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Abstract – We evaluated the HP ProLiant 

SL390 fully populated with eight Nvidia 

M2090 GPUs. For the evaluation two 

benchmarks provided with the Nvidia SDK 

as well as benchmarks from the SHOC suite 

were selected as well as a hybrid version of 

DGEMM. 

We also tested a Flash storage device 

attached to one of the available PCI slots.   

The server is an interesting option for 

scientists whose applications fit onto the 

memory of eight GPU devices and can use 

multiple devices simultaneously. 

1 Introduction 
 
This report summarizes the performance 

measurements carried out with one HP 

ProLiant SL390s G7 server with 4U half 

width trays is designed for high GPU 

density and supports up to 8 GPUs.  Fully 

populated, this system offers a rather 

unique GPU-to-CPU density on the market 

and therefore it is ideally suited for 

applications ranging from quantum 

chemistry, molecular dynamics, weather 

forecasting, seismic processing and data 

analytics. For a fully-populated system the 

total GDDR5 memory bandwidth sums up 

to around 1.2 TB/s with ECC on. 

 

 

 

2 Server description 

2.1 Hardware 

The server shown in Figure 1 is a two 

socket Intel server with 48GB DDR3 

Memory (6x8GB DIMMs), two 1 Gb 

Ethernet ports, one CX-2 based 10 Gb 

Ethernet port (SFP+) and an optional on 

board Infiniband CX-2 port (QSFP). It has 

one low profile x8 PCI-e gen2 connection, 

and eight x16 PCI-e gen2 slots [1]. 

Our server had two Intel Xeon X5660 6-

core processors running with 2.80GHz.  Its 

double precision theoretical peak 

performance is around 5.5 Teraflops.  

 

Figure 1: HP SL390 G7 server 

The PLX switches PLX PEX8664 and 

PEX8647 as shown in Figure 2 offer 

exclusive x16 port flexibility to up to eight 

GPUs.  Our server was fully populated with 

Nvidia M2090 GPUs (Figure 3), but also 
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other PCI based devices such as SSD PCIe 

can be installed such as the Virident 

FlashMax SLC storage device shown in 

Figure 4. 

 
Figure 2: Board architecture incl. device numbers for GPU 

 

 

Figure 3: HP SL390 G7 at CSCS 

 

Figure 4: Prepare to install one Virident SSD SLC flash 
storage device at CSCS 

 

2.2 Software 

All our tests were carried out using the 

following software stack  

 Linux kernel 2.6.32-71 
 Intel Compiler Version 12.1  
 Intel MPI  
 nvidia gpu sdk 4.1.RC2 
 mvapich2 1.8a1  
 Nvidia Driver 285.05.33 
 

We installed also the Portable Hardware 

Locality (hwloc) software package [2] 

which provides a portable abstraction of 

the hierarchical topology of modern 

architectures, including NUMA memory 

nodes, sockets, shared caches, cores and 

simultaneous multithreading. It also 

gathers various system attributes such as 

cache and memory information as well as 

the locality of I/O devices such as network 

interfaces, InfiniBand HCAs or GPUs. It 

primarily aims at helping applications with 

gathering information about modern 

computing hardware so as to exploit it 

accordingly and efficiently. 

Figure 5 shows, that there is no exclusive 

access of sockets to GPUs which is 

consistent to Figure 2.  

 

Figure 5: System topology compiled with lstopo (hwloc) 
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3 Attached devices  
 

Since the server provides 8 x1 6 PCI Gen2 

slots, various devices could be installed in 

this server. We tested the latest Nvidia 

GPUs as well as one Virident FlashMax 

Storage device. 

3.1 Nvidia M2090 

The M2090 is currently the fastest 
computing processor within the M-class 
GPU Computing Modules 

 665 GFlops Peak DP 
 6 GB memory size (ECC off) 
 177 GB/sec memory bandwidth 

(ECC off) 
 512 CUDA cores 

As one of the key advantages, this HP-

server allows to deploy standard M2090 

modules sold by many system integrators. 

It does not require a special form-factor. 

3.2 Virident SSD Flash Card 

Before running the application test, we 

replaced one GPU module by SLC Flash 

Storage card manufactured by Virident. 

This device has a capacity of 800GB [5]. 

We run iozone using xfs and achieved 

excellent performance numbers of more 

than 1GB/s of read and write shown in 

Figure 6 and Figure 7. 

 

Figure 6: Iozone IO bandwidth results for Virident Flashmax 
(read) 

 

Figure 7: Iozone IO bandwidth results for Virident Flashmax 

(write). 

 

Whenever an application runs on this 

server with challenging IO demands, the 

local PCI based SSD device could help as 

very fast local scratch storage, if the limited 

capacity of these devices is sufficient. 

4 CUDA 

The HP server offers an high GPU-CPU 

ratio, and there are some applications and  

cases that can be decomposed and run in 

parallel on multiple GPUs within a single 

host machine, achieving correspondingly 

higher levels of performance. One scenario 

could be a typical throughput scenario, 

where 8 copies of an application running 

each with one core and one dedicated GPU.  
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Another scenario is to distribute the 

workload to several GPUs running a non-

MPI application. In the latter case, 

communication between individual GPUs 

might be a performance bottleneck. 

To address this problem, CUDA 4.0 and 

CUDA4.1 introduced GPUDirect, and by this 

3rd party network adapters, solid-state 

drives (SSDs) and other devices can 

directly read and write CUDA host memory, 

eliminating unnecessary system memory 

copies and CPU overhead, resulting in 

significant performance improvements in 

data transfer times [4]. 

GPUDirect also includes support for peer-

to-peer (P2P) DMA transfers directly 

between GPUs and NUMA-style direct 

access to GPU memory from other 

GPUs.  These capabilities lay the foundation 

for direct P2P communication between 

GPUs and other devices in a future release. 

The functionality of the peer to peer access 

was tested with a sample code called 

simpleP2P , provided with the Nvidia SDK 

that  demonstrates a combination of Peer-

to-Peer (P2P) and the  Unified Virtual 

Address Space (UVA) features new since 

SDK 4.0. Peer-to-Peer is currently only 

supported for GPUs connected to the same 

IO Hub, in our case devices 3, 4, 5, 6 and 7 ( 

shown in Figure 2) allow peer-to-peer 

communication as well as devices 0, 1 and 

2.  

5 Benchmark results 
 

The complex PCI switch design with dual 

IOHs connected to three PCI switches 

raises the question about the efficient data 

transfer between GPU devices and host 

CPUs. Therefore the first chapter 5.1 looks 

at the raw data bandwidth performance 

between host and device. In the other 

chapters we describe the result of various 

applications provided with the Nvidia SDK 

as well as standard benchmarks. 

 

5.1 Bandwidth Measurements 

We used the executable provided with the 

SDK and launched the program accordingly 

 

./bandwidthTest --memory=pinned -device=0 

 

In the memory mode pageable, the host-to-

device (HTOD) transfer speed is around 

3GB/s independent of the device number. 

The device-to-host bandwidth (DTOH) is 

slightly lower, for GPUs 0, 1 and 2 we 

measured 2.4 GB/s, for the GPUs 3,4,5,6 

and 7 about 2.8 GB/s (Figure 8). For 

pinned memory, the bandwidth almost 

doubles as expected (Figure 9).  

 

In order to get the best performance, the 

binding between GPUs and sockets must be 

optimized. GPUs 0, 1, 2 must be bind to 

socket 0. GPUs 3, 4, 5, 6 and 7 must be bind 

to socket 1, e.g. we issued the command as 

follows: 

 
numactl --membind=0 --cpubind=0 

./bandwidthTest -device=0 
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Figure 8: Host-to-device and device-to-host memory, 
pageable memory for individual devices 

 

Figure 8 shows the result with optimal 
binding. The bandwidth is now exactly 3.1 
GB/s and 2.8 GB/s for every device. 

 

Figure 9: Host-to-device and device-to-host memory, 
pinned memory for individual devices. 

5.2 N-body 

The first one is N-body and it is described 

in detail in [7]. This kind of simulation 

technique approximates in many 

computational science problems such 

astrophysics, protein folding and turbulent 

fluid flows. The all-pairs approach to N-

body simulation evaluates all pair-wise 

interactions among the N bodies requires a 

substantial time to compute and therefore 

an interesting target for acceleration. 

NVIDIA ported the all-pairs computational 

kernel using the CUDA programming 

model. 

 

We launched the benchmark for three 

different problem sizes starting with 128K 

particles and up to 1024K particles with: 

 
./nbody -benchmark -n=p -fp64 -numdevices=ng 

with  

p=128K, 512K, 1024K 

ng= 1,2,3,4,5,6,7 and 8 

 

For all cases we observed a good scalability 

to up to 7 GPUs, for the small case even to 8 

GPUs (see Figure 10-12). 

 
Figure 10: Nbody with 128000 particles 

For the large case (see Figure 12), we 

measured nearly 2.2 Tflops sustained 

performance, which is equivalent to 40% of 

the theoretical peak performance (double 

precision) of this server. 
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Figure 11: Nbody with 512000 particles 

 
Figure 12: Nbody with 1024000 particles 

 

5.3 MonteCarlo multi-GPU 
implementation 

The background of this code is explained in 

detail in [9]. The code is the 

implementation of the Monte Carlo 

approach to option pricing written in 

CUDA. 

 

Two methods are available, the threaded 

version uses one CPU thread for each 

device, the streamed version uses one CPU 

thread and handles all GPUs. (requires 

CUDA 4.0 or newer). 

Because the Monte Carlo pricing of each 

option is independent of all others, the  

computation can be distributed across 

multiple CUDA-capable GPUs present in the 

system.  The input options are divided into 

contiguous subsets (the number of subsets 

equals the number of CUDA-capable GPUs 

installed in the system). 

 

The code uses all CUDA devices available 

on the server, the only way to control that 

is to set the environment variable 

accordingly with  

 
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" 

for all GPUs on the system. 

 

In the current SDK the number of 

simulation paths is fixed to 262144 due to 

the limited memory capacity of earlier GPU 

devices. In order to fully exploit the 

capabilities of the M2090 card we 

increased that number to 1048576 in 

MonteCarloMultiGPU.cpp.  

 
./MonteCarloMultiGPU --method=streamed --type=double 

The result is shown in Figure 13. The 

performance measured in options per 

second increases nearly linearly with the 

number of GPUs. 

 

Figure 13: Options per second using 1048576 simulation 
paths 
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5.4 SHOC Benchmark for multi-GPU 
implementation 

We used the GNU Compiler with Intel MPI 

 

 

Table 1: Available benchmarks in the SHOC suite 

Due to the server design, we are most 

interested in the multiple GPU benchmarks. 

We measured the server performance and 

scalability with two so-called True Parallel 

(TP) benchmarks taken from the latest 

SHOC source [10]. We used Intel MPI 

version 4.0. For each GPU one MPI-rank is 

used. The server allows us to measure the 

performance with up to 8 devices per node, 

including all communication. These 

algorithms are decomposed among the 

parallel tasks and may include CPU 

computation time. 

Reduction 

This benchmark measures the performance 

of a sum reduction operation using the 

double precision floating point data [10]. 

The kernel performs first a partial 

reduction on a global input data array 

saving the partial results to the local 

shared memory. Finally, a reduction is 

computed over the local data array and the 

result is saved into a global output memory 

array. The result for up to 8 GPUs are  

shown in Figure 14 for the mean value of 

Allreduce-DP-Kernel.  

 

Figure 14: Bandwidth for reduction Allreduce-DP (mean) 

Scan_DP 

This benchmark measures the performance 

of the parallel prefix sum algorithm (also 

known as Scan) on a large array of floating 

point data. [10]. And based on the method 

decribed in [11]. The results are shown 

inFigure 15, we picked the mean value of 

TPScan-DP-Kernel. 

 

 

Figure 15: Bandwidth for Scan_DP 

SHOC also includes benchmarks for testing 

multiple devices, but do not involve any 

communication between devices. These 

benchmarks are called Embarrassingly 
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Parallel (EP). One example is the MD 

benchmark. 

 

Molecular Dynamics (EP) 

This benchmark measures the speed of a 

simple pairwise calculation of the Lennard-

Jones potential from molecular dynamics. 

Each thread computes the acceleration for 

one particle based on the potential field 

generated by all particles into a cutoff area. 

The kernel uses coalesced global memory 

accesses. 

The benchmark is executed with mpirun 

and starts as many copies as MPI-ranks and 

uses one GPU per MPI-rank, the results are 

shown in Figure 16. 

 

Figure 16: Throughput Performance for MD for up to 8 
GPUs  

This benchmark scales ideally with the number of 

GPUs and MPI ranks.  

5.5 DGEMM 

In this section, we investigate the behavior 

of DGEMM (i.e BLAS Double precision 

Generalized Matrix Matrix multiply, C = 

αA*B + βC), and in particular what 

strategy can reach maximum performance. 

Our first strategy is based on the hybrid 

dgemm developed by M. Fatica (12).  In 

this algorithm, the matrix is split between 

GPUs and CPUs according to their 

respective performance. In order to get 

maximum performance, each time CUBLAS 

DGEMM starts to plateau, we substitute 

one call to the CPU dgemm with one call to 

cublasDgemm. Figure 18 shows the results 

of the hybrid multi GPU/CPU version.  

Maximum performance is around 1000+ 

Gflops and is reached using 4 GPUs with a 

20K x 20K matrix. Using this algorithm, the 

limiting factor is the GPU memory size: one 

of the matrices involved in the Matrix-

Matrix multiply is duplicated on all the 

GPUs, while the two others are split. At 

20K, this matrix is taking half of the 6 GB 

while the 2 others, split 4 ways, take 1.5 GB 

each, filling the memory of each card.

 

Figure 18: Hybrid multi GPU/CPU.  X-axis is the matrix size 
(NxN), Y-axis is the performance in Gflops.  

In order to circumvent this, let’s split each 

matrix four ways:  
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are computed on the CPU using a local 

array. Figure 19 shows the performance 

result of this algorithm. 

 

 Figure 19: 8-GPU cublasDgemm.  X-axis is the matrix size 
(NxN), Y-axis is the performance in Gflops.  

Obviously, this algorithm is not suited for 

relatively small matrices. Comparing to the 

previous graph, for a matrix size below 

13K, performance is below our hybrid 

DGEMM. Beyond that, DGEMM 

performance increases very fast and we are 

able to achieve up to 1.5 Tflops of double 

precision performance thanks to the fact 

that no matrices are replicated on the GPUs 

as it is done with the previous algorithm. 

Note that this algorithm currently does not 

use threads. 

6 Conclusion 
 

The HP Server offers a quite unique design 

in terms of GPU density and a similar 

approach is only provided by Tyan (13). 

The Tyan board is provided by various 

system integrators partially under their 

own brand. 

 

The HP server is an interesting option for 

example for a non-MPI applications if the 

problem size fits on 40 GB of GDDR5 

memory and is able to use multiple GPU 

devices simultaneously.  

 

Applications such as nbody provided with 

the Nvidia SDK are running with 

impressive single-node performance to a 

level of 40% of the theoretical peak 

performance (double precision). 

  

The system proved to be a very reliable 

and stable system. Since it is based on the 

previous Intel Xeon X5600 processor, CSCS 

looks forward to HPs next generation 

server hopefully with a similar GPU/CPU 

ratio, but based on the latest Intel Xeon E5 

processors codenamed Sandy Bridge. 
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