
A quick tour of OpenACC & Co.
 or

How should I program this accelerator ?

Roberto Ansaloni

Cray Italy

roberto@cray.com

The Cray XK6 heterogeneous node

The Cray XE6
compute node

● Built around the Gemini
Interconnect

● Each Gemini ASIC
provides 2 NICs enabling
it to connect 2 dual-socket
nodes

The Cray XK6
compute node

● Replace one CPU socket
with a GPU

May 23-25, 2012 PGAS Workshop - CSCS
2

Issues with today‟s accelerators (Fermi)

May 23-25, 2012 PGAS Workshop - CSCS
3

● This is a short-lived situation
● Solutions coming from several vendors (NVIDIA, AMD,…)

● Trick is to keep kernel data structures resident in GPU
memory as much as possible
● Avoids copying between CPU and GPU

● Use async, non-blocking, communication, multi-level overlapping

CPU
~150 GF

GPU
~665 GF

32GB

SDRAM 6 GB

GDDR

PCIe-2

8 GB/s

~170 GB/s ~42 GB/s

Bandwidth

and Synchronization

Roberto‟s recipe

May 23-25, 2012 PGAS Workshop - CSCS
4

● KISS Principle: Keep It Simple
● As simple as possible

● Unless you really really really need performance today

● Use a flexible and portable approach
● GPU architectures have changed and will change: don’t stick to a

specific one

● GPUs are just one kind of accelerators

● Exploit libraries
● Exploit work done by smart people

● Don‟t forget Amdahl
● Amdahl who ?

 How to program an accelerator ?

May 23-25, 2012 PGAS Workshop - CSCS
5

● The hard way: CUDA, OpenCL
● All are quite low-level

● CUDA is closely coupled to the GPU

● User needs to rewrite kernels in specialist language

● Hard to write and debug

● Hard to optimise for specific GPU

● Hard to port to new accelerator

● Hard to add new functionality

● A simpler approach: accelerator directives
● Several initial proposals: PGI directives, OpenMP (Cray)

● Currently merged into OpenACC

● Based on original source code (e.g. Fortran, C, C++)

● Easier to maintain/port/extend code

● Can support future accelerators

● Possible performance sacrifice

Performance compared to CUDA

● Is there a performance gap relative to explicit low-level
programming model? Typically 10-15%, sometimes none.

● Is the performance gap acceptable? Yes.
● e.g. S3D comp_heat kernel (ORNL application readiness):

0.01

0.1

1

10

0 8 16 24 32

T
im

e
 (

s
e

c
o

n
d

s
)

Cores on Host

OpenMP

CUDA Fortran (PGI)

OpenACC (CCE)

May 23-25, 2012
6

PGAS Workshop - CSCS

● A common directive programming model for today‟s GPUs
● Announced at SC11 conference

● Offers portability between compilers
● Drawn up by: NVIDIA, Cray, PGI, CAPS

● Multiple compilers offer:
● portability, debugging, permanence

● Works for Fortran, C, C++
● Standard available at www.OpenACC-standard.org

● Initially implementations targeted at NVIDIA GPUs

● Current version: 1.0 (November 2011)

● Compiler support:
● Cray CCE: partial now, complete in 2012

● PGI Accelerator: released product in 2012

● CAPS: released product in 2012

May 23-25, 2012
7

PGAS Workshop - CSCS

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

accelerator directives

● A common programming model for tomorrow‟s accelerators

● An established open standard is the most attractive
● portability; multiple compilers for debugging; permanence

● Subcommittee of OpenMP ARB
● includes most major vendors + others (e.g. EPCC)

● co-chaired by Cray (James Beyer)

● aiming for OpenMP 4 (2012?)

● Targets Fortran, C, C++

● Current version: draft

● Cray compiler provides reference implementation for ARB
● Of draft standard at present (CCE 8.0)

● Will track the standard as it evolves

● Converting from OpenACC to OpenMP will be
straightforward

May 23-25, 2012
8

PGAS Workshop - CSCS

http://openmp.org/wp/

OpenACC Execution model

● Host-directed execution with attached GPU
● Main program executes on “host” (i.e. CPU)

● Compute intensive regions offloaded to the accelerator device under
control of the host.

● “device” (i.e. GPU) executes parallel regions
● typically contain “kernels” (i.e. work-sharing loops), or
● kernels regions, containing one or more loops which are executed as

kernels.

● Host must orchestrate the execution by:
● allocating memory on the accelerator device,
● initiating data transfer,
● sending the code to the accelerator,
● passing arguments to the parallel region,
● queuing the device code,
● waiting for completion,
● transferring results back to the host, and
● deallocating memory.

May 23-25, 2012
9

PGAS Workshop - CSCS

A first OpenACC example

Execute a loop nest on the GPU
● Compiler does the work

● Data movement

● allocates/frees GPU memory at
 start/end of region
● moves of data to/from GPU

● Loop schedule: spreading loop iterations over PEs of GPU

● Tune default behaviour with optional clauses on directives

!$acc parallel loop
DO j = 1,M
 DO i = 2,N-1
 c(i,j) = a(i,j) + b(i,j)
 ENDDO
ENDDO
!$acc end parallel loop

May 23-25, 2012
10

PGAS Workshop - CSCS

Another example

May 23-25, 2012 PGAS Workshop - CSCS
11

● Two accelerator parallel regions

● Compiler creates two kernels
● First kernel initialises array

● Compiler will determine copyout(a)

● Second kernel updates array
● Compiler will determine copy(a)

● Breaking parallel region=barrier

● No barrier directive

● The code can still be compiled for CPU

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO

!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
<stuff>
END PROGRAM main

Let‟s control data movement

May 23-25, 2012 PGAS Workshop - CSCS
12

● Now added a data region
● Specified arrays only moved at

boundaries of data region

● No compiler-determined
movements for data regions

● Other directives/clauses are
available to allow a more direct
control of data movements
● present clause

● !$acc update [host | device]

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end data
 <stuff>
END PROGRAM main

A case study: the Himeno Benchmark

PGAS Workshop - CSCS
13

● Parallel 3D Poisson equation solver
● Iterative loop evaluating 19-point stencil
● Memory intensive, memory bandwidth bound

● Fortran, C, MPI and OpenMP implementations

available from http://accc.riken.jp/HPC_e/himenobmt_e.html

● Fortran Coarray (CAF) version developed
● ~600 lines of Fortran
● Fully ported to accelerator using 27 directive pairs

● Strong scaling benchmark
● XL configuration: 1024 x 512 x 512 global volume
● Expect halo exchanges to become significant
● Use asynchronous GPU data transfers and kernel launches to help

avoid this

May 23-25, 2012

http://accc.riken.jp/HPC_e/himenobmt_e.html
http://accc.riken.jp/HPC_e/himenobmt_e.html

The Jacobi computational kernel (serial)

PGAS Workshop - CSCS
14

● The stencil is applied to
pressure array p

● Updated pressure values
are saved to temporary
array wrk2

● Control value wgosa is
computed

● In the benchmark this
kernel is iterated a fixed
number of times (nn)

DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K)

 +a(I,J,K,2)*p(I, J+1,K) &

 +a(I,J,K,3)*p(I, J, K+1) &

 +b(I,J,K,1)*(p(I+1,J+1,K)-p(I+1,J-1,K) &

 -p(I-1,J+1,K)+p(I-1,J-1,K)) &

 +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) &

 -p(I, J+1,K-1)+p(I, J-1,K-1)) &

 +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) &

 -p(I+1,J, K-1)+p(I-1,J, K-1)) &

 +c(I,J,K,1)*p(I-1,J, K) &

 +c(I,J,K,2)*p(I, J-1,K) &

 +c(I,J,K,3)*p(I, J, K-1) &

 + wrk1(I,J,K)

 SS = (S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K)

 wgosa = wgosa+ SS*SS

 wrk2(I,J,K)=p(I,J,K)+OMEGA *SS

 ENDDO

 ENDDO

ENDDO

fw
d

 n
.n

.
b

w
d

 n
.n

.
n

.n
.n

.

May 23-25, 2012

The distributed implementation

PGAS Workshop - CSCS
15

● The outer loop is executed
fixed number of times

● The Jacobi kernel is
executed and new pressure
array wrk2 and control
value wgosa are computed

● The p array is updated with
wrk2 values

● The halo region values are
exchanged between
neighbor PEs using send
and receive buffers

● The maximum wgosa value
is computed with an
Allreduce operation across
all the PEs

DO loop = 1, nn

 compute Jacobi: wrk2, wgosa

 copy back wrk2 into p

 pack halo from p into send buf

 exchange halos with neighbor PEs

 unpack halo into p from recv buf

 Allreduce to sum wgosa across Pes

ENDDO

May 23-25, 2012

Porting Himeno to the Cray XK6

PGAS Workshop - CSCS
16

● Several versions tested, with communication
implemented in MPI or Fortran coarrays

● GPU version using OpenACC accelerator directives

● Arrays reside permanently on the GPU memory

● Data transfers between host and GPU are:
● Communication buffers for the halo exchange

● Control value

● Cray XK6 timings compared to best Cray XE6 results
(hybrid MPI/OpenMP)

May 23-25, 2012

The Himeno GPU code structure

PGAS Workshop - CSCS
17

● GPU performs
● Jacobi kernel

● Halo buffers packing/unpacking

● Pressure update

● Host/device communication
● Halo region buffers transfer

● Control value wgosa

● CAF communication
● Remote halo buffers put

● Global wgosa sum

CPU GPU

May 23-25, 2012

Jacobi kernel on the GPU

PGAS Workshop - CSCS
18

● The GPU kernel for the
main loop is created with
the parallel loop
directive

● The scoping of the main
variables is specified earlier
with the data directive - no
need to replicate it in here

● wgosa is computed by
specifying the reduction
clause, as in a standard
OpenMP parallel loop

● vector_length clause is
used to indicate the
number of threads within a
threadblock (compiler
default 128)

DO loop=1,nn

 gosa = 0

 wgosa = 0

!$acc parallel loop &

!$acc& private(s0,ss) &

!$acc& reduction(+:wgosa) &

!$acc& vector_length(256)

 DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K)&

 ...

 wgosa = wgosa + SS*SS

 ENDDO

 ENDDO

 ENDDO

May 23-25, 2012

Coarray implementation

PGAS Workshop - CSCS
19

● Coarrays are used to perform
the halo exchange

● Non-blocking communication
needs pgas defer_sync
directive

● Programmer now responsible
for data synchronization

● By deferring sync point,
network communications can
be overlapped with CPU or
GPU activity

● Updating p from wrk2 (on
GPU) overlapped with halo
exchange

N.B.
no sync all
CAF intrinsic COSUM has loose
synchronisation (so does need
sync memory first).

!dir$ pgas defer_sync

recvbuffz_up(:,:)[myx,myy,myz-1]= &

 sendbuffz_dn(:,:)

 ...

!$acc parallel loop

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 p(i,j,k) = wrk2(i,j,k)

 ENDDO

 ENDDO

ENDDO

!$acc end parallel loop

sync memory

CO_SUM(wgosa)

!$acc update device &

!$acc& (recvbuffz_dn,recvbuffz_up)

May 23-25, 2012

OpenACC / CAF version

PGAS Workshop - CSCS
20

● Total number of lines in the original Himeno
MPI-Fortran code: 629

● Total number lines in the modified version
with coarrays and accelerator directives: 554
● don't need MPI_CART_CREATE and the like

● Total number of accelerator directives: 27
● plus 18 "end" directives

May 23-25, 2012

Benchmarking the code

PGAS Workshop - CSCS
21

● Cray XK6 configuration:
● Single AMD IL-16 2.1GHz nodes, 16 cores per node

● Nvidia Tesla X2090 GPU, 1 GPU per node

● Running with 1 PE (GPU) per node

● Himeno case XL needs at least 16 XK6 nodes

● Testing blocking and asynchronous GPU implementations

● Cray XE6 configuration:
● Dual AMD IL-16 2.1 GHz nodes, 32 cores per node

● Running on fully packed nodes: all cores used

● Depending on the number of nodes, 1-4 OpenMP threads per PE are
used

● All comparisons are for strong scaling on case XL

May 23-25, 2012

Himeno performance

PGAS Workshop - CSCS
22

● XK6 GPU is about 1.6x faster than XE6

● OpenACC async streams implementation is ~ 8% faster
than OpenACC blocking

May 23-25, 2012

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

P
e

rf
o

rm
an

ce
 (

TF
lo

p
/s

)

Number of nodes

Himeno Benchmark - XL configuration
XE6 MPI/OMP XK6 MPI/ACC XK6 CAF/ACC XK6 CAF/ACC async streams

Himeno code breakdown

PGAS Workshop - CSCS
23

● Host/GPU transfers take more time than the halo
exchange (network)
● this code would benefit from an efficient direct GPU-GPU

communication

● On 128 nodes, ~55% of the time is spent in the GPU
compute kernel

May 23-25, 2012

libsci_acc: LibSci for Accelerators
how to get CPU&GPU cooperation

PGAS Workshop - CSCS
24

● Provide basic libraries for accelerators, tuned for Cray

● Must be independent to OpenACC, but fully compatible

● Multiple use case support
● Get the base use of accelerators with no code change

● Get extreme performance of GPU with or without code change

● Extra tools for support of complex code

● Incorporate the existing GPU libraries into libsci
● CUBLAS

● Magma

● Cray Implementation BLAS/LAPACK

● Provide additional performance and usability
● OpenACC support

● CUDA support

● Maintain the Standard APIs where possible!

May 23-25, 2012

Cray libsci_acc interfaces

PGAS Workshop - CSCS
25

● Simple interface

dgetrf(M, N, A, lda, ipiv, &info)

dgetrf(M, N, d_A, lda, ipiv, &info)

● Device interface

 dgetrf_acc(M, N, d_A, lda, ipiv, &info)

● CPU interface

 dgetrf_cpu(M, N, A, lda, ipiv, &info)

GPU

CPU

GPU + CPU

GPU

CPU

May 23-25, 2012

libsci_acc interaction with OpenACC

PGAS Workshop - CSCS
26

● If the rest of the code
uses OpenACC, it‟s
possible to use the
library with
directives.

● All data management
performed by
OpenACC.

● Calls the device
version of dgemm.

● All data is in CPU
memory before and
after data region.

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm_acc('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

May 23-25, 2012

libsci_acc interaction with OpenACC

PGAS Workshop - CSCS
27

● libsci_acc is a bit
smarter that this.

● Since „a,‟ „b‟, and „c‟
are device arrays, the
library knows it
should run on the
device.

● So just dgemm is
sufficient.

!$acc data copy(a,b,c)

!$acc parallel

!Do Something

!$acc end parallel

!$acc host_data use_device(a,b,c)

call dgemm ('n','n',m,n,k,&

 alpha,a,lda,&

 b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

May 23-25, 2012

A large application performance breakdown

May 23-25, 2012 PGAS Workshop - CSCS
28

● Comparing runs on 576 Cray XK6 nodes

● Different optimal configurations
● CPU: 48x48 = 2304 MPI, 4 OpenMP

● CPU+GPU: 24x24 = 576 MPI, 16 OpenMP + CUDA

● Performance comparison
● Kernel code on GPU is 3x faster than on CPU

● MPI takes more time on the CPU version – 4x MPI ranks

● MPI takes 30% of total time on CPU, 45% on the CPU+GPU version

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

XK6 CPU XK6 CPU+GPU

Relative breakdown

MPI

other

kernel

0

1000

2000

3000

4000

5000

6000

7000

8000

XK6 CPU XK6 CPU+GPU

Timings breakdown

kernel

MPI

other

