
Luiz DeRose © Cray Inc.

 It is the role of the Programming Environment to close the gap between
observed performance and peak performance

f f• Help users achieve highest possible performance from the hardware

 The Cray Programming Environment is addressing the issues of scale
and complexity of high end HPC systems with:
• Increased automation
• Ease of use

 Hiding the system complexity
• Extended functionality

 Focus on scalability
• Improved Reliability
• Strong academic collaborations
• Close interaction with users

 F f db k t ti f ti lit h t For feedback targeting functionality enhancements

November, 2011 2Luiz DeRose © Cray Inc.

P i O ti i d S i tifiP iProgramming
Languages

Fortran

I/O Libraries

NetCDF

Optimized Scientific
Libraries

LAPACK

S C

Compilers

Cray Compiling
Environment

(CCE)

Tools

Environment setup

Modules

Programming
models

Distributed
Memory
(Cray MPT)

MPI

C

HDF5

ScaLAPCK

BLAS (libgoto)

Iterative

PGI

(CCE)

Debuggers

DDT

Modules

• MPI
• SHMEM

Shared Memory
• OpenMP 3.0

C++

Refinement
Toolkit

Cray Adaptive
FFTs (CRAFFT)

GNU lgdb

Debugging Support
Tools

• Fast Track

PGAS & Global
View
• UPC (CCE)

CAF (CCE)

OpenMP 3.0
PGICCE

Chapel

Python

FFTW

Cray PETSc
(with CASK)

Cray Trilinos
(with CASK)

• Fast Track
Debugger
(CCE w/ DDT)

• Abnormal
Termination
Processing

DDT

STAT

• CAF (CCE)
• Chapel

(with CASK)

Cray developed
#: Under development Performance Analysis

STAT

Cray
Comparative
Debugger#

Licensed ISV SW
3rd party packaging
Cray added value to 3rd party

•CrayPat
• Cray
Apprentice2

November, 2011 3Luiz DeRose © Cray Inc.

 Cray technology focused on scientific applications
• Takes advantage of automatic vectorization
• Takes advantage of automatic shared memory parallelization

 Standard conforming languages and programming models
• Fortran 2003 standard compliant with F2008 features already available
• C++98/2003 compliant
• OpenMP 3 0 compliant working on OpenMP 3 1 and OpenMP 4 0• OpenMP 3.0 compliant, working on OpenMP 3.1 and OpenMP 4.0

 OpenMP and automatic multithreading fully integrated
• Share the same runtime and resource pool
• Aggressive loop restructuring and scalar optimization done in the presence of

OpenMP
• Consistent interface for managing OpenMP and automatic multithreading

 PGAS languages (UPC & Fortran Coarrays) fully optimized and
integrated into the compiler
• UPC 1.2 and Fortran 2008 coarray support
• No preprocessor involvedNo preprocessor involved
• Target the network appropriately

November, 2011 4Luiz DeRose © Cray Inc.

 MPI
• Implementation based on MPICH2 from ANL
• Optimized Remote Memory Access (one-sided) fully supported• Optimized Remote Memory Access (one-sided) fully supported

including passive RMA
• Full MPI-2 support with the exception of

 Dynamic process management (MPI Comm spawn) Dynamic process management (MPI_Comm_spawn)
• MPI3 Forum active participant

 Cray SHMEM
• Fully optimized Cray SHMEM library supported

 Cray XT implementation close to the T3E modely p

November, 2011 5Luiz DeRose © Cray Inc.

 From performance measurement to performance analysis

 Assist the ser ith application performance anal sis and Assist the user with application performance analysis and
optimization
• Help user identify important and meaningful information from

potentially massive data sets
• Help user identify problem areas instead of just reporting data
• Bring optimization knowledge to a wider set of users

 Focus on ease of use and intuitive user interfaces
• Automatic program instrumentation• Automatic program instrumentation
• Automatic analysis

T t l bilit i i ll f t l d l t Target scalability issues in all areas of tool development

November, 2011 6Luiz DeRose © Cray Inc.

 Systems with hundreds of thousands of threads of execution need
a new debugging paradigm
• Innovative techniques for productivity and scalability

 Scalable Solutions based on MRNet from University of Wisconsin Scalable Solutions based on MRNet from University of Wisconsin
STAT - Stack Trace Analysis Tool

» Scalable generation of a single, merged, stack backtrace tree
 running at 216K back‐end processes

ATP - Abnormal Termination ProcessingATP Abnormal Termination Processing
» Scalable analysis of a sick application, delivering a STAT tree and a minimal,

comprehensive, core file set.

 Fast Track Debugging
o Debugging optimized applications
o Added to Allinea's DDT 2.6 (June 2010)

 Comparative debugging
A d t t i di i t d f th t diti l t l t i dio A data-centric paradigm instead of the traditional control-centric paradigm

o Collaboration with Monash University and University of Wisconsin for scalability

• Support for traditional debugging mechanism
T t lVi DDT d db TotalView, DDT, and gdb

November, 2011 7Luiz DeRose © Cray Inc.

FFT Dense Sparse

CRAFFT BLAS

p

CASK

FFTW

LAPACK

ScaLAPACK PETSc

P‐CRAFFT
IRT

CASE Trilinos

IRT – Iterative Refinement Toolkit
CASK Cray Adaptive Sparse KernelsCASK – Cray Adaptive Sparse Kernels
CRAFFT – Cray Adaptive FFT
CASE – Cray Adaptive Simplified Eigensolver

November, 2011 8Luiz DeRose © Cray Inc.

 The Cray systems use modules in the user environment to support
multiple software versions and to create integrated software packages

• As new versions of the supported software and associated man pages becomeAs new versions of the supported software and associated man pages become
available, they are added automatically to the Programming Environment, while
earlier versions are retained to support legacy applications

• The modules tool is used to handle different versions of packages. You can use
th d f lt i f d t h th ithe default version of a product, or choose another version
 e.g.: module load compiler_v1
 e.g.: module swap compiler_v1 compiler_v2
 e.g.: module load perftools

 Modules take care of changing of PATH, MANPATH, LM_LICENSE_FILE,
• Modules also provide a simple mechanism for updating certain environment

variables, such as PATH, MANPATH, and LD_LIBRARY_PATH
• In general, you should make use of the modules system rather than embedding

specific directory paths into your startup files, makefiles, and scripts

 It is also easy to setup your own modules for your own softwareIt is also easy to setup your own modules for your own software

November, 2011 Luiz DeRose © Cray Inc. 10

ldr@todi1:~> module list
Currently Loaded Modulefiles:

1) modules/3.2.6.6
2) nodestat/2.2-1.0400.29866.4.3.gem
3) sdb/1.0-1.0400.30000.6.18.gem
4) MySQL/5 0 64-1 0000 4667 20 14) MySQL/5.0.64-1.0000.4667.20.1
5) lustre-cray_gem_s/1.8.4_2.6.32.45_0.3.2_1.0400.6221.1.1-1.0400.30252.1.29
6) udreg/2.3.1-1.0400.3911.5.6.gem
7) ugni/2.3-1.0400.3912.4.29.gem
8) gni-headers/2.1-1.0400.3906.5.1.gem
9) dmapp/3.2.1-1.0400.3965.10.12.gem

10) xpmem/0.1-2.0400.29883.4.6.gem
11) hss-llm/6.0.0
12) Base-opts/1.0.2-1.0400.29823.8.1.gem
13) xtpe-network-gemini13) xtpe network gemini
14) cce/8.0.0.135
15) totalview-support/1.1.2
16) xt-totalview/8.9.2
17) acml/4.4.0
18) t lib i/11 0 0318) xt-libsci/11.0.03
19) pmi/2.1.4-1.0000.8596.8.9.gem
20) rca/1.0.0-2.0400.30002.5.19.gem
21) xt-asyncpe/5.03
22) PrgEnv-cray/4.0.30g y
23) xtpe-interlagos
24) xt-mpich2/5.3.4
25) slurm

November, 2011 11Luiz DeRose © Cray Inc.

 The Base-opts modules is loaded by default into your user
environmentenvironment
• You should never unload the Base-opts module

 it contains the setup for CLE

 The PrgEnv-cray is the default on Todi

November, 2011 12Luiz DeRose © Cray Inc.

 module avail [avail-options] [path...]
• List all available modulefiles in the current MODULEPATH

 Useful options for filtering Useful options for filtering
• -U, --usermodules

 List all modulefiles of interest to a typical user

• -D --defaultversions• D, defaultversions
 List only default versions of modulefiles with multiple available versions

• -P, --prgenvmodules
 List all PrgEnv modulefilesg

• -T, --toolmodules
 List all tool modulefiles

L lib d l• -L, --librarymodules
 List all library modulefiles

• % module avail <product>
 List all <product> versions available List all <product> versions available

November, 2011 Luiz DeRose © Cray Inc. 13

ldr@todi1:~> module avail -U

-------------------------- /opt/cray/gem/modulefiles ---------------------------
blcr/0.8.2-1.0400.350.6.4.gem(default)
dmapp/3.2.1-1.0400.3965.10.12.gem(default)
gni-headers/2.1-1.0400.3906.5.1.gem(default)
pmi/2.1.4-1.0000.8596.8.9.gem(default)
rca/1 0 0-2 0400 30002 5 19 gem(default)rca/1.0.0-2.0400.30002.5.19.gem(default)
udreg/2.3.1-1.0400.3911.5.6.gem(default)
ugni/2.3-1.0400.3912.4.29.gem(default)
xpmem/0.1-2.0400.29883.4.6.gem(default)

---------------------------- /opt/cray/modulefiles -----------------------------
t /1 3 0 libf t/1 0 9 t l/1 1 01atp/1.3.0 libfast/1.0.9 tpsl/1.1.01

fftw/2.1.5.3 netcdf/4.1.2 trilinos/10.6.4.0
fftw/3.3.0.0(default) ntk/1.3.0(default) xt-lgdb/1.4
ga/4.3.5(default) onesided/1.3.0(default) xt-libsci/11.0.03
hdf5/1.8.6 stat/1.1.3(default) xt-mpt/5.3.4(default)

/ /------------------------------- /opt/modulefiles -------------------------------
PrgEnv-cray/4.0.30(default) gcc/4.5.3
PrgEnv-gnu/4.0.30(default) gcc/4.6.1(default)
PrgEnv-pathscale/4.0.30(default) intel/12.0.5.220(default)
PrgEnv-pgi/4.0.30(default) mrnet/3.0.0(default)
acml/4.4.0(default) pathscale/4.0.11(default)
cce/7.4.4 pathscale/4.0.9
cce/8.0.0.129 petsc/3.1.09
cce/8.0.0.135(default) petsc-complex/3.1.09
fftw/2.1.5.3 pgi/11.9.0(default)
fftw/3.3.0.0(default) xt-asyncpe/5.03(default)
gcc/4.4.4 xt-totalview/8.9.2(default)g

---------------------------- /apps/todi/modulefiles ----------------------------
intel/12.0.3

November, 2011 14Luiz DeRose © Cray Inc.

ldr@todi1:~> module avail perftools

---------------------------- /opt/cray/modulefiles ---------------------------
perftools/5.2.3(default) perftools/5.3.0.8330

ldr@todi1:~> module avail cce

------------------------------- /opt/modulefiles -----------------------------
cce/7.4.4 cce/8.0.0.129 cce/8.0.0.135(default)

November, 2011 Luiz DeRose © Cray Inc. 15

ldr@todi1:~> module show perftools

/opt/cray/modulefiles/perftools/5.2.3:

setenv PERFTOOLS_VERSION 5.2.3
conflict x2-craypat
conflict craypatconflict craypat
conflict xt-craypat
conflict apprentice2
module load rca
setenv CHPL_CG_CPP_LINES 1
setenv PDGCS_LLVM_DISABLE_FP_ELIM 1
setenv PAT_REPORT_PRUNE_NAME _ _ _
__cray_hwpc_,f_cray_hwpc_,cstart,__pat_,pat_region_,PAT_,OMP.slave_loop,slave_entry,_new_slave_entry,__libc_st
art_main,_start,__start,start_thread,__wrap_,UPC_ADIO_,_upc_,upc_,__caf_,__pgas_
module-whatis Perftools - the Performance Tools module sets up environments for CrayPat, Apprentice2 and
PAPI
prepend-path PATH /opt/cray/perftools/5.2.3/bin
prepend-path MANPATH /opt/cray/perftools/5.2.3/man
setenv CRAYPAT LICENSE FILE /opt/cray/perftools/craypat licsetenv CRAYPAT_LICENSE_FILE /opt/cray/perftools/craypat.lic
prepend-path CRAYLMD_LICENSE_FILE /opt/cray/perftools/craypat.lic
setenv CRAYPAT_ROOT /opt/cray/perftools/5.2.3/cpatx
setenv CRAYPAT_INCLUDE_OPTS $($CRAYPAT_ROOT/sbin/pat-opts INCLUDE)
setenv CRAYPAT_PRE_LINK_OPTS $($CRAYPAT_ROOT/sbin/pat-opts PRE_LINK)
setenv CRAYPAT_POST_LINK_OPTS $($CRAYPAT_ROOT/sbin/pat-opts POST_LINK)
setenv CRAYPAT PRE COMPILE OPTS $($CRAYPAT ROOT/sbin/pat-opts PRE COMPILE)_ _ _ $($ _ / /p p _)
setenv CRAYPAT_POST_COMPILE_OPTS $($CRAYPAT_ROOT/sbin/pat-opts POST_COMPILE)
setenv CRAYPAT_ROOT_FOR_EVAL /opt/cray/perftools/$PERFTOOLS_VERSION/cpatx
module load papi/4.1
setenv APP2_STATE 5.2.3
setenv JH_HELPSET /opt/cray/perftools/5.2.3/help/app2help.jar
setenv JH_VIEWER /opt/cray/perftools/5.2.3/help/jh2_0_05/demos/bin/hsviewer.jar

d h / / / f l /5 2 3/ /libprepend-path LD_LIBRARY_PATH /opt/cray/perftools/5.2.3/cpatx/lib
append-path CLASSPATH /opt/cray/perftools/5.2.3/help/jh2_0_05/javahelp
append-path PE_PRODUCT_LIST PERFTOOLS
append-path PE_PRODUCT_LIST CRAYPAT

November, 2011 16Luiz DeRose © Cray Inc.

ldr@todi1:~> module show xtpe-interlagos

/opt/cray/xt-asyncpe/default/modulefiles/xtpe-interlagos:/opt/cray/xt asyncpe/default/modulefiles/xtpe interlagos:

conflict xtpe-barcelona
conflict xtpe-quadcore
conflict xtpe-shanghai

It’d probably be a really
bad idea to load two

hiconflict xtpe-istanbul
conflict xtpe-mc8
conflict xtpe-mc12
conflict xtpe-xeon
prepend-path PE PRODUCT LIST XTPE INTERLAGOS

I should build for the
right compute‐node

architectures at once.

p p p _ _ _
setenv XTPE_INTERLAGOS_ENABLED ON
setenv CRAY_CPU_TARGET interlagos
setenv INTEL_PRE_COMPILE_OPTS -msse3
setenv PATHSCALE_PRE_COMPILE_OPTS -march=barcelona

right compute‐node
architecture.

Oh yeah, let’s link in the tuned math libraries for this architecture too.

November, 2011 Luiz DeRose © Cray Inc. 17

users/ldr> module help cce/7.4.0p

----------- Module Specific Help for 'cce/7.4.0' ------------------

The modulefile, cce, defines the system paths and environment
variables needed to run the Cray Compile Environment.

Type "module avail cce" to see if other versions of this product
are available on this system. Use "module switch" to change versions.

Cray Compiling Environment 7.4.0
================================

Release Date: June 16, 2011

CCE 7.4.0
=========
Purpose:

The Cray Compiling Environment 7.4 consists of the Cray Fortran compiler,
Cray C compiler, Cray C++ compiler, and associated supporting libraries
and utilities. CCE is used on Cray XE systems that run on the Cray Linux
Environment (CLE) operating system, version 3.1 UP02 and later, and on
Cray XT systems that run CLE 2.2 or CLE 3.1 UP02 and later.

Productivity improvements in CCE 7.4

The Cray Compiling Environment release provides the following productivity
enhancements:
- Performance enhancements for Cray XE and Cray XT systems
- Performance enhancements for PGAS applications on Cray XE systems
- New features as specified by the 2008 Fortran standard
- New extensions to UPC including privatizability functions, topology

functions, and non-blocking versions of the upc_mem* family of functions

November, 2011 18Luiz DeRose © Cray Inc.

Feature information and overview:

CCE 7.4 contains
performance enhancements
Fortran, OpneMP and ISO C++ standards compliance improvements
Atomic Memory Operations Intrinsics
Cloning Directives
Topology Functions
Non-blocking Versions of the upc mem* Family of Functionsg p _ y
Privatizability Functions in UPC
New PGAS Environment Variable
New Command Line Options

See the Cray Compiling Environment 7.4 Release Overview and Installation
Guide (S-5212-74) for a more complete list of enhancements.Guide (S 5212 74) for a more complete list of enhancements.

Bugs fixed in the CCE 7.4.0 release:

. . .
Known Limitations:

. . .
Dependencies:

. . .
Installation instructions:

November, 2011 19Luiz DeRose © Cray Inc.

ldr@todi1:~> module help ccep

----------- Module Specific Help for 'cce/8.0.0.135' --------------

The modulefile, cce, defines the system paths and environment
variables needed to run the Cray Compile Environment.

Type "module avail cce" to see if other versions of this product
are available on this system. Use "module switch" to change versions.

Cray Compiling Environment 8.0.0 Customer test package
==

Purpose:Purpose:

This CCE 8.0.0 package is intended for CCE 8.0.0 customer test.
This CCE 8.0.0 provides Fortran, C, and C++ compilers for Cray XE and Cray XK6 systems.

CCE 8.0 highlights:
Support for Cray XK systemsSupport for Cray XK systems
Support for Advanced Vector Extensions (AVX)
128-bit (quad-precision) intrinsic
Performance enhancements for PGAS
New features as specified by the 2008 Fortran standard

Th C XK t i l d t f l t di ti th tThe Cray XK support includes a set of accelerator directives that are
based on proposed OpenMP accelerator directives. This enables the
development of applications for the Cray XK6 using a directives based
model. Please see the intro_openmp_acc man page for more information
about these directives.

Additional details can be found in the:
Cray Compiling Environment 8.0 Release Overview S-5212-80

This release also includes many bug fixes.

November, 2011 20Luiz DeRose © Cray Inc.

Cray Inc Compiler Fortran 2003 plus portions of 2008 (CAF)

C and C++ SourceFortran Source

C and C++ Front End supplied by Edison
Design Group with Cray developed code

Cray Inc. Compiler
Technology

Fortran 2003 plus portions of 2008 (CAF),
OpenMP, and Cray-specific programming
support

Fortran Front End

Interprocedural Analysis

C & C++ Front End
Design Group, with Cray-developed code
for extensions and interface support

Aggressive inlining and interprocedural
optimization, including cross-file

Interprocedural Analysis

Optimization and
Parallelizationm

pi
le

r Automatic vectorization and SMP;
automatic restructuring for memory
usage; OpenMP, UPC and CAF
expansion and optimization;

X86 C d C XK C d

Parallelization

C
om

PTX Code Generatorion derived from the

heterogeneous target data transfer,
parallelization, and optimization; scalar
and vector optimization

X86 Code
Generator

Cray XK Code
Generator

X86 Code Generation from LLVM, with
additional Cray-developed optimizations
and interface support

Cray X2 code generator

Object File

November, 2011 22Luiz DeRose © Cray Inc.

 Compliance with ANSI/ISO FORTRAN 2003
• Fortran 2008 (full compliance targeted for 2012)

 Fortran 2008 coarrays
 Submodules
 Block construct
 Contiguous Attribute
 ALLOCATE enhancements (MOLD =, shape from SOURCE/MOLD)
 intrinsic assignment for polymorphic variables
 Most of the new intrinsic functions
 ISO_Fortran_Env module enhancements

 Compliance with ANSI/ISO C99 and ANSI/ISO C++ 2003
(except the export keyword for templates)(except the export keyword for templates)
• Support for Kernighan & Ritchie C
• C/C++ enhancements/changes

 updated to GCC version 4.4.4 compatibility
 C++ supports the ISO 1998 Standard Template Library (STL) headerspp p y ()
 Upgraded the C and C++ front end to EDG Version 4.1

o With this update CCE can better handle modern C++ applications
o Periodic synchronization with the latest sources and bug fixes
o Better support for non-standard GNU language extensions
o The new EDG C and C++ front end more strictly enforces the standards

• UPC 1.2 support

November, 2011 Luiz DeRose © Cray Inc. 23

 AMD Interlagos support, including AVX, FMA, and XOP instructions
 X86/NVIDIA compiler and library development (ongoing “beta” release)
 Support for MPI 2.2pp
 Full OpenMP 3.0 support

• Automatic multithreading integrated with OpenMP
• OpenMP 3.1 under development

 Atomic construct extensions
 taskyield construct
 firstprivate clause accepts intend(in) and constant objects

 Support for hybrid programming using MPI across node and OpenMPSupport for hybrid programming using MPI across node and OpenMP
within the node

 Support for IEEE floating-point arithmetic and IEEE file formats
 Cray performance tools and debugger supportCray performance tools and debugger support
 Program Library
 CCE 7.4.4 was released on October 20, 2011

• The full release overview can be found at: http://docs.cray.com/books/S-5212-74/The full release overview can be found at: http://docs.cray.com/books/S 5212 74/
• CCE 8.0 targeted to be released on December 15, 2011

November, 2011 Luiz DeRose © Cray Inc. 24

 C-based UPC and Fortran Coarray are PGAS language
extensions, not stand-alone languages
 A subset of Fortran coarray collectives were added for CCE A subset of Fortran coarray collectives were added for CCE

• Although they are not yet part of the official language – they are too
useful to be delayed

 Significant improvements were made to the automatic use of Significant improvements were made to the automatic use of
blocked network transfers, including:
• Automatic conversion of multiple single-word accesses into blocked

accessesaccesses
• Improved capabilities for pattern matching to hand-optimized library

routines, including messages stating what might be inhibiting the
conversion

 UPC and Fortran coarrays support up to 2,147,483,647
threads within a single application
• We actually did hit the previous limit of 65,535!y p ,

November, 2011 25Luiz DeRose © Cray Inc.

 Roughly 35,000 nightly regression tests run for Fortran (14,000), C
(7,000), and C++ (14,000)
• Default optimization, but for multiple targets (X86, X86+AVX+FMA, X2,

X86+NVIDIA), plus “debug” and “production” compiler versions), p g p p
• Additionally, cycle through “options testing” with the same test base

 Fortran: -G0, -G1, -G2, -O0, -Oipa0, -Oipa5 -hpic, “-O3,fp3” –e0
 C and C++: -Gn, -O0, -hipa0, -hipa5, -hpic, “-O3 –hfp3” -hzero
 Additional tests and suites have been added for GPU testing

A d “ t t t” ti t t t i f th il And some “stress test” option sets to create worse-case scenarios for the compiler
 Other combinations as necessary and by request

 Performance regression testing done weekly using important applications g g y g p pp
and benchmarks

 Functional and performance regressions typically use an automated
t th t i l t th h t ifi il lib dsystem that isolates the change to a specific compiler or library mod

 Issues that are found as a result of testing but not immediately addressed
have bugs opened to track themhave bugs opened to track them

November, 2011 26Luiz DeRose © Cray Inc.

 Inlining is enabled by default
• Command line option –Oipan (ftn) –hipan (cc/CC) where n=0..4, provides a set of

choices for inlining behavior
 0 - All inlining and cloning compiler directives are ignored

 1 - Directive inlining. Inlining is attempted for call sites and routines that are under the control
of an inlining compiler directive.
o Cloning disabled and cloning directives are ignored

2 C ll t i li i I li ll t t bit d th l th t d t d 2 - Call nest inlining. Inline a call nest to an arbitrary depth as long as the nest does not exceed
some compiler-determined threshold.
o The expansion of the call nest must yield straight-line code (code containing no external calls) for any

expansion to occur.
o The call site must reside within the body of a loop for expansion to be attempted
o Cloning disabled and cloning directives are ignoredo Cloning disabled and cloning directives are ignored

 3 - Constant actual argument inlining and tiny routine inlining. Default level for inlining
o Includes levels 1 and 2, plus any call site that contains a constant actual argument
o Cloning disabled and cloning directives are ignored

 4 - This includes levels 1, 2, and 3, plus routine cloning is attempted if inlining fails at a given call
site. Cloning directives are enabled

 Cross language inlining is not supported

November, 2011 27Luiz DeRose © Cray Inc.

 Use default optimization levels
• It’s the equivalent of most other compilers –O3 or –fast
• It is also our most thoroughly tested configuration

 Use –O3,fp3 (or –O3 –hfp3, or some variation)
• -O3 only gives you slightly more than –O2
• We also test this thoroughly
• -hfp3 gives you a lot more floating point optimization, esp. 32-bit

 If an application is intolerant of floating point reassociation, try a lower –
hfp number – try –hfp1 first only –hfp0 if absolutely necessaryhfp number – try –hfp1 first, only –hfp0 if absolutely necessary
• Might be needed for tests that require strict IEEE conformance
• Or applications that have ‘validated’ results from a different compiler
• Interlagos FMA usage is aggressive at –hfp2 and –hfp3; limited at –hfp1, and

disabled at –hfp0disabled at hfp0

 Do not use –Oipa5, -Oaggress, and so on – higher numbers are not
always correlated with better performance

November, 2011 28Luiz DeRose © Cray Inc.

 We recommend using –O3 –hfp3 if the application runs
cleanly with these options
hf 3 i il i 32 bit fl ti i t f -hfp3 primarily improves 32-bit floating point performance on

the X86
 A partial list of what happens at –hfp3 is:A partial list of what happens at hfp3 is:

• Use of fast 32-bit inline division, reciprocal, square root, and reciprocal
square root algorithms (with some loss of precision)

• Use of a fast 32-bit inline complex absolute value algorithmUse of a fast 32 bit inline complex absolute value algorithm
• Starting with CCE 8.0, more aggressive reassociation (pre-8.0 –hfp2

behavior)
• Various assumptions about floating point trap safety• Various assumptions about floating point trap safety
• Somewhat more aggressive about NaN assumptions
• Assumes standard-compliant Fortran exponentiation (x**y)

November, 2011 29Luiz DeRose © Cray Inc.

 Compiler can generate an filename.lst file.
• Contains annotated listing of your source code with letter indicating

important optimizationsimportant optimizations

%%% L o o p m a r k L e g e n d %%%
Primary Loop Type Modifiersy p yp
------- ---- ---- ---------

a - vector atomic memory operation
A - Pattern matched b – blocked
C C ll d f f dC - Collapsed f – fused
D - Deleted i – interchanged
E - Cloned m - streamed but not partitioned
I - Inlined p - conditional, partial and/or computed
M - Multithreaded r – unrolled
P - Parallel/Tasked s – shortloop
V - Vectorized t - array syntax temp used
W Unwound w unwound

November, 2011 Luiz DeRose © Cray Inc. 30

W - Unwound w - unwound

 ftn –rm … or cc –hlist=m …

29. b-------< do i3=2,n3-1
30. b b-----< do i2=2,n2-1
31. b b Vr--< do i1=1,n1
32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)32. b b Vr u1(i1) u(i1,i2 1,i3) + u(i1,i2+1,i3)
33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)
34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
36. b b Vr--> enddo36. b b Vr > enddo
37. b b Vr--< do i1=2,n1-1
38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)
39. b b Vr * - a(0) * u(i1,i2,i3)
40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))40. b b Vr a(2) (u2(i1) + u1(i1 1) + u1(i1+1))
41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))
42. b b Vr--> enddo
43. b b-----> enddo
44. b-------> enddo

November, 2011 Luiz DeRose © Cray Inc. 31

. b e ddo

ftn‐6289 ftn: VECTOR File = resid.f, Line = 29
A loop starting at line 29 was not vectorized because a recurrence was found on "U1"
between lines 32 and 38.
f f il id f iftn‐6049 ftn: SCALAR File = resid.f, Line = 29
A loop starting at line 29 was blocked with block size 4.
ftn‐6289 ftn: VECTOR File = resid.f, Line = 30
A loop starting at line 30 was not vectorized because a recurrence was found on "U1" p g
between lines 32 and 38.
ftn‐6049 ftn: SCALAR File = resid.f, Line = 30
A loop starting at line 30 was blocked with block size 4.
ftn 6005 ftn SCALAR File resid f Line 31ftn‐6005 ftn: SCALAR File = resid.f, Line = 31
A loop starting at line 31 was unrolled 4 times.
ftn‐6204 ftn: VECTOR File = resid.f, Line = 31
A loop starting at line 31 was vectorized.
ftn‐6005 ftn: SCALAR File = resid.f, Line = 37
A loop starting at line 37 was unrolled 4 times.
ftn‐6204 ftn: VECTOR File = resid.f, Line = 37
A loop starting at line 37 was vectorized

November, 2011 Luiz DeRose © Cray Inc. 32

A loop starting at line 37 was vectorized.

 OpenMP is ON by default
• Optimizations controlled by –Othread#

 Autothreading is NOT on by default;
• -hautothread to turn on
• Modernized version of Cray X1 streaming capability
• Interacts with OpenMP directives

 If you do not want to use OpenMP and have OMP
directives in the code, make sure to shut off OpenMP at p
compile time
• To shut off use –Othread0 or –xomp or –hnoomp

November, 2011 33Luiz DeRose © Cray Inc.

 It would be very expensive to implement
 Almost impossible to test in any comprehensive fashion
 Non-portable across architectures
 Needs to be rewritten as new hardware features become

available (like 256-bit vectors and FMAs)available (like 256-bit vectors and FMAs)
 There is no standard; essentially what gcc or Intel decides to

support
 We want to spend our development resources on providing

the best possible automatic vectorization, rather than forcing
the developer to program in assembly languagethe developer to program in assembly language
 That said, we will consider individual requests for more direct

access to instructions – but typically through intrinsic y y g
functions, rather than inline assembly

November, 2011 34Luiz DeRose © Cray Inc.

 We do expect applications to be conformant to language
requirements
• This include not over-indexing arrays, no overlap between Fortran

subroutine arguments, and so on
• Applications that violate these rules may lead to incorrect results or

segmentation faults
• Note that languages do not require left-to-right evaluation of arithmetic• Note that languages do not require left-to-right evaluation of arithmetic

operations, unless fully parenthesized
 This can often lead to numeric differences between different compilers

 We are also fairly aggressive at floating point optimizations that
violate IEEE requirements
• -hfp[0-3] can control this, -hfp2 is the default, -hfp0 is close to IEEE p[] , p , p

conformance, but has significant performance implications
• -hfp2 allows things like rewriting divisions as multiplication by reciprocal,

floating point parallel reductions, simplified complex division algorithms,
and so onand so on

• -hfp3 can be used for most applications and is tested often

November, 2011 35Luiz DeRose © Cray Inc.

 One rounding for the FMA as a whole, rather than two (one for
multiply and one for addition)
 That sounds like a minor difference, but these differences can a sou ds e a o d e e ce, bu ese d e e ces ca

accumulate
 For our internal testing, most of the differences we manually

approved by examining them and deciding the FMA-based results app o ed by e a g t e a d dec d g t e based esu ts
were within an acceptable range
 Actual applications – at least some of them – appear to be less

forgivingforgiving
 There is no hardware way to obtain the exact same result between

FMAs and individual multiplications and additions
• … but the performance difference means we really do need to use them… but the performance difference means we really do need to use them

 Some level of FMA control is provided by CCE –hfp options
• -hfp0: No FMA generation (but also disables a lot of other stuff)
• -hfp1: Generate FMAs, but not across user parenthesishfp1: Generate FMAs, but not across user parenthesis
• -hfp2,3: Aggressive FMA generation

November, 2011 Luiz DeRose © Cray Inc. 36

 PGI
• -fast –Mipa=fast(,safe)
• If you can be flexible with precision also try -Mfprelaxed• If you can be flexible with precision, also try -Mfprelaxed
• Compiler feedback: -Minfo=all -Mneginfo
• man pgf90; man pgcc; man pgCC; or pgf90 -help

 GNU
• -O3 –ffast-math –funroll-loopsO3 ffast math funroll loops
• Compiler feedback: -ftree-vectorizer-verbose=2
• man gfortran; man gcc; man g++

37

 You use compiler driver commands to launch all Cray XE
compilers

 The syntax for the compiler driver is:

• cc | CC | ftn [Cray_options | PGI_options | GNU_options] files [-lhugetlbfs]

F l t F t il (CCE PGI GNU) For example, to use any Fortran compiler (CCE, PGI, GNU)
to compile prog1.f90
• Use this command:

 % ftn prog1.f90

 The compiler drivers are setup by the PrgEnv ??? Module The compiler drivers are setup by the PrgEnv-??? Module

November, 2011 38Luiz DeRose © Cray Inc.

 For libraries and include files being triggered by module
files, you should NOT add anything to your Makefile
• No lmpich is needed nor should it be used• No –lmpich is needed, nor should it be used
• no –L is needed
• Same is true for all Cray provided libraries

Y d ’t d t d l ith th d d th d d th lib• You don’t need to deal with threaded vs non threaded math libs

 If your Makefile needs an input for –L to work correctlyIf your Makefile needs an input for L to work correctly,
try using ‘.’

39

 The cc(1), CC(1), and ftn(1) man pages contain information about
the compiler driver commands

 The craycc(1), crayCC(1), and crayftn(1) man pages contain
descriptions of the Cray compiler command options

 The pgcc(1), pgCC(1), and pgf95(1) man pages contain
descriptions of the PGI compiler command options

 The gcc(1), g++(1), and gfortran(1) man pages contain
descriptions of the GNU compiler command options

 To verify that you are using the correct version of a compiler, use:
• -V option on a cc, CC, or ftn command with PGI and CCE
• --version option on a cc, CC, or ftn command with GNU

November, 2011 40Luiz DeRose © Cray Inc.

