

n = 1,000 and with nz = 3, 750 nonzero elements.

SHERMAN3: a black oil, IMPES simulation, 35 x 11 x 13 grid, 1 unknown, n= 5,005 and

n-z=20,033.

SHERMAN5: a fully implicit black oil simulator, 16 x 23 x 3 grid, 3 unknowus, n= 3, 312

and nz= 20, 793.

Table 3 indicates the convergence results for CGS solver and varying 7 on 8 PEs. Again,

the dependency on the parameter 7 is significant. Speedup for all three matrices is shown

in Fig. 6, indicating the good scaling behavior for this size of problems.

The scaling behavior of the preconditioner in these test cases is promising for tackling

larger size systems which were investigated and the results are described in [3]. A

good partitioning of the mesh, however, is important to exploit the data locality on each

processor and to ensure a good compute-to-communication ratio on the DMPPs. The

12 CSCS/SCSC TECHNICAL REPORT

PARALLEL SPARSE APPROXIMATE INVERSE PRECONDITIONER

performance of the precouditioner could be substantially improved by optimizing the

communication, tuning the different parameters, and by improving the basic algorithm

used in PARSPAI, as suggested in Sec. 4. The results in this paper are indicative of the

synergistic coupling of the preconditioner to the underlying data structure for achieving

good performance on large size problems.

6 Conclusions

Iterative methods themselves are not difficult to parallelize or necessarily communica-

tion-bound on parallel machines, as they only require vector operations and global com-

munication of single values for scalar products and norms. Parallelizing the required

matrix-vector product and calculating a preconditioner are the difficult tasks involved.

By limiting ourselves to non-symmetric matrices which are structurally symmetric, e.g.,

those which result from the solution of PDEs on a computational mesh, we have exploited

the data locality and the inherent parallelism in the SPAI algorithm.

With the PLUMP library, in which PARSPAI is integrated, the matrix-vector product and

the preconditioner are provided in a transparent way. We have presented some initial

benchmarks which indicate that parallel iterative solvers along with the PARSPAI precon-

ditioner will be able to tackle very large and ill-conditioned problems beyond the reach

of single processor machines and current sparse direct solvers.

Acknowledgments We graciously acknowledge the NEC Corporation for financial sup-

port during the realization of this project.

References

[1] S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive

Spectral Bisection for Partitioning Unstructured Problems. Technical Report RNR-

092-033, NASA Ames Research Center, Moffett Field, CA 94035, November 1992.

[2] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donate, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst. TEM.PLATES for the Solution of Linear

Systems: Building Blocks for Iterative Methods. SIAM Publications, 1994.

[3] Oliver Broker, Vaibhav Deshpande, Peter Messmer, and Williarn Sawyer. Parallel

Library for Unstructured Mesh Problems. Technical Report CSCS-TR-96-15, Centro

Svizzero di Calcolo Scientifico, CH-6928 Manno, Switzerland, May 1996.

[4] E. Chow and Y. Saad. Approximate Inverse Preconditioners for General Sparse

Matrices. In Proc. Colorado Conf. on Iterative M.eth.^ 1994.

[5] J. D. F. Cosgrove, J. C. Diaz, aud A. Griewank. Approximate Inverse Preconditiou-

ings for Sparse Linear Systems. Intern. J. Computer M'ath., 14:91-110, 1992.

MAY 1996 13

V. DESHPANDE, M. GROTE, P. MESSMER AND W. SAWYER

6 I. Duff, R. G. Grimes, and J. Lewis. User's Guide for the Harwell-Boeing Sparse M.a-

trix Collection (Release I). Available from http://math.nistgov:80/MatrixMarket/
collections/hb.html.

[7] G. H. Golub and C. F. Van Loan. M'atrix Computations. Johns Hopkins, second

edition, 1989.

[8] N. I. M. Gould and J. A. Scott. On Approximate-Inverse Preconditioners. Technical

Report RAL 95-026, Rutherford Appleton Laboratory, 1995.

[9] M. Grote and H. Simon. Parallel Preconditioning and Approximate Inverses on

the Connection Machine. In Proc. of the Scalable High Performance Computing

Conference (SHPCC), Williamsburg, VA, pages 76-83. IEEE Comp. Sci. Press, 1992.

[10] Marcus J. Grote and Thomas Huckle. Parallel Preconditioning with Sparse Approx-

imate Inverses. SIAM Journal on Scientific Computing. In press.

[11] Marcus J. Grote and Thomas Huckle. Effective Parallel Preconditioning with Sparse

Approximate Inverses. In Proc. SIAM Conf. on Parallel Processing for Scientific

Comp., San Francisco, pages 466-471. SIAM, 1995.

[12] L. Yu. Kolotilina, A. A. Nikishin, and A. Yu. Yeremin. Factorized Sparse Approx-

imate Inverse (FSAI) Preconditionings for Solving -3D FE Systems on Massively

Parallel Computers II. In R. Beauwens and P. de Groen, editors, Iterative Meth. in

Lin. Alg., Proc. of the IMACS Internat. Sympos., Brussels^ pages 311-312, 1991.

[13] L. Yu. Kolotilina and A. Yu. Yeremin. Factorized Sparse Approximate Inverse Pre-

conditionings. SIAM Journal on M'atrix Analysis and Applications, 14(1):45-58,

1993.

[14] Ju. B. Lifshitz, A. A. Nikishin, and A. Yu. Yeremin. Sparse Approximate Inverse

Preconditionings for Solving 3D CFD Problems on Massively Parallel Computers.

In R. Beauwens and P. de Groen, editors, Iterative Meth. in Lin. Alg., Proc. of the

IAIACS Internal. Sympos., Brussels, pages 83-84, 1991.

[15] Message Passing Interface Forum. MPI: a message-passing interface standard (version

1.1). Revision of article appearing in the International Journal of Supercomputing

Applications, 8(3/4):157-416, 1994, June 1995.

[16] C. Walshaw, M. Cross, M. Everett, and S. Joh.nson. A Parallelisable Algorithm for

Partitioning Unstructured Meshes. In Alfonso Ferreira and Jose D. P. Rolim, editors,

Parallel Algorithms for Irregular Problems: State of the Art, chapter 2, pages 25-44.

Kluwer Academic Publishers, Dordrecht, Netherlands, August 1995. Collection of

extended papers from Irregular'94 conference. [ISBN: 0-7923-3623-2].

14 CSCS/SCSC TECHNICAL REPORT

RECENT CSCS/SCSC TECHNICAL REPORTS

1995

TR-95-03 C. CLEMEN^ON, K. DECKER, V. DESHPANDE, A. ENDO, J. FRITSCHER, N.

MASUDA, A. MULLER, R. RUHL, W. SAWYER, B. J. N. WYLIE, AND F.

ZIMMERMANN: Tool-Supported Development of Parallel Application Kernels.

(April 1995)
TR-95-04 Y. SEO, T. KAMACHI, K. SUEHIRO, M. TAMURA, A. MULLER, AND R. RUHL:

Kemari: a Portable HPF System for Distributed Memory Parallel Machines.

(June 1995)
TR-95-05 A. ENDO AND B. J. N. WYLIE: Annai/PMA Instrumentation Intrusion

Management of Parallel Program Profiling. (November 1995)
TR.-95-06 P. ACKERMANN AND U. MEYER: Prototypes for Audio and Video Processing

in a Scientific Visualization Environment based on the MET++ Multimedia

Application Framework. (June 1995)
TR-95-07 M. GUGGISBERG, I. PONTIGGIA AND U. MEYER: Parallel Fractal Image

Compression Using Iterated Function Systems. (May 1995)

1996

TR-96-01 W. P. PETERSEN: A General Implicit Splitting for Stabilizing Numerical

Simulations of Langevin Equations. (February 1996)

TR-96-02 C. CLEMEN^ON, K. M. DBCKER, V. R. DESHPANDE, A. ENDO,

J. FRITSCHER, P. A. R. LORENZO, N. MASUDA, A. MULLBR, R. RUHL,

W. SAWYER, B. J. N. WYLIE, F. ZIMMERMANN: Tools-supported HPF and

MPI Parallelization of the NAS Parallel Benchmarks. (April 1996)
TR-96-03 B. J. N. WYLIE AND A. ENDO: Annai/PMA Multi-level Hierarchical Parallel

Program Performance Engineering. (April 1996)

TR-96-04 C. CLEMEN^ON, A. ENDO, J. FRITSCHER, A. MULLER, AND B. J. N. WYLIE:

Annai Scalable Run-time Support for Interactive Debugging and Performance

Analysis of Large-scale Parallel Programs. (April 1996)
TR-96-05 M. ROTH: A Visualization System for Turbomachinery Flow. (April 1996)
TR-96-06 W. P. PETERSEN: Some evaluations of Random Number Generators in real*8

Format. (April 1996)
TR-96-07 TETSUYA TAKAISHI: Heavy quark potential and effective actions on blocked

configurations. (April 1996)
TR-96-08 NORIO MASUDA AND FRANK ZIMMERMANN: PRNGlib: A Parallel Random

Number Generator Library. (May 1996)
TR-96-09 MARC C. HOHENADEL AND PASCAL PAGNY: X-OpenWave User's Manual.

(May 1996)
TR-96-10 EDGAR A. GERTBISEN: Automatized Generation of Block-Structured Meshes

for a Parametric Geometry. (May 1996)
TR-96-11 V. DESHPANDE, W. SAWYER, AND D. W. WALKER: An MPI Implementation

of the BLACS. (May 1996)
TR-96-12 RAMPRASAD SAMPATH, JOSEF FRITSCHER, AND BRIAN J. N. WYLIE: Port of

the Annai tool environment to workstation clusters. (May 1996)

TR-96-13 PAULO A. R. LORENZO, ANDREAS M:OLLER, YOSHIMICHI MURAKAMI, AND

BRIAN J. N. WYLIE: High Performance Fortran interfacing to ScaLAPACK.

(May 1996)

CSCS/SCSC — Via Cantonale — CH-6928 Manno — Switzerland

Tel: +41 (91) 610 8211 — Fax: +41 (91) 610 8282

CSCS/SCSC — ETH Zentrum, RZ — CH-8092 Zurich — Switzerland

Tel: +41 (1) 632 5574 — Fax: +41 (1) 632 1104

CSCS/SCSC WWW Server: http://www.cscs.ch/

