
Preparing for the Migration from Daint-GPU to Grace-Hopper

Ben Cumming
User Lab Webinar
June 6, 2023

An Introduction:
who am I?

A Disclaimer:
The information presented here is from discussions with NVIDIA.

CSCS has, as of today, access to a Grace-Hopper module for development.

Agenda

The focus of the webinar is to understand the impact of migrating from
Daint-GPU to Grace-Hopper on Alps - specifically on applications.

We plan more practical hands-on events when Grace-Hopper is available.

Start with an overview of what the new system and how it differs from the old:
● Alps Phase 2 - what is changing for users of Daint-GPU?
● Comparison of Daint-GPU and Grace-Hopper nodes
● An overview of Grace-Hopper

Before diving into the impact this will have on applications and developers:
● Status of Application and library readiness for Grace-Hopper
● Getting the most out of Grace-Hopper
● The user environment on Alps

Alps Phase 2

Alps Phase 2

Alps HPC infrastructure is a HPE Cray-EX system
● Phase 0 and Phase 1 are already installed

○ 2020: Phase 0 – AMD Rome CPU nodes currently used in Eiger
○ 2022: Phase 1 – NVIDIA A100, AMD Mi250x and AMD Milan CPU nodes

● Phase 2
○ Q1 2023: Phase 2 - NVIDIA Grace-Hopper GH200 nodes

The User Lab scale out Grace-Hopper
platform will be the largest tenant on
Alps
● It will replace Daint-GPU with the

same number of Grace-Hopper
modules (>5000) as there are on
Daint-GPU today.

Alps Phase 2 – some perspective

Replacing a system is can be disruptive - particularly when changing architecture
● Migration from Rosa to Daint was disruptive

○ CSCS and the wider community invested years of effort beforehand porting to GPUs
■ My first years at CSCS were spent on this effort
■ 2013: Daint-GPU was installed with Sandy-Bridge CPU + K20x GPUs
■ 2016: Daint-GPU was upgraded to Haswell + P100 GPUs

○ CSCS and the HPC community have 10 years of development and experience under
our belts.

Accelerator-based systems are now standard
● EU and US flagship systems use accelerators
● Migration effort depends on the accelerator

architecture
CSCS expect no negative impact on application
availability
● Applications running on Daint-GPU will run

with little porting effort on Grace-Hopper

Grace-Hopper

Daint-GPU nodes

Daint-GPU node has a simple architecture
● 1 Haswell CPU socket
● 1 P100 GPU
● PCI-E connection between host-device
● 1 NIC

The ratio of 1-1 made allocating MPI ranks relatively simple:
● One rank per GPU + CPU
● Or multiple ranks sharing the GPU using CUDA MPS (multi-process service)

Assigning CPU resources to GPU on x86+A100/H100 nodes is more challenging
● A single CPU socket with multiple NUMA regions is divided between GPUs.

Alps Phase II nodes

Grace-Hopper modules are conceptually similar
● 1 Grace CPU socket and one Hopper GPU per module
● Cache-coherent NVLINK connection between host and device memory
● One NIC per module

Each node will have 4 Grace-Hopper modules
● All-to-all cache-coherent memory NVLINK between all host and device memory

The one-to-one CPU to GPU ratio remains
● The 4 modules on a node form an optimised communication network.

Alps Phase
II

The Grace-Hopper “Super Chip”

NVIDA are releasing are two super chips:
1. Grace-Grace: dual-socket Grace CPU with NVLINK C2C
2. Grace-Hopper: Grace CPU + Hopper GPU with NVLINK C2C

Feeds and speeds: Daint-GPU node vs. one GH module

Comparing the raw speeds and feeds of the CPU and GPU

GPU P100 Hopper Increase

Bandwidth 700 GB/s 4000 GB/s 5.7x

FP64 4.7 TFlops 34/67 TFlops 7-14x

Memory 16 GB HBM 96 GB HBM3 6x

CPU Haswell Grace Increase

Cores 12 72 6x

Bandwidth 60 GB/s 475 GB/s 8x

FP64 0.49 TFlops > 2.5 TFlops 5x

Memory 64 GB DDR3 128 GB LPDDR 2x

Data
Movement

Daint-GPU Alps Phase
II

Increase

Host-Device 22 GB/s 480 GB/s 20x

Device-Device
on node

- 900 GB/s -

node-node 11 GB/s 23 GB/s 2x

● The Grace-Hopper module delivers
5-10x improvement across the board

● Speedup may be lower or higher
depending on the existing bottlenecks.

Grace: Server Class ARM CPU

● 64bit Server Class Core and SoC
○ Arm V9.0 ISA Compliant aarch64 core

(Neoverse V2 “Demeter”architecture)
○ Full SVE-2 Vector Extensions support,

inclusive of NEON instructions
○ Supports 48-bit Virtual and 48-bit Physical

address space
● Implemented on 5nm Process technology
● Balanced architecture between Single

Core Perf, Core count, Memory and IO
subsystems

Grace Performance ● Grace will be competitive with
x86 HPC CPU architectures.

● Each GPU will have a full CPU
socket – workloads that can
“reverse offload” or have
CPU-intensive components will
benefit.

Results based on early
engineering samples of

Grace

Application Readiness

Will applications be ready?

● Most applications and libraries will work out of the box
● For example, we asked NVIDIA about the status of CSCS supported

applications:
Applicatio
n

Status Comments

Amber A

LAMMPS A

NAMD A

CP2K A

GROMACS A

Quantum
Espresso

B Waiting for a perf bug fix; good perf on Arm+A100 &
x86+H100

CPMD B Running on GH, perf analysis to do.

VASP C Has been run on ARM H100

A Tested & validated with good
perf

B Tested and validated

C Not tested

** ML/AI Frameworks, ICON,
Openfoam and many others
have been tested and tuned
internally by NVIDIA

Will applications be ready?

CSCS will soon have access to a Grace-Hopper module to test programming
environments and application readiness
● The most likely cause of issues will be moving from x86 to ARM CPU

○ CSCS has evaluated ARM Graviton 3 on AWS - a Neoverse V1 processor
○ In a short time we could compile our applications

■ C, C++, Python and Fortran are all supported
○ There are some rough edges in the ecosystem - e.g. Spack packages and compiler

flags need updating.
● The two causes of issues will be:

○ x86 intrinsics assembly and intrinsics
■ These won’t be used so frequently for GPU-accelerated codes

○ x86 specific libraries like MKL
■ OpenBLAS and BLIS will provide BLAS/LAPACK implementations for Grace

Will applications be ready?

GPU-enabled applications will not need significant porting
● Some fixes and tuning will be required for many applications
● With very good performance
● Some applications will benefit significantly from the new host-device memory

model

There are three categories of GPU accelerated applications
● Fully GPU accelerated
● Partially GPU accelerated
● Coherently GPU accelerated

Fully GPU accelerated

Compute and data are on the GPU
● Little or no limitation from CPU or data transfers

Grace-Hopper and x86+Hopper will be equivalent

Partially GPU accelerated

More powerful GPUs lead to applications spending a larger proportion of time on
non-GPUoperations
● Data transfer (PCIe) limited

● CPU limited:

Hopper-HBM3

Grace-LPPDR5

Hopper-LPDDR

CP2K: Partially GPU Accelerated – mostly data transfer limited

CP2K Quantum chemistry application
● Implements a suite of methods - many

not yet GPU accelerated
● Memory constraints require
Dataset 128-H20 with random-phase
approximation (RPA) method
● PDGEMM dominates -> use GPU

PDGEMM
● Performance bounded by CPU memory

BW, PCIe and MPI

CP2K: Partially GPU Accelerated – mostly data transfer limited

NAMD: Partially GPU Accelerated – mostly CPU limited

Molecular Dynamics simulation
● Collective Variables provided by 3rd

party Colvars
● CPU-only also used by Gromacs,

LAMMPS
Glucose transporter 3 system (143k atoms)
● Majority of forces are GPU accelerated
● Additional Colvars computed on CPU
● Major bottleneck was CPU memory

bandwidth bound.

Coherently GPU accelerated – Optimised for coherent architectures

Exploit GPU / CPU coherency
● Use all available system features
● Use fine-grained synchronisation primitives
● “Reverse-offload” operations that no longer need to run on the GPU to avoid

PCIe

This is a new model
● Enabled by coherent CPU-GPU memory architectures
● Optimisation will occur over a longer period of time
● Also applies to AMD Mi300a GPU architecture

● ML/AI users will see the biggest boost
○ Features like tensor cores and lower precision types were first introduced in V100
○ The ML/AI software ecosystem is the highest priority for NVIDIA
○ Inter-node scaling over SlingShot 11 will be CSCS’ focus

● Will migration mitigate your main bottleneck on Daint-GPU?
○ Memory capacity

■ Squeeze your workload onto fewer GPUs - a single GPU or single 4x node
■ Leave some data on the host and access using C2C NVLINK

○ Host-Device migration
■ C2C NVLINK will reduce the overhead
■ More opportunities to leave data in place and compute where it makes sense.

○ Dense linear algebra or Memory Bandwidth
■ Easy win!

○ Not enough work for a single GPU
■ CPU and GPU resources to fit multiple jobs per GPU

Flexible distribution of resources

Grace-Hopper supports flexible allocation of CPU and GPU resources over
multiple jobs and tasks

● Assumptions about which data to move, which compute to move and how to
synchronise them optimally will change
○ Applications that have been optimised to move all data and compute to GPU will still

perform very well out of the box
○ Applications for which it has been impossible or impractical to port fully to GPU will

be the biggest beneficiary
■ Removing the memory bottleneck enables performing compute where it makes sense.

User Environments on Alps

Programming Toolchains

There will be three compiler toolchains
1. GCC + CUDA

○ C, C++, Fortran, nvcc
2. NVIDIA HPC SDK

○ C, C++, Fortran, OpenACC
3. Cray

○ C, C++, Fortran, OpenACC

Python Frameworks will also be ready to use
● Pytorch, TensorFlow, Jax, etc

The Piz Daint user environment: one size fits all

Interactions with Daint use the well-established, tried-and-trusted HPC interface:
● Log in via ssh to a shell with a programming environment loaded
● Manipulate the environment using modules

○ Select Cray-provided compilers, libraries and tools
○ Select CSCS-provided libraries, tools and applications

● Use shared resources including storage and job scheduling.

All workflows, such as JupyterLab, FirecREST present a layer over this
● Underneath, all access is via a standard user account

As the number and variety of use cases expand
is the “one size fits all model” a good fit?

Stability vs. Bug Fixes and New Features

Would it be possible to keep older
versions?

I am very satisfied with the HPC
environment on Piz Daint

Compilers that support the newest C++
standards as well as possible

I need a stabler environment: older
versions of the software tools disappear

too quickly, which means I have to
rebuild my stack every few months.

Please regularly update C++ and CUDA
compilers

By providing an environment on CPE it is
very difficult to meet all requirements

● Regular updates are required to fix
bugs, maintain security and provide
updated versions of tools.

● The latest versions of compilers can’t be
installed before they are packaged by
HPE and tested by CSCS.

● It is impractical to maintain:
○ Full stacks on top of more than one CPE
○ More than 2-3 CPE on a system

Any feedback that in your opinion can
help us improve the HPC environment?

The user environment on Daint: layer cake

1. Essential services are installed on top of Cray OS
2. The Cray PE is installed as part of the underlying

“node image”
3. CSCS provides a rich set of software products

built with the Cray PE
4. Users build their software and workflows on top of

that.

A change to one layer during an upgrade affects every
layer above:
● A new Cray PE change often requires rebuilding

the CSCS stack and user software
System libraries (network, GPU)

Cray OS

Container Runtime (sarus)

Slurm

Cray Programming Environment
(PE)

CSCS Software Stack (libraries,
applications, tools, easybuild and

spack configurations)

User Software
e.g. scripts, applications, containers

CSCS Customization

/apps

/scratch
/project
/home

CSCS has developed tooling (ReFrame) and a
very comprehensive test suite and CI/CD for

maintaining the quality of this integration

The User Environment Initiative

System libraries (network, GPU)

Cray OS

Container Runtime (sarus)

Slurm

CPE

CSCS Customization

CSCS
stable
env

2023.01

CSCS
rolling

release
2023.04.17

Provide multiple user environments
● Login to a clean environment

○ Cray OS with slurm + container runtime + drivers
● Multiple environments are available:

○ The familiar CPE with env-load craype-22.08
○ CSCS-provided user environments
○ User-built user environments

● Each environment is contained in a single file
○ Shared in an artifactory or stored on a filesystem.

The environments are independent

The environments are built on top of the
base-image - not the Cray PE.

User
CP2K
dev
env.

CSCS Maintained

User Environments in Practice

There are 3 components:
1. A standard approach for packaging environments

○ Not tied to any method for building or describing environments (e.g. Modules, Spack,
Easybuild)

○ Simple to understand.
○ Simple to copy, store and version.

2. Tooling to describe and build environments
○ Provide a flat description of an environment as code
○ Efficiently build a packaged environment from the description
○ Reproducible

3. Tooling to load a user environment
○ Simple: one command to load an environment
○ Can be integrated with SLURM
○ Ease of use of tools like debuggers and profilers

Packaging and Loading an Environment

Environments are stored in a single compressed file that contains a directory
structure.

Starting an environment: squashfs-run $SCRATCH/gromacs-cuda.squashfs bash
1. Mount: the directory tree in a fixed /user-environment path
2. Execute: a built-in prologue script that configures the environment
3. Launch: a shell in the new environment

Some key properties
● Environments are simply a compressed directory tree

○ Can be created with Spack, Easybuild, Conda or by hand.
● Per-process: other users on the system can mount their own environments

without affecting one-another.
● Much lower latency for configure-then-make development workflows than

HPC file systems.

Creating an environment with Spack

CSCS is developing tooling to build bespoke programming environments with compilers, MPI,
and libraries defined in a git repository
● A matrix of compiler versions and libraries (e.g. MPI, netcdf, fftw) are described in YAML

files.

Fast builds: a full stack with multiple gcc and clang versions, NVIDIA HPC SDK, libraries, MPI,
and tools in less than an hour.

Environments can be versioned:
● rebuilt when the underlying node image is updated.

CSCS and users can configure their own environments
● CSCS can offer stable and cutting edge environments in our service catalogue

github.com/eth-cscs/stackinator

Status

CSCS is busy working on making user environments easy to use and intuitive
user experience.

Features include:
● Slurm integration
● CI/CD for automatic build and push to the CSCS artifactory when:

○ The target node description is updated
○ The software description is updated

● Cray-mpich bundled outside of
● Environments for Python and Julia.
● Simplified recipes for whole programming environments

○ Can be versioned in Git and delivered through CI/CD
● Currently being used by one tennant.

Thank you!

