
Swiss Center for
Scientific Computing

Centre Svizzero di
Calcolo Scientifico

Tools-supported

and

of the NAS

C. ClemenQon

A. Endo

N. Masuda

W. Sawyer

K. M. Decker

J. Fritscher

A. Miiller
B. J. N. Wylie

V. R. Deshpande

P. A. R. Lorenzo

R. Riihl
F. Zimmermann

vsswsss;

:t^;J:;^
^S^^^w^w^^^':^^:!'\"::. ::<'^: :j '•::.'1. ':.

jg^j;.^^^

Ill

TR-96-02 March 1996

OTHER PUBLICATIONS BY CSCS/SCSC

Annual Report:

CrosSCutS (triannually):
yearly review of activities and projects

newsletter featuring announcements relevant to our users as

well as research highlights in the field of high-performance

computing

Speedup Journal (biannually): proceedings of the SPEEDUP Workshops on Vector and

Parallel Computing, published on behalf of the SPEEDUP

Society
User's Guide: manual to hardware and software at CSCS/SCSC

To receive one or more of these publications, please send your full name and complete address

to:

Library

cscs/scsc
via Cantonale

CH-6928 Manno

Switzerland

Fax: +41 (91) 610 8282

E-mail: library@cscs.ch

Technical Reports are also available from:

http://www.cscs .ch/Official/Publications.html

A list of former IPS Research Reports is available from:

http://www.cscs .ch/Official/IPSreports.html

Tools-supported

and
of NAS Parallel

C. Clemen^on1

A. Endo2

N. Masuda2

W. Sawyer1

K. M. Decker1

J. Fritscher1

A. Miiller1
B. J. N. Wylie1

TR-96-02, March 1996

V. R. Deshpande1

P. A. R. Lorenzo1

R. Riihl1

F. Zimmermann2

Abstract. High Performance Fortran (HPF) compilers and communication libraries

with the standardized Message Passing Interface (MPI) are becoming widely avail-
able, easing the development of portable parallel applications. The recently de-

veloped Annai tool environment supports programming, debugging and tuning of

both HPF- and MPI-based applications. Considering code development time to be

as important as final performance, we address how sequential versions of the familiar

NAS Parallel Benchmark kernels can be expediently parallelized with appropriate

tool support. While automatic parallelization of scientific applications written in
traditional sequential languages remains largely impractical, Annai provides users

with high-level language extensions and integrated program engineering support

tools. Respectable performance and good scalability in most cases are obtained

with this straightforward parallelization strategy on the NEC Cenju-3 distributed-

memory parallel processor, even without recourse to platform-specific optimizations

or major program transformations.

Keywords. Application Parallelization Strategies, Parallel Program Engineering Tools, HPF

and MPI Comparison, NAS Parallel Benchmarks

1 Swiss Center for Scientific Computing (CSCS/SCSC)
2 NEC European Supercomputer Systems, Swiss Branch

Via Cantonale, CH-6928 Manno, Switzerland

decker@cscs.ch

CSCS/SCSC TECHNICAL REPORT

C. CLEMENQON ET AL.

Contents

1 Introduction 3

2 Tool support for data-parallel and message-passing program engineer-

ing 4

3 The NAS parallel benchmarks 5
3.1 Embarrassingly Parallel (EP) kernel 8

3.2 MultiGrid (MG) kernel 9

3.3 Conjugate Gradient (CG) kernel 19

3.4 Fourier Transform (FT) kernel 20

3.5 Integer Sort (IS) kernel 22

4 Summary 26

List of Figures

1 3D visualization of NAS-EP Gaussian distributions 11

2 Visualization of the evolution of the NAS-MG residual 11

3 BLOCK_GENERAL distribution of NAS-CG kernel HPF/PST data structure . 11
4 HPF — Embarrassingly Parallel (EP). 12

5 MPI — Embarrassingly Parallel (EP). 13

6 Execution time profiles of NPB Class B runs on 64 Cenju-3 processors ... 14

7 Trace of the NAS-MG kernel HPF/PST version 15

8 Execution traces for HPF/PST and MPI NAS-IS code segments 15

9 Conjugate gradient and power method (CG program). 16

10 Matrix-vector multiplication in NAS-CG 17

11 Evolution of the NAS-FT kernel solution and its Fourier transform 18

12 Relative performance of the NAS kernels on Cenju-3 24

List of Tables

1 Performance of the NAS kernels on Cenju-3 25

CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

1 Introduction

Expedient exploitation of distributed computer systems, in a manner which ensures appli-

cation developer s investments, requires appropriate consideration of the parallelization

effort and desired portability. Standard specifications have recently emerged which ad-

dress these considerations for the two most common parallel programming paradigms:

'data-parallel' programming with High Performance Fortran (HPF) and explicit use of

Message Passing Interface (MPI) communicaUon primitives. While MPI implementations

and HPF compilers are currently available, tools supporting portable parallel program-

ming have not yet adequately addressed the development issues of redesigning algorithms,

optimizing data distributions, using optimized libraries, and re-engineering critical sec-

tions. An effective parallel debugger must provide convenient facilities for interacting with

programs distributed on multiple processors, such as insightful global views of distributed

data structures. Performance analysis tools similarly need to transparently manage pro-

gram execution information, as users search for critical regions of inefficient computation,

communication and load distribution, which can then be targetted for further detailed

investigation and tuning.

The Annai environment and compouent tools for HPF and MPI support the par-

allelization of sequential applications as a step-wise refinement ranging from straightfor-

ward data-parallel to hand-tuned asyuchronous rnessage-passing programs. Using our

HPF compilation system, we can exploit the virtues of the global name space provided

by HPF and the optimized communication routines and widespread availability of MPI

for a wide range of applications.

The benchmarks developed for the Numerical Aerodynamic Simulation (NAS) Pro-

gram are especially designed to evaluate and compare the performance of parallel comput-

ers 1]. While much. time and effort has been invested by computer vendors to attain the

highest possible computer performance on specific systems, little consideration has been

paid to the parallelization effort required by typical programmers — a significant issue in

the development of real high-performance applications. In contrast to other work on the

NAS Parallel Benchmarks (NPB), we regard them as representative of applications for

which portable parallel versions with scalable performance are desired. As such, the ex-

isting Fortran sequential NPB implementations are suitable candidates to be parallelized

in HPF and MPI using an expedient tools-supported approach, where development time

is considered as important as optimization.

Section 2 describes the Annai tool environment support for the parallelization of

applications like the NAS kernels. The parallelization of the individual NAS kernels with

the help of the tools is then described in section 3, and performance results are presented.

Finally, our results are summarized in section 4.

TR-96-02, MARCH 1996

C. CLEMENQON ET AL.

2 Tool support for data-parallel and message-passing

program engineering

High Performance Fortran [2] and the Message Passing Interface [3] are proposed stan-

dards for two paradigms for distributed memory parallel computing: data-parallel and

message-passing. Message-passing programming is generally tedious and error-prone be-

cause data must be distributed explicitly and all communication primitives have to be

manually inserted. Local data is referenced through local indices, which may have a

complex relationship to the global array indices in the sequential program. Data-parallel

languages retain the global name space of the sequential program and compiler direc-

tives specify data distribution, dependencies, etc. The compiler parallelizes loops which

operate on distributed data and generates communication primitives as required.

There are, however, known deficiencies in the available HPF compilers, which attempt

to automatically generate communication patterns for given loop and data distributions.

HPF-implemented applications have typically been an order of magnitude slower than

their message-passing equivalents, and the current HPF specification makes it very diffi-

cult to express all problems in a straightforward data-parallel way. The slow progress and

disappointing performance have lead the HPF Forum to discuss extensions to the current

HPF specification [4, 5, 6], to support a larger range of applications, such as those based

on irregular meshes.

As part of the Annai tool environment 7, 8 developed within the Joint CSCS-NEC

Collaboration in Parallel Processing an HPF compilation system has been implemented

which uses MPI for underlying communication and offers the possibility to combine data-

parallel with message-passing programming. An existing HPF compiler from NEC is

augmented by the Parallelization Support Tool (PST) [9], which realizes extensions [4]
to the existing HPF specification in order to ease program development and code gener-

ation, and to improve HPF performance. The trade-off between performance and ease

of programming can be avoided by utilizing the virtues of both — the HPF global name

space together with optimized MPI communication routines.

Like HPF, PST provides the user with a global name space. In contrast to HPF,

however, PST does not provide a single thread of execution, but is based on the SP1VED

(Single Program Multiple Data) paradigm: by default, all statements are executed by all

processors. Where users want only selected processors to execute parts of the code, they

must specify that explicitly by using loop distribution, directives, or by executing code

depending on the processor identifier. One advantage of the SPMD model over the single-

thread model is that routines of the underlying message-passing library can be called. PST

uses MPI communicators to avoid that user-inserted message-passing primitives interfere

with compiler-generated comm.umcation. Also variables are by default replicated and

private; only distributed arrays are part of the global name space, and their consistency

is enforced across processors.

Arrays can be distributed using all regular HPF distribution and alignment directives.

In addition, PST provides user-defined data distributions. BLOCK-GENERAL, a generaliza-

tion of the BLOCK distribution, allows variable block lengths, and permits gaps: i.e., parts

of the array may remain unmapped and are not accessible. Arrays can also be distributed

4 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

via a mapping array, or with integer valued functions which map global indices to local

indices and owning processor.

The HPF/PST compilation system is only one component of Annai. The integrated

environmeut also provides debugging, performance mom.-toring and analysis tools with

complete source reference, for comprehensive application development support.

The Parallel Debugging Tool (PDT) [10] is a conventional source-level symbolic de-

bugger, enhanced to support different levels of abstraction. At the data-parallel level,

PDT provides a Distributed Data Visualizer to graphically represent large, distributed

data-sets (both views of the data values and the data distribution itself), and control- and

data-breakpoints with global break conditions. At the message-passing level, PDT assists

programmers with deadlock and race detection, and deterministic execution replay.

The Performance Monitor and Analyzer (PMA) 11 manages program instrumen-

tation and subsequent execution information analysis. lustrumentatlon inserted by the

compilation system, or incorporated within the communication library, can be interac-

lively configured to generate summary profiles or detailed execution traces. Users may

also specify additional information about their application or select regions for different

instrument ation.

Statistics can be accumulated and summarized during program execution, for interac-

tive browsing with the Execution Statistics Display. Critical regions of computation and

communication can be identified from such profiles, along with memory utilization and

the balance among processors. The time-varying behavior of selected parts of a program

is captured in an execution trace from every processor. When visualized and browsed

with the Evolution Time-line Display, inter-processor dependencies and communication

intensive regions can be examined in detail.

The primary hardware platform for the project is the NEC Cenju-3, equipped with

128 VR4400 RISC processors providing a peak performance of 6.4 GFlops (50 MFlops

per node) where each processing element (PE) has its own 64 MByte local memory. In

addition to 32 kByte on-chip primary cache, all processors have a secondary cache of

1 MByte. The processing elements of the NEC Cenju-3 are connected by a high-speed

multi-stage interconnection network which is built of 4 x 4 crossbar switches. The system

is connected to a front-end NEC EWS4800 workstation which also handles the I/O.

3 The NAS parallel benchmarks

The aim. of the benchmarks which have been issued by the NAS Program, is to measure

the actual performance of highly parallel computer systems and to compare them with

conventional supercomputers. The original benchmark suite (NPB 1.0) is defined [1, 12]

in a "pencil and paper" fashion, i.e., the choice of data structures, algorithms, processor

allocation and memory usage are left up to the implementor of the benchmark (as far as

the specification allows). Of course, for a given set of initial data there must exist a unique

solution. Although originally related to computational fluid dynamics, the benchmarks

are also representative of other parallel applications. The biannually published NPB

report results [13] are well accepted as a comprehensive overview about the comparative

performance of parallel machines.

TR-96-02, MARCH 1996 5

C. CLEMENQON ET AL.

The NAS Parallel Benchmarks 1.0 consist of eight codes, of which the five kernels

are the subject of this study: Embarrassingly Parallel (EP), Multigrid (MG), Conjugate
Gradient (CG), three-dimensional Fast Fourier Transform (FT), and Integer Sort (IS).

The other three, the LU-solver (LU), Penta-diagoual Solver (SP), and Block Tridiagonal

Solver (BT) are simulated computational fluid dynamics (CFD) applications and consid-

erably more complex. It would have required a bigger programming effort to consider

them here. Various problem classes — a "Sample Class", "Class A" and "Class B" (in

NPB 2.0 also "Class C") — are defined corresponding to the different sizes of the principal

arrays and the estimated number of operations.

EP: In the Embarrassingly Parallel kernel pairs of uniform pseudo-random numbers are

generated and transformed into two-dimensional Gaussian deviates. The number

of Gaussian pairs in successive square annul! are tabulated. The kernel belongs

to the class of parallel applications with concurrent tasks independently executed

on the individual processors and with little or no interprocessor communication

involved. This way, NAS-EP provides an estimate of the highest achievable floating

point performance of a given platform without significant communication. The

parallelization effort for both, the data parallel and the message-passing approach,

is minimal.

]VIG: The Multigrid kernel calculates an approximate solution to the discrete Poisson

problem V u = v using four iterations of the V-cycle multigrid algorithm on a nxnxn

grid with periodic boundary conditions. The four most important routines are: the

residual projection, the smoother, the trilinear interpolation of the correction and

the residual calculation. The communication is highly structured and goes through

a fixed sequence of regular patterns, but the original arrays do not easily fit into

the standard HPF distributions.

CG: Using the inverse power method aud the iterative conjugate gradient algorithrn, the

NAS-CG kernel fiuds an estimate of the smallest eigenvalue of a sparse, symmetric,

positive definite matrix with a random pattern of non-zeros. The key operation is

a sparse matrix-vector multiplication which employs irregular communication pat-

terns that are typical for unstructured grid computations. Data locality and par-

titioning are major concerns for an efficient parallel implementation with balanced

processor load and low communication overhead.

FT: The three-dimensional complex Fast Fourier Transform is applied to solve the heat

equation 9u/9t = crV u. Fourier transforms are, e.g., essential for many spectral

calculations. The data in a parallel Fourier transform on a d-dimensional array

is most easily distributed block-wise according to the rf-direction. Multiple one-

dimensional FFTs are then computed without interprocessor communication for

the first d — 1 dimensions. An array transposition with respect to the first and

last dimension must be performed, before the final set of one-dimensional FFTs

can be calculated locally again. The efficiency of a parallel implementation relies

on the performance of the transposition, where each processor in a global all-to-all

communica'tion phase exchanges data with every other processor.

6 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

IS: The Integer Sort kernel determines the rankings of N keys in the range [0, Bmax -1].

It is an important operation, e.g., in many "particle method" codes. The keys are

equally (block-wise) distributed. Besides communication performance, the NAS-IS

kernel is a test for integer computation.

While a number of implementations based on various message-passing libraries have

been presented (for a list of references see [12]), data-parallel versions have proven more

difficult and are only starting to appear [14, 15]. In contrast to highly optimized imple-

mentations, we consider the NPB here as representative applications and focus on practi-

cal parallel implementations which should achieve reasonable performance and scalability

without undue parallelization effort.

The techniques used for the parallelization of the NAS kernels exploit HPF/PST and
MPI in the following ways:

• A parallel algorithm in a data-parallel style, possibly starting with an existing se-

quential implementation, is sought from the NPB specification.

• Data structures in the program are carefully analyzed to select a suitable HPF

distribution. Whenever one is not provided by the current HPF specification [2],

a PST BLOCK_GENERAL distribution — or even a user-defined mapping function or

array — is used. Alternative distributions may be investigated to determine the

most appropriate distribution.

• Within HPF/PST programs, communication may be coded explicitly in MPI, for

performance or memory reasons, using HPF/PST private subroutines which are not

analyzed for inter-processor dependencies.

• Explicitly-coded standard procedures may be substituted by optimized libraries

written in HPF/PST, Fortran or C, together with MPI.

• In MPI versions of functions developed from HPF originals, collective operations

have to be explicitly coded using MPI equivalents. Global communication is retained

for simplicity, rather than optimizing point-to-point communication and restructur-

ing to overlap computation and communication.

This general strategy meets the wish of program developers to parallelize codes step-

by-step: starting with a simple data-parallel program, then exploring the critical regions of

com.pu'fcation and communication with the appropriate tools and evaluating possibilities

for improvements (e.g., better data partitioning). Incorporation of optimized library

functions or explicitly-coded message-passing routines are further options.

Absolute maximum performance is not one of our primary goals in this study. Within

our strategy further optimizations are still possible in some cases, but due to inefficiences

in the algorithms, and inherent overheads within the HPF compilation system, they are

not necessarily expected to match the optimum performance.

We present the performance results — according to the tradition of NPB — as the

ratio of the parallel execution time to the current best execution times of the sequential

F77 code on one processor of both the Gray Y-MP and 090 13]. This evaluation allows

TR-96-02, MARCH 1996 7

C. CLEMENQON ET AL.

a comparison of the largest problem classes with an optimized sequential version . Fur-

thermore, we want to consider the performance under the aspect of scalability as well as

communication overhead.

3.1 Embarrassingly Parallel (EP) kernel

Algorithm: The Embarrassingly Parallel benchmark generates a large number of pairs

of Gaussian random deviates according to a specific scheme and tabulates the number of

pairs lying in successive square annuli. As in other NAS benchmarks, a linear congruential

random number generator with modulus m = 2 and multiplier a = 5 is used to

generate a sequence of uniformly distributed random numbers 0<rfc<l(l<fc^n):

ik = a ik-i mod m, and r^ = ^/m. Any particular integer ik of these uniformly distributed

random numbers can be calculated directly from the initial seed io with the help of the

binary algorithm for exponentiation in only 0(log(n)) steps, a useful fact for the parallel

implementation.

In a second step, pairs of random numbers (xk = 2r2fc-i—l? i/fc = Sr-zfc—l) are converted

into a set of independent Gaussian deviates (JYj, Yj) with mean zero and variance one.

Finally, the computation is verified by the comparison of a checksum and the count of

pairs (Xj, Yj) that lie in the square annulus I ^ max(\Xj\, \Yj\) < l+l with given reference
numbers for 0 < / < 9.

Parallelization: The NAS-EP code is typical for task parallelism. Since the seeds of

the random number generator can be propagated over n numbers by an efficient log(n)

method, the computation of the first two steps can be performed concurrently. In the HPF

code, the computation of the checksums and the counter is distributed over all processors,

and the partial sums and counters are finally collected (Fig. 4).For the MPI code, the outer

loop is split into parts of equal size to be computed locally on every processor. The only

communication involved is the collection of the local sums and counters on processor 0

with an MPIJleduce (Fig. 5).

Qualitative Discussion: As for all subsequent kernels we first consider the profile

provided by the PMA Execution Statistics Display (Fig. 6). The execution time of the

program components represented here does not incorporate sub-components accounting

(i.e., accumulation is exclusive).

In the Fortran MPI code, about one-third of the time is spent generating the random

numbers with the efficient Parallel Random Number Generator (PRNG), and the prepa-

ration of the Gaussian deviates (GAUSS) takes about two-thirds of the CPU time. In

the HPF code the time spent in the Fortran PRNG library is, of course, the same. The

GAUSS part, on the other hand, has a lower performance, because the HPF compiler

is passing the Fortran code through a Fortran-to-C translator to a C-compiler resulting

in a less efficient machine code. We measure a performance improvement of a factor

1.5 for the compilation with the Fortran compiler instead of the usage of the HPF com-

piler. Whereas the collection time (COLLECT) in MPI is negligible, the corresponding

lThe largest NPB problem classes generally do not fit on one Cenju-3 PE.

8 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

HPF-segment shows a considerable 5s in the Class B benchmark on 64 processors of the

Cenju-3. The contribution for the calculation of the seed (CALC-SEED) is invisible in

both versions.

In a real parallel application, one might be interested in Gaussian deviates with mean

(0.5M,0.5M) and variance (0.2M,0.2M) that might be assigned to a (BLOCK,BLOCK)
distributed array. As revealed by the PDT Distributed Data Visualizer view (Fig. 1) of

that array we get a 2-dimensional Gaussian distribution with varying bin size depending

on. M.. Here, we chose M. = 16 and M = 64, respectively. Qualitatively, we learn that

the bin size with M = 64 is too small for a smooth Gaussian distribution for the available

statistics. The debugger also supports tabulation and inspection of the actual values.

Performance Results: The communication overhead for NAS-EP is negligible, and

from 1 to 128 processors we have a completely scalable application (Fig. 12). As shown in

Table 1, we get close to the peak performance of the Cenju-3 (about 43% with the HPF

code and 61% with MPI). We consider the NAS-EP MPI and HPF performance as the

highest achievable and compare subsequent kernel performances to those results.

3.2 MultiGrid (MG) kernel

Algorithm: The V-cycle multigrid algorithm is applied to an x n X n grid to approx-

imate the solution of the discretized Poisson problem V2u = v over the unit cube with

periodic boundary conditions, with an. irregular grid-point initialization. Provided that

n is a power of 2, i.e., k = log^ n, each of the iterations consists of the two steps, the

residual evaluation (r == v — Au} and the correction with the multigrid V-cycle operator

M (u == u-\- Mfcr). Here, A denotes the trilinear finite-element discretization of the Lapla-

cian V . The V-cycle consists of four recursively applied steps, the projection, (residual

restriction), the relaxation (smoother), the interpolation (prolongation), and the residual

evaluation. The detailed description of the algorithm can be found in [16].

Parallelization: The parallelization of this benchmark arises directly from the nature of

the problem: the cubic grid is partitioned into blocks. The communication required is then

only the exchange of elements between adjacent block faces. Our parallel implementation

uses a partitioning into "matchsticks", i.e., all grid points in one dimension are on one

processor and distributed block-wise in the other two dimensions.2

Although communication overhead for NAS-MG is not negligible, it is restricted to

the exchange of planes at the PE boundaries and thus grows only as (9(n2), whereas the

calculation grows as 0{n3). The MPI version was written from scratch in C, while the

HPF/PST implementation uses the original Fortran code as basis for parallelization. In

the original code, all levels of the grid are kept in one long array and the amount of data

for each subsequent grid decreases exponentially. In order to distribute each grid level in

this long array regularly in the matchstick fashion, we employ a user-defined (bijective)

2The NPB 2.0 partitions the grid block-wise in all three directions, by successively halving the grid in
the x-, y-, and 2-directions. The resulting Fortran/MPI code is roughly 1.7 faster than our implementation

for two reasons: Fortran implementations are found to usually be 20-50% faster than C implementations

and the (BLOCK, BLOCK, BLOCK) distribution requires less communication between PEs.

TR-96-02, MARCH 1996 9

C. CLEMENQON ET AL.

mapping of each global grid index to the index of the local data element in the appropriate

grid and its owning process number. Since the mapping is only occasionally used when

accessing one pointer to the current grid level, it is not expensive to use function calls

instead of mapping arrays. The communication patterns are determined and stored in

the first iteration and inherited to the subsequent iterations.

Qualitative Discussion: Looking at profile information (Fig. 6), it is apparent that

each of the four major subroutines (RESID, PROJECT, SMOOTH, PROLONG) runs 2-10
times faster in the MPI version although the communication overhead and idle times are

comparable. This difference can be partially explained by the run-time data consistency

analysis performed by HPF/PST to generate the communication pattern for each grid

level. The four V-cycles of Class A be seen in the trace overview in Fig. 7. The first

V-cycle takes roughly 200% more time than the rest of the three because of the time

spent to generate the necessary communication patterns.

Since multigrid is an iterative process, it is of particular interest to investigate the

convergence of the solution. We can use the PDT Distributed Data Visualizer to visualize

(Fig. 2) the convergence for a two-dimensiohal slice of the residual after 1 (left) and 2

(right) iterations. A well-known feature of the multigrid approach can be observed, namely

that high frequency residual components of the residual, i.e., the initial discontinuities,

are smoothed out after a small number of iterations, leaving low frequency residuals which

will be eliminated on a coarser grid.

Performance Results: The MPI version scales well for large numbers of PEs (Fig. 12).

Although the HPF/PST version is hard to evaluate due to lack of data points3 it also

scales well for smaller problem sizes. As shown in Table 1 the MPI version attains roughly

25% of MPI NAS-EP performance and the NPB 2.0 Fortran-MPI code achieved 35%. The

HPF/PST version delivers 10% of HPF NAS-EP performance. The poorer performance

of the latter is partially explained by the need for extensive run-time data dependency

analysis to generate the communication patterns for all public routines at every grid level.

3The Class B timings for 128 PEs come from an earlier version of PST.

10 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

^.---

^
\̂<T

"<\
• "^\

~~.'v~

~~^

i'
i
y t,
s -1s f

Figure 1: 3D visualization of Gaussian distributions generated with different bin sizes in the

NAS-EP kernel, (BLOCK, BLOCK)-distributed on 64 processors.

Figure 2: Evolution of the residual in the NAS-MG kernel after 1 and 2 iterations, respectively,

for the 128x128x128 problem, (BLOCK, BLOCK)-distributed on 64 processors.

24000 48000 72000

columns

96000 120000

Figure 3: The BLOCK_GENERAL distribution of the matrix entries A in the NAS-CG kernel is

illustrated. Different colors represent PEs, while gaps (unmapped entries in the distribution)
are indicated as narrow black strips. Load balancing of the array makes the blocks and gaps

approximately equal.

TR-96-02, MARCH 1996 11

C. CLEMENQON ET AL.

Figure 4: HPF — Embarrasslngly Parallel (EP).

c

!HPF$
!HPF$
c

!HPF$

c

c

c
c

c

PROGRAM EP_HPF

PARAMETER (m=28, mk=16, mm=m-mk, nn=2**mm, nk=2**mk, nq=10)
seed and multiplier for the random generator LCG(a,2**46)
PARAMETER (a=1220703125.d0, seed=271828183.d0)

DIMENSION dsx(nn), dsy(nn), dq(nn,nq), q(nq), x(2*nk)
DISTRIBUTE dsx(BLOCK), dsy(BLOCK)
DISTRIBUTE dq(BLOCK,*)
Initialization ...

dsx(l:nn) = O.dO
dsy(l:nn) = O.dO
dq(l:nn,l:nq) = O.dO

CALL rand_init(seed, a)

INDEPENDENT
DO k = 1, nn

Skip ahead (k-i) * 2*nk random numbers
CALL rand_skip (seed, a, 2*nk*(k-i))

Compute 2*nk random numbers
CALL rand_vect (2*nk, seed, a, x)

Compute Gaussian deviates by acceptance-rejection method
and tally counts in concentric square annuli.

DO i = 1, nk
xl = 2.d0 * x(2*i-l) - l.dO
x2 = 2.d0 * x(2*i) - l.dO
tl = xl * xl + x2 * x2

IF (tl .LE. l.dO) THEN
t2 = SQRT (-2.d0 * LOG (tl) / tl)
t3 = xl * t2
t4 = x2 * t2

1 = MAX(ABS(t3),ABS(t4)) + 1
dq(k,l) = dq(k,l) + l.dO
dsx(k) = dsx(k) + t3
dsy(k) = dsy(k) + t4

END IF
ENDDO

ENDDO

DO i = 1, nq
q(i) = O.OdO
DO j = 1, nn

q(i) = q(i) + dq(j,i)
ENDDO

ENDDO
sx = O.ODO

sy = O.ODO
DO i = 1, nn

sx = sx + dsx(i)
sy = sy + dsy(i)

ENDDO

END

INIT

CALC_SEED

PRNG

GAUSS

COLLECT

12 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

Figure 5: MPI — Embarrassingly Parallel (EP).

PROGRAM EP_MPI

PARAMETER (m=28, mk=16, mm=m-mk, nn=2**mm, nk=2**mk, nq=10)
seed and multiplier for the random generator LCG(a,2**46)
PARAMETER (a=1220703125.d0, seed=271828183.d0)

DIMENSION x(2*nk)
Initialization ... INIT
CALL MPI_Init (ierr)
CALL MPI_Comm_rank (MPI_COffl_WORLD, myid, ierr)
CALL MPI_Comm_size (HPI_COHH_WORLD, numpe, ierr)

istart = nn*myid/numpe + 1
iend = nn*(myid+l)/numpe
IF (iend .GT. nn) iend = nn

sx = O.ODO

sy = O.ODO

CALL rand_init(seed, a)
Skip ahead (istart-l)*(2*nk) random numbers CALC_SEED
CALL rand_skip (seed, a, (2*nk)*(istart-l))

DO k = istart, iend

Compute 2*nk random numbers PRNG
CALL rand_vect (2*nk, seed, a, x)

Compute Gaussian
DO i = 1,

xl = 2.i

x2 = 2.i

tl = xl
IF (tl

nk
dO
dO

*

.LE

. deviates . .

* x(2*i-i) -
* x(2*i) - 1
xl + x2 * x2

l.dO) THEN

1. dO
,d0

t2 = SQRT (-2.d0 * LOG (tl) / tl)
t3 = xl * t2
t4 = x2 * t2

1 = MAX(ABS(t3),ABS(t4)) + 1
q(l) = q(l) + l.dO
sx

sy
ENDIF

ENDDO
ENDDO

Collect sums

sx

sy

CALL MPI_Reduce

+ t3
+ t4

(sx,

GAUSS

COLLECT
sx, 1, HPI_DOUBLE_PRECISION, MPI_SUM.

& 0, HPI_COMM_WORLD, ierr)
CALL MPI_Reduce (sy, sy, 1, MPI_DOUBLE_PRECISION, HPI_SUM,

& 0, HPI_COMH_WORLD, ierr)
CALL MPI_Reduce (q, q, nq, MPI_DOUBLE_PRECISION, MPI_SUM,

0, MPI_COMM_WORLD, ierr)

END

TR-96-02, MARCH 1996 13

C. CLEMENgON ET AL.

EP

MG

CG

FT

IS

HPF/PST MPI

Us-rPiockE.

(EP^HPFH

CALC_SEEO

E (Oih^)
MPI Ov"rhi-ud
MPI Idle

^]BW><!^ire»??af»^^'*»?feyi«iSl|

Avaragfr ExacuHon Tlnr on 64 Procascors
MG-HPFCtaMLB

benchmark'

RESID-

SMOOTH-*.

PROLONG <-

RESID+

e (O.h«.)
MPI Overtwwi
MPI Idla

I : :

I ; :
^-a,^fn^a»-™"ua=»n—-—

B^kj'i^JLny^.'^ ;

Avnga Execution Tim* on 64 Procacs
CG - HPF Ct*u_B

User Blocks

{OGJffFH

CG^

DAXPY *

ODOT,.

MAFt/EG +

checkauml

(Oiheri
MFI Overhead
MPI IJtc

a
I

1000 1

Tim u fi>)

Avrag* Exacutlon T)m» on 64 Proctssore
FT. HPF Classy

Avaraga Exaoutkin Tim* on M Procae;
IS-HPFCIu;a_B

6 (Oltw)
MPI DV..-I
MPI Idle

(EP_MPI:

IN n

CALC.SEED

PRNG

GAUSS

COLLECT

8ft&toilj!a

(Olher)
MPJ Ovai
MPI Idle

(CG^MPI]

CG

DAXPY *

ODOT+

MATk/EO +

check sum

E (Other)
MPI Overtiea
MPI Idlo

IN \T\

3D_R~n

1D_FFT+

TRANSPOSE+

EXPONENTIAL

CHEOKSUMj

0 10 20 30 40 50 GQ 70
Tlrno (8}

iO 100 1.1Q 12D 130

User Blocte

(ISJVfPI^

RANKING

LOCAL_CNT+

SEGT^RANK+

Gl,OB_RANK+

PART_VERl

E (Oth»r)
MPI OvBiiisarf]
MPI Idle

60 BO. 100 120

Figure 6: Execution time profiles of N'PB Class B runs on 64 processors of the NEC Cenju-3.

(Exclusive accumulation into user-defined tasks, breakdown by MPI utilization.)

14 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

Time (s) Processor ID Memory (MB)

01234567 02468 10
0.000000

1.000000

2.000000

3.000000

4.000000

jifiHSIgiiiE-^^^s^mii^
^^A'^ J>:.

'mais'
i_j44J4+4

1^.L

^r:..^^^:
;. :--c ^^t- :^v-: -.^t-- ^s*':^ ii.^

i:^-:^y:.:f-^f:^-

DTLUTJ
r::j^'^;J:rt^'^J

•T*—^< ^S^^^- rA^^-?--^;-?tr^.

^^•.r_^-:^;i:F_-:F^F-.j

igasgtBt^tei^m^&^a

r^+^y_3_3^^_^

i-iTTTTT-i

PSTMAIN start
READV

BENCHMARK

VERIFY
PSTMAINend

Time (s) Processor I D

012 3 4 5 6 7

^Nim^ld^

Time (a)

2.848000

2.860000

2.852000

2.854000

2.8S6000

2.858000

2.860000

2.862000'

2.864000'

2.866000'

2.868000'

2.870000-

Processor ID

01234 5 6 7

^

sai

Masses
s

BS
E

"->'.

e"»i

e|»a|

--sli

•l---ft'

Figure 7: Trace of the NAS-MG kernel HPF/PST version Figure 8: Execution traces from

from 8 processors: the first iteration (0.2-1.6s) is much HPF/PST (top) and MPI (bot-
longer than the other three (e.g., the second cycle 1.6- torn) code segments of the NAS-

2.3s) due to run-time data consistency analysis. IS kernel containing all-to-all key

density .exchanges on 8 processors.

TR-96-02, MARCH 1996 15

C. CLEMENQON ET AL.

Figure 9: Conjugate gradient and power method (CG program).

PROGRAM CGM

Generate n x n sparse matrix A with nnz non-zeroes stored in a, roaidx,colstr

CALL makea (n, nnz, a, rowidx, colstr, ...)

x = [1,1,..., 1]T

x(l:nn) = l.ODO

Do niter iterations of the Power Method (Timed Benchmark)

DO it == 1, niter

Solve the system Az = x by the CG method and return residual norm: resid = ||r||

CALL cgsol(n, a, ronidx, colstr, nnz, x, z, resid, nitcg, r, p, q)

Eigenvalue estimate: (, = A + l/(a; z)

zeta = lambda + 1.ODO/DDOT(n, x, z)

PRINT *, it, resid, zeta

Renormalize x: x = z/||2||
znorminv = 1.0DO/SQRT(DDOT(n, z, z))
CALL DSCALCn, znorminv, z, x)

ENDDO

END

Conjugate Gradient Method to solve Az = x

SUBROUTINE cgsol(n, a, rowidx, colstr. nnz, x, z, resid, nitcg, r, p, q)

z = 0; r = x; p = r; p = r r

z(l:im) = O.ODO

CALL DCDPY(n, x, r)

CALL DCOPYdi, r. p)

rho = DDOT(n, r, r)

Do nitcg iterations of the Conjugate Gradient Method

DO iter = 1, nitcg

Sparse matrix - vector multipUcation q = Ap

CALL matvecCn, nnz, a, ronidx, colstr, p, q)

a = p/(pTg)
alpha = rho/DDDT(n, p, q)

z = z +ap
CALL DAXPYCn, alpha, p. z)

r)

po =

rhoO

r = r

CALL
/)=r-

rho

p
= rho

— aq
DAXPYCn,
Tr

DDOT(n,

0 = P/po
beta

p= r
CALL

ENDDO

-alpha, q,

r. r)

= rho/rhoO

+ ftp
DAYPX(n, beta, r, p)

Calculate residual norm: resid = r = \\x — Az\\

CALL matvecdi, nnz, a, rowidx, colstr, z, r)

CALL DAYPXCn, -l.ODO, x, r)

resid = SQRT(DDOT(n, r, r))

END

16 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

Figure 10: Matrix-vector multiplication in NAS-CG: HPF/PST (top) and MPI.

EXTRINSIC (PST_LOCAL) SUBROUTINE matvec(n, nnz, a, rowidx, colstr,
> x, y, matmap, myid)

!PST$ SUB_SPEC PUBLIC SAVECOM

INTEGER rowidx(*), colstr(*), n, nnz, matmap(*)
DOUBLE PRECISION a(*), x(*), y(*)
INTEGER i, j, k
DOUBLE PRECISION tmp, ytmp(n)

!HPF$ DISTRIBUTE ytmp(BLOCK)
!PST$ DISTRIBUTE a(BLOCK_GENERAL(matmap))
!PST$ DISTRIBUTE rowidx(BLOCK_GENERAL(matmap))

i = matmap(myid+l) + 1

!HPF$ ALIGN 20 WITH ytmp(j)
DO 20 j = 1, n

tmp = O.OdO
DO 10 k = 1, colstr(j+l) - colstr(j)

tmp = tmp + a(i)*x(rowidx(i))
i = i + 1

10 CONTINUE
ytmp(j) = tmp

20 CONTINUE

c The only communication takes place here!!
DO 30 j = 1, n

y(j) = ytmp(j)
30 CONTINUE

END

SUBROUTINE matvec(n, nnz, a, rowidx, colstr, x, y,
> rcounts, displ, ist_p, iblock_p, iend_p)

INCLUDE 'mpi.incl'

INTEGER n, nnz, rowidx(*), colstr(*)
INTEGER rcounts(*), displ(*), ist_p, iblock_p, iend_p
DOUBLE PRECISION a(*), x(*), y(*)

INTEGER i, j, k, ierror
DOUBLE PRECISION tmp

CALL MPI_Allgatherv (x(ist_p), iblock_p, MPI_DOUBLE_PRECISION,
> x, rcounts, displ. HPI_DOUBLE_PRECISION, idoc, ierror)

i = 1
DO j = ist_p, iend_p

tmp = O.OdO
DO k = 1, colstr(j+l) - colstr(j)

tmp = tmp + a(i)*x(rowidx(i))
i = i + 1

ENDDO
y(j) = tmp

ENDDO

END

TR-96-02, MARCH 1996 17

C. CLEMENgON ET AL.

Solution FFT

^./>T

^'<

.-'

p°°'

Figure 11: Evolution of the solution and its Fourier transform in the NAS-FT kernel for t == 0

(top), t = 3 (center), and t = 6 (bottom) as squared absolute value slices.

18 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

3.3 Conjugate Gradient (CG) kernel

Algorithm: The NAS-CG kernel uses the conjugate gradient algorithm in combina-

tion with the inverse power method to approximate the smallest eigenvalue of a sparse,

symmetric, positive definite matrix A, which is generated with a random pattern of non-

zeroes, niter iterations of the power method are employed to approximate the smallest

eigenvalue. Within each iteration nitcg iterations of the conjugate gradient method are

performed to solve the linear system Ax = z (Fig. 9). Each NAS-CG iteration consists of 3

vector updates (DAXPY), 2 scalar products (D DOT), and, additionally, one matrix-vector

multiplication (MATVEC). The method is further described in the literature [17].

Parallelization: The sparse matrix A is generated — as in. the sequential code — by

sorting elements by their column index. It is stored in the Compressed Sparse Row (CSR)

format, i.e., matrix values are stored in a, their row index in rowidx, and the pointer,

where column i starts, in colstr(i). Matrix columns are distributed block-wise over all the

processors using the BLOCK-GENERAL distribution ofHPF/PST which allows arbitrary sizes

of the local blocks and gaps (Fig. 3). In the HPF/PST implementation, each processor

keeps a full copy of all n-vectors (five of them are necessary for the conjugate gradient

method). The matrix-vector multiplication y = Ax is calculated by performing scalar

products of matrix rows and the incoming vector x, therefore the only communication

needed is for gathering updated vector portions of the resultant vector y on all processors

so that each has its own copy (Fig. 10).

Other HPF/PST versions with distributed vectors were also tested: (a) duplicating

x on all processors or (b) only the needed segments of x on the requesting processors

before calculating the proper matrix-vector multiplication. In the latter time is saved

in calculating the vector updates but lost when collecting partial sums in the scalar

products (DDOT). Although the MPI implementation of this method turned out to be
faster (Fig. 10), in the HPF/PST code the benefit of having distributed vectors is lower,

i.e., the parallel scalar product using an optimized Fortran BLAS routine is faster than

with the corresponding HPF/PST code. Furthermore, since the NAS-CG problem under

investigation is fairly dense, the cost of having local n-vectors is not appreciable when

compared to the matrix-vector multiplication. The execution time for MATVEC is about

5-10% higher with distributed vectors; this applies for both cases, (a) and (b). Thus

for the HPF/PST code, the lack of data locality favors the implementation of global

communication and the duplication of the vectors.

Much. of the sequential program has been rewritten to reference the data structure

with local indices in the MPI version. We can take advantage of the MPIJVllgatherv

global communication routine to gather the vector x.

Qualitative Discussion: The execution profile (Fig. 6) reveals that more than 90%

of the time is spent for the matrix-vector multiplication (MATVEC), and therein most

(HPF/PST 40%, MPI 70%) for M Pl Idle and M Pl Overhead which are associated with
communication. Time spent for the other vector operations DAXPY and D DOT and com-

putation of the checksum CHECKSUM is negligible, explaining the previously mentioned

small performance differences between the duplicated or distributed vector versions.

TR-96-02, MARCH 1996 19

C. CLEMENQON ET AL.

Performance Results: As expected from the discussion above, the performance com-

pletely depends on the efficiency of the parallel implementation of the sparse matrix-vector

multiplication. The absolute performance of the MPI and HPF/PST versions is low (Ta-

ble 1), and the scalability of the algorithm is reasonable for small numbers of PEs, but

flattens out for large numbers (Fig. 12). This deficiency can be partially attributed to

the irregular communication pattern in that problem. The results for the MPI imple-

mentation might be improved by restructuring the matrix-vector multiplication such that

computation and communication are overlapped. Due to the lack of data locality, another

data decomposition might be more efficient for both parallel codes.

3.4 Fourier Transform (FT) kernel

Algorithm: In the NAS-FT kernel a set of 3-D fast-Fourier transforms is employed to

numerically solve the heat equation: QfU^x, t} = a V2u(a;, t). By applying a 3-dimensional

Fourier transform to each side, we get 9tu{p,t) = -4a7T2 \p\2 u{p,t~), where u{p,t) is the

spatial Fourier transform of u(x,t). The time t dependent solution in Former space is

a simple multiplication with an exponential factor: u{p,t) = exp(—4cr 7r2 \p\21) u(p,0).

The NAS-FT kernel solves the discretized version of this PDE where u{x,t) becomes a

n-i x n-2 x n3 dimensional complex array U(k,l,m,t) (for some fixed time ^). As initial

configuration U(k,l,m,0) 2nin2"3 random numbers are generated. After one forward

transform, for each step t the multiplication with the exponential factor raised to the

power of t and the backward transform must be calculated. The results are verified by

computing a certain checksum at each iteration.

Parallelization: The parallelization of the generation of pseudo-raudom numbers was

already outlined for the NAS-EP kernel. The three-dimensional array U is distributed in

the third dimension, with blocks of planes assigned to each processor. In the HPF/PST

version this results in a (*,*, BLOCK) distribution of the 3-dimensional arrays, or equiva-

lently, in MPI with slices which are ns/rip thick on each processor.

In a first step, multiple 1-dimensional FFTs can be performed locally in the first two

dimensions. Before the final set of 1-dimensional FFTs in the last dimension can be

performed, the 3-dimensional array must be transposed. This transposition implies an

all-to-all exchange of data, where each processor must send sub-arrays to every other

processor. In HPF, the transpose is supported by a library function4; with MPI we can

exchange the data with the help of the global communication function MPIJllltoall.

After multiplying the transformed array with an exponential term. raised to the power of

t the inverse Fourier transform has to be performed. To halve the communication time we

calculate the Fourier transform on the transposed field and compute the exponential factor

in accordance with the transposed field. Another optimization for computer systems with

large local memories is to compute the exponential term only once to the power t = 1

and store it into an additional array for convenience. This method was applied for larger

processor numbers with a small speed-up of about 3-4%.

4As a PST-extension to HPF, the transpose is implemented directly in MPI.

20 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

Qualitative Discussion: As seen from the profile (Fig. 6) the execution time for the

random initialization of the solution (INIT) and the computation of the checksum (CHECK-
SUM) are negligible.5 The calculation of the 3-dimensional FFT (3D-FFT) consists of data
assignments, -the separately-shown one-dimensional FFT (1D-FFT) and the the transpo-

sition (TRANSPOSE). Since for both the HPF/PST aud MPI versions the 1D-FFT is
calculated within an optimized Fortran library function, the execution time is about the

same in both cases. For Class B on 64 processors, the intrusion of the mstru.mentation

is high (about 4s) because of about 7 million calls of 1D_FFT. In HPF/PST, the trans-
position is realized with a call to a library function, whereas MPI uses a slightly faster

MPIJllltoall-based TRANSPOSE. The MPI-Overhead and MPI-Idle time in the trans-

position are roughly equal. The contribution of "other" (copying to buffers) is higher in

the HPF/PST library function. As seen from the 3D-FFT bar, the MPI code has signif-

icantly fewer data assignments, because the 1D-FFT calls operate with pointers directly

on the three-dimensional array, while in the HPF implementation the data-segments are

copied before and after to and from one-dimensional arrays.

We can easily use the PDT Distributed Data Visualizer to explain the time-evolution

of the solution. In Fig. 11, 2-dimensional slices of the solution and the Fourier transform

are displayed for t = 0, 3,6 as squared absolute values. The initial random solution, with

values scattering in the interval (0,2) flattens out after 6 time steps. The explanation can

be seen from the Fourier transform: the multiplication with the exponential factor results

in a spatial concentration in the corners, which due to period boundary conditions can

be identified as the coordinate origin.

Performance Results: Memory requirements limit the processor range to a rn.imm.um.

of 16 for Class A and 64 for Class B, respectively. Since the explicit calculation of the

exponential factor saves one three-dimensional array, the MPI program even runs ou 8

(Class A) and 32 (Class B) processors, respectively.® In the above mentioned ranges

the program is completely scalable (Fig. 12), despite the fact that the most significant

routine, the transposition, is communication intensive. The underlying all-to-all commu-

nication itself scales to large numbers of PEs in this problem, since individual PEs have

progressively less data to exchange. As revealed by Table 1, we get about 1/3 (1/5) of

the NAS-EP performance for the MPI (HPF/PST) version. The performance of our MPI

implementation is slightly better (about 25% for Class A and 10% for Class B) than the
code distributed with NPB 2.0. This is in accordance with our previous experience with

FFTPACK from NETLIB [18] compared with the original FFT.7

5The evaluation of the checksum causes a small imbalance of the processors, due to unequal distribution

of the 1024 numbers on the PEs.
As observed for larger processor numbers, storing the exponential term into an additional array yields

to a negligible speed-up of about 3-4%.

For each dimension, one copy of the FFTPACK initialization routine (CFFTI) and forward and
inverse transform of a complex periodic sequence (CFFTF, CFFTB) is modified to only accept array sizes
which are powers of two. FFTPACK (Version 4, April 1985) is by the National Center for Atmospheric
Research, Boulder, Colorado.

TR-96-02, MARCH 1996 21

C. CLEMENQON ET AL.

3.5 Integer Sort (IS) kernel

Algorithm: The NAS-IS kernel sorts an array of N keys, which we refer to as keys,

in the range [0, Bmax — 1]- The keys are sorted when (\/i : K{-\ <_ K{ ^ -K'a+i). The

benchmark requires only a ranking of the unsorted sequence, not that the keys are actually

exchanged. The fundamental algorithm used is the bucket sort, e.g., described in [19].

The proper ranking of the keys is verified in an untimed post-processing step.

Parallelization: In the parallel implementation, the keys are distributed block-wise as

described in [I], namely, into arrays keys of length App = N — (p — l)Np (on the last

processor) and Np = [N/p + 0.5J on all others. A key density array, key-den of length

B max is allocated in each processor.

A local bucket sort first determines the density of the local keys (LOCAL-CNT). In
the next step (SECT-RANK), each processor is assigned to a block of the density array

and collects the local density information from every other PE for that block. In the

MPI version, the latter is performed with a MPIJVlltoall, in the HPF/PST version,

the communication is generated automatically. In order to find the cumulative number

of global keys, the nprocs-vector containing the number of keys sent from each PE for

their given block is summed over all PEs (in the MPI version with MPI-Allreduce). This

vector then denotes the rank of the first sorted key in any sector. Subsequently each PE

calculates the global key density for its given block. The blocks of global key density

values are communicated back to every PE which then, in the final step (GLOB-RANK),

completes -the global ranking of its allotted keys. Afterwards, the ranking is partially

verified by a comparison with reference values (PART_VER). The full verification of the

proper ranking of all keys was not performed for Class A and Class B.

Qualitative discussion: From the PMA profile presented with the Execution Statistics

Display (Fig. 6) it is clear that the local bucket sort (LOCAL-CNT) and the final global
ranking (GLOB-RANK) are commmiication-free, as indicated by the lack of MPI overhead

and idle time in both the HPF/PST and MPI versions.
In the section ranking (SECT-RANK), the communication overhead and idle time for

both the MPI and HPF/PST versions are similar, reflecting the similar choice of collec-

tive communication primitives. In the MPI version, a combination of MPIJllltoall and

MPIJlllreduce primitives is used, while in the HPF/PST version the communication pat-

tern is generated at run-time during the data-dependency analysis. The difference in the

underlying communication patterns can be seen in the program execution traces in Fig. 8.

The difference between the relatively complicated implementation of MPIJllltoall (bot-

torn.) contrasts with the rather simplistic automatically generated communication from

the HPF/PST version (top) in which every PE posts a send to every other PE. It is also

apparent from the execution traces that the HPF/PST-generated all-to-all communication

is competitive with the optimized MPI primitive.

From this analysis we have good reason to believe that the parallel performance of

the two versions will be similar, however the initial version of the HPF/PST code is in.

fact still an order of magnitude slower than the MPI version and is unable to calculate

the large Class A and Class B problems sizes. This HPF/PST overhead comes from the

22 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

management of large auxiliary data structures which help determine the proper commu-

nication pattern. Some work went into a step-by-step refinement of the HPF/PST code

to optimize communication based on the above analysis techniques.

Performance Results: As anticipated from the qualitative analysis above, the perfor-

mance (Fig. 12) of the MPI and HPF/PST versions is quite similar. The scalability of
the algorithm is reasonable for small numbers of PEs, but poor for large numbers. This

reflects the fact that the amount of integer calculation is relatively small compared to the

communication overhead and collective communication used does not scale well to large

numbers of PEs. The fact that the results [13] for other machines are considerably more

scalable than these is an indication that a relatively "naive" algorithm was employed in

this case and that there was no attempt at overlapping communication and calculation.

TR-96-02, MARCH 1996 23

C. CLEMENQON ET AL.

Class A Class B

EP

MG

CG

FT

IS

16

(0 2

I.,!^1/2
1/4

1/8

16

8

8 4
I 2

I..!
^1/2

1/4

1/8

16

2

I..!^1/2
1/4

1/8

16

g 4

12
I..!^1/2

1/4

1/8

16

8

8 4
ffl 2

I.,!
s.m

1/4

1/8

Cenju-3 MPI
Cenju-3 HPF/PST

1 2 4 16 32 64 128

Cenju-3 MPI
..--*. Cenju-3 NPB2.0-MPI

Cenju-3 HPF/PST

Cray YMP

8 16 32 64 128

Cenju-3 MPI
Cenju-3 HPF/PST

o Gray YMP

1 8 16 32 64 128

Cenju-3 MPI
^.-.^. Cenju-3 NPB2.0-MPI

Cenju-3 HPF/PST

o Gray YMP

8 16 32 64 128

Cenju-3 MPI
Cenju-3 HPF/PST

o Gray YMP

1 2 4 8 16 32 64 128

Processors

4

2

1

1/2

1/4

1/8

1/16

1/32

4

2

1

1/2

1/4

1/8

1/16

1/32

4

2

1

1/2

1/4

1/8

1/16

1/32

4

2

1

1/2

1/4

1/8

1/16

1/32

4

2

1

1/2

1/4

1/8

1/16

1/32

1 8 16 32 64 128

Cenju-3 MPI
^.....^.. Cenju-3 NPB2.0-MPI

Cenju-3 HPF/PST
o Gray 090

8 16 32 64 128

Cenju-3 MPI
Cenju-3 HPF/PST

Gray C90

16 32 64 128

Cenju-3 MPI
— Cenju-3 NPB2.0-MPI

Cenju-3 HPF/PST
Gray C90

8 16 32 64 128

Cenju-3 MPI
Cenju-3 HPF/PST

Gray C90

2 4 8 16 32 64 128

Processors

Figure 12: Performance of the NAS kernels on Cenju-3 relative to Gray reference [13].

24 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

Table 1: Performance of the NAS kernels on the Cenju-3. For MG and FT, results for NPB 2.0

MPI Fortran code are also quoted in square brackets. (* in the FT-MPI code indicates explicit

calculation of the exponential factor.)

Kernel
Size

MInst.

MPI
PEs CPU time (s) MFlop/s

HPF/PST
CPU time (s) MFlop/s

EP
Class B

100900

128
64
32
16
8
4
2
1

27.4

54.8
109.6
219.1

438.3
876.7

1753.4
3506.9

3670.8
1840.8
920.5
460.3
230.1
115.0

57.5
28.8

EP
Class A
26680

128
64
32
16
8
4
2
1

6.9

13.7
27.4
54.8

109.6
219.1
438.3
876.7

3876.1
1945.5
973.2
486.7
243.4
121.7
60.8
30.4

CG
Class A

1508

128
64
32
16

15.0
14.4

19.5
24.8
35.6

100.0
103.9

76.7
60.6
42.2

FT
Class B

94053.1 (NPB2)

128
64
32

82.9
161.4

• 383.3

[93.5]
[179.5]

1133.9
582.4

•245.3

[1005.8]
[524.0]

43.5
82.4

168.5
331.5
658.5

1311.8
2619.1
5091.7

2318.3
1224.4

598.6
304.0
153.2

76.9
38.5
19.8

9.7
20.4
40.8
81.7

163.3
326.6
617.3

1234.7

43.5
53.9
67.5
96.9

155.1

182.1
349.1

2729.5
1301.4

652.4
326.5
163.3

81.6
43.2
21.6

MG
Class B

19461.6 (NPB2)

MG
Glass A

3842.3 (NPB2)

CG
Class B
54890

128
64
32
16

128
64
32
16

128
64
32
16

21.1
38.8
76.4

149.5

4.4

8.1

16.1
31.7

681.9
751.3
889.2

1056.3

-[T3^T
[25.1]
[51.3]

-[2^T
[5.3]

[10.9]

922.3
501.5
254.7
130.1

873.2
474.3
238.6
121.2

80.5
73.1
61.7
52.0

[1398.2]
[774.1]
[379.1]

[1307.5]
[721.5]
[355.9]

108.2
163.2

31.0
41.1

1936.9
2190.5
3065.1

179.8
119.2

123.9

93.4

28.3
25.1
17.9

34.6
27.9

22.3
15.5

9.7

516.1
269.3

FT
Class A

7541.4 (NPB2)

IS
Class B

3150

IS
Class A

781.2

128
64
32
16
8

128
64
32
16
8

128
64
32
16
8
4
2

5.8

11.5
22.3
42.6

*87.8

96.8
99.8

112.4
154.0
210.1

23.6
22.6
25.6
33.3
42.3
64.9

113.1

_ [7.6]
[14.5]
[28.6]
[57.5]

1294.5
655.2
337.8
176.6
*85.9

32.5
31.5
28.0
20.4
15.0

33.0
34.4
30.4
23.4
18.4
12.0

6.9

[999.0]
[520.8]
[263.0]
[131.0]

13.2
28.2
57.0

111.5

162.1
170.7
199.1

40.2
39.3
40.2
44.6
55.9
78.6

125.5

570.9
358.0
132.1
67.7

19.4
18.4
15.8

19.4
19.8
19.4
17.5
14.0
9.9

6.2

TR-96-02, MARCH 1996 25

C. CLEMENQON ET AL.

4 Summary

HPF and MPI versions of the NAS Parallel Benchmark kernels EP, MG, CG, FT, and

IS have been presented. We have demonstrated the features of the Annai integrated tool

environment which has been used extensively in the development of the parallel imple-

mentations. The possibility of step-wise parallelization from. a simple HPF data-parallel

formulation to a progressively improved hybrid data-parallel and explicit message-passing

version has been sketched through analysis techniques applied to the final HPF/PST and

MPI versions.

Parallel software development with Annai can be summarized as follows: starting

with a sequential Fortran version of the code, a 'naive' parallel version is written in HPF.

Valuable language extensions to complement the current HPF specification are provided

by the Parallelization Support Tool, such as a comprehensive set of data distributions and

support for explicit loop distribution. The Parallel Debugging Tool provides key assis-

tance during data-parallel program development, e.g., with synchronizing breakpoints and

distributed data visualization. Profiling with the Performance Monitor and Analyzer iden-

tifies the regions of the computation, where parallelization and communication overheads

are most critical, and targetted execution tracing is also provided for detailed investigation

of underlying communication bottlenecks. Since initial program versions may lack both

performance and scalability, tuning typically starts with refining data and loop distribu-

tions for improved load balance or more efficient execution. Meanwhile the tools are used

collectively for debugging, performance analysis and verification. Further optimization

may include the insertion of MPI calls into the code, replacing automatically-generated

communication primitives with explicit message-passing. Such hybrid HPF/MPI codes

also benefit from. deterministic program replay and deadlock detection facilities developed

to support explicit message-passing programming.

We have evaluated this step-wise approach using Annai, and have comp'ared the NAS

kernels written in HPF/PST against equivalent MPI implementations of the codes (in-

eluding recently published NPB 2.0, which were re-written from. scratch). The resulting

performance and scalability compare favorably, in view of the comparative ease of data-

parallel programming with respect to the explicit message-passing paradigm..

Acknowledgments: The Multigrid kernel was parallelized with the help of U. Kiihn

(Universitat Munster, Germany), and the Integer Sort keruel with the help of F. Sukup

(Technische Universitat Wien, Austria).

26 CSCS/SCSC TECHNICAL REPORT

TOOLS-SUPPORTED'HPF & MPI PARALLELIZATION OF THE NAS BENCHMARKS

References

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,

S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrish-

nan, and S. Weeratunga. NAS parallel benchmarks. Technical Report RNR-94-007,

NASA Ames Research Center, Moffett Field, CA 94035-1000, USA, March 1994.

[2] High Performance Fortran Forum. High Performance Fortran language specification:

Version 1.0. Scientific Programming, 2(1&2), 1993.

[3] Message Passing Interface Forum. MPI: A message-passing interface standard. In-

ternational Journal of Supercomputer Applications^ 8(3&4):157-416, 1994.

[4] Andreas Miiller and Roland Riihl. Extending High Performance Fortran for the

support of unstructured computations. In Proceedings of the 9th International Con-

ference on Supercomputing (ICS'95, Barcelona, Spain), pages 127-136. ACM, July
1995. ISBN: 0-89791-728-6.

[5] H. P. Zima, P. Brezany, B. M. Chapman, P. Mehrotra, and A. Schwald. Vienna

Fortran - a language specification: Version 1.1. Techuical Report ACPC/TR92-4,

Austrian Center for Parallel Computation, Vieuna, Austria, March 1992.

[6] Barbara Chapman, Hans Zima, and Piyush Mehrotra. Extending HPF for advanced

data-parallel applications. IEEE Parallel & Distributed Technology, pages 59-70,

October 1994.

[7] Christian Clemen^on, Karsten M. Decker, Vaibhav R. Deshpande, Akiyoshi Endo,

Josef Fritscher, Paulo A. R. Lorenzo, Norio Masuda, Andreas Miiller, Roland Riihl,

William Sawyer, Brian J. N. Wylie, and Frank Zimmermann. Tool-supported parallel

application, development. In Proceedings of the 15th International Phoenix Confer-

ence on Computers and Communications (Phoenix, AZ, USA), pages 294-302. IEEE

Computer Society Press, March 1996. ISBN: 0-7803-3255-5.

[8] Christian Clemen^on, Akiyoshi Endo, Josef Fritscher, Andreas Miiller, Roland Ruhl,

and Brian J. N. Wylie. The 'Annai' environment for portable distributed parallel

programming. In Hesham El-Rewini and Bruce D. Shriver, editors, Proceedings of

the 28th Hawaii International Conference on System Sciences (HICSS-S8, M.a.ui,

Hawaii, USA), Volume II, pages 242-251. IEEE Computer Society Press, January

1995. ISBN 0-8186-6935-7.

[9] Yoshiki Seo, Tsunehiko Kamachi, Kenji Suehiro, Masanori Tamura, Andreas Miiller,

and Roland Ruhl. Kemari: a portable HPF system for distributed memory parallel

machines. Technical Report CSCS-TR-95-04, Centre Svizzero di Calcolo Scientifico,

CH-6928 Manno, Switzerland, May 1995.

[10] Christian Clemen^on, Josef Fritscher, and Roland Ruhl. Visualization, execution

control and replay of massively parallel programs within Annai's debugging tool.

In Vincent Van Dongen, editor, Proceedings of the High Performance Computing

TR-96-02, MARCH 1996 27

C. CLEMENQON ET AL.

Symposium, (HPCS'95, Montreal, Canada), pages 393-404. Centre de recherche in-

formatique de Montreal, July 1995. ISBN: 2-921316-12-9.

[11] Brian J. N. Wylie and Akiyoshi Endo. The Annai/PMA Performance IMonitor and
Analyzer. In Proceedings of the Fourth International Workshop on Modeling, Anal-

ysis, and Simulation of Computer and Telecommunication Systems (M.ASCOTS'96,

San Jose, CA, USA), pages 186-191. IEEE Computer Society Press, February 1996.

ISBN: 0-8186-7235-8.

[12] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M:. Yarrow. The

NAS parallel benchmarks 2.0. Technical Report RNR-95-020, NASA Ames Research

Center, MofFett Field, CA 94035-1000, USA, December 1995.

[13] Subhash Saini and David H. Bailey. NAS parallel benchmarks results 12-95. Technical

Report RNR-95-021, NASA Ames Research Center, MofFett Field, CA 94035-1000,

USA, December 1995.

[14] Applied Parallel Research. APR releases xHPF 2.1, world's first HPF to turn in

NAS benchmark results. HPC Select News article, July 1995. Further information

available from APR, Placerville, CA, USA.

[15] Larry F. Meadows, Douglas Miles, and Mark Young. Performance results of sev-

eral High Performance Fortran benchmarks. In Proceedings of the 9th International

Parallel Processing Symposium (Santa Barbara, CA, USA), pages 516-517. IEEE

Computer Society Press, April 1995. ISBN 0-8186-7074-6.

[16] W. Hackbusch. M'ulti-Grid Methods and Applications. Springer Verlag, 1985.

[17] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.

J. Res. Nat. Bur. Stand., 49:409-436, 1952.

[18] P. N. Swarztrauber. FFTPACK (version 4). NETLIB, April 1985. National Center
for Atmospheric Research, Boulder, CO 80307, USA.

[19] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching^ vol-

ume 1. Addison-Wesley, second edition, 1973.

28 CSCS/SCSC TECHNICAL REPORT

RECENT CSCS/SCSC TECHNICAL REPORTS

1994

TR-94-04

TR-94-05

TR-94-06

TR-94-07

TR-94-08

TR-94-09

TR-94-10

TR-94-11

1995

TR-95-01

TR-95-02

TR-95-03

TR-95-04

TR-95-05

TR-95-06

TR-95-07

1996

TR-96-01

W. SAWYER, G. KREISS, D. SORBNSEN AND J. LAMBERS: Amoldi Method

Applied to Burgers' Equation. (May 1994)
E. DE STURLER: A Performance Model for Krylov Subspace Methods on

Mesh-based Parallel Computers. (May 1994)
R. GRUBER: PE2AR: Program Environments for Engineering Applications and

Research. (August 1994)
B. J. N. WYLIE AND A. ENDO: Design and Realization of the Annai

Integrated Parallel Programming Environment Performance Monitor and

Analyzer. (August 1994)
A. MULLER AND R. RUHL: Extending High Performance Fortran for the

Support of Unstructured Computations. (November 1994)

C. CLEMEN(;ON, J. FRITSCHER AND R. RUHL: Visualization, Execution

Control and Replay of Massively Parallel Programs within Annai's Debugging

Tool. (November 1994)
E. GERTEISEN: Implementation of Finite Volume Fluid Solvers into the PE2AR

Database Environment. (December 1994)

E. GERTEISEN: A Generic Data Structure for the Communication of Arbitrary

Domain Splitted M.esb. Topologies. (December 1994)

C. CLEMEN^ON, J. FRITSCHER, M. MEEHAN, AND R. RUHL: An

Implementation of Race Detection and Deterministic Replay with MPI.

(January 1995)
K. DECKER AND S. FOCARDI: Technology Overview: A Report on Data

Mining. (February 1994)
C. CLEMENQON, K. DECKER, V. DESHPANDE, A. ENDO, J. FRITSCHER, N.

MASUDA, A. MULLER, R. RUHL, W. SAWYER, B. J. N. WYLIE, AND F.

ZIMMERMANN: Tool-Supported Development of Parallel Application Kernels.

(April 1995)
Y. SEO, T. KAMACHI, K. SUEHIRO, M. TAMURA (NEC CENTRAL RESEARCH

LAB., KAWASAKI, TOKYO) AND A. MULLBR, R. RUHL (CSCS): Kemari: a

Portable HPF System for Distributed Memory Parallel Machines. (June 1995)
A. ENDO AND B. J. N. WYLIE: Annai/PMA Instrumentation Intrusion

Management of Parallel Program Profiling. (November 1995)
P. ACKERMANN AND U. MEYBR: Prototypes for Audio and Video Processing

in a Scientific Visualization Environment based on the MET++ Multimedia

Application Framework. (June 1995)
M. GUGGISBERG, I. PONTIGGIA AND U. MEYER: Parallel Fractal Image

Compression Using Iterated Function Systems. (May 1995)

W. P. PETERSEN: A General Implicit Splitting for Stabilizing Numerical
Simulations of Langevin Equations. (February 1996)

CSCS/SCSC — Via Cantonale — CH-6928 Manno — Switzerland

Tel: +41 (91) 610 8211 — Fax: +41 (91) 610 8282

CSCS/SCSC — ETH Zentrum, RZ — CH-8092 Zurich — Switzerland

Tel: +41 (1) 632 5574 — Fax: +41 (1) 632 1104

CSCS/SCSC WWW Server: http://www.cscs.ch/

