User Experiments with PGAS Languages, or
User Experiments with PGAS Languages, or
It’s the Performance, Stupid!
User Experiments with PGAS Languages, or
It’s the Performance, Stupid!
Will Sawyer, Sergei Isakov, Adrian Tineo
Overarching goals of our group’s work
Overarching goals of our group’s work

Use *scientifically relevant* mini-apps from communities to:
Overarching goals of our group’s work

Use *scientifically relevant* mini-apps from communities to:

- Evaluate emerging architectures
 - AMD Interlagos
 - Intel Sandybridge
 - IBM BG/Q, GPUs, Intel MIC, if possible
Overarching goals of our group’s work

Use *scientifically relevant* mini-apps from communities to:

- Evaluate emerging architectures
 - AMD Interlagos
 - Intel Sandybridge
 - IBM BG/Q, GPUs, Intel MIC, if possible

- Evaluate programming paradigms
 - MPI + OpenMP hybrid programming
 - MPI-2 one-sided communication
 - SHMEM
 - PGAS languages (CAF, UPC)
 - OpenACC, CUDA, OpenCL, if possible
Overarching goals of our group’s work

Use *scientifically relevant* mini-apps from communities to:

- **Evaluate emerging architectures**
 - AMD Interlagos
 - Intel Sandybridge
 - IBM BG/Q, GPUs, Intel MIC, if possible

- **Evaluate programming paradigms**
 - MPI + OpenMP hybrid programming
 - MPI-2 one-sided communication
 - SHMEM
 - PGAS languages (CAF, UPC)
 - OpenACC, CUDA, OpenCL, if possible

- **Compare performance across platforms**
 - out-of-the-box performance
 - evaluate optimization effort
 - socket-for-socket, node-for-node, energy-to-solution comparisons
Important concepts and acronyms
Important concepts and acronyms

- PGAS: Partitioned Global Address Space
Important concepts and acronyms

- PGAS: Partitioned Global Address Space
- UPC: Unified Parallel C
Important concepts and acronyms

- PGAS: Partitioned Global Address Space
- UPC: Unified Parallel C
- CAF: Co-Array Fortran
Important concepts and acronyms

- **PGAS**: Partitioned Global Address Space
- **UPC**: Unified Parallel C
- **CAF**: Co-Array Fortran
- **Titanium**: PGAS Java dialect
Important concepts and acronyms

- PGAS: Partitioned Global Address Space
- UPC: Unified Parallel C
- CAF: Co-Array Fortran
- Titanium: PGAS Java dialect
- MPI: Message-Passing Interface
Important concepts and acronyms

- PGAS: Partitioned Global Address Space
- UPC: Unified Parallel C
- CAF: Co-Array Fortran
- Titanium: PGAS Java dialect
- MPI: Message-Passing Interface
- SHMEM: Shared Memory API (SGI)
Partitioned Global Address Space
Partitioned Global Address Space

- **Global address space**: any thread/process may directly read/write data allocated by any other
- **Partitioned**: data is designated as local or global; programmer controls layout
Partitioned Global Address Space

- **Global address space**: any thread/process may directly read/write data allocated by any other
- **Partitioned**: data is designated as local or global; programmer controls layout

```
       x: 1
     y:   
    /     
   /      
  x: 5   x: 7
  y: y: 0

l:     l:    l:
  g: g:  g:

p0  p1  pn
```
Partitioned Global Address Space

- **Global address space**: any thread/process may directly read/write data allocated by any other
- **Partitioned**: data is designated as local or global; programmer controls layout
Partitioned Global Address Space

- **Global address space**: any thread/process may directly read/write data allocated by any other
- **Partitioned**: data is designated as local or global; programmer controls layout

By default:
- object heaps are shared
- program stacks are private
Partitioned Global Address Space

- **Global address space**: any thread/process may directly read/write data allocated by any other
- **Partitioned**: data is designated as local or global; programmer controls layout

By default:
- object heaps are shared
- program stacks are private

3 Current languages: UPC, CAF, and Titanium
Potential strengths of a PGAS language
Potential strengths of a PGAS language

- Interprocess communication intrinsic to language
 - Explicit support for distributed data structures (private and shared data)
 - Conceptually the parallel formulation can be more elegant
Potential strengths of a PGAS language

- Interprocess communication intrinsic to language
 - Explicit support for distributed data structures (private and shared data)
 - Conceptually the parallel formulation can be more elegant

- One-sided communication
 - Values are either ‘put’ or ‘got’ from remote images
 - Support for bulk messages, synchronization
 - Could be implemented with message-passing library or through RDMA (remote direct memory access)
Potential strengths of a PGAS language

- Interprocess communication intrinsic to language
 - Explicit support for distributed data structures (private and shared data)
 - Conceptually the parallel formulation can be more elegant
- One-sided communication
 - Values are either ‘put’ or ‘got’ from remote images
 - Support for bulk messages, synchronization
 - Could be implemented with message-passing library or through RDMA (remote direct memory access)
- PGAS hardware support available
 - Cray Gemini (XE6) interconnect supports RDMA
Potential strengths of a PGAS language

- Interprocess communication intrinsic to language
 - Explicit support for distributed data structures (private and shared data)
 - Conceptually the parallel formulation can be more elegant

- One-sided communication
 - Values are either ‘put’ or ‘got’ from remote images
 - Support for bulk messages, synchronization
 - Could be implemented with message-passing library or through RDMA (remote direct memory access)

- PGAS hardware support available
 - Cray Gemini (XE6) interconnect supports RDMA

- Potential interoperability with existing C/Fortran/Java code
Problem 1: Halo Exchange
Potential Performance Gains with Co-Array Fortran
Potential Performance Gains with Co-Array Fortran

The Performance Evolution of the Parallel Ocean Program on the Cray X1*

P. H. Worley †
Oak Ridge National Laboratory
J. Levesque ‡
Cray Inc.
Potential Performance Gains with Co-Array Fortran

The Performance Evolution of the Parallel Ocean Program on the Cray X1 *

P. H. Worley †
Oak Ridge National Laboratory

J. Levesque ‡
Crav Inc.
Halo Exchange “Stencil 2D” Benchmark
Halo Exchange “Stencil 2D” Benchmark

Halo exchange and stencil operation over a square domain distributed over a 2-D virtual process topology.
Halo Exchange “Stencil 2D” Benchmark

Halo exchange and stencil operation over a square domain distributed over a 2-D virtual process topology

- Arbitrary halo ‘radius’ (number of halo cells in a given dimension, e.g. 3)
Halo Exchange “Stencil 2D” Benchmark

Halo exchange and stencil operation over a square domain distributed over a 2-D virtual process topology

- Arbitrary halo ‘radius’ (number of halo cells in a given dimension, e.g. 3)
- MPI implementations:
 - Trivial: post all 8 MPI_Isend and Irecv
 - Sendrecv: MPI_Sendrecv between PE pairs
 - Halo: MPI_Isend/Irecv between PE pairs
Halo Exchange “Stencil 2D” Benchmark

Halo exchange and stencil operation over a square domain distributed over a 2-D virtual process topology

- Arbitrary halo ‘radius’ (number of halo cells in a given dimension, e.g. 3)
- MPI implementations:
 - Trivial: post all 8 MPI_Isend and Irecv
 - Sendrecv: MPI_Sendrecv between PE pairs
 - Halo: MPI_Isend/Irecv between PE pairs
- CAF implementations:
 - Trivial: simple copies to remote images
 - Put: reciprocal puts between image pairs
 - Get: reciprocal gets between image pairs
 - Get0: all images do inner region first, then all do block region (fine grain, no sync.)
 - Get1: half of images do inner region first, half do block region first (fine grain, no sync.)
Example code: Trivial CAF
Example code: Trivial CAF

 real, allocatable, save :: V(:,::)
 :
 allocate(V(1-halo:m+halo,1-halo:n+halo)[p,*])
 :
 WW = myP-1 ; if (WW<1) WW = p
 EE = myP+1 ; if (EE>p) EE = 1
 SS = myQ-1 ; if (SS<1) SS = q
 NN = myQ+1 ; if (NN>q) NN = 1
 :
 V(1:m,1:n) = dom(1:m,1:n) ! computational region
 V(1-halo:0, 1:n)[EE,myQ] = dom(m-halo+1:m,1:n) ! to East
 V(m+1:m+halo, 1:n)[WW,myQ] = dom(1:halo,1:n) ! to West
 V(1:m,1-halo:0)[myP,NN] = dom(1:m,n-halo+1:n) ! to North
 V(1:m,n+1:n+halo)[myP,SS] = dom(1:m,1:halo) ! to South
 V(1-halo:0,1-halo:0)[EE,NN] = dom(m-halo+1:m,n-halo+1:n) ! to North-East
 V(m+1:m+halo,1-halo:0)[WW,NN] = dom(1:halo,n-halo+1:n) ! to North-West
 V(1-halo:0,n+1:n+halo)[EE,SS] = dom(m-halo+1:m,1:halo) ! to South-East
 V(m+1:m+halo,n+1:n+halo)[WW,SS] = dom(1:halo,1:halo) ! to South-West

 sync all
 !
 ! Now run a stencil filter over the computational region (the region unaffected by halo values)
 !
 do j=1,n
 do i=1,m
 sum = 0.
 do l=-halo,halo
 do k=-halo,halo
 sum = sum + stencil(k,l)*V(i+k,j+l)
 enddo
 enddo
 dom(i,j) = sum
 enddo
 enddo
Example code: CAF Put
Example code: CAF Put

\[
\begin{align*}
V(1:m,1:n) &= \text{dom}(1:m,1:n) \quad ! \text{internal region} \\
V(1-halo:0, 1:n)[EE,myQ] &= \text{dom}(m-halo+1:m,1:n) \quad ! \text{to East} \\
V(m+1:m+halo,n+1:n+halo)[WW,SS] &= \text{dom}(1:halo,1:halo) \quad ! \text{to South-West}
\end{align*}
\]

! NO GLOBAL SYNCHRONIZATION HERE
! Perform filter over exclusive region only
\[
\begin{align*}
do \ i=1+halo,m-halo \\
& \quad \text{do } l=-halo,halo \\
& \quad \quad \text{do } k=-halo,halo \\
& \quad \quad \quad \text{sum} = \text{sum} + \text{stencil}(k,l) \cdot V(i+k,j+l) \\
& \quad \quad \text{enddo} \\
& \quad \text{enddo} \\
& \text{dom}(i,j) = \text{sum} \\
& \text{enddo} \\
\end{align*}
\]

! Pair-wise handshake synchronization
\[
\begin{align*}
do \ \text{mode}=0,1 \\
& \quad \text{if } (\text{mod}(\text{myP},2) == \text{mode}) \text{ then} \\
& \quad \quad \text{sync images((myQ-1)*p+WW) } \quad ! \text{West} \\
& \quad \quad \text{do } j=1+halo,n-halo \\
& \quad \quad \quad \text{do } i=1,halo \\
& \quad \quad \text{! Apply filter} \\
& \quad \quad \quad \text{dom}(i,j) = \text{sum} \\
& \quad \quad \quad \text{enddo} \\
& \quad \quad \text{enddo} \\
& \text{else} \\
& \quad \quad \text{sync images((myQ-1)*p+EE) } \quad ! \text{East} \\
& \quad \quad \text{do } j=1+halo,n-halo \\
& \quad \quad \quad \text{do } i=m-halo+1,m \\
& \quad \quad \text{enddo}
\end{align*}
\]
Stencil 2D Results on XT5, XE6, X2; Halo = 1
Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary the size of the local square
Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary the size of the local square

- XT5: CAF puts/gets implemented through message-passing library
Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary the size of the local square

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack
Stencils 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary the size of the local square

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack
Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary the size of the local square

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack
Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary the size of the local square

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack
Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary the size of the local square

- XT5: CAF puts/gets implemented through message-passing library
- XE6, X2: RMA-enabled hardware support for PGAS, but still must pass through software stack
Stencil 2D Weak Scaling on XE6

Fixed local dimension, vary the PE virtual topology (take the optimal configuration)
Stencil 2D Weak Scaling on XE6

Fixed local dimension, vary the PE virtual topology (take the optimal configuration)
Stencil 2D Weak Scaling on XE6

Fixed local dimension, vary the PE virtual topology (take the optimal configuration)
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]
Problem 2: Exact Diagonalization

\[H = J \sum S^z_i S^z_j + \Gamma \sum S^x_i \]
Problem 2: Exact Diagonalization

\[H = J \sum S^z_i S^z_j + \Gamma \sum S^x_i \]
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

Algorithm 1 Lanczos iteration

1: \(v_1 \leftarrow \) random vector with norm 1
2: \(v_0 \leftarrow 0 \)
3: \(\beta_1 \leftarrow 0 \)
4: \textbf{for} \(j = 1, \ldots, r \) \textbf{do}
5: \(w_j \leftarrow Hv_j - \beta_j v_{j-1} \)
6: \(\alpha_j \leftarrow (w_j, v_j) \)
7: \(\beta_{j+1} \leftarrow \|w_j\| \)
8: \(v_{j+1} \leftarrow w_j / \beta_{j+1} \)
9: \textbf{end for}
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

Algorithm 1 \textit{Lanczos iteration}

1: \(v_1 \leftarrow \text{random vector with norm 1} \)
2: \(v_0 \leftarrow 0 \)
3: \(\beta_1 \leftarrow 0 \)
4: \textbf{for } j = 1, \ldots, r \textbf{ do}
5: \(w_j \leftarrow Hv_j - \beta_j v_{j-1} \)
6: \(\alpha_j \leftarrow (w_j, v_j) \)
7: \(\beta_{j+1} \leftarrow \|w_j\| \)
8: \(v_{j+1} \leftarrow w_j / \beta_{j+1} \)
9: \textbf{end for}

\[T_H = \begin{bmatrix} \alpha_1 & \beta_2 & \alpha_2 & \cdots & \beta_r \\ \beta_2 & \alpha_2 & \cdots & \beta_r & \alpha_r \end{bmatrix} \]
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

Algorithm 1 Lanczos iteration

1: \(v_1 \leftarrow \text{random vector with norm 1} \)
2: \(v_0 \leftarrow 0 \)
3: \(\beta_1 \leftarrow 0 \)
4: for \(j = 1, \ldots, r \) do
5: \(w_j \leftarrow Hv_j - \beta_j v_{j-1} \)
6: \(\alpha_j \leftarrow (w_j, v_j) \)
7: \(\beta_{j+1} \leftarrow \|w_j\| \)
8: \(v_{j+1} \leftarrow w_j/\beta_{j+1} \)
9: end for

\[T_H = \begin{bmatrix} \alpha_1 & \beta_2 & \cdots \\ \beta_2 & \alpha_2 & \cdots \\ \cdots & \cdots & \cdots \\ \beta_r & \cdots & \alpha_r \end{bmatrix} \]
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

- Any lattice with \(n \) sites, \(2^n \) states

Algorithm 1: Lanczos iteration

1: \(v_1 \leftarrow \) random vector with norm 1
2: \(v_0 \leftarrow 0 \)
3: \(\beta_1 \leftarrow 0 \)
4: \text{for} \(j = 1, \ldots, r \) \text{do}
5: \(w_j \leftarrow Hv_j - \beta_j v_{j-1} \)
6: \(\alpha_j \leftarrow (w_j, v_j) \)
7: \(\beta_{j+1} \leftarrow \|w_j\| \)
8: \(v_{j+1} \leftarrow w_j / \beta_{j+1} \)
9: \text{end for}
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

- Any lattice with n sites, \(2^n\) states
- Lanczos eigensolver
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

- Any lattice with n sites, \(2^n\) states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

- Any lattice with n sites, \(2^n\) states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec
- Operator has integer operations

Algorithm 1 Lanczos iteration

1. \(v_1 \leftarrow \text{random vector with norm 1}\)
2. \(v_0 \leftarrow 0\)
3. \(\beta_1 \leftarrow 0\)
4. for \(j = 1, \ldots, r\) do
5. \(w_j \leftarrow Hv_j - \beta_j v_{j-1}\)
6. \(\alpha_j \leftarrow (w_j, v_j)\)
7. \(\beta_{j+1} \leftarrow \|w_j\|\)
8. \(v_{j+1} \leftarrow w_j / \beta_{j+1}\)
9. end for

\[T_H = \begin{bmatrix}
\alpha_1 & \beta_2 & \cdots \\
\beta_2 & \alpha_2 & \cdots \\
\vdots & \vdots & \ddots \\
\beta_r & \cdots & \cdots & \beta_r \\
\alpha_r & \cdots & \cdots & \alpha_r
\end{bmatrix} \]
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

- Any lattice with \(n \) sites, \(2^n \) states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec
- Operator has integer operations
- Very irregular sparsity, but

Algorithm 1: Lanczos iteration

1. \(v_1 \leftarrow \) random vector with norm 1
2. \(v_0 \leftarrow 0 \)
3. \(\beta_1 \leftarrow 0 \)
4. for \(j = 1, \ldots, r \) do
5. \(w_j \leftarrow Hv_j - \beta_j v_{j-1} \)
6. \(\alpha_j \leftarrow (w_j, v_j) \)
7. \(\beta_{j+1} \leftarrow \|w_j\| \)
8. \(v_{j+1} \leftarrow w_j / \beta_{j+1} \)
9. end for

\[T_H = \begin{bmatrix} \alpha_1 & \beta_2 & \cdots & \beta_r \\ \beta_2 & \alpha_2 & \cdots & \beta_{r-1} \\ \vdots & \cdots & \cdots & \beta_{r-1} \\ \beta_r & \beta_{r-1} & \cdots & \alpha_r \end{bmatrix} \]
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

- Any lattice with n sites, \(2^n\) states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec
- Operator has integer operations
- Very irregular sparsity, but
- Limited number of process neighbors (new to this work)
Problem 2: Exact Diagonalization

\[H = J \sum S_i^z S_j^z + \Gamma \sum S_i^x \]

- Any lattice with \(n \) sites, \(2^n \) states
- Lanczos eigensolver
- Large, sparse symmetric mat-vec
- Operator has integer operations
- Very irregular sparsity, but
- Limited number of process neighbors (new to this work)
- Symmetries considered in some models: smaller complexity at cost of more communication

Algorithm 1: Lanczos iteration

1. \(v_1 \leftarrow \) random vector with norm 1
2. \(v_0 \leftarrow 0 \)
3. \(\beta_1 \leftarrow 0 \)
4. \(\text{for } j = 1, \ldots, r \text{ do} \)
5. \(w_j \leftarrow Hv_j - \beta_j v_{j-1} \)
6. \(\alpha_j \leftarrow \langle w_j, v_j \rangle \)
7. \(\beta_{j+1} \leftarrow \|w_j\| \)
8. \(v_{j+1} \leftarrow w_j / \beta_{j+1} \)
9. \(\text{end for} \)

\[T_H = \begin{bmatrix} \alpha_1 & \beta_2 & \cdots & \beta_r \\ \beta_2 & \alpha_2 & \cdots & \beta_r \\ \vdots & \vdots & \ddots & \vdots \\ \beta_r & \beta_r & \cdots & \alpha_r \end{bmatrix} \]
Benchmark code: simplest “SPIN” model
Benchmark code: simplest “SPIN” model

Loop for MAX_ITER
 Reduction B (MPI_Reduce)
 L3 (local work, normalize v1)
 Loop over rounds of msgs
 MSG_NB (MPI_Isend,upc_memput(_nbi))
 L4 (work on local matrix, only 1st iteration)
 SYNC (no-op, upc_fence)
 L7 (manage msg reception and do remote work)
 L8 (local work, A norm)
 Reduction A (MPI_Reduce)
 L9 (local work, B norm)
Benchmark code: simplest “SPIN” model

Loop for MAX_ITER

Reduction B (MPI_Reduce)
L3 (local work, normalize v1)

Loop over rounds of msgs

MSG_NB (MPI_Isend, upc_memput(_nbi))
L4 (work on local matrix, only 1st iteration)
SYNC (no-op, upc_fence)
L7 (manage msg reception and do remote work)
L8 (local work, A norm)
Reduction A (MPI_Reduce)
L9 (local work, B norm)

Loops:
• L3: Initialize array
• L4: Local mat-vec
• L6/7: Off process mat-vec
• L8: Alpha calculation
• L9: Beta calculation
Benchmark code: simplest “SPIN” model

Loop for MAX_ITER
Reduction B (MPI_Reduce)
L3 (local work, normalize vI)
Loop over rounds of msgs
 MSG_NB (MPI_Isend,upc_memput(_nbi))
 L4 (work on local matrix, only 1st iteration)
SYNC (no-op, upc_fence)
L7 (manage msg reception and do remote work)
L8 (local work, A norm)
Reduction A (MPI_Reduce)
L9 (local work, B norm)

Loops:
• L3: Initialize array
• L4: Local mat-vec
• L6/7: Off process mat-vec
• L8: Alpha calculation
• L9: Beta calculation

```c
void execute(ed){
    L1: for (i=0; i<2^(n-m); i++)
        b += v1[i]*v1[i]
    L2: for(iter=0; iter<max_iters; iter++)
        MPI_Barrier
        MPI_Allreduce of b
    L3: for (i=0; i<2^(n-m); i++)
        v1[i] *= f1(iter,b)
    L4: for (i=0; i<2^(n-m); i++)
        v2[i] = a(i)*v1[i]
    L5: for (k=0; k<n-m; k++)
        v2[i] += g*v1[f2(i,k)]
    // remote contribution, comm
    L6: for (k=n-m; k<n; k++) // m iterations
        MPI_Isend/MPI_Irecv to v1 using handler1
        MPI_Barrier
        MPI_Allreduce of v1
    L7: for (i=0; i<2^(n-m); i++)
        v2[i] += g*vv1[i]
    swap(v1,v2) // Pointer swap, no memcpy
    L8: for(i=0; i<2^(n-m); i++)
        a += v1[i]*v2[i]
    MPI_Barrier
    MPI_Allreduce of a
    L9: for(i=0; i<2^(n-m); i++)
        v2[i] = f3(i,iter,a)
        b += v2[i]*v2[i]
    swap (v0,v1,v2)
}
```
SPIN single core/socket/node comparisons

- Loop-based OMP directives: performance worse than MPI-only
- Task-based OpenMP/MPI implementation by Fourestey/Stringfellow
SPIN single core/socket/node comparisons

- Loop-based OMP directives: performance worse than MPI-only
- Task-based OpenMP/MPI implementation by Fourestey/Stringfellow

<table>
<thead>
<tr>
<th>System name</th>
<th>Rivera</th>
<th>Castor</th>
<th>Sandy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>AMD 6274</td>
<td>Intel E5-2680</td>
<td>Intel X5650</td>
</tr>
<tr>
<td>Nickname</td>
<td>Interlagos</td>
<td>Westmere</td>
<td>Sandybridge</td>
</tr>
<tr>
<td>Cores/Socket</td>
<td>16</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Sockets/Node</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hyperthreading</td>
<td>no</td>
<td>unenabled</td>
<td>yes (2)</td>
</tr>
<tr>
<td>Compiler</td>
<td>Open64</td>
<td>Intel</td>
<td>Intel</td>
</tr>
<tr>
<td>Core time (s.)</td>
<td>754 (1T)</td>
<td>280 (1T)</td>
<td>227 (1T)</td>
</tr>
<tr>
<td>Socket time (s.)</td>
<td>74 (15T)</td>
<td>51 (6T)</td>
<td>29 (16T)</td>
</tr>
<tr>
<td>Node time (s.)</td>
<td>38 (31T)</td>
<td>26 (12T)</td>
<td>15 (32T)</td>
</tr>
</tbody>
</table>
Multi-buffering concept
Multi-buffering concept

Double buffering
Multi-buffering concept

Double buffering

- **Processor x in step i**
 - Send data to other processor
 - v_1 (read-only data, L6-7)
 - v_2 (accumulate results)
 - Receive data from other processor
 - v_1 (buffer 1)
 - v_2 (buffer 2)

- **Processor x in step i+1**
 - Send data to other processor
 - v_1 (read-only data, L6-7)
 - v_2 (accumulate results)
 - $v_2[i] \leftarrow g \cdot v_1[i]$ (receive)
 - Receive data from other processor
 - v_1 (buffer 1)
 - v_2 (buffer 2)

- **Processor x in step i+2**
 - Send data to other processor
 - v_1 (read-only data, L6-7)
 - v_2 (accumulate results)
 - $v_2[i] \leftarrow g \cdot v_1[i]$ (receive)
 - Receive data from other processor
 - v_1 (buffer 1)
 - v_2 (buffer 2)
Multi-buffering concept

Double buffering

Multi-buffering
Multi-buffering concept

Double buffering

Multi-buffering

REFERENCE
- Local work
- Loop
 - 2-sided MPI_Isend/Irecv (single round)
 - MPI_Wait
- Remote work (in order)

OPTIMIZED
- k shared buffers per PE
 - Loop
 - 1-sided non-blocking put (round of k msgs)
 - Local work (if any)
 - Sync (e.g. barrier, fence, or notification flags)
 - Remote work (out of order)
Sequential Implementation
Sequential Implementation

```c
struct ed_s {
    double *v0, *v1, *v2;  /* vectors */
    double *swap;          /* for swapping vectors */
};

for (iter = 0; iter < ed->max_iter; ++iter) {
    /* matrix vector multiplication */
    for (s = 0; s < ed->nlstates; ++s) {
        /* diagonal part */
        ed->v2[s] = diag(s, ed->n, ed->j) * ed->v1[s];
        /* offdiagonal part */
        for (k = 0; k < ed->n; ++k) {
            s1 = flip_state(s, k);
            ed->v2[s] += ed->gamma * ed->v1[s1];
        }
    }

    /* Calculate alpha */
    /* Calculate beta */
}
```
UPC “Elegant” Implementation
UPC “Elegant” Implementation

```c
struct ed_s { ...  
    shared double *v0, *v1, *v2;     /* vectors */  
    shared double *swap;              /* for swapping vectors */
};

for (iter = 0; iter < ed->max_iter; ++iter) {
    upc_barrier(0);
    /* matrix vector multiplication */
    upc_forall (s = 0; s < ed->nlstates; ++s; &ed->v1[s]) {
        /* diagonal part */
        ed->v2[s] = diag(s, ed->n, ed->j) * ed->v1[s];
        /* offdiagonal part */
        for (k = 0; k < ed->n; ++k) {
            s1 = flip_state(s, k);
            ed->v2[s] += ed->gamma * ed->v1[s1];
        }
    }
    /* Calculate alpha */
    /* Calculate beta */
}
```
Inelegant UPC versions
Inelegant UPC versions

Inelegant 1

```c
shared[NBLOCK] double vtmp[THREADS*NBLOCK];

:v:
for (i = 0; i < NBLOCK; ++i) vtmp[i+MYTHREAD*NBLOCK] = ed->v1[i];
upc_barrier(1);
for (i = 0; i < NBLOCK; ++i) ed->vv1[i] = vtmp[i+(ed->from_nbs[0]*NBLOCK)];
:v:
upc_barrier(2);
```

Inelegant 2

```c
shared[NBLOCK] double vtmp[THREADS*NBLOCK];

:v:
upc_memput( &vtmp[MYTHREAD*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
upc_barrier(1);
upc_memget( ed->vv1, &vtmp[ed->from_nbs[0]*NBLOCK], NBLOCK*sizeof(double) );
:v:
upc_barrier(2);
```
UPC *Inelegant*3: use double buffers and `upc_put`
UPC Inelegant3: use double buffers and upc_put

```c
shared[NBLOCK] double vtmp1[THREADS*NBLOCK];
shared[NBLOCK] double vtmp2[THREADS*NBLOCK];
:
upc_memput( &vtmp1[ed->to_nbs[0]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
upc_barrier(1);
:
if ( mode == 0 ) {
    upc_memput( &vtmp2[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
} else {
    upc_memput( &vtmp1[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double) );
}
:
if ( mode == 0 ) {
    for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp1[i+MYTHREAD*NBLOCK]; }
    mode = 1;
} else {
    for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp2[i+MYTHREAD*NBLOCK]; }
    mode = 0;
}
upc_barrier(2);
```
Other message passing paradigms
Other message passing paradigms

MPI-2: One-sided PUT
Other message passing paradigms

MPI-2: One-sided PUT

```c
MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
```

```c
MPI_Win_fence( 0, win1);
```
Other message passing paradigms

MPI-2: One-sided PUT

```c
MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
MPI_Win_fence( 0, win1);
```

SHMEM: non-blocking PUT
Other message passing paradigms

MPI-2: One-sided PUT

```c
MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
MPI_Win_fence( 0, win1);
```

SHMEM: non-blocking PUT

```c
vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
:
shmem_barrier_all();
shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);
```
Other message passing paradigms

MPI-2: One-sided PUT

```c
MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
MPI_Win_fence( 0, win1);
```

SHMEM: non-blocking PUT

```c
vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
:
shmem_barrier_all();
shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);
```

SHMEM “fast”: non-blocking PUT, local wait only
Other message passing paradigms

MPI-2: One-sided PUT

```c
MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
MPI_Win_fence( 0, win1);
```

SHMEM: non-blocking PUT

```c
vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
:
shmem_barrier_all();
shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);
```

SHMEM “fast”: non-blocking PUT, local wait only

```c
ed->v1[ed->nlstates] = ((double) ed->rank); /* sentinel */
for (l = 0; l < ed->m; ++l) {
    offset = l*(ed->nlstates+1); /* Offset into buffer */
    shmem_double_put_nb(&vtmp[offset],ed->v1, ed->nlstates+1,ed->to_nbs[l],NULL);
}
:
tag = vtmp[offset+ed->nlstates];
while (tag != (double) ed->from_nbs[k-ed->nm]) { /* spin */
    tag = vtmp[offset+ed->nlstates];
}
for (i = offset, j=0; i < offset+ed->nlstates; ++i, ++j) {
    ed->v2[j] += ed->gamma * vtmp[i];
}
vtmp[l*(ed->nlstates+1)+ed->nlstates]=((double)-1); /*reset*/
```
SPIN strong scaling: Cray XE6, n=22,24; 10 iter.
SPIN strong scaling: Cray XE6, n=22,24; 10 iter.
SPIN strong scaling: Cray XE6, n=22,24; 10 iter.
SPIN weak scaling: Cray XE6/Gemini, 10 iterations
SPIN weak scaling: Cray XE6/Gemini, 10 iterations
SPIN weak scaling: Cray XE6/Gemini, 10 iterations
Can UPC perform better than MPI two-sided?
Can UPC perform better than MPI two-sided?

- **Work**: original MPI two-sided version with double buffering
Can UPC perform better than MPI two-sided?

- **Work**: original MPI two-sided version with double buffering
- **Ref_MPI**: naive single buffered version
Can UPC perform better than MPI two-sided?

- **Work**: original MPI two-sided version with double buffering
- **Ref_MPI**: naive single buffered version
- **Opt_MPI**: multiple round-robin buffers utilizing MPI_Isend/Irecv
Can UPC perform better than MPI two-sided?

- **Work**: original MPI two-sided version with double buffering
- **Ref_MPI**: naive single buffered version
- **Opt_MPI**: multiple round-robin buffers utilizing MPI_Isend/Irecv
- **Opt_UPC_Fence**: blocking upc_memput with single fence
Can UPC perform better than MPI two-sided?

- **Work**: original MPI two-sided version with double buffering
- **Ref_MPI**: naive single buffered version
- **Opt_MPI**: multiple round-robin buffers utilizing MPI_Isend/Irecv
- **Opt_UPC_Fence**: blocking upc_memput with single fence
- **Opt_UPC_Fence_each**: blocking upc_memput with fence for each message
Can UPC perform better than MPI two-sided?

- **Work**: original MPI two-sided version with double buffering
- **Ref_MPI**: naive single buffered version
- **Opt_MPI**: multiple round-robin buffers utilizing MPI_Isend/Irecv
- **Opt_UPC_Fence**: blocking upc_memput with single fence
- **Opt_UPC_Fence_each**: blocking upc_memput with fence for each message
- **Opt_UPC_Fence_nbi**: Cray-specific implicit non-blocking memput with a single fence
Can UPC perform better than MPI two-sided?

- **Work:** original MPI two-sided version with double buffering
- **Ref_MPI:** naive single buffered version
- **Opt_MPI:** multiple round-robin buffers utilizing MPI_Isend/Irecv
- **Opt_UPC_Fence:** blocking upc_memput with single fence
- **Opt_UPC_Fence_each:** blocking upc_memput with fence for each message
- **Opt_UPC_Fence_nbi:** Cray-specific implicit non-blocking memput with a single fence
- **Opt_UPC_Fence_each_nbi:** Cray-specific implicit non-blocking memput with fence for each message
Optimized SPIN normed performance: Cray XE6
Optimized SPIN normed performance: Cray XE6
Take-home messages
Take-home messages

- PGAS languages can express communication elegantly
Take-home messages

- PGAS languages can express communication elegantly
- However, elegant codes tend to be inefficient
Take-home messages

- PGAS languages can express communication elegantly
- However, elegant codes tend to be inefficient
- Inelegant PGAS implementations can outperform MPI
 - On platforms where PGAS is implemented close to the hardware, e.g., Cray XE6, X2
 - Where communication is explicitly formulated as PUTs or GETs, inherently defeating the purpose of the PGAS language
Take-home messages

- PGAS languages can express communication elegantly
- However, elegant codes tend to be inefficient
- Inelegant PGAS implementations can outperform MPI
 - On platforms where PGAS is implemented close to the hardware, e.g., Cray XE6, X2
 - Where communication is explicitly formulated as PUTs or GETs, inherently defeating the purpose of the PGAS language
- PGAS is worthwhile to keep in mind, but
Take-home messages

- PGAS languages can express communication elegantly
- However, elegant codes tend to be inefficient
- Inelegant PGAS implementations can outperform MPI
 - On platforms where PGAS is implemented close to the hardware, e.g., Cray XE6, X2
 - Where communication is explicitly formulated as PUTs or GETs, inherently defeating the purpose of the PGAS language
- PGAS is worthwhile to keep in mind, but
- Currently the investment of changing paradigms does not seem worthwhile
Thank you for your attention!

wsawyer@cscs.ch