
Luiz DeRose © Cray Inc.

 Systems with hundreds of thousands of threads of execution need
a new debugging paradigm
• Innovative techniques for productivity and scalability

 Scalable Solutions based on MRNet from University of Wisconsin Scalable Solutions based on MRNet from University of Wisconsin
STAT - Stack Trace Analysis Tool

» Scalable generation of a single, merged, stack backtrace tree
 running at 216K back‐end processes

ATP - Abnormal Termination ProcessingATP Abnormal Termination Processing
» Scalable analysis of a sick application, delivering a STAT tree and a minimal,

comprehensive, core file set.

 Fast Track Debugging
o Debugging optimized applications
o Added to Allinea's DDT 2.6 (June 2010)

 Comparative debugging
A d t t i di i t d f th t diti l t l t i dio A data-centric paradigm instead of the traditional control-centric paradigm

o Collaboration with Monash University and University of Wisconsin for scalability

• Support for traditional debugging mechanism
T t lVi DDT d db TotalView, DDT, and gdb

November, 2011 2Luiz DeRose © Cray Inc.

 Tree based software overlay network

 Provides efficient multicast and reduction communications for
parallel and distributed tools

 Uses a tree of processes between the tool's front-end and
back-ends to improve group communication performance
• Internal processes are used to distribute important tool activities

 Reduce data analysis time
 Keep tool front-end loads manageable

November, 2011 3Luiz DeRose © Cray Inc.

 Stack trace sampling and analysis for large scale
applications
• Sample application stack tracesp pp
• Scalable generation of a single, merged, stack backtrace tree

 A comprehensible view of the entire application
 Discover equivalent process behavior

o Group similar processes
o Reduce number of tasks to debug

 128K processes analyzed in 2.7 seconds, using MRNet

 Merge/analyze traces:
• Facilitate scalable analysis/data presentation
• Multiple traces over space or time• Multiple traces over space or time
• Create call graph prefix tree

 Compressed representation
 Scalable visualization
 Scalable analysis

November, 2011 Luiz DeRose © Cray Inc. 4

November, 2011 5Luiz DeRose © Cray Inc.

Appl

Appl

Appl

Appl

ApplAppl

November, 2011 6Luiz DeRose © Cray Inc.

November, 2011 7Luiz DeRose © Cray Inc.

 module load stat
• Not loaded by default on Todi

 man STAT

 STAT <pid_of_aprun>
• Creates STAT_results/<app_name>/<merged_bt_file>

 Scaling limited by number file descriptors

 STAT 1.2.0 planned for November 2011

November, 2011 8Luiz DeRose © Cray Inc.

 When a large scale parallel application dies, one, many, or all
processes might trap!
• It is next to impossible to examine all the core files and backtraces

 No one wants that many stack backtraces No one wants that many stack backtraces
 No one wants that many core files

o They are too slow and too big
» Sufficient storage for all core files is a problem

 They are too much to comprehend They are too much to comprehend
• A single core file or stack backtrace is usually not enough to debug either!

 A single backtrace produced might not be from the process that first failed

 Requirements:
• Minimum jitter
• Scalability
• Robustness• Robustness
• Small footprint
• Limited core file dumping

 ATP 1.3 released in August 2011

November, 2011 9Luiz DeRose © Cray Inc.

 System of light weight back-end monitor processes on
compute nodes
• Coupled together with MRNetp g
• Automatically launched by aprun in parallel with application launch

 Enabled/disabled via ATP_ENABLED environment variable

 Leap into action on any application process trapping
• stderr backtrace of first process to trap

 dumps core file set (if limit/ulimit allows) dumps core file set (if limit/ulimit allows)
• Uses StackwalkerAPI to collect individual stack backtraces, even for

optimized code

 STAT like analysis provides merged stack backtrace tree
• Leaf nodes of tree define a modest set of processes to core dump

 or a set of processes to attach to with a debugger or, a set of processes to attach to with a debugger

November, 2011 10Luiz DeRose © Cray Inc.

 ATP produces a single merged stack trace
• or a reduced set of core files

 The benefits:
• Minimal impact on application run

 Can be used with production runs
• Automated, transparent collection of data
• Ability to hold failing application for close inspection

 This is site dependent
• Easy to navigate the merged stack trace
• Manageable set of core files
• Reduced amount of data saved

 Especially true in the core file situation

November, 2011 11Luiz DeRose © Cray Inc.

 ATP is launched via an ALPS enhancement which includes the fork/exec
of a login side ATP front-end daemon
• The ATP front-end uses MRNet and the ALPS tool helper library to launch ATP

back-end servers on all compute nodes associated with the applicationp pp

 ATP signal handler runs within an application to catch fatal errors
• It handles the following signals:

 SIGQUIT SIGILL SIGTRAP SIGABRT SIGFPE SIGBUS SIGSEGV SIGSYS SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS,
SIGXCPU, SIGXFSZ

 Setting the environment variables MPICH_ABORT_ON_ERROR and
SHMEM_ABORT_ON_ERROR will cause a signal to be thrown and captured for MPI and
SHMEM fatal errors

 ATP daemon running on the compute node captures signals, starts
termination processing
• Rest of the application processes are notified• Rest of the application processes are notified
• Generates a stacktrace
• Creates a single merged stack trace file

Th k fil i i d i h h STAT i l The stack trace file is viewed with the STATview tool

November, 2011 12Luiz DeRose © Cray Inc.

 How to debug parallel optimized codes

 Debug flags eliminate optimizations
• Today's machines really need optimizations
• Slows down execution
• Problem might disappear

F T k D b i dd hi bl Fast Track Debugging addresses this problem

November, 2011 13Luiz DeRose © Cray Inc.

 Compile such that both debug and non-debug (optimized)
versions of each routine are created
• Debug and non debug versions of each subroutine appear in the• Debug and non-debug versions of each subroutine appear in the

executable

 Linkage such that optimized versions are used by default

U t b k i t th d b t t User sets breakpoints or other debug constructs
• Debugger overrides default linkage when setting breakpoints and

stepping into functions
• Routines automatically presented using the debug version of the

routine
• Rest of program executes using optimized versions of the routines

November, 2011 14Luiz DeRose © Cray Inc.

source code
difuze()

call difuze()

optimized binary code

call difuze(…)

call interf(…)

call difuze(…)

call interf(…)

difuze_debug()

call interf(…)

interf()
debug code

subrountine difuze(…)

interf()

call difuze(…)

subrountine interf(…) interf_debug()

call interf(…)

Jmp inserted as part of breakpoint planting
Breakpoint requested in interf(),
placed in interf_debug()

November, 2011 15Luiz DeRose © Cray Inc.

November, 2011 16Luiz DeRose © Cray Inc.

 Support available in the Cray Compilation Environment (CCE)

 Prototype in gdbyp g
• Exercised through lgdb

 Added to Allinea's DDT 2.6 (June 2010)()

 Issues / Cost:
• Compiles are slower
• Executable uses more disk space
• Libraries probably don't have a debug version
• Inlining turned off

 1.7% average slow down of all SPEC2007MPI tests 1.7% average slow down of all SPEC2007MPI tests
 Range of slight speedup to 19.5% slow down

• Uses more memory
 4% larger at start up
 0 0001% larger after computation 0.0001% larger after computation

November, 2011 17Luiz DeRose © Cray Inc.

