
PGAS Programming on Cray XK6

Roberto Ansaloni

Cray Italy

roberto@cray.com

Agenda: Day3 - May 25th

May 23-25, 2012
2

09:00-10:00 CAF and UPC introduction

10:00-10:30 Cray Programming Environment and
 PGAS compilers

10:30-11:00 Coffee break

11:00-11:30 Cray performance tools for MPI and PGAS
 code development and tuning

11:30-12:30 Users talks & discussion
 (Romain Teyssier, Will Sawyer)

12:30-13:30 Lunch break

13:30-15:00 PGAS lab and wrap up

PGAS Workshop - CSCS

Acknowledgments

May 23-25, 2012
3

● This work relies on material developed by some
colleagues at Cray, in particular by

● Luiz DeRose

● Alistair Hart

● Bill Long

● Heidi Poxon

● Harvey Richardson

● Rick Slick

● Nathan Wichmann

PGAS Workshop - CSCS

Fortran Coarray and UPC
Introduction

Roberto Ansaloni

Partitioned Global Address Space Languages

May 23-25, 2012 PGAS Workshop - CSCS
5

● Explicitly-parallel programming model with SPMD
parallelism
● Fixed at program start-up, typically 1 thread per processor

● Global address space model of memory
● Allows programmer to directly represent distributed data structures

● Address space is logically partitioned
● Local vs. remote memory (two-level hierarchy)

● Programmer control over performance critical decisions
● Performance transparency and tunability are goals

Partitioned Global Address Space Model

May 23-25, 2012 PGAS Workshop - CSCS
6

● Access to remote memory is a full feature of the PGAS
language
● Type checking

● Opportunity to optimize communication

● Participating processes/threads have access to local
memory via standard program mechanisms
● No performance penalty for local memory access

● Single-sided programming model more natural for some
algorithms
● and a good match for modern networks with RDMA

PGAS

May 23-25, 2012 PGAS Workshop - CSCS
7

memory

cpu

memory

cpu

memory

cpu

A[2] = A

PGAS Languages

May 23-25, 2012 PGAS Workshop - CSCS
8

● Fortran 2008
● Now incorporates coarrays

● New codimension attribute for objects

● New mechanism for remote access:
a(:)=b(:)[image] ! Get b from remote image

● Replication of arrays on every image with “easy and obvious” ways to
access those remote locations.

● UPC
● Specification that extends the ISO/IEC 9899 standard for C

● Participating “threads”

● New shared data structures

● Language constructs to divide up work on shared data

● Philosophically different from Fortran coarrays
● Compiler intimately involved in detecting and executing remote references

● Flexible, but filled with challenges like pointers, a lack of true
multidimensional arrays, and many options for distributing data

Fortran coarrays

Coarrays in Fortran

May 23-25, 2012 PGAS Workshop - CSCS
10

● Coarrays were designed to answer the question:

What is the smallest change required to convert Fortran
into a robust and efficient parallel language?

● The answer:

A simple syntactic extension: []

● It looks and feels like Fortran and requires Fortran
programmers to learn only a few new rules

Coarrays background

May 23-25, 2012 PGAS Workshop - CSCS
11

● Based on early work by Bob Numrich on the Cray T3D
● The Cray T3D address space and how to use it (1994)

● Originally there were get/put functions within a library
● Evolved into what is known today as SHMEM library

● Initial proposal of a Fortran extension: F--
● F− − : A parallel extension to Cray Fortran.

Scientific Programming 6, 275-284. (1997)

● Introduced in current form by Numrich and Reid in 1998
as a simple extension to Fortran 95 for parallel processing

● Now part of the Fortran standard: ISO/IEC 1539-1:2010
● Additional features are expected to be published in a Technical

Specification in due course. (collectives)

● Various vendor implementations (Intel) and Open Source projects
(g95, gfortran) underway

● Available on Cray compilers since its introduction

Basic execution model and features

May 23-25, 2012 PGAS Workshop - CSCS
12

● Program executes as if replicated to multiple copies with
each copy executing asynchronously (SPMD)

● Each copy (called an image) executes as a normal Fortran
application

● New object indexing with [] can be used to access objects
on other images.

● New features to inquire about image index, number of
images and to synchronize

Coarray execution model

May 23-25, 2012 PGAS Workshop - CSCS
13

memory

cpu

memory

cpu

memory

cpu

coarrays

Remote access with square bracket indexing: a(:)[2]

Basic coarrays declaration and usage

May 23-25, 2012 PGAS Workshop - CSCS
14

● Codimensions are used to indicate data allocated on
specific processors (images)

● Coarrays need to have the same dimension on all images

integer :: b

integer :: a(4)[*] !coarray

1 8 1 5 a

b 0

1 7 9 9 a

b 0

2 3 0 8 a

b 0

Basic coarrays declaration and usage

May 23-25, 2012 PGAS Workshop - CSCS
15

● Local reference

● References without codimensions [] are local

● b is set to second element of a on each image

b = a(2)

1 8 1 5 a

b 0 8

1 7 9 9 a

b 0

2 3 0 8 a

b 0 7 3

Basic coarrays declaration and usage

May 23-25, 2012 PGAS Workshop - CSCS
16

● Some data movements

● [] indicates access to remote coarray data

● Each b is set to fourth element of array a on image 3

b = a(4)[3]

1 8 1 5 a

b 0 8

1 7 9 9 a

b 0

2 3 0 8 a

b 0 8 8

Coarray declarations

May 23-25, 2012 PGAS Workshop - CSCS
17

● Codimensions can be added to any type of valid Fortran
variables

real :: residual[*] ! Scalar coarray

real, dimension(100), codimension[*] :: x,y

type (color) map(512,512)[*]

character(len=80), allocatable ::search_space(:)[:]

allocate(search_space(2000)[*])

real, allocatable :: a(:,:)[:,:]

allocate(a(1000,2000)[px,*])

Image execution

May 23-25, 2012 PGAS Workshop - CSCS
18

● Functions are provided to return number of images and
index of executing image

● num_images()
● Returns the number of images (processing elements)

● num_images() = number of MPI ranks

● this_image()
● Returns the number of the current image

● 1 ≤ this_image() ≤ num_images()

● this_image = MPI rank + 1

● Allow images to organize problem distribution and to
operate independently

Example: read and distribute and array from file

May 23-25, 2012 PGAS Workshop - CSCS
19

● Read n elements at a time and distribute

double precision, dimension(n) :: a

double precision, dimension(n) :: temp[*]

if (this_image() == 1) then

 do i=1, num_images()

 read *,a

 temp(:)[i] = a

 end do

end if

temp = temp + this_image()

!! Is this safe ???

Example: read and distribute and array from file

May 23-25, 2012 PGAS Workshop - CSCS
20

● Need to sync between images before using temp

double precision, dimension(n) :: a

double precision, dimension(n) :: temp[*]

if (this_image() == 1) then

 do i=1, num_images()

 read *,a

 temp(:)[i] = a

 end do

end if

sync all

temp = temp + this_image()

Synchronization

May 23-25, 2012 PGAS Workshop - CSCS
21

● We have to be careful with one-sided updates
● If we get remote data was it valid?

● Could another process send us data and overwrite something we have
not yet used?

● How do we know when remote data has arrived?

● The standard introduces execution segments to deal with
this, segments are bounded by image control

● If a non-atomic variable is defined in a segment, it must
not be referenced, defined, or become undefined in a
another segment unless the segments are ordered

Execution segments

May 23-25, 2012 PGAS Workshop - CSCS
22

double precision :: a(n)

double precision :: temp(n)[*]

!...

if (this_image() == 1) then

 do i=1, num_images()

 read *,a

 temp(:)[i] = a

 end do

 end if

sync all

temp = temp + this_image()

double precision :: a(n)

double precision :: temp(n)[*]

!...

if (this_image() == 1) then

 do i=1, num_images()

 read *,a

 temp(:)[i] = a

 end do

 end if

sync all

temp = temp + this_image()

image synchronization points

1

2

Recap of coarray basics

May 23-25, 2012 PGAS Workshop - CSCS
23

● Multiple images execute asynchronously

● We can declare a coarray which is accessible from remote
images

● Indexing with [] is used to access remote data

● We can find out which image we are
● num_images()

● this_image()

● We can synchronize to make sure variables are up to date
● sync all

● Now consider a program example…

Example: Calculate density of primes

May 23-25, 2012 PGAS Workshop - CSCS
24

● Use function num_primes on each image

program pdensity

 implicit none

 integer, parameter :: n=10000000

 integer start,end,i

 integer, dimension(:)[:], allocatable :: nprimes

 real density

 allocate(nprimes(num_images())[*])

 start = (this_image()-1) * n/num_images() + 1

 end = start + n/num_images() - 1

 nprimes(this_image())[1] = num_primes(start,end)

 sync all

Example: Calculate density of primes, cont.

May 23-25, 2012 PGAS Workshop - CSCS
25

● Image #1 gets values from other images, then computes
and prints prime density

if (this_image()==1) then

 nprimes(1)=sum(nprimes)

 density=real(nprimes(1))/n

 print *,"Calculating prime density on", &

& num_images(),"images"

 print *,nprimes(1),'primes in',n,'numbers'

 write(*,'(" density is ",2Pf0.2,"%")')density

 write(*,'(" asymptotic theory gives ", &

& 2Pf0.2,"%")')1.0/(log(real(n))-1.0)

end if

Example: Calculate density of primes, cont.

May 23-25, 2012 PGAS Workshop - CSCS
26

● Did anyone spot an error in the first program slide ?

● Try it in the lab session

 Calculated prime density on 16 images

 664580 primes in 10000000 numbers

 density is 6.65%

 asymptotic theory gives 6.61%

 Done in 2.86 seconds

Multi-codimensional arrays

May 23-25, 2012 PGAS Workshop - CSCS
27

● A coarray can have multiple codimensions

● Cosubscripts are mapped to images according to Fortran
array-element order

complex :: b[0:*]

complex :: p(32,32)[2,3,*]

image b(:)[i] p(:)[i,j,k]

1 b(:)[0] p(:)[1,1,1]

2 b(:)[1] p(:)[2,1,1]

3 b(:)[2] p(:)[1,2,1]

4 b(:)[3] p(:)[2,2,1]

5 b(:)[4] p(:)[1,3,1]

6 b(:)[5] p(:)[2,3,1]

7 b(:)[6] p(:)[1,1,2]

Multi-codimensional arrays, cont.

May 23-25, 2012 PGAS Workshop - CSCS
28

● There is a way to find out which part of the coarray is
mapped to an image
● this_image(coarray) yields codimensions

● this_image(coarray,dim) yields one codimension

● So for the previous example, on image 2
● this_image(p) is [2, 1, 1]

● Can get image index from coarray:
● image_index(p,[2,1,1]) is 2

● image_index(p,[3,4,2]) is 0 since [3,4,2] is not a valid set
 of cosubscripts

Allocatable coarrays

May 23-25, 2012 PGAS Workshop - CSCS
29

● Require same shape and coshape on every image
● Last codimension must always be unspecified

● Allocate and deallocate with coarray arguments cause a
synchronization

integer n,ni

real, allocatable :: pmax(:)[:]

real, allocatable :: p(:,:)[:,:]

ni = num_images()

allocate(pmax(ni)[*], p(n,n)[4,*])

Adding coarray with minimal code changes

May 23-25, 2012 PGAS Workshop - CSCS
30

● Coarray structures can be inserted into an existing MPI
code to simplify and improve communication without
affecting the general code structure

● In some cases the usage of FORTRAN pointers can
simplify the introduction of coarray variables in a routine
without modifying the calling tree

● Code modifications are mostly limited to the routine where
coarrays must be introduced

● A coarray is not permitted to be a pointer: however, a
coarray may be of a derived type with pointer or
allocatable components

Pointer Coarray Structure Components

May 23-25, 2012 PGAS Workshop - CSCS
31

• We are allowed to have a coarray that contains
components that are pointers

• Note that the pointers have to point to local data

• We can then access one of the pointers on a remote image
to get at the data it points to

• This technique is useful when adding coarrays into an
existing MPI code
• We can insert coarray code deep in call tree without changing many

subroutine argument lists

• We don’t need new coarray declarations

Example: adding coarrays to existing code

May 23-25, 2012 PGAS Workshop - CSCS
32

● Existing non-coarray arrays u,v,w

● Create a type (coords) to hold pointers (x,y,z) that we use
to point to x,y,z. We can use the vects coarray to access
u, v, w.

subroutine calc(u,v,w)

real, intent(in), target, dimension(100) :: u,v,w

type coords

 real, pointer, dimension(:) :: x,y,z

end type coords

type(coords), save :: vects[*]

! …

vects%x => u ; vects%y => v ; vects%z => w

sync all

firstx = vects[1]%x(1)

Features we won’t cover

May 23-25, 2012 PGAS Workshop - CSCS
33

● Memory synchronization (sync memory)
● completion of remote operations but not segment ordering

● critical section (critical , … , end critical)
● only one image executes the section at a time

● locks
● control access to data held by one image

● status and error conditions for image control

● atomic subroutines (useful for flag variables)

● I/O

Example: distributed remote gather

May 23-25, 2012 PGAS Workshop - CSCS
34

● The problem is how to implement the following gather
loop on a distributed memory system

● The array table is distributed across the processors, while
index and buffer are replicated

● Synthetic code, but simulates “irregular” communication
access patterns

REAL :: table(n), buffer(nelts)

INTEGER :: index(nelts) ! nelts << n

...

DO i = 1, nelts

buffer(i) = table(index(i))

ENDDO

 DO i=nelts,1,-1

 pe =(index(i)-1)/nloc

 offset = isum(pe)

 mpi_buffer(i) = buff(offset,pe)

 isum(pe) = isum(pe) – 1

 ENDDO

ELSE !IF my_rank.ne.0

! Each PE gets the list and sends the values to PE0

 CALL MPI_RECV(my_sum,1,MPI_INTEGER,...

 IF(my_sum.gt.0)THEN

 CALL MPI_RECV(index,my_sum,MPI_INTEGER,...

 DO i = 1, my_sum

 offset = mod(index(i)-1,nloc)+1

 mpi_buffer(i) = mpi_table(offset)

 ENDDO

 CALL MPI_SEND(mpi_buffer,my_sum,...

 ENDIF

ENDIF

Remote gather: MPI implementation

May 23-25, 2012 PGAS Workshop - CSCS
35

● MPI rank 0 controls the index and receives the values from
the other ranks

IF (mype.eq.0)THEN

 isum=0

! PE0 gathers indices to send out to individual PEs

 DO i=1,nelts

 pe =(index(i)-1)/nloc

 isum(pe)=isum(pe)+1

 who(isum(pe),pe) = index(i)

 ENDDO

! send out count and indices to PEs

 DO i = 1, npes-1

 CALL MPI_SEND(isum(i),1,MPI_INTEGER,i,10.

 IF(isum(i).gt.0)THEN

 CALL MPI_SEND(who(1,i),isum(i),...

 ENDIF

 ENDDO

! now wait to receive values and scatter them.

 DO i = 1,isum(0)

 offset = mod(who(i,0)-1,nloc)+1

 buff(i,0) = mpi_table(offset)

 ENDDO

 DO i = 1,npes-1

 IF(isum(i).gt.0)THEN

 CALL MPI_RECV(buff(1,i),isum(i),...

 ENDIF

 ENDDO

Remote gather: coarray implementation (get)

May 23-25, 2012 PGAS Workshop - CSCS
36

● Image 1 gets the values from the other images

IF (myimg.eq.1) THEN

 DO i=1,nelts

 pe =(index(i)-1)/nloc+1

 offset = MOD(index(i)-1,nloc)+1

 caf_buffer(i) = caf_table(offset)[pe]

 ENDDO

 ENDIF

Remote gather results

May 23-25, 2012 PGAS Workshop - CSCS
37

● Coarray implementations are much simpler

● Coarray syntax allows the expression of remote data in a
natural way – no need of complex protocols

0

1

10

100

1000

128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

M
P

I T
im

e
 /

 C
A

F
Ti

m
e

Number of elements

MPI / CAF ratio
CAF is better for values > 1

128 Pes 512 Pes 2048 Pes

Future for coarrays in Fortran

May 23-25, 2012 PGAS Workshop - CSCS
38

● Additional coarray features may be described in a
Technical Specification (TS)

● Developed as part of the official ISO standards process

● Work in progress and the areas of discussion are:
● image teams

● collective intrinsics for coarrays

● CO_BCAST, CO_SUM, CO_MAX, CO_REDUCE

● atomics

References

May 23-25, 2012 PGAS Workshop - CSCS
39

● ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
Coarrays in the next Fortran Standard
John Reid, April 2010

● http://lacsi.rice.edu/software/caf/downloads/documentatio
n/nrRAL98060.pdf
Co-array Fortran for parallel programming
Numrich and Reid, 1998

● Ashby, J.V. and Reid, J.K (2008). Migrating a scientific
application from MPI to coarrays.
CUG 2008 Proceedings. RAL-TR-2008-015
See http://www.numerical.rl.ac.uk/reports/reports.shtml

ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1824.pdf
http://lacsi.rice.edu/software/caf/downloads/documentation/nrRAL98060.pdf
http://lacsi.rice.edu/software/caf/downloads/documentation/nrRAL98060.pdf
http://www.numerical.rl.ac.uk/reports/reports.shtml

UPC

UPC Overview and Design Philosophy

May 23-25, 2012 PGAS Workshop - CSCS
41

● Unified Parallel C (UPC) is:
● An explicit parallel extension of ANSI C

● A partitioned global address space language

● Sometimes called a GAS language

● Similar to the C language philosophy
● Programmers are clever and careful, and may need to get close to

hardware
● to get performance, but

● can get in trouble

● Concise and efficient syntax

● Common and familiar syntax and semantics for parallel C
with simple extensions to ANSI C

● Based on ideas in Split-C, AC, and PCP

UPC Execution Model

May 23-25, 2012 PGAS Workshop - CSCS
42

● A number of threads working independently in a SPMD
fashion
● Number of threads specified at compile-time or run-time; available as

program variable THREADS

● MYTHREAD specifies thread index (0..THREADS-1)

● upc_barrier is a global synchronization: all wait

● There is a form of parallel loop, upc_forall

● There are two compilation modes
● Static Threads mode:

● THREADS is specified at compile time by the user

● The program may use THREADS as a compile-time constant

● Dynamic threads mode:
● Compiled code may be run with varying numbers of threads

Hello World in UPC

May 23-25, 2012 PGAS Workshop - CSCS
43

● Any legal C program is also a legal UPC program

● If you compile and run it as UPC with P threads, it will run
P copies of the program.

● Using this fact, plus the identifiers from the previous
slides, we can parallel hello world:

#include <upc.h> /* needed for UPC extensions */

#include <stdio.h>

main() {

 printf("Thread %d of %d: hello UPC world\n",

 MYTHREAD, THREADS);

}

Private vs. Shared Variables in UPC

May 23-25, 2012 PGAS Workshop - CSCS
44

● Normal C variables and objects are allocated in the private
memory space for each thread.

● Shared variables are allocated only once, with thread 0

shared int ours; // use sparingly: performance

int mine;

Shared

G
lo

b
a

l
a
d

d
re

s
s

s
p

a
c
e

Private

mine: mine: mine:

Thread0 Thread1 Threadn

ours:

Shared and Private Data

May 23-25, 2012 PGAS Workshop - CSCS
45

● Examples of Shared and Private Data Layout:
● Assume THREADS = 4

shared int x; /* x will have affinity to thread 0 */

shared int y[THREADS];

int z;

Shared

G
lo

b
a

l
a
d

d
re

s
s

s
p

a
c
e

Private

z z z

 0 1 2 3

z

x

y[0] y[1] y[2] y[3]

Shared and Private Data

May 23-25, 2012 PGAS Workshop - CSCS
46

● Shared Data Layout

shared int A[4][THREADS];

Thread 0

A[0][0]

A[1][0]

A[2][0]

A[3][0]

A[0][1]

A[1][1]

A[2][1]

A[3][1]

A[0][2]

A[1][2]

A[2][2]

A[3][2]

Thread 1 Thread 2

Blocking of shared data

May 23-25, 2012 PGAS Workshop - CSCS
47

● Default block size is 1

● Shared arrays can be distributed on a block per thread
basis, round robin with arbitrary block sizes.

● A block size is specified in the declaration as follows:
shared [block-size] type array[N];

shared [4] int a[16];

● Block size and THREADS determine affinity

● The term affinity means in which thread’s local shared-
memory space, a shared data item will reside

● Element i of a blocked array has affinity to thread:

 THREADS
blocksize

i
mod

Shared and Private Data

May 23-25, 2012 PGAS Workshop - CSCS
48

● Can become dangerous
● Assume THREADS = 4

shared [3] int A[4][THREADS];

A[0][0]

A[0][1]

A[0][2]

A[3][0]

A[3][1]

A[3][2]

A[0][3]

A[1][0]

A[1][1]

A[3][3]

A[1][2]

A[1][3]

A[2][0]

A[2][1]

A[2][2]

A[2][3]

Thread 0 Thread 1 Thread 2 Thread 3

upc_forall

May 23-25, 2012 PGAS Workshop - CSCS
49

● A vector addition can be written as follows…

● upc_forall adds an extra argument for affinity control

● The code would be correct but slow if the affinity
expression were i+1 rather than i.

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {

 int i;

 upc_forall(i=0; i<N; i++; i)

 sum[i]=v1[i]+v2[i];

}

UPC pointers

May 23-25, 2012 PGAS Workshop - CSCS
50

int *p1; /* private pointer

 to local memory */

shared int *p2; /* private pointer

 to shared space */

int *shared p3; /* shared pointer

 to local memory */

shared int *shared p4; /* shared pointer

 to shared space */

Local Shared

Private PP (p1) PS (p2)

Shared SP (p3) SS (p4)

Where does

the pointer

reside?

Where does the pointer point?

Shared to

private is not

recommended

Common Uses for UPC Pointer Types

May 23-25, 2012 PGAS Workshop - CSCS
51

● int *p1;
● These pointers are fast (just like C pointers)

● Use to access local data in part of code performing local work

● Often cast a pointer-to-shared to one of these to get faster access to
shared data that is local

● shared int *p2;
● Use to refer to remote data

● Larger and slower due to test-for-local + possible communication

● int *shared p3;
● Not recommended

● shared int *shared p4;
● Use to build shared linked structures, e.g., a linked list

Dynamic Memory Allocation in UPC

May 23-25, 2012 PGAS Workshop - CSCS
52

● Dynamic memory allocation of shared memory is available
in UPC

● Functions can be collective or not

● A collective function has to be called by every thread and
will return the same value to all of them

● As a convention, the name of a collective function
typically includes “all”

Collective Global Memory Allocation

May 23-25, 2012 PGAS Workshop - CSCS
53

● upc_all_alloc

 shared void *upc_all_alloc
 (size_t nblocks, size_t nbytes);

 nblocks: number of blocks
nbytes: block size

● This function has the same result as upc_global_alloc. But

this is a collective function, which is expected to be called
by all threads

● All the threads will get the same pointer

● Equivalent to :
shared [nbytes] char[nblocks * nbytes]

Collective Global Memory Allocation

May 23-25, 2012 54

shared [N] int *ptr;

ptr = (shared [N] int *)

 upc_all_alloc(THREADS, N*sizeof(int));

ptr ptr ptr

SHARED

PRIVATE

Thread 0 Thread 1 Thread THREADS - 1

N
…

N N

PGAS Workshop - CSCS

Global Memory Allocation

May 23-25, 2012 PGAS Workshop - CSCS
55

● upc_global_alloc

 shared void *upc_global_alloc
 (size_t nblocks, size_t nbytes);

 nblocks : number of blocks

nbytes : block size

● Non collective, expected to be called by one thread

● The calling thread allocates a contiguous memory region
in the shared space

● Space allocated per calling thread is equivalent to :
shared [nbytes] char[nblocks * nbytes]

● If called by more than one thread, multiple regions are
allocated and each calling thread gets a different pointer

ptr ptr ptr

SHARED

PRIVATE

Thread 0 Thread 1 Thread THREADS-1

N

…
N N

N

…

N N

N

…
N N

…

…

…

upc_global_alloc

May 23-25, 2012 56 PGAS Workshop - CSCS

Local-Shared Memory Allocation

May 23-25, 2012 PGAS Workshop - CSCS
57

● upc_alloc

 shared void *upc_alloc (size_t nbytes);

 nbytes: block size

● Non collective, expected to be called by one thread

● The calling thread allocates a contiguous memory region
in the local-shared space of the calling thread

● Space allocated per calling thread is equivalent to :
shared [] char[nbytes]

● If called by more than one thread, multiple regions are
allocated and each calling thread gets a different pointer

Local-Shared Memory Allocation

May 23-25, 2012 58

ptr ptr ptr

SHARED

PRIVATE

Thread 0 Thread 1 Thread THREADS-1

…
N

…

N

N

shared [] int *ptr;

ptr = (shared [] int *)upc_alloc(N*sizeof(int));

PGAS Workshop - CSCS

Memory Space Clean-up

May 23-25, 2012 PGAS Workshop - CSCS
59

● upc_free

 void upc_free(shared void *ptr);

● The upc_free function frees the dynamically allocated
shared memory pointed to by ptr

● upc_free is not collective

Features we won’t cover

May 23-25, 2012 PGAS Workshop - CSCS
60

● Synchronization – no implicit synchronization among the
threads – it’s up to you!
● Barriers (Blocking)
● Split-Phase Barriers (Non-blocking)
● Locks – collective and global

● String functions in UPC
● UPC equivalents of memcpy, memset

● Special functions
● Shared pointer information (phase, block size, thread number)
● Shared object information (size, block size, element size)

● UPC collectives

● UPC-IO

● http://upc.gwu.edu/
Unified Parallel C at George Washington University

● http://upc.lbl.gov/
Berkeley Unified Parallel C Project

● http://docs.cray.com/
Cray C and C++ Reference Manual

References

May 23-25, 2012 61 PGAS Workshop - CSCS

http://upc.gwu.edu/
http://upc.lbl.gov/
http://docs.cray.com/

Cray programming environment
and PGAS compilers

Roberto Ansaloni

Compiling, Linking and Launching a CAF code

May 23-25, 2012 PGAS Workshop - CSCS
63

● Load Cray programming environment (if not default)
 module load PrgEnv-cray

● The caf compiler option to enable recognition of Coarray
syntax: -h caf
● Will be default in next CCE release

● Compile and run
 ftn –hcaf hello.c –o hello

 aprun –n <npes> ./hello

Compiling, Linking and Launching a UPC code

May 23-25, 2012 PGAS Workshop - CSCS
64

● Load Cray programming environment (if not default)

● module load PrgEnv-cray

● The upc compiler option:
-h upc (enable recognition of UPC syntax)

-X <npes> (optional to statically set THREADS constant)

● Compile and run
cc –hupc hello.c –o hello

aprun –n <npes> ./hello

● If –X npes is used at compile time, you must specify the
same number of threads in the aprun command.

Symmetric Heap

May 23-25, 2012 PGAS Workshop - CSCS
65

● By default, each PE reserves 64 MB of symmetric heap
space. To increase or decrease this amount, set the
XT_SYMMETRIC_HEAP_SIZE environment variable (Use
suffixes K, M, and G)

 export XT_SYMMETRIC_HEAP_SIZE=512M

Symmetric Heap and Huge pages on Cray XE6

May 23-25, 2012 PGAS Workshop - CSCS
66

● The symmetric heap is mapped onto hugepages by
DMAPP. It is advisable to also map the static data and/or
private heap onto huge pages.

● If huge pages are not used, remotely mapped memory is
limited to 2GB per node

● Several sizes available
● 128K, 512K, 2M, 8M, 16M, 64M

 module load craype-hugepages2M

● More info: man intro_hugepages

pgas defer_sync directive

May 23-25, 2012 PGAS Workshop - CSCS
67

● The compiler synchronizes the references in a statement
as late as possible without violating program semantics.

● The purpose of the defer_sync directive is to synchronize
the references even later, beyond where the compiler can
determine it is safe.

● The programmer is responsible for inserting the proper
synchronization at the right time

● This can be used to overlap remote memory references to
other operations

 #pragma pgas defer_sync

 !DIR$ PGAS DEFER_SYNC

Useful man pages

May 23-25, 2012 PGAS Workshop - CSCS
68

● man intro_pgas
● General info about Cray CCE PGAS support

● man defer_sync
● Some more info and an example

● man directives
● Introduction to Cray C/C++ compiler #pragmas and Cray Fortran

Compiler directives

● Different types: General, Vectorization, Scalar, Inlining, PGAS

Asynchronous MPI communication

May 14-15, 2012 L1 - Cray OpenACC workshop - HLRS
69

● Effective MPI communication/computation overlap
requires Progress Engine Support
● This is automatically implemented in MPT 5.4.0 by helper threads that

progress the MPI state engine while application is computing

● Only effective if used with core specialization to reserve a
core/node for the helper threads
● It is likely to have spare CPU cores on the node in a GPU code

● Must set the following variables to enable it
export MPICH_NEMESIS_ASYNC_PROGRESS=1

export MPICH_MAX_THREAD_SAFETY=multiple

● Limit the OpenMP parallelism
export OMP_NUM_THREADS=14

● Run the application with core specialization
aprun -n XX -d 14 -r 2 ./a.out

Node ordering

May 23-25, 2012 PGAS Workshop - CSCS
70

● The set of nodes assigned to an application is chosen by
“the system”
● Cray ALPS, batch system

● The only thing a user can do is modify the mapping
between MPI ranks and the given nodes

● The way to do this is by using MPICH rank reordering

Set the preferred node order into file MPICH_RANK_ORDER
export MPICH_RANK_REORDER_METHOD=3

● More info: mpi man page
● look for MPICH_RANK_REORDER_METHOD

grid_order

May 23-25, 2012 PGAS Workshop - CSCS
71

● The grid_order tool can help to properly set
MPICH_RANK_ORDER in case of specific topologies
● Successfully used with CP2K

● The tool is provided by Cray perftools: either load the
module or set PATH to use it
module load perftools

export PATH=$PATH:opt/cray/perftools/default/bin

● Examples
grid_order -R -c 1,1 -g m,m –H >MPICH_RANK_ORDER

grid_order -R -c ppn,nth -g npx,npy -H >MPICH_RANK_ORDER

● For more info:
grid_order –h

Cray performance tools for
MPI and PGAS

code development and tuning

Roberto Ansaloni

Cray perftools design goals

73

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Automatic program instrumentation

● Automatic analysis

● Target scalability issues in all areas of tool development
● Data management

● Storage, movement, presentation

May 23-25, 2012 PGAS Workshop - CSCS

Cray perftools features

74

● Provide a complete solution from instrumentation to
measurement to analysis to visualization of data

● Performance measurement and analysis on large systems
● Automatic Profiling Analysis

● Load Imbalance

● HW counter derived metrics

● Predefined trace groups provide performance statistics for libraries
called by program (blas, lapack, pgas runtime, netcdf, hdf5, etc.)

● Observations of inefficient performance

● Data collection and presentation filtering

● Data correlates to user source (line number info, etc.)

● Support MPI, SHMEM, OpenMP, UPC, CAF

● Access to network counters

● Minimal program perturbation

May 23-25, 2012 PGAS Workshop - CSCS

The Cray Performance Analysis Framework

75

● Supports traditional post-mortem performance analysis
● Automatic identification of performance problems

● Indication of causes of problems

● Suggestions of modifications for performance improvement

● pat_build
● provides automatic instrumentation

● CrayPat run-time library
● collects measurements (transparent to the user)

● pat_report
● performs analysis and generates text reports

● pat_help
● online help utility

● Cray Apprentice2

● graphical visualization tool

May 23-25, 2012 PGAS Workshop - CSCS

Collecting Performance Data

76

● Sampling
● External agent (asynchronous)
● Timer interrupt
● Hardware counters overflow

● Tracing
● Internal agent (synchronous)
● Code instrumentation
● Automatic or manual instrumentation

● While event tracing provides most useful information, it

can be very heavy if the application runs on a large
number of cores for a long period of time

● Sampling can be useful as a starting point, to provide a
first overview of the work distribution

May 23-25, 2012 PGAS Workshop - CSCS

Application instrumentation with pat_build

77

● pat_build is a stand-alone utility that automatically
instruments the application for performance collection
module load perftools

● Requires no source code or makefile modification
● Automatic instrumentation at group (function) level

● Groups: mpi, io, heap, math SW, …

● Performs link-time instrumentation
● Requires object files

● Instruments optimized code

● Generates stand-alone instrumented program

● Preserves original binary

May 23-25, 2012 PGAS Workshop - CSCS

Automatic Profiling Analysis (APA)

78

● Provides simple procedure to instrument and collect
performance data for novice users

● Identifies top time consuming routines

● Automatically creates instrumentation template
customized to application for future in-depth
measurement and analysis

pat_build –Oapa a.out

May 23-25, 2012 PGAS Workshop - CSCS

Program Instrumentation

79

● Large programs: 2-step approach
● Scaling issues more dominant

● Use automatic profiling analysis to quickly identify top time consuming
routines

● Use loop statistics to quickly identify top time consuming loops

● Run tracing experiments on a selected number of routines

$ pat_build –Oapa a.out

$ aprun a.out+pat

$ pat_build –T <sub1,sub2...> -g mpi a.out

$ aprun a.out+pat

● Small (test) or short running programs
● Scaling issues not significant

● Can skip first sampling experiment and directly generate profile

$ pat_build –u –g mpi a.out

$ aprun a.out+pat

May 23-25, 2012 PGAS Workshop - CSCS

Steps to Collecting Performance Data (1/3)
Instrument the code and run 1st sampling test

80

● Access performance tools software

 $ module load perftools

● Build application keeping .o files (CCE: -h keepfiles)

 $ make clean ; make

● Instrument application for automatic profiling analysis

● You should get an instrumented program a.out+pat

 $ pat_build –O apa a.out

● Run application to get top time consuming routines

● You should get a performance file (“<sdatafile>.xf”) or
multiple files in a directory (<sdatadir>)

 $ aprun … a.out+pat

May 23-25, 2012 PGAS Workshop - CSCS

Steps to Collecting Performance Data (2/3
Generate 1st report and APA file

81

● Generate report and .apa instrumentation file
● You should get an APA file .apa

 $ pat_report –o <samprpt> [<sdatafile>.xf | <sdatadir>]

● Inspect .apa file and sampling report <samprpt>

● Verify if additional instrumentation is needed

May 23-25, 2012 PGAS Workshop - CSCS

APA File Example

May 23-25, 2012 PGAS Workshop - CSCS
82

31.29% 38517 bytes
 -T prim_advance_mod_preq_advance_exp_

15.07% 14158 bytes
 -T prim_si_mod_prim_diffusion_

9.76% 5474 bytes
 -T derivative_mod_gradient_str_nonstag_

. . .

2.95% 3067 bytes
 -T forcing_mod_apply_forcing_

2.93% 118585 bytes
 -T column_model_mod_applycolumnmodel_

Functions below this point account for less than 10% of samples.

0.66% 4575 bytes
-T bndry_mod_bndry_exchangev_thsave_time_

0.10% 46797 bytes
-T baroclinic_inst_mod_binst_init_state_

0.04% 62214 bytes
-T prim_state_mod_prim_printstate_

. . .
0.00% 118 bytes
-T time_mod_timelevel_update_

--

 -o preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x+apa
New instrumented program.

 /.AUTO/cray/css.pe_tools/malice/craypat/build/pat/2009Apr03/2.1.56HD/amd64/homme/pgi/pat-
5.0.0.2/homme/2005Dec08/build.Linux/preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x #
Original program.

You can edit this file, if desired, and use it
to reinstrument the program for tracing like this:

pat_build -O standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-
5.0.0.2-
Oapa.512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.
14999.xf.xf.apa

These suggested trace options are based on data from:

/home/users/malice/pat/Runs/Runs.seal.pat5001.2009Apr04/./pat.quad/homme/stan
dard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-
Oapa.512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=none.
14999.xf.xf.cdb
--

HWPC group to collect by default.

 -Drtenv=PAT_RT_HWPC=1 # Summary with TLB metrics.

--

Libraries to trace.

 -g mpi

--

User-defined functions to trace, sorted by % of samples.

The way these functions are filtered can be controlled with
pat_report options (values used for this file are shown):

-s apa_max_count=200 No more than 200 functions are listed.
-s apa_min_size=800 Commented out if text size < 800 bytes.
-s apa_min_pct=1 Commented out if it had < 1% of samples.
-s apa_max_cum_pct=90 Commented out after cumulative 90%.

Local functions are listed for completeness, but cannot be traced.

 -w # Enable tracing of user-defined functions.
 # Note: -u should NOT be specified as an additional option.

Steps to Collecting Performance Data (3/3)
Generating profile from APA

83

● Instrument application for further analysis (a.out+apa)

 $ pat_build –O <apafile>.apa

● Run application

 $ aprun … a.out+apa

● Generate text report and visualization file (.ap2)

 $ pat_report –o <tracrpt> [<datafile>.xf | <datadir>]

● View report in text and/or with Cray Apprentice2

 $ app2 <datafile>.ap2

May 23-25, 2012 PGAS Workshop - CSCS

Files Generated and the Naming Convention

84

File Suffix Description

a.out+pat Program instrumented for data collection

a.out…s.xf

Raw data for sampling experiment, available after

application execution

a.out…t.xf Raw data for trace (summarized or full) experiment,

available after application execution

a.out…st.ap2 Processed data, generated by pat_report, contains

application symbol information

a.out…s.apa Automatic profiling pnalysis template, generated by

pat_report (based on pat_build –O apa experiment)

a.out+apa Program instrumented using .apa file

MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from

automatic grid detection an reorder suggestions

May 23-25, 2012 PGAS Workshop - CSCS

Some further details

85

● The application must run on Lustre (/scratch/…) to
provide the profile data
● Can be customized with PAT_RT_EXPFILE_MAX

● It is useful to save the .ap2 file
● The “.ap2” file is a self contained compressed performance file

● Normally it is about 5 times smaller than the “.xf” file

● Contains the information needed from the application binary

● Can be reused, even if the application binary is no longer available or
if it was rebuilt

● It is the only input format accepted by Cray Apprentice2

● PAT_RT_XXX environment variables
● Control perftools runtime

● See intro_craypat man page

● Enable collection of HW counters

May 23-25, 2012 PGAS Workshop - CSCS

pat_report

86

● Performs data conversion
● Combines information from binary with raw performance data

● Performs analysis on data

● Generates text report of performance results

● Formats data for input into Cray Apprentice2

May 23-25, 2012 PGAS Workshop - CSCS

Job Execution Information

May 23-25, 2012 PGAS Workshop - CSCS
87

CrayPat/X: Version 5.2.3.8078 Revision 8078 (xf 8063) 08/25/11 …

Number of PEs (MPI ranks): 16

Numbers of PEs per Node: 16

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Thu Aug 25 14:16:51 2011

System type and speed: x86_64 2000 MHz

Current path to data file:
 /lus/scratch/heidi/ted_swim/mpi-openmp/run/swim+pat+27472-34t.ap2

Notes for table 1:
…

Sampling Output (Table 1)

May 23-25, 2012 PGAS Workshop - CSCS
88

Notes for table 1:

...

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group
 | | Samp | Samp % | Function
 | | | | PE='HIDE'

 100.0% | 775 | -- | -- |Total
|---
| 94.2% | 730 | -- | -- |USER
||--
|| 43.4% | 336 | 8.75 | 2.6% |mlwxyz_
|| 16.1% | 125 | 6.28 | 4.9% |half_
|| 8.0% | 62 | 6.25 | 9.5% |full_
|| 6.8% | 53 | 1.88 | 3.5% |artv_
|| 4.9% | 38 | 1.34 | 3.6% |bnd_
|| 3.6% | 28 | 2.00 | 6.9% |currenf_
|| 2.2% | 17 | 1.50 | 8.6% |bndsf_
|| 1.7% | 13 | 1.97 | 13.5% |model_
|| 1.4% | 11 | 1.53 | 12.2% |cfl_
|| 1.3% | 10 | 0.75 | 7.0% |currenh_
|| 1.0% | 8 | 5.28 | 41.9% |bndbo_
|| 1.0% | 8 | 8.28 | 53.4% |bndto_
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

pat_report: Flat Profile

May 23-25, 2012 PGAS Workshop - CSCS
89

Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group

 | | | Time % | | Function

 | | | | | PE='HIDE'

 100.0% | 104.593634 | -- | -- | 22649 |Total

|--

| 71.0% | 74.230520 | -- | -- | 10473 |MPI

||---

|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce_

|| 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi_alltoall_

||===

| 25.3% | 26.514029 | -- | -- | 73 |USER

||---

|| 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity_

|| 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffte4_

||===

| 2.5% | 2.659429 | -- | -- | 435 |MPI_SYNC

||---

|| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi_barrier_(sync)

||===

| 1.1% | 1.188998 | -- | -- | 11608 |HEAP

||---

|| 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free

|==

pat_report: Message Stats by Caller

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function

 Bytes | Count | <16B | MsgSz | Caller

 | | Count | <64KB | PE[mmm]

 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total

|--

| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND

||---

|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9

4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15

||||===

|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5

||||===

. . .

May 23-25, 2012
90

PGAS Workshop - CSCS

pat_report: MPI Message Stats by Caller

May 23-25, 2012 PGAS Workshop - CSCS
91

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function

 Bytes | Count | <16B | MsgSz | Caller

 | | Count | <64KB | PE[mmm]

 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total

|--

| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND

||---

|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9

4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15

||||===

|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5

||||===

. . .

Automatic Communication Grid Detection

May 23-25, 2012 PGAS Workshop - CSCS
92

● Analyze runtime performance data to identify grids in a
program to maximize on-node communication

● Determine whether or not a custom MPI rank order will
produce a significant performance benefit

● Grid detection is helpful for programs with significant
point-to-point communication

● Tools produce a custom rank order if it’s beneficial based
on grid size, grid order and cost metric

● Available if MPI functions traced (-g mpi)

● Describe how to re-run with custom rank order

MPI grid detection report

May 23-25, 2012 PGAS Workshop - CSCS
93

MPI Grid Detection: There appears to be point-to-point MPI

 communication in a 22 X 18 grid pattern. The 48.6% of the total

 execution time spent in MPI functions might be reduced with a rank

 order that maximizes communication between ranks on the same node.

 The effect of several rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Custom was generated along with this

 report and contains the Custom rank order from the following table.

 This file also contains usage instructions and a table of

 alternative rank orders.

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD

 Order Bytes/PE Bytes/PE%

 of Total

 Bytes/PE

 Custom 7.80e+06 78.37% 3

 SMP 5.59e+06 56.21% 1

 Fold 2.59e+05 2.60% 2

 RoundRobin 0.00e+00 0.00% 0

PGAS Support

May 23-25, 2012 PGAS Workshop - CSCS
94

● Profiles of a PGAS program can be created to show:
● Top time consuming functions/line numbers in the code

● Load imbalance information

● Performance statistics attributed to user source by default

● Can expose statistics by library as well

● To see underlying operations, such as wait time on barriers

● Data collection is based on methods used for MPI library
● PGAS data is collected by default when using Automatic Profiling

Analysis (pat_build –O apa)

● Predefined wrappers for runtime libraries (caf, upc, pgas) enable
attribution of samples or time to user source

● UPC and SHMEM heap tracking available
● -g heap will track shared heap in addition to local heap

PGAS Report Showing Library Functions

May 23-25, 2012 PGAS Workshop - CSCS
95

Table 1: Profile by Function and Callers, with Line Numbers

 Samp % | Samp |Group

 | | Function

 | | Caller

 | | PE='HIDE’

 100.0% | 47 |Total

|---------------------------

| 93.6% | 44 |ETC

||--------------------------

|| 85.1% | 40 |upc_memput

3| | | all2all:mpp_bench.c:line.298

4| | | do_all2all:mpp_bench.c:line.348

5| | | main:test_all2all.c:line.70

|| 4.3% | 2 |bzero

3| | | (N/A):(N/A):line.0

|| 2.1% | 1 |upc_all_alloc

3| | | mpp_alloc:mpp_bench.c:line.143

4| | | main:test_all2all.c:line.25

|| 2.1% | 1 |upc_all_reduceUL

3| | | mpp_accum_long:mpp_bench.c:line.185

4| | | do_cksum:mpp_bench.c:line.317

5| | | do_all2all:mpp_bench.c:line.341

6| | | main:test_all2all.c:line.70

||==========================

Heap statistics analysis (activated by –g heap)

May 23-25, 2012 PGAS Workshop - CSCS
96

Notes for table 5:

 Table option:
 -O heap_hiwater
 Options implied by table option:
 -d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm]

 This table shows only lines with Tracked Heap HiWater MBytes > 0.

Table 5: Heap Stats during Main Program

 Tracked | Total | Total | Tracked | Tracked |PE[mmm]
 Heap | Allocs | Frees | Objects | MBytes |
 HiWater | | | Not | Not |
 MBytes | | | Freed | Freed |

 9.794 | 915 | 910 | 4 | 1.011 |Total
|---
| 9.943 | 1170 | 1103 | 68 | 1.046 |pe.0
| 9.909 | 715 | 712 | 3 | 1.010 |pe.22
| 9.446 | 1278 | 1275 | 3 | 1.010 |pe.43
|===

Many more groups available

May 23-25, 2012 PGAS Workshop - CSCS
97

● blas Basic Linear Algebra subprograms
● caf Co-Array Fortran (Cray CCE compiler only)
● hdf5 manages extremely large and complex data
● heap dynamic heap
● io includes stdio and sysio groups
● lapack Linear Algebra Package
● math ANSI math
● mpi MPI
● omp OpenMP API
● omp-rtl OpenMP runtime library
● pthreads POSIX threads
● shmem SHMEM
● sysio I/O system calls
● system system calls
● upc Unified Parallel C (Cray CCE compiler only)

Online information available

May 23-25, 2012 PGAS Workshop - CSCS
98

● User guide
● http://docs.cray.com

● Man pages

● To see list of reports that can be generated
 $ pat_report –O –h

● Notes sections in text performance reports provide

information and suggest further options

● Cray Apprentice2 panel help

● pat_help
● interactive help on the Cray Performance toolset
● FAQ available through pat_help

http://docs.cray.com/

PGAS Labs and Examples

Roberto Ansaloni

PGAS Examples

May 23-25, 2012 PGAS Workshop - CSCS

10
0

● Some codes are provided as programming examples

● Fortran Coarray: pdensity
● Compute density of primes

● Fortran Coarray: rgather
● Compare MPI with 2 Coarrays implementations based on get or put

● UPC: upc_ticks
● Shows usage of timing functions (Cray specific)

● UPC: add
● Simple add code

● UPC: affinity
● Checks threads affinity

PGAS Labs - Himeno

May 23-25, 2012 PGAS Workshop - CSCS

10
1

● Read the tutorial doc and implement the suggested
modifications

● Profile the MPI code with Cray perftools

● As suggested introduce coarray buffers

● Or introduce coarrays in another way:
● Rewriting the code with direct get/put on pressure array

● Introducing coarrays with the minimum number of modifications

● Profile the CAF code with Cray perftools

● Repeat the process porting the MPI C code to UPC

