
Friday, May 25, 2012

User Experiments with PGAS Languages, or

Friday, May 25, 2012

User Experiments with PGAS Languages, or

It’s the Performance, Stupid!

Friday, May 25, 2012

User Experiments with PGAS Languages, or

Will Sawyer, Sergei Isakov, Adrian Tineo

It’s the Performance, Stupid!

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 2

Overarching goals of our group’s work

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 2

Overarching goals of our group’s work

Use scientifically relevant mini-apps from communities to:

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 2

Overarching goals of our group’s work

Use scientifically relevant mini-apps from communities to:
 Evaluate emerging architectures

 AMD Interlagos
 Intel Sandybridge
 IBM BG/Q, GPUs, Intel MIC, if possible

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 2

Overarching goals of our group’s work

Use scientifically relevant mini-apps from communities to:
 Evaluate emerging architectures

 AMD Interlagos
 Intel Sandybridge
 IBM BG/Q, GPUs, Intel MIC, if possible

 Evaluate programming paradigms
 MPI + OpenMP hybrid programming
 MPI-2 one-sided communication
 SHMEM
 PGAS languages (CAF, UPC)
 OpenACC, CUDA, OpenCL, if possible

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 2

Overarching goals of our group’s work

Use scientifically relevant mini-apps from communities to:
 Evaluate emerging architectures

 AMD Interlagos
 Intel Sandybridge
 IBM BG/Q, GPUs, Intel MIC, if possible

 Evaluate programming paradigms
 MPI + OpenMP hybrid programming
 MPI-2 one-sided communication
 SHMEM
 PGAS languages (CAF, UPC)
 OpenACC, CUDA, OpenCL, if possible

 Compare performance across platforms
 out-of-the-box performance
 evaluate optimization effort
 socket-for-socket, node-for-node, energy-to-solution comparisons

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Important concepts and acronyms

3

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Important concepts and acronyms

 PGAS: Partitioned Global Address Space

3

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Important concepts and acronyms

 PGAS: Partitioned Global Address Space
 UPC: Unified Parallel C

3

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Important concepts and acronyms

 PGAS: Partitioned Global Address Space
 UPC: Unified Parallel C
 CAF: Co-Array Fortran

3

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Important concepts and acronyms

 PGAS: Partitioned Global Address Space
 UPC: Unified Parallel C
 CAF: Co-Array Fortran
 Titanium: PGAS Java dialect

3

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Important concepts and acronyms

 PGAS: Partitioned Global Address Space
 UPC: Unified Parallel C
 CAF: Co-Array Fortran
 Titanium: PGAS Java dialect
 MPI: Message-Passing Interface

3

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Important concepts and acronyms

 PGAS: Partitioned Global Address Space
 UPC: Unified Parallel C
 CAF: Co-Array Fortran
 Titanium: PGAS Java dialect
 MPI: Message-Passing Interface
 SHMEM: Shared Memory API (SGI)

3

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Partitioned Global Address Space

4

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Partitioned Global Address Space

 Global address space: any thread/process may directly
read/write data allocated by any other

 Partitioned: data is designated as local or global;
programmer controls layout

4

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Partitioned Global Address Space

 Global address space: any thread/process may directly
read/write data allocated by any other

 Partitioned: data is designated as local or global;
programmer controls layout

4

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Partitioned Global Address Space

 Global address space: any thread/process may directly
read/write data allocated by any other

 Partitioned: data is designated as local or global;
programmer controls layout

4

G
lo

ba
l a

dd
re

ss
 s

pa
ce

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Partitioned Global Address Space

 Global address space: any thread/process may directly
read/write data allocated by any other

 Partitioned: data is designated as local or global;
programmer controls layout

4

G
lo

ba
l a

dd
re

ss
 s

pa
ce By default:

• object heaps
are shared

• program stacks
are private

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Partitioned Global Address Space

 Global address space: any thread/process may directly
read/write data allocated by any other

 Partitioned: data is designated as local or global;
programmer controls layout

4

G
lo

ba
l a

dd
re

ss
 s

pa
ce By default:

• object heaps
are shared

• program stacks
are private

3 Current languages: UPC, CAF, and Titanium

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Potential strengths of a PGAS language

5

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Potential strengths of a PGAS language

 Interprocess communication intrinsic to language
 Explicit support for distributed data structures (private and shared data)
 Conceptually the parallel formulation can be more elegant

5

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Potential strengths of a PGAS language

 Interprocess communication intrinsic to language
 Explicit support for distributed data structures (private and shared data)
 Conceptually the parallel formulation can be more elegant

 One-sided communication
 Values are either ‘put’ or ‘got’ from remote images
 Support for bulk messages, synchronization
 Could be implemented with message-passing library or through RDMA

(remote direct memory access)

5

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Potential strengths of a PGAS language

 Interprocess communication intrinsic to language
 Explicit support for distributed data structures (private and shared data)
 Conceptually the parallel formulation can be more elegant

 One-sided communication
 Values are either ‘put’ or ‘got’ from remote images
 Support for bulk messages, synchronization
 Could be implemented with message-passing library or through RDMA

(remote direct memory access)
 PGAS hardware support available
 Cray Gemini (XE6) interconnect supports RDMA

5

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Potential strengths of a PGAS language

 Interprocess communication intrinsic to language
 Explicit support for distributed data structures (private and shared data)
 Conceptually the parallel formulation can be more elegant

 One-sided communication
 Values are either ‘put’ or ‘got’ from remote images
 Support for bulk messages, synchronization
 Could be implemented with message-passing library or through RDMA

(remote direct memory access)
 PGAS hardware support available
 Cray Gemini (XE6) interconnect supports RDMA

 Potential interoperability with existing C/Fortran/Java code

5

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Problem 1: Halo Exchange

6

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Problem 1: Halo Exchange

6

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Problem 1: Halo Exchange

6

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Problem 1: Halo Exchange

6

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Problem 1: Halo Exchange

6

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Potential Performance Gains with Co-Array Fortran

7

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Potential Performance Gains with Co-Array Fortran

7

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Potential Performance Gains with Co-Array Fortran

7

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Halo Exchange “Stencil 2D” Benchmark

8

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Halo Exchange “Stencil 2D” Benchmark

Halo exchange and stencil operation over a square domain distributed over
a 2-D virtual process topology

8

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Halo Exchange “Stencil 2D” Benchmark

Halo exchange and stencil operation over a square domain distributed over
a 2-D virtual process topology
•Arbitrary halo ‘radius’ (number of halo cells in a given dimension, e.g. 3)

8

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Halo Exchange “Stencil 2D” Benchmark

Halo exchange and stencil operation over a square domain distributed over
a 2-D virtual process topology
•Arbitrary halo ‘radius’ (number of halo cells in a given dimension, e.g. 3)

•MPI implementations:
•Trivial: post all 8 MPI_Isend and Irecv
•Sendrecv: MPI_Sendrecv between PE pairs
•Halo: MPI_Isend/Irecv between PE pairs

8

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Halo Exchange “Stencil 2D” Benchmark

Halo exchange and stencil operation over a square domain distributed over
a 2-D virtual process topology
•Arbitrary halo ‘radius’ (number of halo cells in a given dimension, e.g. 3)

•MPI implementations:
•Trivial: post all 8 MPI_Isend and Irecv
•Sendrecv: MPI_Sendrecv between PE pairs
•Halo: MPI_Isend/Irecv between PE pairs

•CAF implementations:
•Trivial: simple copies to remote images
•Put: reciprocal puts between image pairs
•Get: reciprocal gets between image pairs
•Get0: all images do inner region first, then all do block region (fine grain, no sync.)
•Get1: half of images do inner region first,half do block region first (fine grain, no

sync.)

8

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Example code: Trivial CAF

9

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Example code: Trivial CAF
 real, allocatable, save :: V(:,:)[:,:]

 :
 allocate(V(1-halo:m+halo,1-halo:n+halo)[p,*])
 :
 WW = myP-1 ; if (WW<1) WW = p
 EE = myP+1 ; if (EE>p) EE = 1
 SS = myQ-1 ; if (SS<1) SS = q
 NN = myQ+1 ; if (NN>q) NN = 1
 :

 V(1:m,1:n) = dom(1:m,1:n) ! computational region

 V(1-halo:0, 1:n)[EE,myQ] = dom(m-halo+1:m,1:n) ! to East
 V(m+1:m+halo, 1:n)[WW,myQ] = dom(1:halo,1:n) ! to West
 V(1:m,1-halo:0)[myP,NN] = dom(1:m,n-halo+1:n) ! to North
 V(1:m,n+1:n+halo)[myP,SS] = dom(1:m,1:halo) ! to South
 V(1-halo:0,1-halo:0)[EE,NN] = dom(m-halo+1:m,n-halo+1:n) ! to North-East
 V(m+1:m+halo,1-halo:0)[WW,NN] = dom(1:halo,n-halo+1:n) ! to North-West
 V(1-halo:0,n+1:n+halo)[EE,SS] = dom(m-halo+1:m,1:halo) ! to South-East
 V(m+1:m+halo,n+1:n+halo)[WW,SS] = dom(1:halo,1:halo) ! to South-West

 sync all
!
! Now run a stencil filter over the computational region (the region unaffected by halo values)
!
 do j=1,n
 do i=1,m
 sum = 0.
 do l=-halo,halo
 do k=-halo,halo
 sum = sum + stencil(k,l)*V(i+k,j+l)
 enddo
 enddo
 dom(i,j) = sum
 enddo
 enddo

9

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Example code: CAF Put

10

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Example code: CAF Put
 :

 V(1:m,1:n) = dom(1:m,1:n) ! internal region

 V(1-halo:0, 1:n)[EE,myQ] = dom(m-halo+1:m,1:n) ! to East
 :
 V(m+1:m+halo,n+1:n+halo)[WW,SS] = dom(1:halo,1:halo) ! to South-West

! NO GLOBAL SYNCHRONIZATION HERE
! Perform filter over exclusive region only
 do j=1+halo,n-halo
 do i=1+halo,m-halo
 sum = 0.
 do l=-halo,halo
 do k=-halo,halo
 sum = sum + stencil(k,l)*V(i+k,j+l)
 enddo
 enddo
 dom(i,j) = sum
 enddo
 enddo

! Pair-wise handshake synchronization
 do mode=0,1
 if (mod(myP,2) == mode) then
 sync images((myQ-1)*p+WW) ! West

 do j=1+halo,n-halo
 do i=1,halo
! Apply filter
 dom(i,j) = sum
 enddo
 enddo
 else
 sync images((myQ-1)*p+EE) ! East
 do j=1+halo,n-halo
 do i=m-halo+1,m
 :

10

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Results on XT5, XE6, X2; Halo = 1

11

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary
the size of the local square

11

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary
the size of the local square
 XT5: CAF puts/gets implemented through

message-passing library

11

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary
the size of the local square
 XT5: CAF puts/gets implemented through

message-passing library
 XE6, X2: RMA-enabled hardware support for

PGAS, but still must pass through software stack

11

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary
the size of the local square
 XT5: CAF puts/gets implemented through

message-passing library
 XE6, X2: RMA-enabled hardware support for

PGAS, but still must pass through software stack

11

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary
the size of the local square
 XT5: CAF puts/gets implemented through

message-passing library
 XE6, X2: RMA-enabled hardware support for

PGAS, but still must pass through software stack

11

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary
the size of the local square
 XT5: CAF puts/gets implemented through

message-passing library
 XE6, X2: RMA-enabled hardware support for

PGAS, but still must pass through software stack

11

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Results on XT5, XE6, X2; Halo = 1

Using a fixed size virtual PE topology, vary
the size of the local square
 XT5: CAF puts/gets implemented through

message-passing library
 XE6, X2: RMA-enabled hardware support for

PGAS, but still must pass through software stack

11

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Weak Scaling on XE6
Fixed local dimension, vary the PE virtual topology (take the optimal configuration)

12

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Weak Scaling on XE6
Fixed local dimension, vary the PE virtual topology (take the optimal configuration)

12

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Stencil 2D Weak Scaling on XE6
Fixed local dimension, vary the PE virtual topology (take the optimal configuration)

12

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

 Any lattice with n sites, 2n states

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

 Any lattice with n sites, 2n states
 Lanczos eigensolver

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec
 Operator has integer operations

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec
 Operator has integer operations
 Very irregular sparsity, but

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec
 Operator has integer operations
 Very irregular sparsity, but
 Limited number of process

neighbors (new to this work)

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012 13

Problem 2: Exact Diagonalization

 Any lattice with n sites, 2n states
 Lanczos eigensolver
 Large, sparse symmetric mat-vec
 Operator has integer operations
 Very irregular sparsity, but
 Limited number of process

neighbors (new to this work)
 Symmetries considered in some

models: smaller complexity at
cost of more communication

2

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Benchmark code: simplest “SPIN” model

14

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Benchmark code: simplest “SPIN” model

14

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Benchmark code: simplest “SPIN” model

14

Loops:
• L3: Initialize array
• L4: Local mat-vec
• L6/7: Off process mat-vec
• L8: Alpha calculation
• L9: Beta calculation

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Benchmark code: simplest “SPIN” model

14

Loops:
• L3: Initialize array
• L4: Local mat-vec
• L6/7: Off process mat-vec
• L8: Alpha calculation
• L9: Beta calculation

Friday, May 25, 2012

SPIN single core/socket/node comparisons
 Loop-based OMP directives: performance worse than MPI-only
 Task-based OpenMP/MPI implementation by Fourestey/Stringfellow

Friday, May 25, 2012

SPIN single core/socket/node comparisons
 Loop-based OMP directives: performance worse than MPI-only
 Task-based OpenMP/MPI implementation by Fourestey/Stringfellow

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Multi-buffering concept

16

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Multi-buffering concept

16

Double buffering

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Multi-buffering concept

16

Double buffering

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Multi-buffering concept

16

Double buffering Multi-buffering

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Multi-buffering concept

16

Double buffering Multi-buffering

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Sequential Implementation

17

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Sequential Implementation

17

struct ed_s { ...
 double *v0, *v1, *v2; /* vectors */
 double *swap; /* for swapping vectors */
};
 :
for (iter = 0; iter < ed->max_iter; ++iter) {
 :
 /* matrix vector multiplication */
 for (s = 0; s < ed->nlstates; ++s) {
 /* diagonal part */
 ed->v2[s] = diag(s, ed->n, ed->j) * ed->v1[s];
 /* offdiagonal part */
 for (k = 0; k < ed->n; ++k) {
 s1 = flip_state(s, k);
 ed->v2[s] += ed->gamma * ed->v1[s1];
 }
 }
 :
 /* Calculate alpha */
 /* Calculate beta */
 }
}

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

UPC “Elegant” Implementation

18

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

UPC “Elegant” Implementation

18

struct ed_s { ...
 shared double *v0, *v1, *v2; /* vectors */
 shared double *swap; /* for swapping vectors */
};
 :
for (iter = 0; iter < ed->max_iter; ++iter) {
 :
 upc_barrier(0);
 /* matrix vector multiplication */
 upc_forall (s = 0; s < ed->nlstates; ++s; &(ed->v1[s])) {
 /* diagonal part */
 ed->v2[s] = diag(s, ed->n, ed->j) * ed->v1[s];
 /* offdiagonal part */
 for (k = 0; k < ed->n; ++k) {
 s1 = flip_state(s, k);
 ed->v2[s] += ed->gamma * ed->v1[s1];
 }
 }
 :
 /* Calculate alpha */
 /* Calculate beta */
 }
}

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Inelegant UPC versions

19

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Inelegant UPC versions

19

Inelegant 1
shared[NBLOCK] double vtmp[THREADS*NBLOCK];
 :
for (i = 0; i < NBLOCK; ++i) vtmp[i+MYTHREAD*NBLOCK] = ed->v1[i];
upc_barrier(1);
for (i = 0; i < NBLOCK; ++i) ed->vv1[i] = vtmp[i+(ed->from_nbs[0]*NBLOCK)];
 :
upc_barrier(2);

Inelegant 2
shared[NBLOCK] double vtmp[THREADS*NBLOCK];
 :
upc_memput(&vtmp[MYTHREAD*NBLOCK], ed->v1, NBLOCK*sizeof(double));
upc_barrier(1);
upc_memget(ed->vv1, &vtmp[ed->from_nbs[0]*NBLOCK], NBLOCK*sizeof(double));
 :
upc_barrier(2);

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

UPC Inelegant3: use double buffers and upc_put

20

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

UPC Inelegant3: use double buffers and upc_put

20

shared[NBLOCK] double vtmp1[THREADS*NBLOCK];
shared[NBLOCK] double vtmp2[THREADS*NBLOCK];
:
upc_memput(&vtmp1[ed->to_nbs[0]*NBLOCK], ed->v1, NBLOCK*sizeof(double));
upc_barrier(1);
:
 if (mode == 0) {
 upc_memput(&vtmp2[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double));
 } else {
 upc_memput(&vtmp1[ed->to_nbs[neighb]*NBLOCK], ed->v1, NBLOCK*sizeof(double));
 }
 :
 if (mode == 0) {
 for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp1[i+MYTHREAD*NBLOCK]; }
 mode = 1;
 } else {
 for (i = 0; i < ed->nlstates; ++i) { ed->v2[i] += ed->gamma * vtmp2[i+MYTHREAD*NBLOCK]; }
 mode = 0;
 }
 upc_barrier(2);

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Other message passing paradigms

21

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Other message passing paradigms

21

MPI-2: One-sided PUT

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Other message passing paradigms

21

 MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
 MPI_Win_fence(0, win1);

MPI-2: One-sided PUT

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Other message passing paradigms

21

 MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
 MPI_Win_fence(0, win1);

MPI-2: One-sided PUT

SHMEM: non-blocking PUT

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Other message passing paradigms

21

 vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
 :
 shmem_barrier_all();
 shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);

 MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
 MPI_Win_fence(0, win1);

MPI-2: One-sided PUT

SHMEM: non-blocking PUT

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Other message passing paradigms

21

 vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
 :
 shmem_barrier_all();
 shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);

 MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
 MPI_Win_fence(0, win1);

MPI-2: One-sided PUT

SHMEM: non-blocking PUT

SHMEM “fast”: non-blocking PUT, local wait only

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Other message passing paradigms

21

 vtmp1 = (double *) shmalloc(ed->nlstates*sizeof(double));
 :
 shmem_barrier_all();
 shmem_double_put_nb(vtmp1, ed->v1, ed->nlstates, ed->from_nbs[neighb], NULL);

 MPI_Put(ed->v1, ed->nlstates, MPI_DOUBLE, ed->to_nbs[0], 0, ed->nlstates, MPI_DOUBLE, win1);
 MPI_Win_fence(0, win1);

 ed->v1[ed->nlstates] = ((double) ed->rank); /* sentinel */
 for (l = 0; l < ed->m; ++l) {
 offset = l*(ed->nlstates+1); /* Offset into buffer */
 shmem_double_put_nb(&vtmp[offset],ed->v1, ed->nlstates+1,ed->to_nbs[l],NULL);
 }
 :
 tag = vtmp[offset+ed->nlstates];
 while (tag != (double) ed->from_nbs[k-ed->nm]) { /* spin */
 tag = vtmp[offset+ed->nlstates];
 }
 for (i = offset, j=0; i < offset+ed->nlstates; ++i, ++j) {
 ed->v2[j] += ed->gamma * vtmp[i];
 }
 vtmp[l*(ed->nlstates+1)+ed->nlstates]=((double)-1); /*reset*/

MPI-2: One-sided PUT

SHMEM: non-blocking PUT

SHMEM “fast”: non-blocking PUT, local wait only

Friday, May 25, 2012

HP2C/Cray//CSCS Workshop

SPIN strong scaling: Cray XE6, n=22,24; 10 iter.

Friday, May 25, 2012

HP2C/Cray//CSCS Workshop

SPIN strong scaling: Cray XE6, n=22,24; 10 iter.

Friday, May 25, 2012

HP2C/Cray//CSCS Workshop

SPIN strong scaling: Cray XE6, n=22,24; 10 iter.

Friday, May 25, 2012

SPIN weak scaling: Cray XE6/Gemini, 10 iterations

Friday, May 25, 2012

SPIN weak scaling: Cray XE6/Gemini, 10 iterations

Friday, May 25, 2012

SPIN weak scaling: Cray XE6/Gemini, 10 iterations

Friday, May 25, 2012

Can UPC perform better than MPI two-sided?

Friday, May 25, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering

Friday, May 25, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version

Friday, May 25, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv

Friday, May 25, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
 Opt_UPC_Fence: blocking upc_memput with single fence

Friday, May 25, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
 Opt_UPC_Fence: blocking upc_memput with single fence
 Opt_UPC_Fence_each: blocking upc_memput with fence for

each message

Friday, May 25, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
 Opt_UPC_Fence: blocking upc_memput with single fence
 Opt_UPC_Fence_each: blocking upc_memput with fence for

each message
 Opt_UPC_Fence_nbi: Cray-specific implicit non-blocking

memput with a single fence

Friday, May 25, 2012

Can UPC perform better than MPI two-sided?

 Work: original MPI two-sided version with double buffering
 Ref_MPI: naive single buffered version
 Opt_MPI: multiple round-robin buffers utilizing MPI_Isend/Irecv
 Opt_UPC_Fence: blocking upc_memput with single fence
 Opt_UPC_Fence_each: blocking upc_memput with fence for

each message
 Opt_UPC_Fence_nbi: Cray-specific implicit non-blocking

memput with a single fence
 Opt_UPC_Fence_each_nbi: Cray-specific implicit non-blocking

memput with fence for each message

Friday, May 25, 2012

Optimized SPIN normed performance: Cray XE6

Friday, May 25, 2012

Optimized SPIN normed performance: Cray XE6

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Take-home messages

26

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Take-home messages

26

 PGAS languages can express communication elegantly

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Take-home messages

26

 PGAS languages can express communication elegantly
 However, elegant codes tend to be inefficient

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Take-home messages

26

 PGAS languages can express communication elegantly
 However, elegant codes tend to be inefficient
 Inelegant PGAS implementations can outperform MPI

 On platforms where PGAS is implemented close to the hardware, e.g.,
Cray XE6, X2

 Where communication is explicitly formulated as PUTs or GETs,
inherently defeating the purpose of the PGAS language

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Take-home messages

26

 PGAS languages can express communication elegantly
 However, elegant codes tend to be inefficient
 Inelegant PGAS implementations can outperform MPI

 On platforms where PGAS is implemented close to the hardware, e.g.,
Cray XE6, X2

 Where communication is explicitly formulated as PUTs or GETs,
inherently defeating the purpose of the PGAS language

 PGAS is worthwhile to keep in mind, but

Friday, May 25, 2012

Advanced Distributed Memory Parallel Programming, May 25, 2012

Take-home messages

26

 PGAS languages can express communication elegantly
 However, elegant codes tend to be inefficient
 Inelegant PGAS implementations can outperform MPI

 On platforms where PGAS is implemented close to the hardware, e.g.,
Cray XE6, X2

 Where communication is explicitly formulated as PUTs or GETs,
inherently defeating the purpose of the PGAS language

 PGAS is worthwhile to keep in mind, but
 Currently the investment of changing paradigms does not

seem worthwhile

Friday, May 25, 2012

Thank you for your attention!
wsawyer@cscs.ch

27

Friday, May 25, 2012

mailto:wsawyer@cscs.ch
mailto:wsawyer@cscs.ch

