
May 2012

1 | P a g e

HP ProLiant SL390 G7 Server

Evaluation Report

Thomas Schoenemeyer, Jason Temple and Gilles Fourestry
Swiss National Supercomputing Centre (CSCS), Lugano, Switzerland

schoenemeyer@cscs.ch ; jtemple@cscs.ch ; fourestey@cscs.ch

Abstract – We evaluated the HP ProLiant

SL390 fully populated with eight Nvidia

M2090 GPUs. For the evaluation two

benchmarks provided with the Nvidia SDK

as well as benchmarks from the SHOC suite

were selected as well as a hybrid version of

DGEMM.

We also tested a Flash storage device

attached to one of the available PCI slots.

The server is an interesting option for

scientists whose applications fit onto the

memory of eight GPU devices and can use

multiple devices simultaneously.

1 Introduction

This report summarizes the performance

measurements carried out with one HP

ProLiant SL390s G7 server with 4U half

width trays is designed for high GPU

density and supports up to 8 GPUs. Fully

populated, this system offers a rather

unique GPU-to-CPU density on the market

and therefore it is ideally suited for

applications ranging from quantum

chemistry, molecular dynamics, weather

forecasting, seismic processing and data

analytics. For a fully-populated system the

total GDDR5 memory bandwidth sums up

to around 1.2 TB/s with ECC on.

2 Server description

2.1 Hardware

The server shown in Figure 1 is a two

socket Intel server with 48GB DDR3

Memory (6x8GB DIMMs), two 1 Gb

Ethernet ports, one CX-2 based 10 Gb

Ethernet port (SFP+) and an optional on

board Infiniband CX-2 port (QSFP). It has

one low profile x8 PCI-e gen2 connection,

and eight x16 PCI-e gen2 slots [1].

Our server had two Intel Xeon X5660 6-

core processors running with 2.80GHz. Its

double precision theoretical peak

performance is around 5.5 Teraflops.

Figure 1: HP SL390 G7 server

The PLX switches PLX PEX8664 and

PEX8647 as shown in Figure 2 offer

exclusive x16 port flexibility to up to eight

GPUs. Our server was fully populated with

Nvidia M2090 GPUs (Figure 3), but also

mailto:schoenemeyer@cscs.ch
mailto:jtemple@cscs.ch

May 2012

2 | P a g e

other PCI based devices such as SSD PCIe

can be installed such as the Virident

FlashMax SLC storage device shown in

Figure 4.

Figure 2: Board architecture incl. device numbers for GPU

Figure 3: HP SL390 G7 at CSCS

Figure 4: Prepare to install one Virident SSD SLC flash
storage device at CSCS

2.2 Software

All our tests were carried out using the

following software stack

 Linux kernel 2.6.32-71
 Intel Compiler Version 12.1
 Intel MPI
 nvidia gpu sdk 4.1.RC2
 mvapich2 1.8a1
 Nvidia Driver 285.05.33

We installed also the Portable Hardware

Locality (hwloc) software package [2]

which provides a portable abstraction of

the hierarchical topology of modern

architectures, including NUMA memory

nodes, sockets, shared caches, cores and

simultaneous multithreading. It also

gathers various system attributes such as

cache and memory information as well as

the locality of I/O devices such as network

interfaces, InfiniBand HCAs or GPUs. It

primarily aims at helping applications with

gathering information about modern

computing hardware so as to exploit it

accordingly and efficiently.

Figure 5 shows, that there is no exclusive

access of sockets to GPUs which is

consistent to Figure 2.

Figure 5: System topology compiled with lstopo (hwloc)

May 2012

3 | P a g e

3 Attached devices

Since the server provides 8 x1 6 PCI Gen2

slots, various devices could be installed in

this server. We tested the latest Nvidia

GPUs as well as one Virident FlashMax

Storage device.

3.1 Nvidia M2090

The M2090 is currently the fastest
computing processor within the M-class
GPU Computing Modules

 665 GFlops Peak DP
 6 GB memory size (ECC off)
 177 GB/sec memory bandwidth

(ECC off)
 512 CUDA cores

As one of the key advantages, this HP-

server allows to deploy standard M2090

modules sold by many system integrators.

It does not require a special form-factor.

3.2 Virident SSD Flash Card

Before running the application test, we

replaced one GPU module by SLC Flash

Storage card manufactured by Virident.

This device has a capacity of 800GB [5].

We run iozone using xfs and achieved

excellent performance numbers of more

than 1GB/s of read and write shown in

Figure 6 and Figure 7.

Figure 6: Iozone IO bandwidth results for Virident Flashmax
(read)

Figure 7: Iozone IO bandwidth results for Virident Flashmax

(write).

Whenever an application runs on this

server with challenging IO demands, the

local PCI based SSD device could help as

very fast local scratch storage, if the limited

capacity of these devices is sufficient.

4 CUDA

The HP server offers an high GPU-CPU

ratio, and there are some applications and

cases that can be decomposed and run in

parallel on multiple GPUs within a single

host machine, achieving correspondingly

higher levels of performance. One scenario

could be a typical throughput scenario,

where 8 copies of an application running

each with one core and one dedicated GPU.

May 2012

4 | P a g e

Another scenario is to distribute the

workload to several GPUs running a non-

MPI application. In the latter case,

communication between individual GPUs

might be a performance bottleneck.

To address this problem, CUDA 4.0 and

CUDA4.1 introduced GPUDirect, and by this

3rd party network adapters, solid-state

drives (SSDs) and other devices can

directly read and write CUDA host memory,

eliminating unnecessary system memory

copies and CPU overhead, resulting in

significant performance improvements in

data transfer times [4].

GPUDirect also includes support for peer-

to-peer (P2P) DMA transfers directly

between GPUs and NUMA-style direct

access to GPU memory from other

GPUs. These capabilities lay the foundation

for direct P2P communication between

GPUs and other devices in a future release.

The functionality of the peer to peer access

was tested with a sample code called

simpleP2P , provided with the Nvidia SDK

that demonstrates a combination of Peer-

to-Peer (P2P) and the Unified Virtual

Address Space (UVA) features new since

SDK 4.0. Peer-to-Peer is currently only

supported for GPUs connected to the same

IO Hub, in our case devices 3, 4, 5, 6 and 7 (

shown in Figure 2) allow peer-to-peer

communication as well as devices 0, 1 and

2.

5 Benchmark results

The complex PCI switch design with dual

IOHs connected to three PCI switches

raises the question about the efficient data

transfer between GPU devices and host

CPUs. Therefore the first chapter 5.1 looks

at the raw data bandwidth performance

between host and device. In the other

chapters we describe the result of various

applications provided with the Nvidia SDK

as well as standard benchmarks.

5.1 Bandwidth Measurements

We used the executable provided with the

SDK and launched the program accordingly

./bandwidthTest --memory=pinned -device=0

In the memory mode pageable, the host-to-

device (HTOD) transfer speed is around

3GB/s independent of the device number.

The device-to-host bandwidth (DTOH) is

slightly lower, for GPUs 0, 1 and 2 we

measured 2.4 GB/s, for the GPUs 3,4,5,6

and 7 about 2.8 GB/s (Figure 8). For

pinned memory, the bandwidth almost

doubles as expected (Figure 9).

In order to get the best performance, the

binding between GPUs and sockets must be

optimized. GPUs 0, 1, 2 must be bind to

socket 0. GPUs 3, 4, 5, 6 and 7 must be bind

to socket 1, e.g. we issued the command as

follows:

numactl --membind=0 --cpubind=0

./bandwidthTest -device=0

May 2012

5 | P a g e

Figure 8: Host-to-device and device-to-host memory,
pageable memory for individual devices

Figure 8 shows the result with optimal
binding. The bandwidth is now exactly 3.1
GB/s and 2.8 GB/s for every device.

Figure 9: Host-to-device and device-to-host memory,
pinned memory for individual devices.

5.2 N-body

The first one is N-body and it is described

in detail in [7]. This kind of simulation

technique approximates in many

computational science problems such

astrophysics, protein folding and turbulent

fluid flows. The all-pairs approach to N-

body simulation evaluates all pair-wise

interactions among the N bodies requires a

substantial time to compute and therefore

an interesting target for acceleration.

NVIDIA ported the all-pairs computational

kernel using the CUDA programming

model.

We launched the benchmark for three

different problem sizes starting with 128K

particles and up to 1024K particles with:

./nbody -benchmark -n=p -fp64 -numdevices=ng

with

p=128K, 512K, 1024K

ng= 1,2,3,4,5,6,7 and 8

For all cases we observed a good scalability

to up to 7 GPUs, for the small case even to 8

GPUs (see Figure 10-12).

Figure 10: Nbody with 128000 particles

For the large case (see Figure 12), we

measured nearly 2.2 Tflops sustained

performance, which is equivalent to 40% of

the theoretical peak performance (double

precision) of this server.

May 2012

6 | P a g e

Figure 11: Nbody with 512000 particles

Figure 12: Nbody with 1024000 particles

5.3 MonteCarlo multi-GPU
implementation

The background of this code is explained in

detail in [9]. The code is the

implementation of the Monte Carlo

approach to option pricing written in

CUDA.

Two methods are available, the threaded

version uses one CPU thread for each

device, the streamed version uses one CPU

thread and handles all GPUs. (requires

CUDA 4.0 or newer).

Because the Monte Carlo pricing of each

option is independent of all others, the

computation can be distributed across

multiple CUDA-capable GPUs present in the

system. The input options are divided into

contiguous subsets (the number of subsets

equals the number of CUDA-capable GPUs

installed in the system).

The code uses all CUDA devices available

on the server, the only way to control that

is to set the environment variable

accordingly with

export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"

for all GPUs on the system.

In the current SDK the number of

simulation paths is fixed to 262144 due to

the limited memory capacity of earlier GPU

devices. In order to fully exploit the

capabilities of the M2090 card we

increased that number to 1048576 in

MonteCarloMultiGPU.cpp.

./MonteCarloMultiGPU --method=streamed --type=double

The result is shown in Figure 13. The

performance measured in options per

second increases nearly linearly with the

number of GPUs.

Figure 13: Options per second using 1048576 simulation
paths

May 2012

7 | P a g e

5.4 SHOC Benchmark for multi-GPU
implementation

We used the GNU Compiler with Intel MPI

Table 1: Available benchmarks in the SHOC suite

Due to the server design, we are most

interested in the multiple GPU benchmarks.

We measured the server performance and

scalability with two so-called True Parallel

(TP) benchmarks taken from the latest

SHOC source [10]. We used Intel MPI

version 4.0. For each GPU one MPI-rank is

used. The server allows us to measure the

performance with up to 8 devices per node,

including all communication. These

algorithms are decomposed among the

parallel tasks and may include CPU

computation time.

Reduction

This benchmark measures the performance

of a sum reduction operation using the

double precision floating point data [10].

The kernel performs first a partial

reduction on a global input data array

saving the partial results to the local

shared memory. Finally, a reduction is

computed over the local data array and the

result is saved into a global output memory

array. The result for up to 8 GPUs are

shown in Figure 14 for the mean value of

Allreduce-DP-Kernel.

Figure 14: Bandwidth for reduction Allreduce-DP (mean)

Scan_DP

This benchmark measures the performance

of the parallel prefix sum algorithm (also

known as Scan) on a large array of floating

point data. [10]. And based on the method

decribed in [11]. The results are shown

inFigure 15, we picked the mean value of

TPScan-DP-Kernel.

Figure 15: Bandwidth for Scan_DP

SHOC also includes benchmarks for testing

multiple devices, but do not involve any

communication between devices. These

benchmarks are called Embarrassingly

May 2012

8 | P a g e

Parallel (EP). One example is the MD

benchmark.

Molecular Dynamics (EP)

This benchmark measures the speed of a

simple pairwise calculation of the Lennard-

Jones potential from molecular dynamics.

Each thread computes the acceleration for

one particle based on the potential field

generated by all particles into a cutoff area.

The kernel uses coalesced global memory

accesses.

The benchmark is executed with mpirun

and starts as many copies as MPI-ranks and

uses one GPU per MPI-rank, the results are

shown in Figure 16.

Figure 16: Throughput Performance for MD for up to 8
GPUs

This benchmark scales ideally with the number of

GPUs and MPI ranks.

5.5 DGEMM

In this section, we investigate the behavior

of DGEMM (i.e BLAS Double precision

Generalized Matrix Matrix multiply, C =

αA*B + βC), and in particular what

strategy can reach maximum performance.

Our first strategy is based on the hybrid

dgemm developed by M. Fatica (12). In

this algorithm, the matrix is split between

GPUs and CPUs according to their

respective performance. In order to get

maximum performance, each time CUBLAS

DGEMM starts to plateau, we substitute

one call to the CPU dgemm with one call to

cublasDgemm. Figure 18 shows the results

of the hybrid multi GPU/CPU version.

Maximum performance is around 1000+

Gflops and is reached using 4 GPUs with a

20K x 20K matrix. Using this algorithm, the

limiting factor is the GPU memory size: one

of the matrices involved in the Matrix-

Matrix multiply is duplicated on all the

GPUs, while the two others are split. At

20K, this matrix is taking half of the 6 GB

while the 2 others, split 4 ways, take 1.5 GB

each, filling the memory of each card.

Figure 18: Hybrid multi GPU/CPU. X-axis is the matrix size
(NxN), Y-axis is the performance in Gflops.

In order to circumvent this, let’s split each

matrix four ways:

(

) (

) (

)

 (

)

Expanding the formula yields 8 matrix-

matrix products and 4 matrix-matrix sums:

{

 ()

 ()
 ()

 ()

 The matrix-matrix products are sent to

one GPU simultaneously, then the final sum

0

200

400

600

800

1000

1200
GPUs + CPUs

GPU

CPUs

May 2012

9 | P a g e

are computed on the CPU using a local

array. Figure 19 shows the performance

result of this algorithm.

 Figure 19: 8-GPU cublasDgemm. X-axis is the matrix size
(NxN), Y-axis is the performance in Gflops.

Obviously, this algorithm is not suited for

relatively small matrices. Comparing to the

previous graph, for a matrix size below

13K, performance is below our hybrid

DGEMM. Beyond that, DGEMM

performance increases very fast and we are

able to achieve up to 1.5 Tflops of double

precision performance thanks to the fact

that no matrices are replicated on the GPUs

as it is done with the previous algorithm.

Note that this algorithm currently does not

use threads.

6 Conclusion

The HP Server offers a quite unique design

in terms of GPU density and a similar

approach is only provided by Tyan (13).

The Tyan board is provided by various

system integrators partially under their

own brand.

The HP server is an interesting option for

example for a non-MPI applications if the

problem size fits on 40 GB of GDDR5

memory and is able to use multiple GPU

devices simultaneously.

Applications such as nbody provided with

the Nvidia SDK are running with

impressive single-node performance to a

level of 40% of the theoretical peak

performance (double precision).

The system proved to be a very reliable

and stable system. Since it is based on the

previous Intel Xeon X5600 processor, CSCS

looks forward to HPs next generation

server hopefully with a similar GPU/CPU

ratio, but based on the latest Intel Xeon E5

processors codenamed Sandy Bridge.

7 Literature

1. HP SL390, Technical Specifications, 2012.

2. http://www.open-

mpi.org/projects/hwloc/

3. HP GPU Computing, Presentation at the

HPC Advisory Council Workshop Lugano,

March, 2011.

4. Nvidia GPUdirectTM Technology,

Presentation, 2011.

5. Virident FlashMax PCIe Storage Class

Memory, Datasheet, Virident, 2011

6. Nvidia Tesla, Datasheet, August 2011

7. Lars Nyland, Mark Harris, Jan Prins, Fast

N-Body Simulation with CUDA, distributed

with the SDK4.0 and SDK4.1, 2011

8. Victor Podlozhnyuk, Mark Harris, Monte

Carlo Option Pricing, June 2008,

distributed with SDK 3.0 and newer

9. Anthony Danalis, Scalable Heterogeneous

Computing Benchmark Suite (SHOC),

0

200

400

600

800

1000

1200

1400

1600

1800

22
8

19
28

36
28

53
28

70
28

87
28

10
42

8
12

12
8

13
82

8
15

52
8

17
22

8
18

92
8

20
62

8
22

32
8

24
02

8
25

72
8

27
42

8

Dgemm 8 GPUs

http://h18004.www1.hp.com/products/quickspecs/13713_div/13713_div.HTML
http://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/projects/hwloc/
http://www.hpcadvisorycouncil.com/events/2011/switzerland_workshop/pdf/Presentations/Day%202/4_HP.pdf
http://developer.download.nvidia.com/compute/cuda/4_0/docs/GPUDirect_Technology_Overview.pdf
http://www.virident.com/default/assets/File/Virident-FlashMAX-DataSheet.pdf
http://www.nvidia.com/docs/IO/105880/DS-Tesla-M-Class-Aug11.pdf

May 2012

10 | P a g e

Tech. Report, Oak Ridge National

Laboratory, University of Tennessee, 2010.

10. Future Technologies Group, SHOC, The

Scalable Heterogeneous computing

benchmark suite, Manual Version 1.0.2 :

March 2011

11. Shubhabrata Sengupta, Mark Harris,

Yao Zhang and John D. Owens: Scan

Primitives for GPU computing, Technical

Paper, Graphics Hardware, 2007.

12. Massimiliano Fatica: Accelerating

Linpack with CUDA on heterogenous

clusters. Proceedings of 2nd workshop on

General Purpose Processing on GPUs, ACM

2009.

13. Tyan GPU Platform, Specs, website,

2011

http://www.google.ch/url?sa=t&rct=j&q=shoc%20manual%20%20oak%20ridge&source=web&cd=1&ved=0CCcQFjAA&url=http%3A%2F%2Fft.ornl.gov%2Fpubs-archive%2Fshoc.pdf&ei=1B1CT5LPOYTG-QasqIzJBQ&usg=AFQjCNEQhz8PC_BdqLW0MavzaCXRJOgdyA&cad=rja
http://www.google.ch/url?sa=t&rct=j&q=shoc%20manual%20%20oak%20ridge&source=web&cd=2&ved=0CDQQFjAB&url=http%3A%2F%2Fft.ornl.gov%2Fdoku%2F_media%2Fshoc%2Fshoc-manual-1.0.2.pdf&ei=1B1CT5LPOYTG-QasqIzJBQ&usg=AFQjCNHDVko3WyEpp11eInANhyWYysAtEQ&cad=rja
http://www.google.ch/url?sa=t&rct=j&q=sengupta%20scan%20gpu&source=web&cd=2&ved=0CDEQFjAB&url=http%3A%2F%2Fuserweb.cs.utexas.edu%2Fusers%2Fpingali%2FCS378%2F2008sp%2Fpapers%2FScanPrimitives.pdf&ei=v1hDT-zjOMzsOdPblIoP&usg=AFQjCNFjua3wXGebxMP4a3o0rHSuyfj5yw
http://www.google.ch/url?sa=t&rct=j&q=sengupta%20scan%20gpu&source=web&cd=2&ved=0CDEQFjAB&url=http%3A%2F%2Fuserweb.cs.utexas.edu%2Fusers%2Fpingali%2FCS378%2F2008sp%2Fpapers%2FScanPrimitives.pdf&ei=v1hDT-zjOMzsOdPblIoP&usg=AFQjCNFjua3wXGebxMP4a3o0rHSuyfj5yw
http://www.tyan.com/solutions/gpu_intel_platforms.aspx

