A quick tour of OpenACC & Co.

or
How should | program this accelerator ?

Roberto Ansaloni
Cray lItaly
roberto@cray.com

The Cray XK6 heterogeneous node S
The Cray XE6 The Cray XK6
compute node compute node
e Built around the Gemini e Replace one CPU socket
Interconnect with a GPU

e Each Gemini ASIC
provides 2 NICs enabling
It to connect 2 dual-socket

May 23-25, 2012 PGAS Workshop - CSCS @

Issues with today’s accelerators (Fermi)

32GB
SDRAM

~170 GB/s

PCle-2
8 GB/s

Bandwidth
and Synchronization
e This is a short-lived situation
e Solutions coming from several vendors (NVIDIA, AMD,...)
e Trick is to keep kernel data structures resident in GPU
memory as much as possible
e Avoids copying between CPU and GPU
e Use async, non-blocking, communication, multi-level overlapping

May 23-25, 2012 PGAS Workshop - CSCS @

Roberto’s recipe

e KISS Principle: Keep It Simple \
e As simple as possible
e Unless you really really really need performance today

e Use aflexible and portable approach

e GPU architectures have changed and will change: don't stick to a
specific one

e GPUs are just one kind of accelerators

e Exploit libraries
e Exploit work done by smart people

e Don’t forget Amdahl

¢ Amdahl who ?

May 23-25, 2012 PGAS Workshop - CSCS @

How to program an accelerator ?

e Th

e hard way:. CUDA, OpenCL

All are quite low-level

CUDA is closely coupled to the GPU

User needs to rewrite kernels in specialist language
Hard to write and debug

Hard to optimise for specific GPU

Hard to port to new accelerator

Hard to add new functionality

e A simpler approach: accelerator directives

May 23-25, 2012

Several initial proposals: PGI directives, OpenMP (Cray)
Currently merged into OpenACC

Based on original source code (e.g. Fortran, C, C++)
Easier to maintain/port/extend code

Can support future accelerators

Possible performance sacrifice

PGAS Workshop - CSCS

Performance compared to CUDA SRS

° \
\

e Is there a performance gap relative to explicit low-level \
programming model? Typically 10-15%, sometimes none.

e Is the performance gap acceptable? Yes.
e e.g. S3D comp_heat kernel (ORNL application readiness):

10
«$=0OpenMP

) «=CUDA Fortran (PGl)
'8 P e==0penACC (CCE)
o
O
L
v 0.1 -
£
I_

O-Ol I I I I

0) 8 16 24 32

Cores on Host

May 23-25, 2012 PGAS Workshop - CSCS @

OpenACC. S TSR

DIRECTIVES FOR ACCELERATORS \

e A common directive programming model for today’s GPUs
e Announced at SC11 conference

o Offers portability between compilers The Opepgopn
e Drawn up by: NVIDIA, Cray, PGI, CAPS T“’CK REFERENC tﬁti’
e Multiple compilers offer: ;;s;;f{s:gii&‘é‘éﬁfﬁf&iﬁiﬂ:z

e portability, debugging, permanence ;Oas:E}Z",‘ZZ‘Z’L’I’ZJ;’?E'%?EZZ‘,TOifgaa,a

e Works for Fortran, C, C++ "° i
o Standard available at www.OpenACC-standard.org s,

e Initially implementations targeted at NVIDIA GPUs

e Current version: 1.0 (November 2011)

tructyrgg block Tucturgg

o s r

OMDOUng g "Nle statg ;

f statem, ement (¢ Ment or 5
ents (F,

at the top and; Ortean) iy

e Compiler support: :‘APs"
e Cray CCE: partial now, complete in 2012 Ty

e PGl Accelerator: released product in 2012 @n‘”DIA.

e CAPS: released product in 2012

Y 4 |
CAPS CRRA3y" @ NVIDIA. The Portland Group,,

May 23-25, 2012 THE SUPERCOMPUTER COMPANY b - CSCS

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

(_)penMP accelerator directives anY‘

° \
\

e A common programming model for tomorrow’s accelerators,

e An established open standard is the most attractive
e portability; multiple compilers for debugging; permanence

e Subcommittee of OpenMP ARB
e includes most major vendors + others (e.g. EPCC)
e co-chaired by Cray (James Beyer)
e aiming for OpenMP 4 (20127?)

e Targets Fortran, C, C++

e Current version: draft

e Cray compiler provides reference implementation for ARB
e Of draft standard at present (CCE 8.0)
e Will track the standard as it evolves

e Converting from OpenACC to OpenMP will be
straightforward

May 23-25, 2012 PGAS Workshop - CSCS

http://openmp.org/wp/

OpenACC Execution model

e Host-directed execution with attached GPU

e Main program executes on “host” (i.e. CPU)

e Compute intensive regions offloaded to the accelerator device under
control of the host.

e “device” (i.e. GPU) executes parallel regions
e typically contain “kernels” (i.e. work-sharing loops), or

o Iléernels regions, containing one or more loops which are executed as
ernels.

e Host must orchestrate the execution by:
e allocating memory on the accelerator device,

Initiating data transfer,

sending the code to the accelerator,

passing arguments to the parallel region,

gueuing the device code,

waiting for completion,

transferring results back to the host, and

deallocating memory.

May 23-25, 2012 PGAS Workshop - CSCS

A first OpenACC example

Execute a loop nest on the GPU
e Compiler does the work

e Data movement
e allocates/frees GPU memory at
start/end of region
e moves of data to/from GPU

CRANY”
\

I$acc parallel loop
DO j = 1,M
DO i = 2,N-1
c(i,j) = a(i,j) + b(i,3)
ENDDO
ENDDO
I$acc end parallel loop

e Loop schedule: spreading loop iterations over PEs of GPU

e Tune default behaviour with optional clauses on directives

May 23-25, 2012

PGAS Workshop - CSCS

Another example

e Two accelerator parallel regions

e Compiler creates two kernels
e First kernel initialises array
e Compiler will determine copyout(a)

e Second kernel updates array
e Compiler will determine copy(a)

e Breaking parallel region=barrier

e No barrier directive

CRANY”
\

° \
\

PROGRAM main
INTEGER :: a(N)
<stuff>

1$acc parallel loop

DO i = 1,N
a(i) = i
ENDDO

1$acc parallel loop
DO i = 1,N
a(i) = 2*a(i)
ENDDO
<stuff>
END PROGRAM main

e The code can still be compiled for CPU

May 23-25, 2012 PGAS Workshop - CSCS

Let’s control data movement

e Now added a data region

e Specified arrays only moved at
boundaries of data region

e No compiler-determined
movements for data regions

e Other directives/clauses are
available to allow a more direct
control of data movements
e present clause
e !$acc update [host | device |

May 23-25, 2012 PGAS Workshop - CSCS

®e
CRANY”
\

° \
\

PROGRAM main \
INTEGER :: a(N)
<stuff>

I$acc data copyout(a)

1$acc parallel loop

DO i = 1,N
a(i) = i
ENDDO
1$acc parallel loop
DO i = 1,N
a(i) = 2*a(i)
ENDDO
I1$acc end data
<stuff>

END PROGRAM main

®e
CRANY”
\

!

e Parallel 3D Poisson equation solver :
e [terative loop evaluating 19-point stencil
e Memory intensive, memory bandwidth bound
0162

A case study: the Himeno Benchmark

e Fortran, C, MPl and OpenMP implementations
available from http://accc.riken.jp/HPC e/himenobmt _e.html

e Fortran Coarray (CAF) version developed
e ~600 lines of Fortran
e Fully ported to accelerator using 27 directive pairs

e Strong scaling benchmark
e XL configuration: 1024 x 512 x 512 global volume
e EXxpect halo exchanges to become significant

e Use asynchronous GPU data transfers and kernel launches to help
avoid this

May 23-25, 2012 PGAS Workshop - CSCS @

http://accc.riken.jp/HPC_e/himenobmt_e.html
http://accc.riken.jp/HPC_e/himenobmt_e.html

The Jacobi computational kernel (serial)

)
\
DO K=2, kmax-1
DO J=2,jmax-1
DO I=2,imax-1 —
E—

e The stencil is applied to
pressure array p

e Updated pressure values
are saved to temporary
array wrk2

e Control value wgosa is
computed

e |n the benchmark this
kernel is iterated a fixed
number of times (nn)

May 23-25, 2012

S0=a(I,J,K,1)*p(I+1,J, K)

+a(I,J,K,2)*p(I, J+1,K) &

+a(I,J,K,3)*p(I, J, K+1) &

+b(I,J,K,1)* (p(I+1,J+1,K)-p(I+1l,J-1,K)
—p(I-1,J+1,K)+p(I-1,3-1,K))

+b(I,J,K,2)*(p(I, J+1,K+1l)-p(I, J-1,K+1)
—p(I, J+1,K-1)+p(I, J-1,K-1))

+b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+l)
—p(I+1,J, K-1)+p(I-1,J, K-1))

+c(I,J,K,1)*p(I-1,J, K) &

+c(I,J,K,2)*p(I, J-1,K) &

+c(I,J,K,3)*p(I, J, K-1) &

+ wrkl(I,J,K)

Ss = (sO0*a(I,J,K,4)-p(I,J,K))*bnd(I,J, K)
wgosa = wgosa+ SS*SS
wrk2(I,J,K)=p(I,J,K)+OMEGA *SS

ENDDO

ENDDO

N /

PGAS Workshop - CSCS

CRANY”
4

“mmmmhm“

\

\

fwd n.n.

N.

n.n

bwd n.n.

The distributed implementation

e The outer loop is executed
fixed number of times F Loop = 1, nn \
e The Jacobi kernel is

executed and new pressure compute Jacobi: wrkz, wgosa
array wrk2 and control

value wgosa are computed copy back wrk2 into p
e The p array is updated with pack halo from p into send buf
wrk2 values

exchange halos with neighbor PEs

e The halo reqgion values are

exchanged between unpack halo into p from recv buf
neléghbor_PEs using send
and receive buffers Allreduce to sum wgosa across Pes

e The maximum wgosa value \ gxppo
IS computed with an

Allreduce operation across
all the PEs

May 23-25, 2012 PGAS Workshop - CSCS @

Porting Himeno to the Cray XK6

e Several versions tested, with communication
Implemented in MPI or Fortran coarrays

e GPU version using OpenACC accelerator directives
e Arrays reside permanently on the GPU memory

e Data transfers between host and GPU are:
e Communication buffers for the halo exchange
e Control value

e Cray XK6 timings compared to best Cray XEG6 results
(hybrid MPI/OpenMP)

May 23-25, 2012 PGAS Workshop - CSCS

The HHmeno GPU code structure

e GPU performs
e Jacobi kernel

e Halo buffers packing/unpacking

e Pressure update

e Host/device communication

e Halo region buffers transfer
e Control value wgosa

e CAF communication

e Remote halo buffers put
e Global wgosa sum

May 23-25, 2012

CRANY
\
)) \
CPU GPU
1<
4
calculate wrk2 from p
€]

v

pack halos from wrk2

|
/ update host(halos) /
]

€

L

put halos
over network

/ cosum(wgosa) / ‘L

C CAF barrier)

next ite‘m

PGAS Workshop - CSCS

copy wrk2 bulk to p

-

v

€

/ update device(halos) /
I

unpack halos into p

Jacobi kernel on the GPU

e The GPU kernel for the
main loop is created with Floopﬂ an \
the parallel loop gosa = 0
directive wgosa = 0
!Sacc parallel loop &

e The scoping of the main

! : . : 1Sacc& private(sO, ss) &
variables is specified earlier | s.ccs reduction (+:wgosa) <
with the data directive - no '$acce vector length (256)
need to replicate it in here DO K=2,kmax-1

e wgosa is computed by DO J=2,jmax-1

DO I=2,imax-1

specifying the reduction S0=a(I,J.K,1)*p(I+1,J, K)&

clause, as in a standard

OpenMP parallel loop wgosa = wgosa + SS*SS
e vector length clause s ENDDO
used to indicate the ENDDO
number of threads within a QDDO j
threadblock (compiler

default 128)

May 23-25, 2012 PGAS Workshop - CSCS

Coarray implementation

e Coarrays are used to perform
the halo exchange

e Non-blocking communication
needs pgas defer_sync
directive

e Programmer now responsible
for data synchronization

e By deferring sync point,
network communications can
be overlapped with CPU or
GPU activity

e Updating p from wrk2 (on
GII% gp (

U) overlapped with halo
exchange

N.B.
no sync all
CAF intrinsic COSUM has loose
synchronisation (so does need
sync memory first).

May 23-25, 2012

'dir$ pgas defer sync
recvbuffz up(:,:) [myx, myy, myz-1]= &
sendbuffz dn(:,:)

1Sacc parallel loop
DO k = 2,kmax-1
DO j = 2,jmax-1

DO i = 2,imax-1
p(i,j,k) = wrk2(i,3, k)
ENDDO
ENDDO
ENDDO

1Sacc end parallel loop

sync memory
CO_SUM(wgosa)

1$acc update device &
'Saccé (recvbuffz dn,recvbuffz up)

PGAS Workshop - CSCS

OpenACC / CAF version

e Total number of lines in the original Himeno
MPI-Fortran code:

e Total number lines in the modified version
with coarrays and accelerator directives:
e don't need MPI_CART_CREATE and the like

e Total number of accelerator directives:
e plus 18 "end" directives

May 23-25, 2012 PGAS Workshop - CSCS

629

554

27

Benchmarking the code

e Cray XK6 configuration:
e Single AMD IL-16 2.1GHz nodes, 16 cores per node
Nvidia Tesla X2090 GPU, 1 GPU per node
Running with 1 PE (GPU) per node
Himeno case XL needs at least 16 XK6 nodes
Testing blocking and asynchronous GPU implementations

e Cray XEG6 configuration:

e Dual AMD IL-16 2.1 GHz nodes, 32 cores per node
e Running on fully packed nodes: all cores used

e Depending on the number of nodes, 1-4 OpenMP threads per PE are
used

e All comparisons are for strong scaling on case XL

May 23-25, 2012 PGAS Workshop - CSCS @

Himeno performance

e XK6 GPU is about 1.6x faster than XE6

e OpenACC async streams implementation is ~ 8% faster
than OpenACC blocking

May 23-25, 2012

Performance (TFlop/s)

5.0

»
o

w
o

g
o

=
o

0.0

Himeno Benchmark - XL configuration

——XE6 MPI/OMP —e—XK6 MPI/ACC —4—XK6 CAF/ACC -#-XK6 CAF/ACC async streams

g

e
/

32 64 96 128
Number of nodes

PGAS Workshop - CSCS @

® e
CRANY |
\

° \
\

Himeno code breakdown

e Host/GPU transfers take more time than the halo
exchange (network)

e this code would benefit from an efficient direct GPU-GPU
communication

e On 128 nodes, ~55% of the time is spent in the GPU
compute kernel 100%

80%

60%

buffer to GPU
B CAF
buffer to CPU

Execution time

40%
M kernels

20%

0%

T T T
16 32 64 128
Nodes

23
May 23-25, 2012 PGAS Workshop - CSCS O

libsci_acc: LibSci for Accelerators cRay
how to get CPU&GPU cooperation SOIH

\

e Provide basic libraries for accelerators, tuned for Cray
e Must be independent to OpenACC, but fully compatible
e Multiple use case support

e Get the base use of accelerators with no code change

e Get extreme performance of GPU with or without code change
e Extra tools for support of complex code

e Incorporate the existing GPU libraries into libsci
e CUBLAS
e Magma
e Cray Implementation BLAS/LAPACK

e Provide additional performance and usability
e OpenACC support
e CUDA support

e Maintain the Standard APIs where possible!

May 23-25, 2012 PGAS Workshop - CSCS

Cray libsci_acc interfaces

e Simple interface

dgetrf (M, N, A, 1lda, ipiv, &info)

dgetrf(M, N, d A, 1lda, ipiv, &info) m

e Device interface

dgetrf acc(M, N, d A, 1da, ipiv, &info) m

e CPU interface

dgetrf cpu(M, N, A, lda, ipiv, &info) m

May 23-25, 2012 PGAS Workshop - CSCS @

libsci_acc interaction with OpenACC

e If the rest of the code
uses OpenACC, it’s
|o.055|ble.to use the
Ibrary with
directives.

e All data management
performed by
OpenACC.

e Calls the device
version of dgemm.

e All datais in CPU
memory before and
after data region.

May 23-25, 2012

///:;;cc data copy(a,b,c)

ISacc parallel
Do Something
ISacc end parallel

!Sacc end host data

\\:jjcc end data

!Sacc host data use device(a,b,c)

call dgemm acc('n','n',m,n,k, &
alpha,a,lda, &
b,1db,beta,c,1ldc)

/

PGAS Workshop - CSCS

libsci_acc interaction with OpenACC

e libsci_acc is a bit
smarter that this.

e Since ‘a,’ ‘b’, and ‘c’
are device arrays, the
library knows it
should run on the
device.

e SO just dgemm is
sufficient.

May 23-25, 2012

///:;;cc data copy(a,b,c)

ISacc parallel
Do Something
ISacc end parallel

call dgemm ('n','n'" m,n, k,&
alpha,a,lda, &

!Sacc end host data

\\:jjcc end data

!Sacc host data use device(a,b,c)

b,1db,beta,c,1ldc)

/

PGAS Workshop - CSCS

L CRANY
A large application performance breakdown o,
A \
\
e Comparing runs on 576 Cray XK6 nodes \
e Different optimal configurations
e CPU: 48x48 = 2304 MPI, 4 OpenMP
e CPU+GPU: 24x24 = 576 MPI, 16 OpenMP + CUDA

e Performance comparison
e Kernel code on GPU is 3x faster than on CPU

e MPI takes more time on the CPU version — 4x MPI ranks
e MPI takes 30% of total time on CPU, 45% on the CPU+GPU version

Timings breakdown Relative breakdown
8000 100%

7000 90%

80%
6000

70%
5000

60%
= MPI

m other
H kernel

H kernel
= MPI
1 other

4000 50%

3000 40%

30%
2000
20%

1000

10%

0 0%

XK6 CPU XK6 CPU+GPU XK6 CPU XK6 CPU+GPU

28
May 23-25, 2012 PGAS Workshop - CSCS

