April 2012

Evaluation of the New Cray Sonexion 1300

Hussein N. El-Harake and Thomas Schoenemeyer
Swiss National Supercomputing Centre (CSCS), Lugano, Switzerland
hussein@cscs.ch, schoenemeyer@cscs.ch

Abstract: During SC11 Cray announced a new
innovative HPC data storage product named
Cray Sonexion. CSCS installed an early
Sonexion system in December 2011; this
system is connected to a Cray XE6 test and
development machine. The purpose of this
study is to evaluate the mentioned product,
covering installation, configuration and tuning
including the Lustre file-system and integrating
it with the CRAY XE6. We describe the
hardware, infrastructure, software stack,
Lustre filesystem and benchmarks. IOR,
10zone, mdtest and obdfilter_survey were used
for benchmarking. By way of comparison the
Sonexion storage was also connected to a small
X86-64 cluster. The Cray XE6 (Gele) has four
compute blades (AMD Interlagos) and four
service blades while the X86 cluster has four
nodes, two are based on Intel Westmere and
two on AMD Interlagos.

1 Introduction

Scaling of storage to sustain the performance of
HPC applications on the next-generation
platforms will be a significant challenge. Such
platforms are capable of delivering immense
amounts of data; computing should have access
to adequate I/0 that is capable of delivering
fast access to HPC file-systems with low latency
and high bandwidth.

The Sonexion 1300 Data Storage is the first
generation of the Cray Sonexion family. It is a
complete high performance, reliable and
scalable HPC solution. Sonexion benefits from
Lustre integration to scale at any level. Cray
delivers different layouts for scaling
requirements; it could be as small as one SSU

(Scalable Storage Unit) all the way to a total of
180 SSU units. The Metadata Management Unit
(MMU) consists of two 1/0 servers and a 2U24
(2 Units 24 2.5” Drives) JBOD. The JBOD has 22
drives for MDS and MGS raids and 2 100GB
SSDs for the metadata journal. Aggregating
MMUs is possible; up to three MMUs could be
aggregated as one system.

Cray Sonexion 1300 SSU

From the Cray Sonexion datasheet [1], a
standalone 1300 should be able to deliver
3GB/s using IOR, in read and write throughput.
The system should scale linearly, so a small
configuration mode with 3SSUs should deliver
9GB/s [1]. CSCS installed a single SSU system
and went through different benchmark
scenarios showing results and comparing it to
what Cray announced.

2 Benchmark Tools

Obdfilter_survey comes with Lustre [2]; it
measures the performance of one or more
OSTs directly on the OSS node or alternately
over the network from Lustre clients.

IOR [3] is a powerful open source benchmark,
specifically designed to benchmark parallel file
systems (GPFS, Lustre etc.). IOR offers several
interfaces such as MPI-10, HDF5 and POSIX. We
used it from the Cray compute nodes only.

1|Page

April 2012

Mdtest [4] is an MPI-coordinated metadata
benchmark test that performs open, stat and
close operations on files and directories and
reports the performance.

I0zone [5] is a trusted filesystem benchmark
tool; it measures different file operations and
has been ported to different platforms. We
used it on the Cray service nodes (LNET
routers) and the X86 cluster.

3 Methods

All experiments described below were
performed using two different versions of
Lustre clients, version 1.8.1 on the XE6 and
version 2.1.1 on the X86 cluster. Lustre 2.1.1 is
used on the Sonexion system; this version came
with the Sonexion software stack 1.0.1 release.
We used Obdfilter_survey to run the first test
from the OSSs and results showed the peak
performance. Running Obdfilter_survey is
somehow similar to running a raw test on
standard RAIDS or disks, and hence such tests
will help understanding the performance
capacity of any system. The results are
summarized in Table 1.

Lustre results from the OSSs using obdfilter-survey
Results are in MB
Tool Nodes [size MB | Threads | write read
obdfilter-survey 0s51 16384 64 1899 2300
0SS 2 1858 2301
Total 3757 4601

Table 1: Obdfilter delivered 3.66GB/s in write and 4.49GB/s in read

4 Results
4.1 Bandwidth measurements

From the results of the Obdfilter test the
system showed interesting numbers compared
to what Cray announced. More comprehensive
testing with [0zone produced equally
interesting results presented in Figures 1 and 2

|0zone 1MB Block Size
4500

4000
3500
3000

£ 2500

= 2000 —4=—Write
1500 —m—Read
1000
500

8 16 32 64 128
Threads

Figure 1: 10zone throughput on Cray Service nodes

10zene IMB Block Size

4500
4000

3000 M

£ 2500

= 2000 —p—Write
1500 —m—Read
1000

500

8 16 32 64 128
Threads

Figure 2: 10zone throughput on X86 Cluster

On the XE6 service nodes [0zone showed
slightly better performance than the X86
cluster; read performance dropped in scaling
while write reminded constant. On the X86
cluster performances showed a decrease in
both read and write performance by ~10% in
scaling up to 128 threads.

POSIX 1M Block Size
4500
4000
3500
3000
-E_ 2500
& 2000 ——Write
1500 / ——Read
1000

500 +

16 32 64 128 256 512
Threads

Figure 3: IOR throughput on Cray compute nodes POSIX 1MB

Using the POSIX interface of IOR with a 1MB
block size on the XE6 compute nodes had a
significant difference when compare to MPIIO
and POSIX with 4MB block size. As shown in
Figure 3 write performance started at 900MB
with 16 threads and increased to 1.6GB with
512 threads, while read reaches 3.3GB with

2|Page

April 2012

128 threads, while at 512 threads read
performance decreased to 2.5GB/s.

IOR POSIX 4M Block Size
4500

4000
2500 ./.*.—-\.
3000
-E,, 2500 +
= 2000 ——Write

1500: 1 ~&@—Read
1000

500

16 32 64 128 256 512
Threads

Figure 4: I0R throughput on Cray compute nodes POSIX 4MB

Figure 4 shows that a 4MB block size with the
IOR POSIX interface had significant
improvements in read and write comparing to
1IMB block size. Read numbers reached
3.8GB/s and kept good performance at 3.4GB/s
on 512 threads, while write had an average of
2.5GB/s.

IOR MPIIO 1M Block Size

4500
4000

3500
3000
2 2500

@
= 2000 —t—Write

1500 —8—Read
1000

500

16 32 64 128 256 512
Threads

Figure 5: IOR throughput on Cray compute nodes using MPIIO 1MB

In Figure 5 we see that Running IOR with
MPIIO showed somewhat different results
than the POSIX interface. In this test Lustre
stripe was set to 1 so that every thread will
create a file on every OST. The best
numbers in read were at 32 threads,
3.6GB/s while 16 threads in write reached
3.5GB/s. A gradual drop appeared while
scaling until we reached 2.6GB/s at 512
threads.

1OR MPIIO 1M Block Size

3500
3000 "——‘_._‘
—a—a g — g

1500 —m—Read

——Wiiie

16 32 64 128 256 512
Threads

Figure 6: IOR throughput on Cray compute nodes MPIIO 1MB

Figure 6 summarizes the second IOR test. We
changed the Lustre stripe to 8 (count equal to
the total number of OSTs). In this test every
run creates a single file which will be striped
across all OSTs. Write results showed
~3.5GB/s which performed better than read by
30 %, in total we had an average of 2.4GB/s in
read.

80000
70000
60000
50000

® Create File

40000 .
® Remove File

30000

ST

100K 150K 200K 250K 300K 350K 400K

Stat File

8

Figure 7: mdtest results on the XE6 compute nodes

Figure 7 shows the mdtest results, where we
measured performance of 512 tasks creating,
removing and stating files. Every task creates
its own files in one directory. From the results
we see that number of files has an impact on
results, an average of 20 KOP/s in file creation
and 17KOP/s in file deletion, while state was
not affected and performance was around
65KO0P/s.

5 Parameters and Lustre tuning
5.1 Lustre tuning:

Maximum the number of concurrent RPCs in
flight, this will improve performance of data

3|Page

April 2012

and metadata, clients only; echo 32 >
/proc/fs/lustre /osc/* /max_rpcs_in_flight

Check the status of checksums: Ictl get param
osc.*.checksums to disable checksums: echo 0 >
/proc/fs/lustre /osc/*/checksums

By default lustre has 32MB of memory cache
for every OST; this number could be increased
to 256 MB to set the new memory
parameters: Ictl set_param osc.*.max_
dirty_mb= 256

By default debug is ON that could affect
performance. It's possible to reduce the
debug level or simply turn it off completely.
To turn debug OFF: sysctl -w Inet.debug=0

5.2 I0R and I0zone parameters:

aprun -n $N -N $N IOR -a MPIIO -F -E -k -b
$NG-i3-t1M-B-v-C-o0$D

aprun -n $N -N $N IOR -a POSIX -F -E -k -b
20G -i 3 -t 1M/4M -B -v -C 0 $D

[0zone parameters: iozone -i0 -i 1 -r 1M -s
$N g -+u -c -C -+m file -t $N

5.3 mdtest parameters:

aprun -n $N -N $N mdtest -n $N -u-i3-N 1
-d $DIRECTORY

6 Conclusion

We evaluated the Sonexion system with all its
components, controlling the basic
infrastructure, software stack and running

some benchmark using different tools.

Our observations are comparable with the
specifications provided by the Cray datasheet;
even in some cases we got better sustained
performance figures

We believe that there are several steps that
could be taken to improve the system
functionality and performance. An example
is replacing SAS disks with SSDs for
Metadata, as reported above SSD drives are
currently only used for metadata journaling.

The system arrived with experimental
beta software that was unusable. The
second release of the experimental
software arrived in early 2012, which
significantly improved the usability of the
system.

With the new software stack we also noted
significant improvements in performance,
the functionally of the available tools, new
features and new documentation. The new
software stack also seated a new Lustre
release.

7 References

[1] Cray Sonexion: 1300 storage Data sheet
http://www.cray.com/Assets/PDF /products/s

onexion/Sonexion1300Datasheet.pdf

[2] Lustre HPC Parallel File System
http://wiki.lustre.org/index.php/Main Page
http://www.whamcloud.com

[3] IOR HPC File-System Benchmark tool.
http://sourceforge.net/projects/ior-sio/

[4] Mdtest MPI metadata benchmark.
http://sourceforge.net/projects/mdtest/

[5] [0zone
benchmark utility, www.iozone.org

file-system performance

4|Page

