

User Experiments with PGAS Languages, or

User Experiments with PGAS Languages, or It's the Performance, Stupid!

User Experiments with PGAS Languages, or It's the Performance, Stupid!

Will Sawyer, Sergei Isakov, Adrian Tineo

Advanced Distributed Memory Parallel Programming, May 25, 2012

Use scientifically relevant mini-apps from communities to:

Advanced Distributed Memory Parallel Programming, May 25, 2012

Use *scientifically relevant* mini-apps from communities to:

- Evaluate emerging architectures
 - AMD Interlagos
 - Intel Sandybridge
 - IBM BG/Q, GPUs, Intel MIC, if possible

Use *scientifically relevant* mini-apps from communities to:

- Evaluate emerging architectures
 - AMD Interlagos
 - Intel Sandybridge
 - IBM BG/Q, GPUs, Intel MIC, if possible
- Evaluate programming paradigms
 - MPI + OpenMP hybrid programming
 - MPI-2 one-sided communication
 - SHMEM
 - PGAS languages (CAF, UPC)
 - OpenACC, CUDA, OpenCL, if possible

Use scientifically relevant mini-apps from communities to:

- Evaluate emerging architectures
 - AMD Interlagos
 - Intel Sandybridge
 - IBM BG/Q, GPUs, Intel MIC, if possible
- Evaluate programming paradigms
 - MPI + OpenMP hybrid programming
 - MPI-2 one-sided communication
 - SHMEM
 - PGAS languages (CAF, UPC)
 - OpenACC, CUDA, OpenCL, if possible
- Compare performance across platforms
 - out-of-the-box performance
 - evaluate optimization effort
 - socket-for-socket, node-for-node, energy-to-solution comparisons

PGAS: Partitioned Global Address Space

- PGAS: Partitioned Global Address Space
- UPC: Unified Parallel C

- PGAS: Partitioned Global Address Space
- UPC: Unified Parallel C
- CAF: Co-Array Fortran

- PGAS: Partitioned Global Address Space
- UPC: Unified Parallel C
- CAF: Co-Array Fortran
- Titanium: PGAS Java dialect

- PGAS: Partitioned Global Address Space
- UPC: Unified Parallel C
- CAF: Co-Array Fortran
- Titanium: PGAS Java dialect
- MPI: Message-Passing Interface

- PGAS: Partitioned Global Address Space
- UPC: Unified Parallel C
- CAF: Co-Array Fortran
- Titanium: PGAS Java dialect
- MPI: Message-Passing Interface
- SHMEM: Shared Memory API (SGI)

- Global address space: any thread/process may directly read/write data allocated by any other
- Partitioned: data is designated as local or global; programmer controls layout

- Global address space: any thread/process may directly read/write data allocated by any other
- Partitioned: data is designated as local or global; programmer controls layout

- Global address space: any thread/process may directly read/write data allocated by any other
- Partitioned: data is designated as local or global; programmer controls layout

- Global address space: any thread/process may directly read/write data allocated by any other
- Partitioned: data is designated as local or global; programmer controls layout

By default:

- object heaps are shared
- program stacks are private

- Global address space: any thread/process may directly read/write data allocated by any other
- Partitioned: data is designated as local or global; programmer controls layout

By default:

- object heaps are shared
- program stacks are private

3 Current languages: UPC, CAF, and Titanium

Advanced Distributed Memory Parallel Programming, May 25, 2012

- Interprocess communication intrinsic to language
 - Explicit support for distributed data structures (private and shared data)
 - Conceptually the parallel formulation can be more elegant

- Interprocess communication intrinsic to language
 - Explicit support for distributed data structures (private and shared data)
 - Conceptually the parallel formulation can be more elegant
- One-sided communication
 - Values are either 'put' or 'got' from remote images
 - Support for bulk messages, synchronization
 - Could be implemented with message-passing library or through RDMA (remote direct memory access)

- Interprocess communication intrinsic to language
 - Explicit support for distributed data structures (private and shared data)
 - Conceptually the parallel formulation can be more elegant

One-sided communication

- Values are either 'put' or 'got' from remote images
- Support for bulk messages, synchronization
- Could be implemented with message-passing library or through RDMA (remote direct memory access)

PGAS hardware support available

Cray Gemini (XE6) interconnect supports RDMA

- Interprocess communication intrinsic to language
 - Explicit support for distributed data structures (private and shared data)
 - Conceptually the parallel formulation can be more elegant

One-sided communication

- Values are either 'put' or 'got' from remote images
- Support for bulk messages, synchronization
- Could be implemented with message-passing library or through RDMA (remote direct memory access)

PGAS hardware support available

- Cray Gemini (XE6) interconnect supports RDMA
- Potential interoperability with existing C/Fortran/Java code

Problem 1: Halo Exchange

Advanced Distributed Memory Parallel Programming, May 25, 2012

Problem 1: Halo Exchange

Problem 1: Halo Exchange

Problem 1: Halo Exchange

Problem 1: Halo Exchange

Potential Performance Gains with Co-Array Fortran

Advanced Distributed Memory Parallel Programming, May 25, 2012

Potential Performance Gains with Co-Array Fortran

The Performance Evolution of the Parallel Ocean Program on the Cray X1 *

P. H. Worley[†] Oak Ridge National Laboratory

> J. Levesque [‡] Cray Inc.

Potential Performance Gains with Co-Array Fortran

The Performance Evolution of the Parallel Ocean Program on the Cray X1 *

P. H. Worley[†] Oak Ridge National Laboratory

> J. Levesque [‡] Crav Inc.

HALO Performance on 16 MSPs of the Cray X1

Advanced Distributed Memory Parallel Programming, May 25, 2012

Halo Exchange "Stencil 2D" Benchmark

Halo exchange and stencil operation over a square domain distributed over a 2-D virtual process topology

Halo exchange and stencil operation over a square domain distributed over a 2-D virtual process topology

• Arbitrary halo 'radius' (number of halo cells in a given dimension, e.g. 3)

Halo exchange and stencil operation over a square domain distributed over a 2-D virtual process topology

- Arbitrary halo 'radius' (number of halo cells in a given dimension, e.g. 3)
- MPI implementations:
 - Trivial: post all 8 MPI_Isend and Irecv
 - Sendrecv: MPI_Sendrecv between PE pairs
 - Halo: MPI_Isend/Irecv between PE pairs

Halo exchange and stencil operation over a square domain distributed over a 2-D virtual process topology

- Arbitrary halo 'radius' (number of halo cells in a given dimension, e.g. 3)
- MPI implementations:
 - Trivial: post all 8 MPI_Isend and Irecv
 - Sendrecv: MPI_Sendrecv between PE pairs
 - Halo: MPI_Isend/Irecv between PE pairs
- CAF implementations:
 - Trivial: simple copies to remote images
 - Put: reciprocal puts between image pairs
 - Get: reciprocal gets between image pairs
 - Get0: all images do inner region first, then all do block region (fine grain, no sync.)
 - Get1: half of images do inner region first, half do block region first (fine grain, no sync.)

Example code: Trivial CAF

```
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
```


Example code: Trivial CAF

```
real, allocatable, save :: V(:,:)[:,:]
  :
 allocate( V(1-halo:m+halo,1-halo:n+halo)[p,*] )
  :
 WW = myP-1; if (WW < 1) WW = p
 EE = myP+1; if (EE>p) EE = 1
 SS = myQ-1; if (SS<1) SS = q
 NN = myQ+1; if (NN>q) NN = 1
    :
                                    = dom(1:m, 1:n)
 V(1:m,1:n)
                                                                   ! computational region
 V(1-halo:0, 1:n)[EE,myQ]
                                    = dom(m-halo+1:m, 1:n)
                                                                   1
                                                                     to East
 V(m+1:m+halo, 1:n)[WW,myQ]
                                    = dom(1:halo,1:n)
                                                                   ! to West
 V(1:m,1-halo:0)[myP,NN]
                                    = dom(1:m,n-halo+1:n)
                                                                   ! to North
 V(1:m,n+1:n+halo)[myP,SS]
                                    = dom(1:m, 1:halo)
                                                                   ! to South
 V(1-halo:0,1-halo:0)[EE,NN]
                                    = dom(m-halo+1:m,n-halo+1:n) ! to North-East
 V(m+1:m+halo,1-halo:0)[WW,NN]
                                    = dom(1:halo,n-halo+1:n)
                                                                   1
                                                                     to North-West
 V(1-halo:0,n+1:n+halo)[EE,SS]
                                    = dom(m-halo+1:m,1:halo)
                                                                   1
                                                                     to South-East
 V(m+1:m+halo,n+1:n+halo)[WW,SS]
                                    = dom(1:halo,1:halo)
                                                                   ! to South-West
 sync all
1
! Now run a stencil filter over the computational region (the region unaffected by halo values)
!
 do j=1,n
   do i=1,m
     sum = 0.
     do l=-halo, halo
       do k=-halo,halo
          sum = sum + stencil(k,l)*V(i+k,j+l)
        enddo
      enddo
      dom(i,j) = sum
    enddo
 enddo
```


Example code: CAF Put

Advanced Distributed Memory Parallel Programming, May 25, 2012

Example code: CAF Put

	:	
	V(1:m,1:n)	= dom(1:m,1:n)
	V(1-halo:0, 1:n)[EE,myQ]	<pre>= dom(m-halo+1:m,1:n)</pre>
	V(m+1:m+halo,n+1:n+halo)[WW,SS]	<pre>= dom(1:halo,1:halo)</pre>
	<pre>NO GLOBAL SYNCHRONIZATION HERE Perform filter over exclusive reg do j=1+halo,n-halo do i=1+halo,m-halo sum = 0. do l=-halo,halo do k=-halo,halo sum = sum + stencil(k,l)* enddo enddo dom(i,j) = sum enddo enddo</pre>	-
!	<pre>Pair-wise handshake synchronizati do mode=0,1 if (mod(myP,2) == mode) then sync images((myQ-1)*p+WW)</pre>	
1	<pre>do j=1+halo,n-halo do i=1,halo Apply filter dom(i,j) = sum enddo enddo else sync images((myQ-1)*p+EE) do j=1+halo,n-halo do i=m-halo+1,m :</pre>	! East

- ! internal region
- ! to East
- ! to South-West

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary the size of the local square

 XT5: CAF puts/gets implemented through message-passing library

Stencil 2D Results on XT5, XE6, X2; Halo = 1

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack

Stencil 2D Results on XT5, XE6, X2; Halo = 1

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack

Stencil 2D Results on XT5, XE6, X2; Halo = 1

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack

Stencil 2D Results on XT5, XE6, X2; Halo = 1

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack

Stencil 2D Results on XT5, XE6, X2; Halo = 1

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack

Stencil 2D Weak Scaling on XE6

Fixed local dimension, vary the PE virtual topology (take the optimal configuration)

Stencil 2D Weak Scaling on XE6

Fixed local dimension, vary the PE virtual topology (take the optimal configuration)

Stencil 2D Weak Scaling on XE6

Fixed local dimension, vary the PE virtual topology (take the optimal configuration)

Problem 2: Exact Diagonalization

$$H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$$

Problem 2: Exact Diagonalization

 $H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$

Problem 2: Exact Diagonalization

 $H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$

Advanced Distributed Memory Parallel Programming, May 25, 2012

Problem 2: Exact Diagonalization

 $H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$

Advanced Distributed Memory Parallel Programming, May 25, 2012

 $H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$

Problem 2: Exact Diagonalization

 $H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$

Algorithm 1 Lanczos iteration

1: $v_1 \leftarrow random$ vector with norm 1 2: $v_0 \leftarrow 0$ 3: $\beta_1 \leftarrow 0$ 4: for j = 1, ..., r do 5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ 6: $\alpha_j \leftarrow (w_j, v_j)$ 7: $\beta_{j+1} \leftarrow ||w_j||$ 8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$ 9: end for

Problem 2: Exact Diagonalization

 $H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$

Algorithm 1 Lanczos iteration

1: $v_1 \leftarrow$ random vector with norm	1			
2: $v_0 \leftarrow 0$				
3: $\beta_1 \leftarrow 0$	$\left[\begin{array}{c} \alpha_1 \end{array} \right]$	β_2		1
4: for $j = 1,, r$ do			•.	
4: IOF $j = 1, \dots, r$ do 5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ $T_H =$	β_2	α_2	••	
6: $\alpha_j \leftarrow (w_j, v_j)$		۰.	۰.	Br
7: $\beta_{j+1} \leftarrow w_j $			ß	$egin{arr} eta_r \ lpha_r \end{array}$
8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	L		ρ_r	[ar]
9: end for				

Problem 2: Exact Diagonalization

 $H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$

Algorithm 1 Lanczos iteration

1: $v_1 \leftarrow$ random vector with norm	1			
2: $v_0 \leftarrow 0$				
3: $\beta_1 \leftarrow 0$	$\left[\begin{array}{c} \alpha_1 \end{array} \right]$	β_2		1
4: for $j = 1,, r$ do			•.	
4: IOF $j = 1, \dots, r$ do 5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ $T_H =$	β_2	α_2	••	
6: $\alpha_j \leftarrow (w_j, v_j)$		۰.	۰.	Br
7: $\beta_{j+1} \leftarrow w_j $			ß	$egin{arr} eta_r \ lpha_r \end{array}$
8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	L		ρ_r	[ar]
9: end for				

Problem 2: Exact Diagonalization

$$H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$$

Any lattice with n sites, 2ⁿ states

Algorithm	1	Lanczos	iteration	
-----------	---	---------	-----------	--

1: $v_1 \leftarrow$ random vector with norm	1				,
2: $v_0 \leftarrow 0$					
3: $\beta_1 \leftarrow 0$	$\left[\begin{array}{c} \alpha_1 \end{array} \right]$	β_2		-	1
4: for $j = 1,, r$ do	β_2		•.		l
5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ $T_H =$	= ¹ / ₂	α_2	••		l
6: $\alpha_j \leftarrow (w_j, v_j)$		۰.	۰.	β_{r}	l
7: $\beta_{j+1} \leftarrow \ w_j\ $			ß	$egin{array}{c} eta_r \ lpha_r \end{array}$	l
8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	L		ρ_r	α_r	1
9: end for					

$$H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$$

- Any lattice with n sites, 2ⁿ states
- Lanczos eigensolver

1: $v_1 \leftarrow$ random vector with no	m 1				
2: $v_0 \leftarrow 0$					
1: $v_1 \leftarrow \text{random vector with not}$ 2: $v_0 \leftarrow 0$ 3: $\beta_1 \leftarrow 0$ 4: for $j = 1, \dots, r$ do 5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ T_H 6: $\alpha_j \leftarrow (w_j, v_j)$ 7: $\beta_{j+1} \leftarrow w_j $ 8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	Γα	1	β_2		
4: for $j = 1,, r$ do		,		•.	
5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ T_H	r = p	2	α_2	••	
6: $\alpha_j \leftarrow (w_j, v_j)$			۰.	۰.	β_r
7: $\beta_{j+1} \leftarrow \ w_j\ $				B.	α_{m}
8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	L			ρr	α_{P}
9: end for					

$$H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$$

- Any lattice with n sites, 2ⁿ states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec

1			
α_1	β_2		
		۰.	
ρ_2	α_2	•	
	۰.	۰.	β_r
		Br.	α_r
L		191	
	$\begin{bmatrix} \alpha_1 \\ \beta_2 \end{bmatrix}$	$\begin{bmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 \end{bmatrix}$	$\begin{bmatrix} \alpha_1 & \beta_2 \\ \beta_2 & \alpha_2 & \ddots \\ & \ddots & \ddots \\ & & & \beta_r \end{bmatrix}$

$$H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$$

- Any lattice with n sites, 2ⁿ states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec
- Operator has integer operations

1: $v_1 \leftarrow$ random vector with no	orm 1
2: $v_0 \leftarrow 0$	
1: $v_1 \leftarrow \text{random vector with noise}$ 2: $v_0 \leftarrow 0$ 3: $\beta_1 \leftarrow 0$ 4: for $j = 1, \dots, r$ do 5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ T_H 6: $\alpha_j \leftarrow (w_j, v_j)$ 7: $\beta_{j+1} \leftarrow w_j $ 8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	$\begin{bmatrix} \alpha_1 & \beta_2 \end{bmatrix}$
4: for $j = 1,, r$ do	
5: $w_j \leftarrow Hv_j - \beta_j v_{j-1} T_F$	$q = \begin{bmatrix} \beta_2 & \alpha_2 & \ddots & \\ & & & & & \\ & & & & & & \\ & & & &$
6: $\alpha_j \leftarrow (w_j, v_j)$	· · · · · β.
7: $\beta_{j+1} \leftarrow \ w_j\ $	Br Or
8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	$L \qquad p_r \alpha_r$
9: end for	

$$H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$$

- Any lattice with n sites, 2ⁿ states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec
- Operator has integer operations
- Very irregular sparsity, but

1: $v_1 \leftarrow$ random vector with norm	1			
2: $v_0 \leftarrow 0$				
1: $v_1 \leftarrow \text{random vector with norm}$ 2: $v_0 \leftarrow 0$ 3: $\beta_1 \leftarrow 0$ 4: for $j = 1, \dots, r$ do 5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ $T_H =$ 6: $\alpha_j \leftarrow (w_j, v_j)$ 7: $\beta_{j+1} \leftarrow w_j $ 8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	$\left[\alpha_1 \right]$	β_2		
4: for $j = 1,, r$ do			۰.	
5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ $T_H =$	ρ_2	α_2	•	
6: $\alpha_j \leftarrow (w_j, v_j)$		۰.	۰.	β_r
7: $\beta_{j+1} \leftarrow \ w_j\ $			ßm	0.
8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	L		ρr	α_{P}

$$H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$$

- Any lattice with n sites, 2ⁿ states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec
- Operator has integer operations
- Very irregular sparsity, but
- Limited number of process neighbors (new to this work)

1: $v_1 \leftarrow$ random vector with norm	1			
2: $v_0 \leftarrow 0$				
1: $v_1 \leftarrow \text{random vector with norm}$ 2: $v_0 \leftarrow 0$ 3: $\beta_1 \leftarrow 0$ 4: for $j = 1, \dots, r$ do 5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ $T_H =$ 6: $\alpha_j \leftarrow (w_j, v_j)$ 7: $\beta_{j+1} \leftarrow w_j $ 8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	$\left[\begin{array}{c} \alpha_1 \end{array} \right]$	β_2		
4: for $j = 1,, r$ do			•.	
5: $w_j \leftarrow Hv_j - \beta_j v_{j-1}$ $T_H =$	ρ_2	α_2	•	
6: $\alpha_j \leftarrow (w_j, v_j)$		۰.	۰.	β_r
7: $\beta_{j+1} \leftarrow \ w_j\ $			B.	α_{r}
8: $v_{j+1} \leftarrow w_j / \beta_{j+1}$	L		ρr	ω_{T}

$$H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x$$

- Any lattice with n sites, 2ⁿ states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec
- Operator has integer operations
- Very irregular sparsity, but
- Limited number of process neighbors (new to this work)
- Symmetries considered in some models: smaller complexity at cost of more communication

Benchmark code: simplest "SPIN" model

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Benchmark code: simplest "SPIN" model

Loop for MAX_ITER

Reduction B (MPI_Reduce) L3 (local work, normalize v1) Loop over rounds of msgs MSG_NB (MPI_lsend,upc_memput(_nbi)) L4 (work on local matrix, only 1st iteration) SYNC (no-op, upc_fence) L7 (manage msg reception and do remote work) L8 (local work, A norm) Reduction A (MPI_Reduce) L9 (local work, B norm)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Benchmark code: simplest "SPIN" model

Loop for MAX_ITER

Reduction B (MPI_Reduce) L3 (local work, normalize v1) Loop over rounds of msgs MSG_NB (MPI_lsend,upc_memput(_nbi)) L4 (work on local matrix, only 1st iteration) SYNC (no-op, upc_fence) L7 (manage msg reception and do remote work) L8 (local work, A norm) Reduction A (MPI_Reduce) L9 (local work, B norm)

Loops:

- L3: Initialize array
- L4: Local mat-vec
- L6/7: Off process mat-vec
- L8: Alpha calculation
- L9: Beta calculation

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Benchmark code: simplest "SPIN" model

Loop for MAX_ITER

Reduction B (MPI_Reduce) L3 (local work, normalize v1) Loop over rounds of msgs MSG_NB (MPI_Isend,upc_memput(_nbi)) L4 (work on local matrix, only 1st iteration) SYNC (no-op, upc_fence) L7 (manage msg reception and do remote work) L8 (local work, A norm) Reduction A (MPI_Reduce) L9 (local work, B norm)

Loops:

- L3: Initialize array
- L4: Local mat-vec
- L6/7: Off process mat-vec
- L8: Alpha calculation
- L9: Beta calculation

Code structure

SPIN single core/socket/node comparisons

- Loop-based OMP directives: performance worse than MPI-only
- Task-based OpenMP/MPI implementation by Fourestey/Stringfellow

SPIN single core/socket/node comparisons

- Loop-based OMP directives: performance worse than MPI-only
- Task-based OpenMP/MPI implementation by Fourestey/Stringfellow

System name	Rivera	Castor	Sandy
Processor	AMD 6274	Intel E5-2680	Intel X5650
Nickname	Interlagos	Westmere	Sandybridge
Cores/Socket	16	6	8
Sockets/Node	2	2	2
Hyperthreading	no	unenabled	yes (2)
Compiler	Open64	Intel	Intel
Core time (s.)	754 (1T)	280 (1T)	227 (1T)
Socket time (s.)	74 (15T)	51 (6T)	29(16T)
Node time (s.)	38 (31T)	26 (12T)	15 (32T)

Multi-buffering concept

Advanced Distributed Memory Parallel Programming, May 25, 2012

Multi-buffering concept

Double buffering

Multi-buffering concept

Double buffering

Multi-buffering concept

Double buffering

Multi-buffering

Multi-buffering concept

Double buffering

Multi-buffering

Sequential Implementation

Sequential Implementation

```
struct ed s { ...
        double *swap;
                                  /* for swapping vectors */
};
for (iter = 0; iter < ed->max iter; ++iter) {
                /* matrix vector multiplication */
                for (s = 0; s < ed -> nlstates; ++s) 
                        /* diagonal part */
                        ed - v2[s] = diag(s, ed - n, ed - j) * ed - v1[s];
                        /* offdiagonal part */
                        for (k = 0; k < ed ->n; ++k) {
                                s1 = flip state(s, k);
                                ed \rightarrow v2[s] += ed \rightarrow gamma * ed \rightarrow v1[s1];
                        }
                }
                /* Calculate alpha */
                /* Calculate beta */
        }
```

}

UPC "Elegant" Implementation

Advanced Distributed Memory Parallel Programming, May 25, 2012

UPC "Elegant" Implementation

```
struct ed s { ...
         shared double *v0, *v1, *v2; /* vectors */
         shared double *swap;
                                                 /* for swapping vectors */
};
for (iter = 0; iter < ed->max iter; ++iter) {
                  upc barrier(0);
                  /* matrix vector multiplication */
                  upc forall (s = 0; s < ed->nlstates; ++s; &(ed->v1[s]) ) {
                            /* diagonal part */
                            ed \rightarrow v2[s] = diag(s, ed \rightarrow n, ed \rightarrow j) * ed \rightarrow v1[s];
                            /* offdiagonal part */
                            for (k = 0; k < ed ->n; ++k) {
                                     s1 = flip state(s, k);
                                     ed \rightarrow v2[s] += ed \rightarrow gamma * ed \rightarrow v1[s1];
                            }
                   }
                   /* Calculate alpha */
                   /* Calculate beta */
         }
```

}

Inelegant UPC versions

Advanced Distributed Memory Parallel Programming, May 25, 2012

Inelegant UPC versions

Inelegant 1

```
shared[NBLOCK] double vtmp[THREADS*NBLOCK];

for (i = 0; i < NBLOCK; ++i) vtmp[i+MYTHREAD*NBLOCK] = ed->v1[i];
upc_barrier(1);
for (i = 0; i < NBLOCK; ++i) ed->vv1[i] = vtmp[i+(ed->from_nbs[0]*NBLOCK)];

upc_barrier(2);
```

Inelegant 2

```
shared[NBLOCK] double vtmp[THREADS*NBLOCK];
  :
upc_memput( &vtmp[MYTHREAD*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
upc_barrier(1);
upc_memget( ed->vv1, &vtmp[ed->from_nbs[0]*NBLOCK], NBLOCK*sizeof(double) );
  :
upc_barrier(2);
```


UPC Inelegant3: use double buffers and upc_put

Advanced Distributed Memory Parallel Programming, May 25, 2012

UPC Inelegant3: use double buffers and upc_put

```
shared[NBLOCK] double vtmp1[THREADS*NBLOCK];
shared[NBLOCK] double vtmp2[THREADS*NBLOCK];
:
upc memput( &vtmp1[ed->to nbs[0]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
upc barrier(1);
if ( mode == 0 ) {
  upc_memput( &vtmp2[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
 } else {
  upc memput( &vtmp1[ed->to nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
 }
if ( mode == 0 ) {
  for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp1[i+MYTHREAD*NBLOCK]; }
  mode = 1;
 } else {
  for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp2[i+MYTHREAD*NBLOCK]; }
  mode = 0;
 }
upc barrier(2);
```


Advanced Distributed Memory Parallel Programming, May 25, 2012

MPI-2: One-sided PUT

MPI-2: One-sided PUT

MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1); MPI_Win_fence(0, win1);

Advanced Distributed Memory Parallel Programming, May 25, 2012

MPI-2: One-sided PUT

MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1); MPI_Win_fence(0, win1);

SHMEM: non-blocking PUT

MPI-2: One-sided PUT

MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1); MPI_Win_fence(0, win1);

SHMEM: non-blocking PUT

```
vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
   :
   shmem_barrier_all();
   shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);
```


MPI-2: One-sided PUT

```
MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
MPI_Win_fence( 0, win1);
```

SHMEM: non-blocking PUT

```
vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
   :
   shmem_barrier_all();
   shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);
```

SHMEM "fast": non-blocking PUT, local wait only

MPI-2: One-sided PUT

```
MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
MPI_Win_fence( 0, win1);
```

SHMEM: non-blocking PUT

```
vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
    :
    shmem_barrier_all();
    shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);
```

SHMEM "fast": non-blocking PUT, local wait only

SPIN strong scaling: Cray XE6, n=22,24; 10 iter.

HP2C/Cray//CSCS Workshop

SPIN strong scaling: Cray XE6, n=22,24; 10 iter.

SPIN strong scaling: Cray XE6, n=22,24; 10 iter.

SPIN weak scaling: Cray XE6/Gemini, 10 iterations

SPIN weak scaling: Cray XE6/Gemini, 10 iterations

SPIN weak scaling: Cray XE6/Gemini, 10 iterations

• Work: original MPI two-sided version with double buffering

- Work: original MPI two-sided version with double buffering
- Ref_MPI: naive single buffered version

- Work: original MPI two-sided version with double buffering
- Ref_MPI: naive single buffered version
- Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv

- Work: original MPI two-sided version with double buffering
- Ref_MPI: naive single buffered version
- Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
- Opt_UPC_Fence: blocking upc_memput with single fence

- Work: original MPI two-sided version with double buffering
- Ref_MPI: naive single buffered version
- Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
- Opt_UPC_Fence: blocking upc_memput with single fence
- Opt_UPC_Fence_each: blocking upc_memput with fence for each message

- Work: original MPI two-sided version with double buffering
- Ref_MPI: naive single buffered version
- Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
- Opt_UPC_Fence: blocking upc_memput with single fence
- Opt_UPC_Fence_each: blocking upc_memput with fence for each message
- Opt_UPC_Fence_nbi: Cray-specific implicit non-blocking memput with a single fence

- Work: original MPI two-sided version with double buffering
- Ref_MPI: naive single buffered version
- Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
- Opt_UPC_Fence: blocking upc_memput with single fence
- Opt_UPC_Fence_each: blocking upc_memput with fence for each message
- Opt_UPC_Fence_nbi: Cray-specific implicit non-blocking memput with a single fence
- Opt_UPC_Fence_each_nbi: Cray-specific implicit non-blocking memput with fence for each message

Optimized SPIN normed performance: Cray XE6

Optimized SPIN normed performance: Cray XE6

Advanced Distributed Memory Parallel Programming, May 25, 2012

Take-home messages

PGAS languages can express communication elegantly

- PGAS languages can express communication elegantly
- However, elegant codes tend to be inefficient

- PGAS languages can express communication elegantly
- However, elegant codes tend to be inefficient
- Inelegant PGAS implementations can outperform MPI
 - On platforms where PGAS is implemented close to the hardware, e.g., Cray XE6, X2
 - Where communication is explicitly formulated as PUTs or GETs, inherently defeating the purpose of the PGAS language

- PGAS languages can express communication elegantly
- However, elegant codes tend to be inefficient
- Inelegant PGAS implementations can outperform MPI
 - On platforms where PGAS is implemented close to the hardware, e.g., Cray XE6, X2
 - Where communication is explicitly formulated as PUTs or GETs, inherently defeating the purpose of the PGAS language
- PGAS is worthwhile to keep in mind, but

- PGAS languages can express communication elegantly
- However, elegant codes tend to be inefficient
- Inelegant PGAS implementations can outperform MPI
 - On platforms where PGAS is implemented close to the hardware, e.g., Cray XE6, X2
 - Where communication is explicitly formulated as PUTs or GETs, inherently defeating the purpose of the PGAS language
- PGAS is worthwhile to keep in mind, but
- Currently the investment of changing paradigms does not seem worthwhile

Thank you for your attention! wsawyer@cscs.ch

27

