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 IBM BG/Q, GPUs, Intel MIC, if possible

 Evaluate programming paradigms
 MPI + OpenMP hybrid programming
 MPI-2 one-sided communication
 SHMEM
 PGAS languages (CAF, UPC)
 OpenACC, CUDA, OpenCL, if possible

 Compare performance across platforms
 out-of-the-box performance
 evaluate optimization effort
 socket-for-socket, node-for-node, energy-to-solution comparisons
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 PGAS: Partitioned Global Address Space
 UPC: Unified Parallel C
 CAF: Co-Array Fortran
 Titanium: PGAS Java dialect
 MPI: Message-Passing Interface
 SHMEM: Shared Memory API (SGI)
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 Values are either ‘put’ or ‘got’ from remote images 
 Support for bulk messages, synchronization 
 Could be implemented with message-passing library or through RDMA 

(remote direct memory access)
 PGAS hardware support available
 Cray Gemini (XE6) interconnect supports RDMA

 Potential interoperability with existing C/Fortran/Java code 
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Halo Exchange “Stencil 2D” Benchmark

Halo exchange and stencil operation over a square domain distributed over 
a 2-D virtual process topology
•Arbitrary halo ‘radius’ (number of halo cells in a given dimension, e.g. 3)

•MPI implementations:
•Trivial:  post all 8 MPI_Isend and Irecv
•Sendrecv:  MPI_Sendrecv between PE pairs
•Halo: MPI_Isend/Irecv between PE pairs

•CAF implementations:
•Trivial:  simple copies to remote images
•Put:  reciprocal puts between image pairs
•Get:  reciprocal gets between image pairs 
•Get0: all images do inner region first, then all do block region (fine grain, no sync.)
•Get1: half of images do inner region first,half do block region first (fine grain, no 

sync.)  
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Example code: Trivial CAF
  real, allocatable, save :: V(:,:)[:,:]

   :
  allocate( V(1-halo:m+halo,1-halo:n+halo)[p,*] )
   : 
  WW = myP-1 ; if (WW<1) WW = p
  EE = myP+1 ; if (EE>p) EE = 1
  SS = myQ-1 ; if (SS<1) SS = q
  NN = myQ+1 ; if (NN>q) NN = 1
    :

  V(1:m,1:n)                        = dom(1:m,1:n)                !  computational region

  V(1-halo:0, 1:n)[EE,myQ]          = dom(m-halo+1:m,1:n)         !  to East 
  V(m+1:m+halo, 1:n)[WW,myQ]        = dom(1:halo,1:n)             !  to West
  V(1:m,1-halo:0)[myP,NN]           = dom(1:m,n-halo+1:n)         !  to North
  V(1:m,n+1:n+halo)[myP,SS]         = dom(1:m,1:halo)             !  to South
  V(1-halo:0,1-halo:0)[EE,NN]       = dom(m-halo+1:m,n-halo+1:n)  !  to North-East
  V(m+1:m+halo,1-halo:0)[WW,NN]     = dom(1:halo,n-halo+1:n)      !  to North-West
  V(1-halo:0,n+1:n+halo)[EE,SS]     = dom(m-halo+1:m,1:halo)      !  to South-East
  V(m+1:m+halo,n+1:n+halo)[WW,SS]   = dom(1:halo,1:halo)          !  to South-West

  sync all
!
! Now run a stencil filter over the computational region (the region unaffected by halo values)
!
  do j=1,n
    do i=1,m
      sum = 0.
      do l=-halo,halo
        do k=-halo,halo
          sum = sum + stencil(k,l)*V(i+k,j+l)
        enddo
      enddo
      dom(i,j) = sum
    enddo
  enddo

9
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Example code: CAF Put
   :  

  V(1:m,1:n)                        = dom(1:m,1:n)                !  internal region

  V(1-halo:0, 1:n)[EE,myQ]          = dom(m-halo+1:m,1:n)         !  to East 
   :
  V(m+1:m+halo,n+1:n+halo)[WW,SS]   = dom(1:halo,1:halo)          !  to South-West

! NO GLOBAL SYNCHRONIZATION HERE
! Perform filter over exclusive region only
  do j=1+halo,n-halo
    do i=1+halo,m-halo
      sum = 0.
      do l=-halo,halo
        do k=-halo,halo
          sum = sum + stencil(k,l)*V(i+k,j+l)
        enddo
      enddo
      dom(i,j) = sum
    enddo
  enddo

! Pair-wise handshake synchronization
  do mode=0,1
    if ( mod(myP,2) == mode ) then 
      sync images( (myQ-1)*p+WW )    ! West

      do j=1+halo,n-halo
        do i=1,halo
! Apply filter
            dom(i,j) = sum
        enddo
      enddo
    else
      sync images( (myQ-1)*p+EE )    ! East
      do j=1+halo,n-halo
        do i=m-halo+1,m
         :

10
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 Any lattice with n sites, 2n states
 Lanczos eigensolver 
 Large, sparse symmetric mat-vec
 Operator has integer operations
 Very irregular sparsity, but
 Limited number of process 

neighbors (new to this work)
 Symmetries considered in some 

models: smaller complexity at 
cost of more communication
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struct ed_s { ...
        double *v0, *v1, *v2;      /* vectors */
        double *swap;              /* for swapping vectors */
}; 
              :  
for (iter = 0; iter < ed->max_iter; ++iter) {
                 :
                /* matrix vector multiplication */               
                for (s = 0; s < ed->nlstates; ++s ) {
                        /* diagonal part */                     
                        ed->v2[s] = diag(s, ed->n, ed->j) * ed->v1[s];
                        /* offdiagonal part */                           
                        for (k = 0; k < ed->n; ++k) {                       
                                s1 = flip_state(s, k);
                                ed->v2[s] += ed->gamma * ed->v1[s1];
                        }
                }
                 :
                /* Calculate alpha */
                /* Calculate beta */
        }
}
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struct ed_s { ...
        shared double *v0, *v1, *v2;      /* vectors */
        shared double *swap;              /* for swapping vectors */
}; 
              :  
for (iter = 0; iter < ed->max_iter; ++iter) {
                 :
                upc_barrier(0);
                /* matrix vector multiplication */               
                upc_forall (s = 0; s < ed->nlstates; ++s; &(ed->v1[s]) ) {
                        /* diagonal part */                     
                        ed->v2[s] = diag(s, ed->n, ed->j) * ed->v1[s];
                        /* offdiagonal part */                           
                        for (k = 0; k < ed->n; ++k) {                       
                                s1 = flip_state(s, k);
                                ed->v2[s] += ed->gamma * ed->v1[s1];
                        }
                }
                 :
                /* Calculate alpha */
                /* Calculate beta */
        }
}
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Inelegant 1
shared[NBLOCK] double vtmp[THREADS*NBLOCK];
  :
for (i = 0; i < NBLOCK; ++i) vtmp[i+MYTHREAD*NBLOCK] = ed->v1[i];
upc_barrier(1);
for (i = 0; i < NBLOCK; ++i) ed->vv1[i] = vtmp[i+(ed->from_nbs[0]*NBLOCK)];
  :
upc_barrier(2);
  

Inelegant 2
shared[NBLOCK] double vtmp[THREADS*NBLOCK];
  :
upc_memput( &vtmp[MYTHREAD*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
upc_barrier(1);
upc_memget( ed->vv1, &vtmp[ed->from_nbs[0]*NBLOCK], NBLOCK*sizeof(double) );
  :
upc_barrier(2);
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UPC Inelegant3: use double buffers and upc_put
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shared[NBLOCK] double vtmp1[THREADS*NBLOCK];
shared[NBLOCK] double vtmp2[THREADS*NBLOCK];
:
upc_memput( &vtmp1[ed->to_nbs[0]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
upc_barrier(1);
:
 if ( mode == 0 ) {
   upc_memput( &vtmp2[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
 } else {
   upc_memput( &vtmp1[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
 }
  :
 if ( mode == 0 ) {
   for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp1[i+MYTHREAD*NBLOCK]; }
   mode = 1;
 } else {
   for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp2[i+MYTHREAD*NBLOCK]; }
   mode = 0;
 }
 upc_barrier(2);
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MPI-2:  One-sided PUT
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    vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
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     MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
  MPI_Win_fence( 0, win1);

MPI-2:  One-sided PUT

SHMEM: non-blocking PUT

Friday, May 25, 2012



Advanced Distributed Memory Parallel Programming, May 25, 2012

Other message passing paradigms

21

    vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
     :
   shmem_barrier_all();
   shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);

     MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
  MPI_Win_fence( 0, win1);

MPI-2:  One-sided PUT

SHMEM: non-blocking PUT

SHMEM “fast”: non-blocking PUT, local wait only

Friday, May 25, 2012



Advanced Distributed Memory Parallel Programming, May 25, 2012

Other message passing paradigms

21

    vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
     :
   shmem_barrier_all();
   shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);

     MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
  MPI_Win_fence( 0, win1);

   ed->v1[ed->nlstates] = ((double) ed->rank); /* sentinel */
  for (l = 0; l < ed->m; ++l) {
    offset = l*(ed->nlstates+1); /* Offset into buffer */
    shmem_double_put_nb(&vtmp[offset],ed->v1, ed->nlstates+1,ed->to_nbs[l],NULL);
  }
             : 
  tag = vtmp[offset+ed->nlstates];
  while (tag != (double) ed->from_nbs[k-ed->nm]) { /* spin */
    tag = vtmp[offset+ed->nlstates];
  }
  for (i = offset, j=0; i < offset+ed->nlstates; ++i, ++j) {
     ed->v2[j] += ed->gamma * vtmp[i];
  }
  vtmp[l*(ed->nlstates+1)+ed->nlstates]=((double)-1); /*reset*/

MPI-2:  One-sided PUT

SHMEM: non-blocking PUT

SHMEM “fast”: non-blocking PUT, local wait only
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 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
 Opt_UPC_Fence: blocking upc_memput with single fence
 Opt_UPC_Fence_each: blocking upc_memput with fence for 

each message
 Opt_UPC_Fence_nbi: Cray-specific implicit non-blocking 

memput with a single fence
 Opt_UPC_Fence_each_nbi:  Cray-specific implicit non-blocking 

memput with fence for each message
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 Inelegant PGAS implementations can outperform MPI
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Cray XE6, X2

 Where communication is explicitly formulated as PUTs or GETs, 
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 PGAS languages can express communication elegantly
 However, elegant codes tend to be inefficient
 Inelegant PGAS implementations can outperform MPI

 On platforms where PGAS is implemented close to the hardware, e.g., 
Cray XE6, X2

 Where communication is explicitly formulated as PUTs or GETs, 
inherently defeating the purpose of the PGAS language

 PGAS is worthwhile to keep in mind, but
 Currently the investment of changing paradigms does not 

seem worthwhile
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