
User Lab: Getting started at CSCS
A brief Intro to the User Lab
Webinar for the CSCS User Comminity

Victor Holanda, Software Engineer, CSCS

March 11th, 2022

DISCLAIMER

◾ The seminar is based on publicly available info CSCS provided by CSCS
– The main CSCS website – www.cscs.ch
– The user portal – https://user.cscs.ch
– The User management portal – https://account.cscs.ch
– CSCS’s GitHub public repos – https://github.com/eth-cscs
– CSCS’s advertised products – http://products.cscs.ch

◾ Slides will be available at https://www.cscs.ch/publications/tutorials/
◾ Please write on the chat if you have any questions
◾ Give us feedback, please help us improve our documentation and
presentations

User Lab: Getting started at CSCS ∣ 2

www.cscs.ch
https://user.cscs.ch
https://account.cscs.ch
https://github.com/eth-cscs
http://products.cscs.ch
https://www.cscs.ch/publications/tutorials/

Interacting with CSCS staff

How to interact with us?

Open a support ticket
support.cscs.ch

Among other things
◾ This increases the visibility of your request/question

but before that, please read the info at
◾ The user portal – https://user.cscs.ch
◾ The main CSCS website – www.cscs.ch
◾ Give us feedback, please help us improve our documentation

User Lab: Getting started at CSCS ∣ 4

support.cscs.ch
https://user.cscs.ch
www.cscs.ch

Accessing CSCS User Lab resources

CSCS User Lab resources
◾ CSCS User Lab resources are bound to projects
◾ There are three types of projects

– Production projects - aimed at the production work for a specific
scientific investigation;

– Development projects aimed to develop codes and algorithms; and
– Preparatory projects intended to allow new users to CSCS to port and

test their codes and acquire technical data to apply for a Production
Project

◾ User accounts are associated to projects
◾ Projects must have a Principal Investigator (PI)

More information at https://www.cscs.ch/user-lab/allocation-schemes/

User Lab: Getting started at CSCS ∣ 6

https://www.cscs.ch/user-lab/allocation-schemes/

Account creation
◾ To get an account, one
needs to be invited
either by CSCS admin
staff or by a PI

◾ PIs must apply for a
preparatory project to
receive the invitation to
an account at CSCS

◾ PIs invite users to their
projects using
account.cscs.ch

More information at https://www.cscs.ch/user-lab/applying-for-accounts/

User Lab: Getting started at CSCS ∣ 7

account.cscs.ch
https://www.cscs.ch/user-lab/applying-for-accounts/

Project allocation and user account creation

◾ When ready, principal
investigators apply to
production projects

◾ Production projects
undergo scientific and
technical reviews

◾ If project is approved, PIs
invite users to their
projects using
account.cscs.ch

More information at https://www.cscs.ch/user-lab/allocation-schemes/

User Lab: Getting started at CSCS ∣ 8

account.cscs.ch
https://www.cscs.ch/user-lab/allocation-schemes/

Project resource allocations
◾ Resource quotas are allocated in natural quarters, starting on April
1st, July 1st, October 1st, and January 1st
◾ Make sure to fully use your quarterly compute budget within the
corresponding time frame because unused resources are not
transferred between quarters
◾ Monitor project resource utilisation using https://account.cscs.ch/
◾ Resource utilisation are measured in compute node hours

Example for a 36’000 node-hours allocation

More information at https://user.cscs.ch/access/accounting/
User Lab: Getting started at CSCS ∣ 9

https://account.cscs.ch/
https://user.cscs.ch/access/accounting/

Accessing CSCS User Lab resources

There are four ways to access CSCS resources

◾ via SSH - discussed in this presentation
◾ Interactive SuperComputing (JupyterLab) - more information at
https://user.cscs.ch/tools/interactive/
◾ Continuous Integration Service - more information at
https://user.cscs.ch/tools/continuous/
◾ FirecREST API - more information at https://products.cscs.ch/firecrest/

User Lab: Getting started at CSCS ∣ 10

https://user.cscs.ch/tools/interactive/
https://user.cscs.ch/tools/continuous/
https://products.cscs.ch/firecrest/

Accessing CSCS resources via SSH

◾ You need to connect to ela.cscs.ch first in order to connect to internal
systems.
◾ SSH proxyjump can be used to avoid having to type ssh twice
◾ We advise to use SSH keys with strong passphrase to access our
systems

User Lab: Getting started at CSCS ∣ 11

Accessing CSCS resources via SSH - 2 step process

1º step - connect to ela
me@myworkstation:~$ ssh my_cscs_user@ela.cscs.ch

my_cscs_user@ela.cscs.ch's password:

my_cscs_user@ela:~$

2º step - connect to daint from ela
my_cscs_user@ela:~$ ssh daint

my_cscs_user@daint.cscs.ch's password:

my_cscs_user@daint:~$

User Lab: Getting started at CSCS ∣ 12

SSH proxy jump

◾ You can automate the SSH hoping by using Proxy Jump
◾ We are showing how to do it using SSH keys and strong passphrase

More information at https://user.cscs.ch/access/auth/#generating-ssh-keys
and https://tinyurl.com/2p92ueme

User Lab: Getting started at CSCS ∣ 13

https://user.cscs.ch/access/auth/#generating-ssh-keys
https://tinyurl.com/2p92ueme

SSH proxy jump to daint using ssh key and passphrase
1. workstation configuration
me@myworkstation:~$ ssh-keygen -t ed25519

me@myworkstation:~$ ssh-copy-id -i ~/.ssh/id_ed25519.pub my_cscs_user@ela.cscs.ch

me@myworkstation:~$ eval "$(ssh-agent)"

me@myworkstation:~$ ssh-add ~/.ssh/id_ed25519

Enter passphrase for /Users/me/.ssh/id_ed25519:

me@myworkstation:~$ cat ~/.ssh/config

Host ela

Hostname ela.cscs.ch

User my_cscs_user

Host daint

Hostname daint.cscs.ch

User my_cscs_user

ProxyJump ela

ForwardAgent yes

2. connect from workstation to daint
me@myworkstation:~$ ssh daint

...

[my_cscs_user@daint:~]$

User Lab: Getting started at CSCS ∣ 14

Why would you proxy jump?

◾ Access the CSCS systems directly

◾ Copy small files directly to file systems that are not mounted on ela

Example: Copy GROMACS input file to $SCRATCH on daint
me@myworkstation:~$ scp gromacs_input.tpr daint:\$SCRATCH

Enter passphrase for key '/absolute/path/to/.ssh/id_ed25519':

...

me@myworkstation:~$ ssh daint

[my_cscs_user@daint:~]$ cd $SCRATCH

[my_cscs_user@daint:/scratch/snx3000/my_cscs_user]$ ls

gromacs_input.tpr

[my_cscs_user@daint:/scratch/snx3000/my_cscs_user]$

How do we copy large files?

What file systems are mounted for the User Lab systems?

User Lab: Getting started at CSCS ∣ 15

Why would you proxy jump?

◾ Access the CSCS systems directly

◾ Copy small files directly to file systems that are not mounted on ela

Example: Copy GROMACS input file to $SCRATCH on daint
me@myworkstation:~$ scp gromacs_input.tpr daint:\$SCRATCH

Enter passphrase for key '/absolute/path/to/.ssh/id_ed25519':

...

me@myworkstation:~$ ssh daint

[my_cscs_user@daint:~]$ cd $SCRATCH

[my_cscs_user@daint:/scratch/snx3000/my_cscs_user]$ ls

gromacs_input.tpr

[my_cscs_user@daint:/scratch/snx3000/my_cscs_user]$

How do we copy large files?

What file systems are mounted for the User Lab systems?

User Lab: Getting started at CSCS ∣ 15

How do we copy large files to CSCS systems?

◾ Globus Online EndPoint
(recommended way)
◾ Globus-Url-Copy
(deprecated)
◾ One can perform parallel
copy using Globus
◾ Avoid rsync and scp

More information at https://user.cscs.ch/storage/transfer/external/

User Lab: Getting started at CSCS ∣ 16

https://user.cscs.ch/storage/transfer/external/

Mounted file systems available to the User Lab
/scratch
(Piz Daint)

/scratch
(Alps)

/users /project /store

Type Lustre Lustre GPFS GPFS GPFS
Quota 1M files 1M files 50GB/user

500K files
Maximum 50K
files/TB

Maximum 50K
files/TB

Expiration 30 days 30 days Account closure End of Project End of contract
Data Backup None None 90 days 90 days 90 days
Access Speed Fast Fast Slow Medium Slow
Capacity 8.8 PB 8.7 PB 86 TB 4.7 PB 3.6 PB
Environment
variable

$SCRATCH $SCRATCH $HOME $PROJECT —

◾ /scratch is the only adequate file system to run simulations
◾ /scratch quota only applies for submitting new jobs
◾ compute nodes mount /project and /store as read-only
◾ ela.cscs.ch nodes only mount /users
◾ /scratch inodes quota is to prevent excessive loads on the Lustre file
systems
More information at https://user.cscs.ch/storage/file_systems/

User Lab: Getting started at CSCS ∣ 17

https://user.cscs.ch/storage/file_systems/

How do we run simulations?
We use the installed workload manager, Slurm

◾ We strive to achieve a fair share of resources, so that every user can
consume their allocated resources
◾ Slurm is installed in all CSCS User Lab systems
◾ We implement a Fair Usage of Shared Resources policy

– It is not allowed to run applications on the login nodes
– Users are not supposed to submit arbitrary amounts of Slurm jobs and

commands at the same time
– Applications must be executed on compute nodes managed by

Slurm
– Jobs are scheduled based on multifactor priorities with well defined

weights

More information at https://user.cscs.ch/access/accounting/
User Lab: Getting started at CSCS ∣ 18

https://user.cscs.ch/access/accounting/

Slurm at CSCS User Lab

◾ Slurm runs jobs. A job can be a script, a program or an interactive
session
◾ Slurm allocates exclusive access to compute nodes to users for
some duration of time
◾ One has to explicitly select the project they want to consume
computing resources from
◾ We provide a Slurm jobscript generator
https://user.cscs.ch/access/running/jobscript_generator/ to help select
Slurm options compatible with Piz Daint

User Lab: Getting started at CSCS ∣ 19

https://user.cscs.ch/access/running/jobscript_generator/

Slurm at CSCS User Lab

◾ Resources are selected using different Slurm options. e.g.
constraints, partitions, and mem

– constraints are used to select different hardware - compute nodes
with (--constraint=gpu) or without GPUs (--constraint=mc)

– partitions or queues are used to select different workflows. e.g.
running simulation, debugging code, and perform pre- and
post-analyses. They are set using the --partition option.

– mem is used to select compute nodes with larger memory. e.g.
compute nodes on Piz Daint have 64GB but a selected few have 120GB

More information at https://user.cscs.ch/access/running/

User Lab: Getting started at CSCS ∣ 20

https://user.cscs.ch/access/running/

Relevant Slurm queues at CSCS

Queue name Max duration Max number of nodes Description
debug 30 minutes 4 Quick turnaround for test jobs
long 72 hours 4 Maximum 5 long jobs in total

normal 24 hours 2400(gpu)/512(mc) Standard queue for production work
prepost 30 minutes 1 High priority pre/post processing
xfer 24 hours 1 Internal data transfer queue

◾ For especial requests, contact us

More information at
https://user.cscs.ch/access/running/piz_daint/#slurm-batch-queues

User Lab: Getting started at CSCS ∣ 21

https://user.cscs.ch/access/running/piz_daint/#slurm-batch-queues

Submitting a Slurm job
Example Slurm jobscript.sh file
#!/bin/bash -l

#SBATCH --job-name="job_name" # or -J "job_name"

#SBATCH --account="project" # or -A "project"

#SBATCH --time=01:00:00 # or -t 01:00:00

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=12

#SBATCH --constraint=gpu # or -C gpu

#SBATCH --hint=nomultithread

export CRAY_CUDA_MPS=1

srun ./executable.x

submit script using sbatch
[my_cscs_user@daint:~]$ sbatch jobscript.sh

add options when submitting scripts
[my_cscs_user@daint:~]$ sbatch -plong jobscript.sh

modify options when submitting scripts
[my_cscs_user@daint:~]$ sbatch -C mc jobscript.sh

submit directly using srun
[my_cscs_user@daint:~]$ export CRAY_CUDA_MPS=1

[my_cscs_user@daint:~]$ srun -J"name" \

-A"project" -t 01:00:00 --nodes=1 \

--ntasks-per-node=12 -Cgpu \

--hint=nomultithread ./executable.x

User Lab: Getting started at CSCS ∣ 22

Check job status
◾ Check job status using squeue
◾ Customise squeue output either in the command line or using
environment variables

standard CSCS squeue config
[my_cscs_user@daint:~]$ squeue -u my_cscs_user

JOBID USER ACCOUNT NAME ST REASON START_TIME TIME TIME_LEFT NODES CPUS

99999981 my_cscs s9999 job_name R None 05:35:26 10:09:57 13:50:03 2 48

99999982 my_cscs s9999 job_name R None 06:36:32 9:08:51 14:51:09 2 48

99999983 my_cscs s9999 job_name R None 06:49:09 8:56:14 15:03:46 2 48

99999984 my_cscs s9999 job_name PD Priority Tomorr 06: 0:00 1-00:00:00 36 432

customised squeue output
[my_cscs_user@daint:~]$ export SQUEUE_FORMAT="%.8A %.8j %.3t %9r %.10S %.5D %.4C %Z %N"

[my_cscs_user@daint:~]$ unset SQUEUE_SORT

[my_cscs_user@daint:~]$ squeue -u $USER

JOBID NAME ST REASON START_TIME NODES CPUS WORK_DIR NODELIST

99999994 job_name PD Priority Tomorr 04: 36 432 /scratch/snx3000/my_cscs_user/dir4

99999991 job_name R None 06:57:25 16 384 /scratch/snx3000/my_cscs_user/dir1 nid0[2007,2015-2029]

99999992 job_name R None 06:49:09 3 72 /scratch/snx3000/my_cscs_user/dir2 nid0[6307,6424,6490]

99999993 job_name R None 06:49:09 2 48 /scratch/snx3000/my_cscs_user/dir3 nid0[4006,4080]

User Lab: Getting started at CSCS ∣ 23

Good practices when submitting jobs

Specify accurate wall times
#!/bin/bash -l

#SBATCH --time=00:30:00

#SBATCH --nodes=120

#SBATCH --constraint=gpu

[...]

For jobs with many tasks, use GREASY
#!/bin/bash -l

#SBATCH --nodes=120

#SBATCH --constraint=gpu

#SBATCH --gres=gpu:0,craynetwork:4

[...]

module load daint-gpu

module load GREASY

export CRAY_CUDA_MPS=1

export CUDA_VISIBLE_DEVICES=0

export GPU_DEVICE_ORDINAL=0

greasy tasks.txt

Run off $SCRATCH
#!/bin/bash -l

#SBATCH --nodes=120

[...]

cd $SCRATCH

srun $SCRATCH/executable

If you cannot use GREASY, wait between srun calls
#!/bin/bash -l

#SBATCH --nodes=120

[...]

function waitabit() {

rt=$?;

if [[${rt} -ne 0]]; then

sleep 2

fi

return ${rt}

}

srun mytask1 ; waitabit

srun mytask2 ; waitabit

User Lab: Getting started at CSCS ∣ 24

Good practices when submitting jobs

Use Slurm e-mail notification for updates on job status
#!/bin/bash -l

#SBATCH --nodes=120

#SBATCH --constraint=gpu

#SBATCH --mail-type=ALL

#SBATCH --mail-user=<your_email>

[...]

Explicitly select the in-core multi-threading
#!/bin/bash -l

#SBATCH --nodes=120

#SBATCH --ntasks-per-core=1

#SBATCH --hint=nomultithread

[...]

Write self-contained and reproducible jobscripts
#!/bin/bash -l

#SBATCH --job-name="job_name"

#SBATCH --account="project"

#SBATCH --time=01:00:00

#SBATCH --nodes=120

#SBATCH --ntasks-per-core=1

#SBATCH --ntasks-per-node=12

#SBATCH --cpus-per-task=1

#SBATCH --partition=normal

#SBATCH --constraint=gpu

#SBATCH --hint=nomultithread

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

export CRAY_CUDA_MPS=1

module load daint-gpu

module load GROMACS

srun gmx_mpi mdrun ...

User Lab: Getting started at CSCS ∣ 25

What NOT to do when submitting jobs

Jobs that submit other jobs in loops
#!/bin/bash

#SBATCH ...

[...]

while :

do

srun sbatch job_script.sh

sleep 1

done

Job with thousands of tasks
$ sacct -j 123456789 | wc -l

25337

Jobs with hundreds of tasks in parallel
#!/bin/bash -l

#SBATCH --nodes=120

[...]

srun mytask1 &

srun mytask2 &

[...]

srun mytask2000

Jobs that run off $HOME
#!/bin/bash -l

#SBATCH --nodes=120

[...]

srun ~/executable ~/input_file

User Lab: Getting started at CSCS ∣ 26

What NOT to do on the login nodes

Run squeue without filtering
[my_cscs_user@daint:~]$ squeue | grep ${USER} # bad!

[my_cscs_user@daint:~]$ squeue -u ${USER} # good!

Monitor Slurm with watch
[my_cscs_user@daint:~]$ watch squeue -u ${USER} # bad!

Run unbounded GNU make
[my_cscs_user@daint:~]$ make -j # bad!

[my_cscs_user@daint:~]$ make -j6 # good!

Run servers
[my_cscs_user@daint:~]$ redis-server # bad!

Run pre-post analyses
[my_cscs_user@daint:~]$./my_script.sh # bad!

User Lab: Getting started at CSCS ∣ 27

Thank you!
Have fun!

