
Cen+ro Svizzero di Calcolo Scientifico

c s c s
Edgenossische Ecole polytechnique federate de Zurich

Techmsche Hochschule Politecnico federate di Zurigo
Zurich Swiss Federal Institute of Technology Zurich

Swiss Scientific Computing Center

iliiillMBBBil

Tool-Supported of

Parallel Application

C. Clemen^on, K.M. Decker, A. Endo/ V.R. Deshpande,

J. Fritscher, N. Masunda, A. Miiller, R. Riihl,

W. Sawyer, B.J.N. Wylie and F. Zimmermann

Tool-Supported Development of

Parallel Application Kernels

TR-95-03

April 1995

Abstract: Our overall goal is to ease the parallelization of applications on distributed-memory

parallel processors. Part of our team is implementing parallel kernels common to industrially significant

applications using High Performance Fortran (HPF) and the Message Passing Interface (MPI). They are
assisted in this activity by a second group developing an integrated tool environment consisting of a

parallelization support tool, a parallel debugging tool, and a performance monitor and analyzer. From

close interaction the design of the tools is inherently application-driven: application developers define

requirements and evaluate prototypes of the tool environment.

This paper describes goals, achievements and perspectives of the project, illustrating with three

application kernels how the tool environment assists in the parallelization process: development effort

and resulting performance are discussed.

C. CIemen^on K. M. Decker A. Endo*

V. R. Deshpande J. Fritscher N. Masuda*

A. Miiller R. W. Sawyer

B. J. N. Wylie F. ZimmermaiuT

Section of Research and Development (SeRD)
Swiss Scientific Computing Center (CSCS)

Swiss Federal Institute of Technology Zurich
Via Cantonale, CH-6928 Manno, Switzerland

* NEC European Supercomputer Systems, Swiss Branch

TABLE OF CONTENTS

Table of Contents

1 Introduction 1

2 Project Overview..................................... 1

2.1 Development Strategy for Application Kernels 1

2.2 The AnnaHntegrated Tool Environment 3

2.3 Interaction between Collaboration Partners 3

3 Parallelization Strategy for Application Kernels 4

3.1 BiCGSTAB solver from SPARSKIT 5

3.2 Eigensolver for Unstructured Problems 7

3.3 NAS Multignd (MG) 12

4 Conclusions 14

List of Figures

1 Application and Algorithm Development—Past/Present/Future 2

2 Anna; Tool Environment Overview 4

3 Cenju-3 Measurements of BiCGSTAB 6

4 PMA Execution Statistics Displays 8

5 PMA annotations in the Anna; UI Program Stmcture Browser 8

6 PMA Evolution Time-line Displays 9

7 Visualizing MG Convergence with PDT 11

8 Non-optimized MG with memory watching 14

List of Tables

1 Performance of BiCGSTAB 7

2 Performance of Lanczos Eigensolver 10

3 Performance of MG parallelized with PST and compared to MPI 14

CSCS TR-95-03

1. INTRODUCTION

1 Introduction

Distributed-memory parallel processor (DMPP) systems with scalable interconnection networks offer

computing power and memory which can scale to meet foreseen demands. They are widely considered

as enabling technology for progress in science, engineering, and business. Although there are a growing

number of production applications mnning on DMPPs, they have not yet lived up to their expectations

in the scientific and engineering communities.

The major reason for this short-coming is the current difficulty of programming scientific appli-

cations. Comfortable development environments, as found on sequential machines, don't yet exist on

DMPPs. Since the level of abstraction from the complex hardware provided by the tools which are

available is insufficient, the user suffers from uncomfortable, time-consuming, and error-prone pro-

gramming. Despite considerable work on tool environments for parallel machines, user response has

not been enthusiastic.

It is the goal of the Joint CSCS-ETH/NEC Collaboration in Parallel Processing to develop the
integrated tool environment Anna; [CDE+94, CEF+95] for convenient programming of DMPPs in a

user-oriented and application-driven way. In this paper we demonstrate how the current Annai prototype

eases effective parallelization of common application kernels.

The paper is organized as follows: in Section 2 we introduce our project from the application

user's perspective. We present our development strategy for application kernels, an give an overview

of Annai, and discuss the interaction of the partners in the collaboration. Section 3 elaborates on

the parallelization of application kernels and discusses three examples: the iterative linear solver

BiCGSTAB, an eigensolver for sparse linear systems, and the NAS Multigrid kernel. Not only the

overall performance is discussed, but also the development effort for the parallel versions—a topic

which is of primary concern for the application developer Finally we summarize our experiences using

the tool environment and identify important functionality for parallelizing full-scale applications.

2 Project Overview

2.1 Development Strategy for Application Kernels

We first revisited the spectmm of applications in high-performance computing mnning on the facilities

at CSCS and at other supercomputing centers. Application fields taken into consideration include

combinatorial optimization, elementary particle physics, fluid dynamics, molecular dynamics, plasma

physics, quantum chemistry, and structural mechanics. We then analyzed this application spectmm

with respect to the computational methods used; among them, linear system and eigenvalue solvers for

dense and sparse systems, fast Fourier transforms, random number generators, branch-and-bound search

algorithms, and algorithms for dynamic finite-element mesh refinement.

This list is clearly only partial, but its contents cover a very wide range of applications. Currently

there are no public-domain parallel libraries available to solve the above problems, with the possible

exception of the ScaLAPACK [CDPW94] library which is currently under development. Thus our efforts
are currently concentrated on implementing libraries for these algorithmic classes, and incorporating

them into applications from the previously mentioned fields. Three important codes in this development

are presented in this paper.

From the developer's perspective portability of code is also an important issue, as yet insufficiently

addressed. A developer does not want to be bound to a particular platform and compiler, which may

disappear before the useful life of the application has ended. The immediate solution is to adhere to

accepted standards wherever possible. Thus we base our approach on the defined specifications for High

Performance Fortran (HPF) [HPF93] and a Message Passing Interface (MPI) [MPI94].

CSCS TR-95-03 1

2. PROJECT OVERVIEW

(3
"^^
W 0)it
w ."
c; ^

•r^ <y

'd,^
Ox ^T
<T-o

Sca-

lapack

BLACS

+
u-v

.ro

t~s< 0
t-^

p-1 ^

N$Q ra5
•-S.S
(0 0)

^^^s
^0-K;

h

1ŝ^
S, en
^!w

Jfc;
'g

18
ẐCQ

ec
^u
^

ID
p̂-<

Pl

p-1

0
•s
?s

•y

fr.
CL,
<
h"

1c
"1

TS "a
i^-.

^ u
So
§Fi
sy-15
II
6 c.

B^

<a.

c;
>--

•ST?'
4-* ^

'C
u

^3 "^
r&i

^?T
..p
:-^. '-•.

liM S3
'5 &<

en

M)^ilII
•r> G
-K >->
AT3'
Mil..

•J3 S

il
el

c;
0

§ n
00
<u
Q y.

<y^ y=!

t»0

Itg
<̂1?

ra»6o
&s
(rs w

,y ^^ 6
1 5>
.S.S'

^

1^I?IIi51
u <u

*r-< *+-*
•<"-(

£.^
Q&

SPARSKITI
ARPACK

PLUMP

HPF/PST

'SJS
^sl

'C 01
CuA

2 ^
s .y
&,-d

g
Vs
f-1

^II
s ^H G

MPI

Figure 1: Our efforts originated with an in-house implementation of MPI and a design of the tool

environment (represented in magenta). First several NAS benchmark kernels were parallelized with

MPIand using an older data-parallel extended Fortran, for performance comparison, along with several

small applications in MPI alone (shown in blue). Our recent efforts (shown in red) include development

of the PLUMP library, parallelization of certain solversfrom SPARSKIT, a collaboration on the MPI-

BLACS, and parallel random number generators. In the future (shown in green), we will parallelize

eigensolvers from ARPACK, collaborate on the development of sparse direct solvers, and implement

several full-scale applications in extended High Performance Fortran using existing libraries.

The goals of our project go well beyond the examples presented in this paper. An overview of

the parallelization work being performed is illustrated in Figure 1. At the lowest level of parallel
programming is either F77 or C with explicit MPI message passing. At a higher level we try to
formulate applications in data-parallel HPF, a task widely recognized to be difficult for unstructured

applications [SMC90, CZM94]. In such cases we define and utilize extensions to HPF. We have

previously compared the performance of NAS benchmark kernels programmed with explicit message

passing to versions parallelized using Oxygen [Ruh92, CDE+94], the base of our current Parallelization

Support Tool (PST). In addition, several small applications were implemented with MPI and their results
discussed [FHM+94]. More recently, we have parallelized certain routines from SPARSKIT [Saa90]

and LAPACK [ABD+92] in HPF/PST.

We believe that future users of parallel machines will rely heavily on public-domain libraries, as they

have in the past with vector and scalar machines. Such libraries are a result of collaborations of many

institutions. We therefore support the development of ScaLAPACK for dense linear algebra problems,

and participate actively in the porting of the underlying communication mechanism BLACS [DW95] to

MPI.

While continuing to parallelize commonly used application kernels, we are also parallelizing several

applications in the fields of molecular dynamics, device simulation and computational fluid dynamics

withAnnai and the parallel libraries already available, and are currently planning work on several others.

CSCS TR-95-03

2. PROJECT OVERVIEW

2.2 The Annai Integrated Tool Environment

A number of the tools typically available on DMPPs were investigated and user experience with them
evaluated: ParAide [Int93] for the Intel Paragon, TotalView [BBN94] available on the Gray Research
T3D and other systems, and Prism [ABJ+91] for the Connection Machine from Thinking Machines
Corporation. While some high-level programming features are provided, many essential features are

missing, and, cmcially, none of them support portable application development with the standard

languages and machine interfaces expected by the user community.

There are three component tools within the Annai environment: a Parallelization Support Tool

(PST), a Parallel Debugging Tool (PDT), and a Performance Monitor and Analyzer (PMA), sharing a
common user interface (UI). Their inter-relationship is shown in Figure 2.

Annai accepts high-level data-parallel HPF programs and low-level message-passing source code.

PST acts mainly as a compiler for both paradigms. PMA and PDT are designed to assist the user by
providing information at different levels of abstraction. The lowest level of abstraction, providing the

most detailed information, is as close as possible to the DMPP hardware. Since one of our objectives is

the development of a portable tool environment, this lowest level of abstraction is MPI.

PST [MR94], the Parallelization Support Tool, extends the current HPF definition by providing

language constmcts and extensive mn-time support for the parallelization of irregular computations.

Along with comprehensive compilation support for mixed-language program sources, applications can

also be instmmented to generate debugging and performance information for the other tools. PST

supplements NEC'S HPF compiler.

PDT [CFR94], the Parallel Debugging Tool, is a conventional source-level debugger extended with
control- and data-breakpoints with global break conditions. At the data-parallel level, PDT provides

coherent graphical representations of large, distributed data-sets. At the message-passing level, PDT

assists programmers with deadlock detection, race-condition detection and deterministic execution

replay.

PMA [WE94], the Performance Monitor and Analyzer, exploits trace information from interactively

specified source code regions where instrumentation is inserted and data collected during the execution

of a parallel program. It then assists with the performance tuning and interpretation of program execution

through visualization and analysis of this information. Different levels of abstraction are supported,

from execution summary profiles and charts of time-varying behavior down to views of individual

processes and analysis of communication events and memory utilization.

The OSF/Motif UI provides a common interface between Annai's components and the user. It

primarily consists of a source code and program stmcture browser, which can also be directed and

annotated by PMA and PDT to show features or source regions of interest. Output from a mnning

program is also displayed under the control of the UI in a separate window. UI directs the operation of

the other tools and controls parallel program constmction and execution.

PDT and PMA have a common interface to the parallel computing platform via the Tool Services

Agent (TSA), which provides basic, low-level functions for controlling parallel program execution,

currently based on the Free Software Foundation's gdb debugger.

Annai's portability is addressed by relying on standards, i.e., HPF and MPI as programming models,

OSF/Motif for the graphical user interface, and classical debugger technology for TSA.

2.3 Interaction between Collaboration Partners

An important characteristic of our approach is the close interaction with a computer vendor. In the

development process, besides tool and application developers, system designers are also involved. While

tool developers design and implement Anna; prototypes, application developers evaluate them and return

CSCS TR-95-03 3

3. PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

Sources

F77+MPK

C+MPI-

HPF

HPF+MPI-

HPF + PST

monitorJ-^

user

program

PST lib

PDT lib I node
kernels

Annai

Figure 2: Annai tool environment overview.

MPI :
/

DMPP

requests for modifications and suggestions for possible enhancements. Application developers debug

with PDT and use PMA to determine performance problems, and provide feedback to system designers

if these bottlenecks are due to inefficient hardware or system software (e.g., for communication latency

bound applications). On the other hand, tool developers have fundamental requirements of hardware

and system software, such as a high-resolution global system clock to facilitate consisting event time-

stamping.

To help attain the goals of the collaboration, NEC has provided CSCS with a Cenju-3 [DWMN94]
and system software. Each of the 128 VR4400SC RISC processors in the machine has 32 Kbytes
on-chip cache, 1 Mbyte of second-level cache, and 64 Mbytes of main memory. The CPUs are MBPS-

compatible 64-bit processors clocked at 75 MHz. They communicate via a packet-switched multi-stage

interconnection network composed of 4 x 4 crossbar switches. The machine is hosted by a VR4400SC-

based workstation.

Although our major development platform is the Cenju-3, the tools and applications kernels presented

are portable: they are also mnning on SUN workstations which are used for code development and

debugging.

3 Parallelization Strategy for Application

The central characteristic of our approach is that we follow a tools-supported parallelization strategy.

Instead of manually parallelizing one application after the other, resulting in the repetition of elementary

editing steps, we develop parallelization tools and libraries which then allow a comfortable parallelization

of all applications in a specific class. One of the major benefits of this approach is that parallelization is
earned out at a higher level of abstraction.

Another facet of our approach is using accepted sequential public-domain libraries as a basis for

the parallel kernels. Such libraries include LAPACK for dense linear algebra problems, SPARSKIT
for the treatment of sparse problems, including several iterative linear solvers, ARPACK [SKSL94] for

sparse eigenvalue problems, and FFTpack for one-dimensional Fast Fourier Transfonns. The software

developer can justifiably expect that the parallel routines for solving these problems have similar or

identical library interfaces to the sequential versions, minimizing the effort needed to migrate to a

CSCS TR-95-03

3. PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

parallel architecture. Our goal is therefore to alter the outward appearance of the parallelized library

routines as little as possible.

In the remainder of this section we discuss the parallelization of the iterative Krylov method

BiCGSTAB from SPARSKIT, a Lanczos eigensolver for symmetric problems arising from a finite-
element mesh, which uses parallelized LAPACK routines, and a unit-cube Multigrid solver from the

NAS benchmark kernels. As the success of our parallelization strategy relies heavily on the tools, their

key features are indicated in the individual examples.

An iterative linear solver and an eigensolver have been chosen since these are two of the most

commonly used algorithms in applications, and ones for which developers most often resort to existing

libraries. The third example is a NAS Multigrid benchmark kernel commonly used in evaluating parallel
machines and data-parallel compilers. In addition, the Multigrid method is an important algorithmic

component in preconditioners for iterative solvers. While this selection only represents a small cross-

section of the work in the Joint Collaboration, it illustrates characteristic use of the tool environment for

parallelizing application kernels and yields indicative performances.

3.1 BiCGSTAB solver from SPARSKIT

Problem Specification The BiCGSTAB solver [vdV92] belongs to a growing class ofKrylov Subspace
Methods [BBC+94] to solve large, sparse non-symmetric linear systems. SPARSKIT includes several

such solvers. BiCGSTAB was chosen as a starting point due to its success in real applications [PR94].

In the linear system Ax = b to be solved by BiCGSTAB, A is never explicitly referenced; the
central operation in the calculation is a matrix-vector multiplication (hereafter Ax) to be provided and

parallelized by the user. In this case, the input matrix is a banded random matrix of 16,384 rows and

a total bandwidth of 201. Each BiCGSTAB iteration requires the computation of two matrix-vector

products and some vector-vector operations. From those vector-vector operations the computation of

four inner products requires global reduction operations. We subsequently discuss the parallelization of

BiCGSTAB, and leave the parallelization of Ax to Section 3.2.

Parallelization Since the matrix A never needs to be constructed by the algorithm, the only data
structures to be distributed are vectors needed for the right-hand side, the solution x, and several

intermediate work vectors. The choices for distribution are,

1. BLOCK Vectors are partitioned into rectangular pieces of equal size, with every processor

'owning' one of these blocks.

2. CYCLIC Vector elements are assigned to processors in a round-robin fashion. In BiCGSTAB

there is no reason to expect that CYCLIC would provide better performance than BLOCK distri-

bution.

3. BLOCK-GENERAL This scheme is a PST extension of the HPF BLOCK distribution. Vectors
are distributed in a block-wise fashion, but the blocks can have variable size and can contain gaps,

i.e., unused elements. Using an 'oversized' array and leaving gaps can be useful if the problem

size varies dynamically during the program execution.

4. DYNAMIC The most general PST data distribution. Every single element is individually mapped
to a processor. This mapping can be specified in two ways: using a mapping array or using mapping

functions. The first possibility is efficient but memory consuming, the latter saves memory at the

cost of performance.

CSCS TR-Q5-03 5

3. PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

Figure 3: Execution time on several Cenju-3 configurations of different SPARSKIT components accu-

mulated over the first BiCGSTAB iteration for different data distributions, all emulating a block-wise

distribution. During the first iteration, 8 vector-vector operations are carried out, and the executor of

tlie matrix-vector product is called twice. Analyzer and router are only invoked once. Both router and

executor performance depend only slightly on the actual distribution directive.

In addition, vectors could be replicated on all processors and only the internal format of A distributed.

This is only a viable alternative if the number of vector entries is small compared to the number of

non-zero matrix values (i.e., the matrix is fairly dense) and thus will not be considered further.

Once the distribution of the vectors is detennined, all loops over distributed vectors are parallelized

explicitly using PST's ALIGN directive which assigns a loop iteration to the owner of a particular array

element. The alignment is straightforward since all loops are over entire vectors. This is an important

addition to the HPF compiler which performs the patallelization of loops automatically, but which fails

for irregular computations or dynamic data distributions.

A parallel version of the LAPAQC D DOT is constructed which globally sums the contributions of

the local scalar products. This task is again easily performed with the help of loop alignment directives.

Unless the matrix is explicitly redistributed, the data distribution does not change between iterations

(i.e., the underlymg code segments are start-lime schedulable [SMC90]). Communication patterns can

therefore be reused with PST's SAVECOM directive. This important feature is described more thoroughly

in [MR94].

Results Figure 3 summarizes our BiCGSTAB measurements on several Cenju-3 configurations using

HPF BLOCK and PST BLOCK_GENERAL and DYNAMIC distributions (using both mapping arrays

and mapping functions). It shows both the performance of the matrix-vector product, which requires

communication, and the vector-vector operations which do not. The vector-vector operations, however,

consist of short aligned loops. Due to the implementation of such loops, performance is best with the

regular BLOCK distribution and worst with dynamic mapping functions. The performance sensitivity

decreases with increasing number of processors, because the global reduction operation in the inner

product becomes the major bottleneck with large machine configurations.

The performance results of Table 1 show an approximate scaling behavior and that most of the

6 CSCS TR-95-03

3. PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

execution time is spent in the matrix-vector multiplication.

#PEs
Ax analyzer (s)
Ax executor (s)

Other operations (s)
MFlop/s

1
0.00

26.34
1.10

5.9

4
0.57

15.54
0.43

10.0

8
0.29

7.79

0.29

19.9

16
0.14

3.83

0.29

40.5

32
0.07

1.82

0.19

85.2

64
0.04

1.00

0.17

155.1

Table 1: Performance for the linear system solution Ax = b with BiCGSTAB, where A is a band matrix

with bandwidth 201 and 16,384 rows. All vectors are distributed BLOCK-GENERAL. Although Ax is

executed 20 times, the P ST analysis only needs to be done the first time. Superlinear scaling occurs due

to caching effects.

Development Effort The BiCGSTAB solver, and indeed all solvers in SPARSKIT, are based on the

use of n-vectors, i.e., vectors of problem size length n. The vectors need to be distributed and the corre-

spending loops aligned. In addition, the index mapping for the BLOCK-GENERAL, DYNAMIC-ARRAY,

or DYNAMIC-FCT distribution have to be programmed. Although this task is sometimes complex,

mapping problems are easily identified using features of PDT demonstrated later.

Since the global indexing remains in the code, its parallelization is fundamentally simple, and the

BiCGSTAB routine can be rewritten quickly in HPF/PST. Few additional optimizations are necessary
to avoid PST-specific inefficiencies. For instance, the expensive passing of array sections to subroutines

is avoided by separating the original work array in the program into n-length vectors. This requires

somewhat more time to program and some debugging with PDT, but was justified by the performance

benefits.

The programming effort for the band Ax operation is minimal in this case, due to its simplicity. The

programming effort for other Ax will be considered in the next section.

3.2 Eigensolver for Unstructured Problems

Problem Specification We consider the important class of applications in which the basic data structure

can be described as a weakly interconnected graph with relatively few interactions between nodes and

with dynamic changes in time. Such an application could use adaptive finite elements, e.g., for device

simulation [Kor93], or could simulate the behavior of liquid silicon with a tight-binding model [L. 94],
in which atomic interactions are constantly changing as the atoms drift.

In such sparse irregular problems, linear solvers — such as BiCGSTAB described in Section 3.1

— and eigensolvers are commonly needed. The algorithmic class of eigensolvers must again be split

up into problems requiring just a few eigenvalues (e.g., the smallest, largest, or the ones closest to the

imaginary axis), and a class in which most or all of the eigenvalues and eigenvectors are required. The

former problem requires such Amoldi and Lanczos-based eigensolvers as found in the ARPACK. In

the symmetric case of the latter problem, the matrix can be tridiagonalized, either with Householder

transformations or implicitly (using only Ax) with the Lanczos process. It can then be diagonalized

using either the QR algorithm [GL89] or, more efficiently, with a divide-and-conquer approach [DS87],
using routines which are available in LAPACK2.0.

As in Section 3.1 we consider here the symmetric case where only Ax is available, resulting from

a summation of element matrices, e.g., Ax = Sve;^.e;a'. We thus first apply the Lanczos algorithm

to tridiagonalize the matrix. It is known that round-off errors quickly lead to loss of orthogonality

CSCS TR-95-03 7

3. PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

:r:irw»yjESB;:^2xT?_acj3.tf^

me Options Metric

Avaraga of Total Time an AU Proct

Program Routine*

Help

[User
Analysial
Koudng
Re map

EBELNCZTM

PAIUX:£MV

EBEAMUK

PAKDSTEQR

PARDLASR

OLOO] 0.1

Tuxue (s)
10
EldushT

Accumulation

Average Execution Time

Program RoL<ifias

PAHBDOTI
pAnnwMV_TrH

EBlsLNCZlR!-
PARDC,EMV'

EBEAMUXi
pARDsreon)

PARDLASHf

Time (s|

Average Execution Time

Roufino fc:B£AMUX

D0,5,

[30,-1,1

01 hat

i.lROW
1 .mow

DQ.IHISLIDE
DO,-1,

DQ.-1,

.ISCOL
1 snow

0.00.tU.20.30.4Q.ijO.G0.70.80.91.01.11,2

Tlma (a) fc^i-wi

B Tolall

Program Huuti

EBELNC2TRI'
Vfc'CCHECKSUMi

VL.CJNCMAPi
EBEINCMAP1
MATfNGMAPI

PARDDDTj
FBFAMUXI

PARDGEMV1

Figure 4: PMA Execution Statistics Displays showing various profile summaries of the eigenvalue
solver. Upper left is a detailed ranked profile of the five most important routines, with execution time
separated into user and parallel overhead components. The EBEAMUX routine has the only significant
overheads as it is responsible for setting up the data distributions. (Such overheads originally made

this routine dominant.) The small graphs at the bottom show an initial execution time profile of
the program routines, a detailed profile of the EBEAMUX routine (identifying the loop structure),
and a communication summary (which shows that most of the communication is seen to occur in

PARDGEMV and EBEAMUX, and that PARDLASR requires no communication). Upper right is the

Processor Balance Display, which shows the variation and imbalance of selected metrics on the different
processors in the PARDGEMV routine, identifying an inefficient unbalanced distributed loop.

HIB view Options flnnotatlons

ljlll^jllS]igigipiiiig||§i|ii!^
ne(i

Figure 5: PMA annotations in the Aimai UI Program Structure Browser show execution count, total

execution time, communication volume and dynamic memory usage for eigensolver program routines.

8 CSCS TR-95-03

3. PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

foiutlon Time Display IPHA/ETD^

flto Opttoas Outgirt ftaviBate H?f Rfc OpUans culiut NaXaMt H.-II

MEMORY
0 1000000 3000000

hBIEAMUXrtart

PROCESSOR ID
0 1 234S6 7

r'TT l ! !l I
,.t.. ..:....:....<.. ..5,..,.;.

; : :; :

I I

\. /1 /'. / /•.. .* /1W?M

rBBEAMUXuut

'DQ^jnaw

'.DO^-IJSDW

,4....|...

'JTiW!

(a) 1st iteration (with paralleUzation overhead) (b) 2nd iteration (using PST SAVECOM)

Figure 6: PMA Evolution Time-line Displays providing a scrollable and rescalable chart of program

execution. The vertical time axis is annotated with the major 'lafidmarks' — at more detailed scales

additional landmarks are also shown. Within this framework various graphical displays oflime-varying

behavior can be shown. The figure shows individual processor states as separate threads, with either

(a) a summary of the amount of communication in progress at any instant, or (b) a complete display of

communication events. Standard metric graphs, such as that of memory utilization are also available,

here showing PST temporary data allocation during the communication analysis. (NB: The graphs have

been scaled differently to completely show the target routine, EBEAMUX, in each case.)

of the Lanczos vectors [Seh89] used in this itemtive process. We therefore employ the partial re-

orthogonalization algorithm of Simon [Sim84] to re-stabilize the method at a lower cost than the

classical approach of re-orthogonalizing each new vector against all the previous ones (so-called full

re-orthogonalization).

ParalleUzation We use a flexible distributed format for A supported in our Parallel Library, for

Unstructured Mesh Problems (PLUMP) [BLM+94], which is based on the PST BLOCK_GENERAL

distribution. The gaps described in Section 3.1, are left in the data structure to allow dynamic addition (or

removal) of nodes to (from) the underlying graph, such as happens during mesh refinement. The vector

x and all other vectors used in the Lanczos tridiagonalization ate distributed in a BLOCK-GENERAL

fashion.

For the second phase of the eigensolver, we use a parallelized routine which is almost identical

to the LAPACK routine DSTEQR, except for the fact that the eigenvectors are also distributed in a

BLOCK-GENERAL fashion. Only two of the LAPACK routines called from. DSTEQR which refer to

the eigenvectors have to be modified (as well as DSTEQR itself) — all other routines remain the same.

Assuming the diagonal and sub-diagonal vector are duplicated on all processors, there is no com-

munication in the diagonalization, and thus we can expect excellent speed-up figuies for tibis phase of

the eigensolver.

CSCS TR-95-03 9

3. PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

Performance Monitoring and Analysis with PMA To understand the execution behavior and locate

performance bottlenecks in the eigensolver, PMA instrumentation incorporated by the PST compilation

system is activated. Dynamic configuration of this latent instrumentation allows execution information

to be collected where required at the desired detail.

Figure 4 shows a selection of graphical execution profiles of the eigensolver provided by PMA's

Execution Statistics Display. From investigation of the initial overall profile, selecting the different

performance metrics and view options interactively explores the execution data. Principal components

are isolated by masking those with insignificant contributions. Most of the execution time is seen to be

currently spent in the computation-intensive PARDLASR routine, with parallelization overheads only

found in routine EBEAMUX. Unbalanced loop iteration assignment to processors leading to inefficient

utilization is also identified in routine PARDGEMV, though in this case it is not found to be significant

for larger problem sizes.

PMA also interacts with Annai's UI Program Structure Browser, as shown in Figure 5, where the

program structure is presented in a tabular display, and performance annotations are incorporated as

additional columns.

Originally, the EBEAMUX routine was found to be dominant, and analysis showed that this was
due to large parallelization overheads every time the routine was executed. Since the data distribution

is static, PST's determination of the communication required during every instance could be saved after

the first iteration and reused on subsequent iterations. The current profiles were generated after the

appropriate directives were specified.

Figure 6 from PMA's Evolution Time-line Display shows how the overheads still present during the
first iteration are eliminated completely during the second (and subsequent iterations), giving a 6-fold

performance improvement in the execution time of this routine.

The targeted instrumentation facilities provided by PMA help to ensure that the desired performance

information can be obtained at the required level of detail with little effort and minimal intmsion. Source-

reference to the original program stmcture and source code is retained throughout, and repeatedly

exploited by PMA's profile summaries and chart displays, providing the deep insight into program
execution necessary for effective tuning within a familiar framework.

Results The performance of the two phases of the eigensolver are listed in Table 2.

#PEs
Tridiagonalization (s)

Diagonalization (s)

Total (s)
MFlop/s

1
1504.2

8656.9

10161.1

4.2

2
729.6

2482.6

3212.2

13.2

4
372.0
1227.7

1599.8

27.2

8
201.0
620.0

821.1

51.7

16
101.4
301.4

402.8

105.3

32
64.4

145.4

209.9

202.9

64
52.1

68.5

102.6

351.7

Table 2: All eigenvalues and eigenvectors of a test problem of a square 40x40 mesh (1600 nodes,

7527 elements) of rectangular finite elements with symmetric element matrices. Note that super-linear

speed-up is observed in some cases due to cache effects.

Development Effort As in the BiCGSTAB solver, the Lanczos tridiagonalization only makes use of
n-vectors. Therefore the same ease of parallelizing of the sequential version applies in this case. l

'A sequential implementation of the Lanczos method with partial re-orthogonalization was not available to us and therefore

had to be written.

10 CSCS TR-95-03

3. PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

^

nil

Igs

a.ss.BUis
J9.&LBU
IB. 50, B2J
]7.->B,fll,113
16.4a.OUJ
JS,47,BJ]
n.-f&.mjin
13,4S,77JOD
]a.44.reJ08
l].43,7SJOf7
W,43.WSK
O.-C, 73J05
B.0.1
?. a: I

Igfg
], 33. GS. ST
B: 32. U; 96

Figure 7: Four PDT distributed data views show the value of the residual of the CLASS JB problem

(256 x 256 x 256) for a given x-coordinate after 1, 2, 4, and 8 V-cycles of the MG iteration. The

high frequency error components (i.e., the discontinuities) are efficiently removed in a few V-cycles.

The lower views show the (BLOCK, BLOCK) distribution map of the cross-section and the data value

browser.

CSCS TR-95-03 11

3. PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

The LAPACK routines DLASR and DSWAP, called by DSTEQR, which operate on the matrix
eigenvectors could be rewritten with ease since the matrix is distributed in one dimension as every vector

is, namely (BLOCK-GENERAL, *), and all operations are performed on entire eigenvectors.

Overall, the parallelization and debugging of the sequential Lanczos tndiagonalization and six

LAPACK routines was much less than the effort of writing this non-trivial sequential code.

The parallelization of the constituent Ax routines is not counted in the above. While simple sparse

Ax operations are easy to support (see Section 3.1), we are unaware of packages which support flexible

distributed data formats required by unstructured mesh problems. Thus we are putting considerable

investment into creating the PLUMP library to parallelize such operations as insertion of element

matrices into a distributed global stiffness matrix, redistribution of that matrix when load imbalance

occurs, and reordering to minimize bandwidth and maximize data locality. These algorithms are non-

trivial, even with the support from PST, and accordingly require much more time to implement than the

solvers.

3.3 NAS Multigrid (MG)

Problem Specification The NAS Multigrid kernel [BBDS92] (hereafter MG) calculates an approxi-

mate solution to the discrete Poisson problem using four iterations of the V-cycle Multigrid algorithm

on an nxnxngrid with periodic boundary conditions.

Although MG in itself does not fit into any of the algorithmic classes defined in Section 2, we
consider it here for two compelling reasons. First, MG is known to be a difficult problem for data-

parallel compilers, most of which cannot accommodate the V-cycle which goes from large data sets to

small and back [CZM94]. Secondly, the Multigrid method is widely used in several algorithmic classes,

e.g., linear solvers and preconditioners for iterative methods, thus making it of interest for our future

library developments.

Parallelization The parallelization of MG arises directly from the nature of the problem: the cubic
grid is partitioned into blocks. Communication is then only required to exchange elements between

adjacent block faces. The most efficient blocks were empirically found to be "matchsticks": all grid

points in one dimension are on one processor and distributed block-wise in the other two dimensions,

in other words an HPF (*, BLOCK, BLOCK) distribution.

An extensive effort went into writing an optimized C/MPI version. The PST version was based on

the original Fortran code supplied by NAS. In that code, all levels of the grid were kept in one long
array and the amount of data for each subsequent grid decreased exponentially. Each grid level in this

array was distributed regularly in the matchstick fashion. A user-defined mapping was used to map each

global index to the index of the local data segment in the appropriate grid. Loop distribution directives
were applied to all of the nx n x n loops according to the data distribution.

The benchmark uses multiple communication patterns for its critical code segments: the main

subroutines are called with decreasing or increasing problem size as the program proceeds through

one V-cycle. Since a large number of V-cycles is typically required to compute the solution of a

given problem (the "Class B" problem is defined to use 20 V-cycles) the overhead to generate such

communication patterns in the first V-cycle becomes small compared to the overall execution time.

Extra optimizations of the PST code are required to improve performance. For instance, inner

loops are programmed as separate subroutines and compiled with a standard Fortran compiler. This is

worth the effort because PST does not yet recognize loop-invariant calculations and cannot yet optimize

address calculations. In addition, loops need to be rearranged such that non-local elements are only

accessed once. Otherwise the same value would be transferred multiply (in the same message) which

12 CSCS TR-95-03

J3^ PARALLELIZATION STRATEGY FOR APPLICATION KERNELS

does not cause incorrect results but degrades performance. In due course of the project, the PST mn-time

system will be able to detect multiple remote data accesses.

Distributed Data Visualization and Debugging with PDT MG can only be debugged effectively if its

huge distributed data stmctures may be examined and manipulated as a whole, without either particular

knowledge or interest in the current data distribution. In this respect, PDT provides a convenient

mechanism for visualizing entire arrays and array segments allocated across processors.

As an example. Figure 7 shows different PDT representations of a slice (with a given x coordinate) of
the MG residual at four different iterations. Both data values and data distribution of the 2-dimensional

array representing the slice are depicted. The picture at the bottom shows the HPF (BLOCK, BLOCK)

distribution of the slice on 128 PEs, colors representing the PEs on which the blocks are located. The

3-dimensional graphs at the top show data values of the slice after 1, 2,4, and 8 V-cycles of the MG

iteration, and depict how the algorithm converges. PDT supports interactive rotation and zooming of

the graphs to suit the user's preferred view. A value browser (not shown in the figure) could also be

used to look at the numerical values stored in the array.

Additionally, PDT supports control- and data-breakpoints (also known as watchpoints) with global

break conditions for stopping the program at interesting points in the computation. If there were an

apparent anomaly in one of the MG global views of Figure 7, it could be investigated by setting a
conditional watchpoint on the array. For example, program execution would be stopped when any

element of the array becomes larger than a certain value.

Watchpoints are notoriously slow because most debuggers implement them by single-stepping the

program and evaluating the condition at each step. PDT uses a more efficient mechanism based on

watching all memory updates [WLG93] — a technique requiring instmmentation of the target program.

Figure 8 shows costs of memory watching, i.e., instmmentation overhead introduced by PDT when the

MG C/MPI version is compiled without optimization. The intmsiveness of the watching mechanism

depends on the number of memory regions (of arbitrary sizes) watched. In the common case where only

a few (less than 10) memory regions have to be watched, performance is degraded by upto a factor of
three. This is generally still acceptable in a debugging session.

Results The performance of the C/MPI and HPF/PST versions are compared in Table 3. The C/MPI
version is faster because all communication is concentrated into one MPI message exchange, whereas

in the HPF/PST version communication is dispersed, reflecting the stmcture of the sequential code.

Development Effort The parallelization and optimization of the MPI version of MG took a student
eleven weeks, in which the code was redesigned to overlap calculation and computation, and rewritten

in C with explicit message passing.

Given the existing NAS MG F77 sequential version, and the fact that an HPF/PST implementation
retains the global name space, it is a fairly simple task to implement a straightforward parallel version

using the simple (*, BLOCK, BLOCK) data distribution. In addition, each distributed grid in the
V-cycle, from fine to coarse and back, requires a separate work space, requiring the definition of a

DYNAMIC mapping to access the appropriate grid at any given level. The definition of this mapping is
already the most difficult aspect of the 'naive' parallelization.

The additional optimizations to the HPF/PST code were few in number and quickly implemented.
The main obstacle is the need to understand how to optimize the code—a task which requires some

knowledge of the behavior of the PST compiler. This effort took considerably more time than the 'naive'

parallelization, but still an order of magnitude !ess time than the C/MPI implementation.

CSCS TR-95-03 13

4. CONCLUSIONS

#PEs

64

128

Problem

64
128
256
64
128
256

HPF/PST
T(i = 1)

1.72

3.78

14.95

3.06

4.92

12.81

T<^=^
0.20

1.00

6.45

0.15

0.66

4.11

MFlop/s

159
249
311
208
377
488

C/MPI
MFlop/s

405
718
856
586
1197
1568

Table 3: Performance ofMG when parallelized with PST on 64 and 128 processor Cenju-3 configura-
tions. Execution times of the first and second V-cycle are shown andMFlopsfor the second cycle (when

the iteration enters steady state, and PST-generated communication patterns are reused) are compared

to what is achieved with a manually parallelized C code.

400

in
a:
0

200

No Instrumentation

Instrumentation, 0 regions

Instrumentation, 10 regions

Instrumentation, 100 regions

4 8 16 32

Cenju-3 Configuration

128

FigureS: Performance in MFLOPs of the NASMG kernel (n = l2S)parallelized manually with C/MPI,

compiled without optimization and running in parallel on Cenju-3 configurations of different sizes.

Several levels of instrumentation are considered (with simultaneous watching of 0, 10 and 100 memory

regions, respectively) and compared to non-instrumented code.

4 Conclusions

We have considered a variety of scientific fields and have isolated several algorithmic classes which recur

in numerous applications. From these classes we have presented three example codes—the BiCGSTAB

iterative linear solver from SPARSKIT, a Lanczos eigensolver in part from LAPACK, and the NAS
Multigrid kernel—whose parallelization has been realized with the help of the Annai tool environment.

We have analyzed aspects of the parallelization and have discussed the effort required in each case. The

results are favorable in terms of development effort and overall performance.

Several important features of Annai have been identified, such as the need for a BLOCK-GENERA.L

distribution in PST to supplement the existing HPF BLOCK distribution. The tracing and analysis
facilities of PMA were key to determining and alleviating performance bottlenecks in all of the imple-

14 CSCS TR-95-03

REFERENCES

mentations discussed. Finally, parallelization would not have been possible in such short time without

the parallel debugging facilities of PDT.
From the results presented, we have shown a viable approach to the parallelization of applications for

distributed memory machines, namely the use of an advanced tool environment and the parallelization

of kernels into libraries commonly used in a wide range of applications. We strongly believe that this
approach to parallelization allows quicker and easier exploitation of high performance architectures,

realizing applications which produce the leading-edge results which developers seek.

Acknowledgements We would like to thank all the students of the 1993 and 1994 CSCS Summer

Student Internship Programs, J. Blandy, M. T. Nyeu, U. Ktihn, I. Beg, U. Krishnaswamy, E. La Cognata,

M. Meehan, P. Przybyszewski, T. Schr0der, T. Toupin, and Wu Ling, who helped parallelize codes

and develop parts of the tool environment. In addition, we are indebted to collaborators J. Nievergelt,

M. Miiller, C. Wirth, J. Korvink of the ETH Zurich, and L. Colombo of the University di Milano, for

their useful input and constructive comments which influenced the design of the algorithmic libraries.

References

[ABD+92]

[ABJ+91]

[BBC+94]

[BBDS92]

[BBN94]

[BLM+94]

[CDE+94]

[CDPW94]

E. Anderson, Z. Bai, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling,

A. McKenny, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM Press,

Philadelphia, PA, USA, 1992.

D. Alien, R. Bowker, K. Jourdenais, J. Simons, S. Sistare, and R. Title. The Prism

programming environment. In Proc. Supercomputer Debugging Workshop '91, pages 1-7,

Albuquerque, NM, USA, November 1991.

R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donate, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. van der Vorst. TEMPLATES for the Solution of Linear Systems:

Building Blocks for Iterative Methods. SIAM Publications, 1994.

D. H. Bailey, E. Barszcz, L. Dagum, and H. D. Simon. NAS Parallel Benchmarks Results.

Technical Report RNR-92-002, NASA Ames Research Center, CA, Dec 1992.

BBN. TotalView User's Guide. BBN Systems and Technologies, Apr. 1994.

I. Beg, W. Ling, A. Muller, P. Przybyszewski, R. Riihl, and W. Sawyer. PLUMP: Parallel

Library for Unstructured Mesh Problems. In Proceedings of the IFIP WG 10.3 Interna-

tional Workshop and Summer School on Parallel Algorithms for Irregularly Structured

Problems (Geneva, Switzerland). Kluwer Academic Publishers, Aug. 1994.

C. Cldmengon, K. M. Decker, A. Endo, J. Fritscher, G. Jost, N. Masuda, A. Miiller,

R. Ruhl, W. Sawyer, E. de Sturler, B. J. N. Wylie, and F. Zimmermann. Application-

Driven Development of an Integrated Tool Environment for Distributed Memory Parallel

Processors. In V. K. Prasanna, V. P. Bhatkar, L. M. Patnaik, and S. K. Tripathi, editors,

Proceedings of the First International Workshop on Parallel Processing (Bangalore, India,

December 27-30), pages 110-1 16. Tata McGraw-Hill, New Delhi, India, 1994. ISBN 0-

07-462332-X.

J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. A User's Guide to BLACS vl.O.

World-Wide Web documentation

<http://www.netlib.org/scalapack/index.html>, 1994.

CSCS TR-95-03 15

REFERENCES

[CEF+95] C. Cl^mengon, A. Endo, J. Fritscher, A. Muller, R. Ruhl, and B. J. N. Wy lie. The

"Annai" Environment for Portable Distributed Parallel Programming. In H. El-Rewini

and B. D. Shriver, editors, Proceedings of the 28th Hawaii International Conference on

System Sciences, Volume II (Maui, Hawaii, USA, 3-6 January, 1995), pages 242-251.

IEEE Computer Society Press, Jan. 1995. ISBN 0-8186-6935-7.

[CFR94] C. Cldmengon, J. Fritscher, and R. Ruhl. Execution Control, Visualization and Replay of

Massively Parallel Programs with Annai's Debugging Tool. Technical Report CSCS-TR-

94-09, CSCS, CH-6928 Manno, Switzerland, 1994.

[CZM94] B. Chapman, H. Zima, and P. Mehrotra. Extending HPF for Advanced Data-Parallel

Applications. IEEE Parallel & Distributed Technology, 2(3):59-70, Fall 1994.

[DS87] J. J. Dongarra and D. C. Sorensen. A Fully Parallel Algorithm for the Symmetric Eigen-

value Problem. Scientific and Statistical Computing, 8(2): 139-154, Mar. 1987.

[DW95] J. J. Dongarra and R. C. Whaley. A User's Guide to BLACS vl.O. DRAFT LAPACK

Working Note, Oak Ridge National Laboratory, TN, USA, 1995.

[DWMN94] S. Doi, T. Washio, K. Muramatsu, and T. Nakata. Implementing a CFD Solver on Cenju-3

Parallel Computer. In Preprints of Parallel CFD '94 (Kyoto Institute of Technology, Japan,

May 1994), pages 31-36, May 1994.

[FHM+ 94] P. Rukiger, E. Heeb, N. Masuda, W. B. Sawyer, C. Stem, and F. Zimmemiann. Paralleliza-

tion of Scientific Applications on Cenju-3. CrosSCutS (CSCS Newsletter), 3(3): 1,3-5, Dec.

1994.

[GL89] G. H. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins, 2nd edition, 1989.

[HPF93] HPFF (High Performance Fortran Fomm). High Performance Fortran Language Specifi-
cation: Version 1.0. Scientific Programming, 2(1 &2), 1993.

[Int93] Intel Corporation. Paragon Software Tools User's Guide. Intel SSD, 1993.

[Kor93] J. Korvink. An Implementation of the Adaptive Finite Element Method for Semiconductor

Sensor Simulation. PhD thesis, ETH-Zurich, Nov. 1993. Verlag der Fachvereine Zurich,

Bericht Nr. 8.

[L. 94] L. Colombo. Tight-Binding Molecular Dynamics: Present Status and Perspectives. In

Proceedings of the 6th International Conference on Physics Computing (PC'94), pages

231-238. European Physical Society, Geneva, Switzerland, Aug. 1994.

[MPI94] MPIF (Message Passing Interface Fomm). MPI: A Message-Passing Interface Standard.

International Journal of Supercomputer Applications, 8(3&4): 157-416,1994.

[MR94] A. Muller and R. Ruhl. Extending High Performance Fortran for the Support of Un-

stmctured Computations. Technical Report CSCS-TR-94-08, CSCS, CH-6928 Manno,

Switzerland, 1994. accepted for publication in ACM International Conference on Super-

computing, July 1995, Barcelona, Spain.

[PR94] C. Pommerell and R. Riihl. Migration of Vectorized Iterative Solvers to Distributed

Memory Architectures. In Colorado Conference on Iterative Methods (Breckenridge, CO,

USA, April 1994), 1994. Preliminary proceedings, accepted for publication in SIAM J.
Sci. Comput.

16 CSCS TR-95-03

REFERENCES

[Ruh92] R. Ruhl. A Parallelizing Compiler for Distributed-Memory Parallel Processors. PhD

thesis, ETH-Zurich, 1992. Published by Hartung-Gorre Verlag, Konstanz, Germany.

[Saa90] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computation. Technical Report
CSRD Report no. 1029, University of Illinois, IL, USA, Aug. 1990.

[Seh89] N. S. Sehmi. Large Order Structural Eigenanalysis Techniques. Ellis Horwood Ltd., 1st

edition, 1989.

[Sim84] H. D. Simon. The Lanczos Algorithm With Partial Reorthogonalization. Mathematics of

Computation, 42(165): 115-142, 1984.

[SKSL94] W. Sawyer, G. Kreiss, D. Sorensen, and J. Lambers. Amoldi Method Applied to Burgers'

Equation. Technical Report CSCS-TR-94-04, CSCS, CH-6928 Manno, Switzerland, May

1994.

[SMC90] J. Saltz, R. Mirchandaney, and K. Crowley. Run-time parallelization and scheduling of

loops. Journal of Parallel and Distributed Computing, April 1990.

[vdV92] H. A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for
the Solution of Nonsymmetric Linear Systems. SIAMJ. Sci. Stat. Comput., 13(2): 631-644,

Mar. 1992.

[WE94] B. J. N. Wylie and A. Endo. Design and Realization of the Anna! Integrated Parallel

Programming Environment Performance Monitor and Analyzer. Technical Report CSCS-

TR-94-07, CSCS, CH-6928 Manno, Switzerland, Aug.1994.

[WLG93] R. Wahbe, S. Lucco, and S. L. Graham. Practical data breakpoints: Design and imple-

mentation. SIGPLAN Notices, 28(6):1-12, June 1993.

CSCS TR-95-03 17

