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The Cray XK6 heterogeneous node 

The Cray XE6  
compute node 

● Built around the Gemini 
Interconnect 

● Each Gemini ASIC 
provides 2 NICs enabling 
it to connect 2 dual-socket 
nodes 

 

The Cray XK6  
compute node 

● Replace one CPU socket 
with a GPU 
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Issues with today‟s accelerators (Fermi) 
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● This is a short-lived situation 
● Solutions coming from several vendors (NVIDIA, AMD,…) 

● Trick is to keep kernel data structures resident in GPU 
memory as much as possible 
● Avoids copying between CPU and GPU 

● Use async, non-blocking, communication, multi-level overlapping 

 

CPU 
~150 GF 

GPU 
~665 GF 

32GB  

SDRAM 6 GB  

GDDR 

PCIe-2 

8 GB/s 

~170 GB/s ~42 GB/s 

Bandwidth 

and Synchronization 



Roberto‟s recipe  
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● KISS Principle: Keep It Simple 
● As simple as possible 

● Unless you really really really need performance today 

 

● Use a flexible and portable approach 
● GPU architectures have changed and will change: don’t stick to a 

specific one 

● GPUs are just one kind of accelerators 

 

● Exploit libraries 
● Exploit work done by smart people 

 

● Don‟t forget Amdahl 
● Amdahl who ? 



 How to program an accelerator ? 
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● The hard way: CUDA, OpenCL 
● All are quite low-level  

● CUDA is closely coupled to the GPU 

● User needs to rewrite kernels in specialist language 

● Hard to write and debug 

● Hard to optimise for specific GPU 

● Hard to port to new accelerator 

● Hard to add new functionality 

 

● A simpler approach: accelerator directives 
● Several initial proposals: PGI directives, OpenMP (Cray) 

● Currently merged into OpenACC 

● Based on original source code (e.g. Fortran, C, C++) 

● Easier to maintain/port/extend code 

● Can support future accelerators 

● Possible performance sacrifice 

 

 



Performance compared to CUDA 

● Is there a performance gap relative to explicit low-level 
programming model? Typically 10-15%, sometimes none. 

● Is the performance gap acceptable? Yes. 
● e.g. S3D comp_heat kernel (ORNL application readiness): 
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● A common directive programming model for today‟s GPUs 
● Announced at SC11 conference 

● Offers portability between compilers 
● Drawn up by: NVIDIA, Cray, PGI, CAPS 

● Multiple compilers offer: 
● portability, debugging, permanence 

● Works for Fortran, C, C++ 
● Standard available at www.OpenACC-standard.org 

● Initially implementations targeted at NVIDIA GPUs 

● Current version: 1.0 (November 2011) 

● Compiler support: 
● Cray CCE: partial now, complete in 2012 

● PGI Accelerator: released product in 2012 

● CAPS: released product in 2012 
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accelerator directives 

● A common programming model for tomorrow‟s accelerators 

● An established open standard is the most attractive 
● portability; multiple compilers for debugging; permanence 

● Subcommittee of OpenMP ARB 
● includes most major vendors + others (e.g. EPCC) 

● co-chaired by Cray (James Beyer) 

● aiming for OpenMP 4 (2012?) 

● Targets Fortran, C, C++ 

● Current version: draft 

● Cray compiler provides reference implementation for ARB 
● Of draft standard at present (CCE 8.0) 

● Will track the standard as it evolves 

● Converting from OpenACC to OpenMP will be 
straightforward 
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OpenACC Execution model 

● Host-directed execution with attached GPU 
● Main program executes on “host” (i.e. CPU) 

● Compute intensive regions offloaded to the accelerator device under 
control of the host.  

● “device” (i.e. GPU) executes parallel regions 
● typically contain “kernels” (i.e. work-sharing loops), or 
● kernels regions, containing one or more loops which are executed as 

kernels.   

● Host must orchestrate the execution by:  
● allocating memory on the accelerator device,  
● initiating data transfer,  
● sending the code to the accelerator,  
● passing arguments to the parallel region,  
● queuing the device code,  
● waiting for completion,  
● transferring results back to the host, and  
● deallocating memory.   
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A first OpenACC example 

Execute a loop nest on the GPU 
● Compiler does the work 

 
● Data movement 

● allocates/frees GPU memory at  
 start/end of region 
● moves of data to/from GPU 

 

● Loop schedule: spreading loop iterations over PEs of GPU 
 

● Tune default behaviour with optional clauses on directives 
 

!$acc parallel loop  
DO j = 1,M 
  DO i = 2,N-1 
    c(i,j) = a(i,j) + b(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel loop 
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Another example 
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● Two accelerator parallel regions 

 

● Compiler creates two kernels 
● First kernel initialises array 

● Compiler will determine copyout(a) 

● Second kernel updates array 
● Compiler will determine copy(a) 

 

● Breaking parallel region=barrier 

 

● No barrier directive 

 

● The code can still be compiled for CPU 

 

 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
<stuff> 
END PROGRAM main 



Let‟s control data movement 
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● Now added a data region 
● Specified arrays only moved at 

boundaries of data region 

 

● No compiler-determined 
movements for data regions 

 

● Other directives/clauses are 
available to allow a more direct 
control of data movements 
● present clause 

● !$acc update [ host | device ] 

 

 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copyout(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end data 
  <stuff> 
END PROGRAM main 



A case study: the Himeno Benchmark 
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● Parallel 3D Poisson equation solver 
● Iterative loop evaluating 19-point stencil 
● Memory intensive, memory bandwidth bound 

 
● Fortran, C, MPI and OpenMP implementations 

available from  http://accc.riken.jp/HPC_e/himenobmt_e.html  
 

● Fortran Coarray (CAF) version developed 
● ~600 lines of Fortran 
● Fully ported to accelerator using 27 directive pairs 

 

● Strong scaling benchmark 
● XL configuration: 1024 x 512 x 512 global volume 
● Expect halo exchanges to become significant 
● Use asynchronous GPU data transfers and kernel launches to help 

avoid this 
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The Jacobi computational kernel (serial) 
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● The stencil is applied to 
pressure array p 

 

● Updated pressure values 
are saved to temporary 
array wrk2 

 

● Control value wgosa is 
computed 

 

● In the benchmark this 
kernel is iterated a fixed 
number of times (nn) 

 

DO K=2,kmax-1 

 DO J=2,jmax-1 

  DO I=2,imax-1 

   S0=a(I,J,K,1)*p(I+1,J, K )  

     +a(I,J,K,2)*p(I, J+1,K ) & 

     +a(I,J,K,3)*p(I, J, K+1) & 

     +b(I,J,K,1)*(p(I+1,J+1,K )-p(I+1,J-1,K )  & 

                 -p(I-1,J+1,K )+p(I-1,J-1,K )) & 

     +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1)  & 

                 -p(I, J+1,K-1)+p(I, J-1,K-1)) & 

     +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1)  & 

                 -p(I+1,J, K-1)+p(I-1,J, K-1)) & 

     +c(I,J,K,1)*p(I-1,J, K ) & 

     +c(I,J,K,2)*p(I, J-1,K ) & 

     +c(I,J,K,3)*p(I, J, K-1) & 

     + wrk1(I,J,K) 

 

   SS = (S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K) 

   wgosa = wgosa+ SS*SS 

   wrk2(I,J,K)=p(I,J,K)+OMEGA *SS 

  ENDDO 

 ENDDO 

ENDDO 
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The distributed implementation 
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● The outer loop is executed 
fixed number of times 
 

● The Jacobi kernel is 
executed and new pressure 
array wrk2 and control 
value wgosa are computed 
 

● The p array is updated with 
wrk2 values 
 

● The halo region values are 
exchanged between 
neighbor PEs using send 
and receive buffers 
 

● The maximum wgosa value 
is computed with an 
Allreduce operation across 
all the PEs 

DO loop = 1, nn 

 

  compute Jacobi: wrk2, wgosa 

    

  copy back wrk2 into p 

   

  pack halo from p into send buf 

   

  exchange halos with neighbor PEs 

   

  unpack halo into p from recv buf 

   

  Allreduce to sum wgosa across Pes 

 

ENDDO 
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Porting Himeno to the Cray XK6 
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● Several versions tested, with communication 
implemented in MPI or Fortran coarrays 

 

● GPU version using OpenACC accelerator directives 

 

● Arrays reside permanently on the GPU memory 

 

● Data transfers between host and GPU are: 
● Communication buffers for the halo exchange 

● Control value 

 

● Cray XK6 timings compared to best Cray XE6 results 
(hybrid MPI/OpenMP) 
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The Himeno GPU code structure 
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● GPU performs 
● Jacobi kernel 

● Halo buffers packing/unpacking 

● Pressure update 

 

● Host/device communication 
● Halo region buffers transfer 

● Control value wgosa 

 

● CAF communication 
● Remote halo buffers put 

● Global wgosa sum 

CPU GPU 
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Jacobi kernel on the GPU 
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● The GPU kernel for the 
main loop is created with 
the parallel loop 
directive 

● The scoping of the main 
variables is specified earlier 
with the data directive - no 
need to replicate it in here 

● wgosa is computed by 
specifying the reduction 
clause, as in a standard 
OpenMP parallel loop 

● vector_length clause is 
used to indicate the 
number of threads within a 
threadblock (compiler 
default 128) 

DO loop=1,nn 

  gosa = 0 

  wgosa = 0 

!$acc parallel loop              & 

!$acc&  private(s0,ss)           & 

!$acc&  reduction(+:wgosa)       & 

!$acc&  vector_length(256) 

  DO K=2,kmax-1 

    DO J=2,jmax-1 

      DO I=2,imax-1 

        S0=a(I,J,K,1)*p(I+1,J, K )& 

        ... 

        wgosa = wgosa + SS*SS 

      ENDDO 

    ENDDO 

  ENDDO 
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Coarray implementation 
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● Coarrays are used to perform 
the halo exchange 

● Non-blocking communication 
needs pgas defer_sync 
directive 

● Programmer now responsible 
for data synchronization 

● By deferring sync point, 
network communications can 
be overlapped with CPU or 
GPU activity 

● Updating p from wrk2 (on 
GPU) overlapped with halo 
exchange 
 

N.B.  
no sync all  
CAF intrinsic COSUM has loose 
synchronisation (so does need 
sync memory first).  

!dir$ pgas defer_sync 

recvbuffz_up(:,:)[myx,myy,myz-1]= & 

   sendbuffz_dn(:,:) 

 ... 

!$acc parallel loop 

DO k = 2,kmax-1 

  DO j = 2,jmax-1 

    DO i = 2,imax-1 

      p(i,j,k) = wrk2(i,j,k) 

    ENDDO 

  ENDDO 

ENDDO 

!$acc end parallel loop 

 

sync memory 

CO_SUM(wgosa) 

 

!$acc update device & 

!$acc& (recvbuffz_dn,recvbuffz_up) 
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OpenACC  / CAF version 
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● Total number of lines in the original Himeno  
MPI-Fortran code:     629 

 

● Total number lines in the modified version  
with coarrays and accelerator directives:  554 
●  don't need MPI_CART_CREATE and the like 

 

● Total number of accelerator directives:      27 
● plus 18 "end" directives 

 

May 23-25, 2012 



Benchmarking the code 
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● Cray XK6 configuration:  
● Single AMD IL-16 2.1GHz nodes, 16 cores per node 

● Nvidia Tesla X2090 GPU, 1 GPU per node 

● Running with 1 PE (GPU) per node 

● Himeno case XL needs at least 16 XK6 nodes 

● Testing blocking and asynchronous GPU implementations 

 

● Cray XE6 configuration: 
● Dual AMD IL-16 2.1 GHz nodes, 32 cores per node 

● Running on fully packed nodes: all cores used 

● Depending on the number of nodes, 1-4 OpenMP threads per PE are 
used 

 

● All comparisons are for strong scaling on case XL 
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Himeno performance 
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● XK6 GPU is about 1.6x faster than XE6 

● OpenACC async streams implementation is ~ 8% faster 
than OpenACC blocking 
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Himeno code breakdown 
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● Host/GPU transfers take more time than the halo 
exchange (network) 
● this code would benefit from an efficient direct GPU-GPU 

communication 

● On 128 nodes, ~55% of the time is spent in the GPU 
compute kernel 
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libsci_acc: LibSci for Accelerators 
how to get CPU&GPU cooperation 
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● Provide basic libraries for accelerators, tuned for Cray 

● Must be independent to OpenACC, but fully compatible 

● Multiple use case support 
● Get the base use of accelerators with no code change 

● Get extreme performance of GPU with or without code change 

● Extra tools for support of complex code 

● Incorporate the existing GPU libraries into libsci 
● CUBLAS 

● Magma 

● Cray Implementation BLAS/LAPACK 

● Provide additional performance and usability  
● OpenACC support 

● CUDA support 

● Maintain the Standard APIs where possible! 
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Cray libsci_acc interfaces 
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● Simple interface 

 
dgetrf(M, N, A, lda, ipiv, &info) 

 

  

dgetrf(M, N, d_A, lda, ipiv, &info) 

 

● Device interface 

 
 dgetrf_acc(M, N, d_A, lda, ipiv, &info) 

  

● CPU interface 

 

    dgetrf_cpu(M, N, A, lda, ipiv, &info)  
 

GPU 

CPU 

GPU + CPU 

GPU 

CPU 

May 23-25, 2012 



libsci_acc interaction with OpenACC 
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● If the rest of the code 
uses OpenACC, it‟s 
possible to use the 
library with 
directives. 
 

● All data management 
performed by 
OpenACC. 
 

● Calls the device 
version of dgemm. 
 

● All data is in CPU 
memory before and 
after data region. 
 

!$acc data copy(a,b,c) 

 

!$acc parallel 

!Do Something 

!$acc end parallel 

 

!$acc host_data use_device(a,b,c) 

 

call dgemm_acc('n','n',m,n,k,& 

               alpha,a,lda,& 

               b,ldb,beta,c,ldc) 

 

!$acc end host_data 

!$acc end data 
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libsci_acc interaction with OpenACC 
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● libsci_acc is a bit 
smarter that this. 

 

● Since „a,‟ „b‟, and „c‟ 
are device arrays, the 
library knows it 
should run on the 
device. 

 

● So just dgemm is 
sufficient. 

 

!$acc data copy(a,b,c) 

 

!$acc parallel 

!Do Something 

!$acc end parallel 

 

!$acc host_data use_device(a,b,c) 

 

call dgemm    ('n','n',m,n,k,& 

               alpha,a,lda,& 

               b,ldb,beta,c,ldc) 

 

!$acc end host_data 

!$acc end data 
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A large application performance breakdown 
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● Comparing runs on 576 Cray XK6 nodes 

● Different optimal configurations 
● CPU:  48x48 = 2304 MPI, 4 OpenMP 

● CPU+GPU: 24x24 =   576 MPI, 16 OpenMP + CUDA 

● Performance comparison 
● Kernel code on GPU is 3x faster than on CPU 

● MPI takes more time on the CPU version – 4x MPI ranks 

● MPI takes 30% of total time on CPU, 45% on the CPU+GPU version 
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