
Luiz DeRose © Cray Inc.

 Systems with hundreds of thousands of threads of execution need
a new debugging paradigm
• Innovative techniques for productivity and scalability

 Scalable Solutions based on MRNet from University of Wisconsin Scalable Solutions based on MRNet from University of Wisconsin
STAT - Stack Trace Analysis Tool

» Scalable generation of a single, merged, stack backtrace tree
 running at 216K back‐end processes

ATP - Abnormal Termination ProcessingATP Abnormal Termination Processing
» Scalable analysis of a sick application, delivering a STAT tree and a minimal,

comprehensive, core file set.

 Fast Track Debugging
o Debugging optimized applications
o Added to Allinea's DDT 2.6 (June 2010)

 Comparative debugging
A d t t i di i t d f th t diti l t l t i dio A data-centric paradigm instead of the traditional control-centric paradigm

o Collaboration with Monash University and University of Wisconsin for scalability

• Support for traditional debugging mechanism
T t lVi DDT d db TotalView, DDT, and gdb

November, 2011 2Luiz DeRose © Cray Inc.

 Tree based software overlay network

 Provides efficient multicast and reduction communications for
parallel and distributed tools

 Uses a tree of processes between the tool's front-end and
back-ends to improve group communication performance
• Internal processes are used to distribute important tool activities

 Reduce data analysis time
 Keep tool front-end loads manageable

November, 2011 3Luiz DeRose © Cray Inc.

 Stack trace sampling and analysis for large scale
applications
• Sample application stack tracesp pp
• Scalable generation of a single, merged, stack backtrace tree

 A comprehensible view of the entire application
 Discover equivalent process behavior

o Group similar processes
o Reduce number of tasks to debug

 128K processes analyzed in 2.7 seconds, using MRNet

 Merge/analyze traces:
• Facilitate scalable analysis/data presentation
• Multiple traces over space or time• Multiple traces over space or time
• Create call graph prefix tree

 Compressed representation
 Scalable visualization
 Scalable analysis

November, 2011 Luiz DeRose © Cray Inc. 4

November, 2011 5Luiz DeRose © Cray Inc.

Appl

Appl

Appl

Appl

ApplAppl

November, 2011 6Luiz DeRose © Cray Inc.

November, 2011 7Luiz DeRose © Cray Inc.

 module load stat
• Not loaded by default on Todi

 man STAT

 STAT <pid_of_aprun>
• Creates STAT_results/<app_name>/<merged_bt_file>

 Scaling limited by number file descriptors

 STAT 1.2.0 planned for November 2011

November, 2011 8Luiz DeRose © Cray Inc.

 When a large scale parallel application dies, one, many, or all
processes might trap!
• It is next to impossible to examine all the core files and backtraces

 No one wants that many stack backtraces No one wants that many stack backtraces
 No one wants that many core files

o They are too slow and too big
» Sufficient storage for all core files is a problem

 They are too much to comprehend They are too much to comprehend
• A single core file or stack backtrace is usually not enough to debug either!

 A single backtrace produced might not be from the process that first failed

 Requirements:
• Minimum jitter
• Scalability
• Robustness• Robustness
• Small footprint
• Limited core file dumping

 ATP 1.3 released in August 2011

November, 2011 9Luiz DeRose © Cray Inc.

 System of light weight back-end monitor processes on
compute nodes
• Coupled together with MRNetp g
• Automatically launched by aprun in parallel with application launch

 Enabled/disabled via ATP_ENABLED environment variable

 Leap into action on any application process trapping
• stderr backtrace of first process to trap

 dumps core file set (if limit/ulimit allows) dumps core file set (if limit/ulimit allows)
• Uses StackwalkerAPI to collect individual stack backtraces, even for

optimized code

 STAT like analysis provides merged stack backtrace tree
• Leaf nodes of tree define a modest set of processes to core dump

 or a set of processes to attach to with a debugger or, a set of processes to attach to with a debugger

November, 2011 10Luiz DeRose © Cray Inc.

 ATP produces a single merged stack trace
• or a reduced set of core files

 The benefits:
• Minimal impact on application run

 Can be used with production runs
• Automated, transparent collection of data
• Ability to hold failing application for close inspection

 This is site dependent
• Easy to navigate the merged stack trace
• Manageable set of core files
• Reduced amount of data saved

 Especially true in the core file situation

November, 2011 11Luiz DeRose © Cray Inc.

 ATP is launched via an ALPS enhancement which includes the fork/exec
of a login side ATP front-end daemon
• The ATP front-end uses MRNet and the ALPS tool helper library to launch ATP

back-end servers on all compute nodes associated with the applicationp pp

 ATP signal handler runs within an application to catch fatal errors
• It handles the following signals:

 SIGQUIT SIGILL SIGTRAP SIGABRT SIGFPE SIGBUS SIGSEGV SIGSYS SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS,
SIGXCPU, SIGXFSZ

 Setting the environment variables MPICH_ABORT_ON_ERROR and
SHMEM_ABORT_ON_ERROR will cause a signal to be thrown and captured for MPI and
SHMEM fatal errors

 ATP daemon running on the compute node captures signals, starts
termination processing
• Rest of the application processes are notified• Rest of the application processes are notified
• Generates a stacktrace
• Creates a single merged stack trace file

Th k fil i i d i h h STAT i l The stack trace file is viewed with the STATview tool

November, 2011 12Luiz DeRose © Cray Inc.

 How to debug parallel optimized codes

 Debug flags eliminate optimizations
• Today's machines really need optimizations
• Slows down execution
• Problem might disappear

F T k D b i dd hi bl Fast Track Debugging addresses this problem

November, 2011 13Luiz DeRose © Cray Inc.

 Compile such that both debug and non-debug (optimized)
versions of each routine are created
• Debug and non debug versions of each subroutine appear in the• Debug and non-debug versions of each subroutine appear in the

executable

 Linkage such that optimized versions are used by default

U t b k i t th d b t t User sets breakpoints or other debug constructs
• Debugger overrides default linkage when setting breakpoints and

stepping into functions
• Routines automatically presented using the debug version of the

routine
• Rest of program executes using optimized versions of the routines

November, 2011 14Luiz DeRose © Cray Inc.

source code
difuze()

call difuze()

optimized binary code

call difuze(…)

call interf(…)

call difuze(…)

call interf(…)

difuze_debug()

call interf(…)

interf()
debug code

subrountine difuze(…)

interf()

call difuze(…)

subrountine interf(…) interf_debug()

call interf(…)

Jmp inserted as part of breakpoint planting
Breakpoint requested in interf(),
placed in interf_debug()

November, 2011 15Luiz DeRose © Cray Inc.

November, 2011 16Luiz DeRose © Cray Inc.

 Support available in the Cray Compilation Environment (CCE)

 Prototype in gdbyp g
• Exercised through lgdb

 Added to Allinea's DDT 2.6 (June 2010)()

 Issues / Cost:
• Compiles are slower
• Executable uses more disk space
• Libraries probably don't have a debug version
• Inlining turned off

 1.7% average slow down of all SPEC2007MPI tests 1.7% average slow down of all SPEC2007MPI tests
 Range of slight speedup to 19.5% slow down

• Uses more memory
 4% larger at start up
 0 0001% larger after computation 0.0001% larger after computation

November, 2011 17Luiz DeRose © Cray Inc.

