
7-9 November, 2011

 Analysis assistance

• load imbalance

• automatic grid detection

• loop work estimatesloop work estimates

 Other interesting performance statistics

CSCS Workshop, November 7-9 2011 Cray Inc. 2

 Load imbalance

• Identifies computational code regions and synchronization calls that
could benefit most from load balance optimization (some processes
have less work than others, some are waiting longer on barriers, etc)

• Estimates savings if corresponding section of code were balancedg p g

• MPI sync time (determines late arrivers to barriers)
• MPI rank placement suggestions (maximize on-node communication)a p ace e t suggest o s (a e o ode co u cat o)
• Imbalance metrics (user functions, MPI functions, OpenMP threads)

CSCS Workshop, November 7-9 2011 Cray Inc. 4

 Increasing system software and architecture complexity
• Current trend in high end computing is to have systems with tens of

thousands of processorsthousands of processors
 This is being accentuated with multi-core processors

 Applications have to be very well balanced In order to Applications have to be very well balanced In order to
perform at scale on these MPP systems
• Efficient application scaling includes a balanced use of requested

computing resources

 Desire to minimize computing resource “waste” Desire to minimize computing resource waste
• Identify slower paths through code
• Identify inefficient “stalls” within an application

CSCS Workshop, November 7-9 2011 Cray Inc. 5

 Measure load imbalance in programs instrumented to trace
MPI functions to determine if MPI ranks arrive at collectives
togethertogether

 Separates potential load imbalance from data transferSeparates potential load imbalance from data transfer

 Sync times reported by default if MPI functions traced

 If desired, PAT_RT_MPI_SYNC=0 deactivates this feature

CSCS Workshop, November 7-9 2011 Cray Inc. 6

 Metric based on execution time
 It is dependent on the type of activity:

U f ti• User functions
Imbalance time = Maximum time – Average time

• Synchronization (Collective communication and barriers)
Imbalance time = Average time – Minimum time

 Identifies computational code regions and synchronization
calls that could benefit most from load balance optimizationp
 Estimates how much overall program time could be saved if

corresponding section of code had a perfect balance
R t b d “ t ti l i ”• Represents upper bound on “potential savings”

• Assumes other processes are waiting, not doing useful work while
slowest member finishes

CSCS Workshop, November 7-9 2011 Cray Inc. 7

Imbalance% =
Imbalance time

Max Time
X

N - 1
N

100 X

 Represents % of resources available for parallelism that is
“wasted”wasted

 Corresponds to % of time that rest of team is not engaged in p % g g
useful work on the given function

 Perfectly balanced code segment has imbalance of 0%

 S i l d t h i b l f 100% Serial code segment has imbalance of 100%

CSCS Workshop, November 7-9 2011 Cray Inc. 8

Min, Avg, and Max
Values

-1, +1
Std Dev
marks

CSCS Workshop, November 7-9 2011 Cray Inc. 9

 Analyze runtime performance data to identify grids in a
program to maximize on-node communication
• Example: nearest neighbor exchange in 2 dimensions• Example: nearest neighbor exchange in 2 dimensions

 Sweep3d uses a 2-D grid for communication

D t i h th t t MPI k d ill Determine whether or not a custom MPI rank order will
produce a significant performance benefit

 Grid detection is helpful for programs with significant point-to-
point communication

 Doesn’t interfere with MPI collective communication
optimizationsoptimizations

CSCS Workshop, November 7-9 2011 Cray Inc. 11

 Tools produce a custom rank order if it’s beneficial based on
id i id d d t t igrid size, grid order and cost metric

 Summarized findings in report Summarized findings in report

 Available if MPI functions traced (-g mpi) (g p)

 Describe how to re-run with custom rank order

CSCS Workshop, November 7-9 2011 Cray Inc. 12

MPI Grid Detection: There appears to be point-to-point MPI

communication in a 22 X 18 grid pattern. The 48.6% of the total

execution time spent in MPI functions might be reduced with a rank

order that maximizes communication between ranks on the same node.order that maximizes communication between ranks on the same node.

The effect of several rank orders is estimated below.

A file named MPICH_RANK_ORDER.Custom was generated along with this

report and contains the Custom rank order from the following tablereport and contains the Custom rank order from the following table.

This file also contains usage instructions and a table of

alternative rank orders.

Rank On-Node On-Node MPICH_RANK_REORDER_METHOD

Order Bytes/PE Bytes/PE%

of Total

Bytes/PE

Custom 7.80e+06 78.37% 3

SMP 5.59e+06 56.21% 1

Fold 2.59e+05 2.60% 2

RoundRobin 0.00e+00 0.00% 0

CSCS Workshop, November 7-9 2011 Cray Inc. 13

The 'Custom' rank order in this file targets nodes with multi-core
processors, based on Sent Msg Total Bytes collected for:# processors, based on Sent Msg Total Bytes collected for:
#
Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi
Ap2 File: sweep3d mpi+pat+27054 89t ap2# Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4
##
To use this file, make a copy named MPICH_RANK_ORDER, and set the
environment variable MPICH_RANK_REORDER_METHOD to 3 prior to
executing the program.
#
The following table lists rank order alternatives and the grid_order
command-line options that can be used to generate a new order.
…
CSCS Workshop, November 7-9 2011 Cray Inc. 14

================ Observations and suggestions ========================

MPI grid detection:

There appears to be point-to-point MPI communication in a 33 X 41

grid pattern. The 26.1% of the total execution time spent in MPI

functions might be reduced with a rank order that maximizes

communication between ranks on the same node. The effect of several

rank orders is estimated below.

A file named MPICH_RANK_ORDER.Custom was generated along with this

report and contains the Custom rank order from the following table.

This file also contains usage instructions and a table of

alternative rank orders.

Rank On-Node On-Node MPICH_RANK_REORDER_METHOD

Order Bytes/PE Bytes/PE%

of Total

Bytes/PE

Custom 1.20e+09 32.21% 3

SMP 8.70e+08 23.27% 1

Fold 3.55e+07 0.95% 2

RoundRobin 1.99e+05 0.01% 0

================ End Observations ====================================

CSCS Workshop, November 7-9 2011 Cray Inc. 15

 Run on 1353 MPI ranks, 24 ranks per node

 Overall program wallclock:
• Default MPI rank order: 1450s• Default MPI rank order: 1450s
• Custom MPI rank order: 1315s
• ~10% improvement in execution time!

 Time spent in MPI routines:
• Default rank order: 377s
• Custom rank order: 303s

CSCS Workshop, November 7-9 2011 Cray Inc. 16

 Helps identify loops to optimize (parallelize serial loops):
• Loop timings approximate how much work exists within a loop
• Trip counts can be used to help carve up loop on GPU• Trip counts can be used to help carve up loop on GPU

 Enabled with CCE –h profile generate optionp _g p
• Should be done as separate experiment – compiler optimizations are

restricted with this feature

 Loop statistics reported by default in pat_report table

 Next enhancement: integrate loop information in profile
• Get exclusive times and loops attributed to functions

CSCS Workshop, November 7-9 2011 Cray Inc. 18

 Load PrgEnv-cray software
 Load perftools software

 Compile AND link with –h profile_generate

 Instrument binary for tracing
• pat build –u my program orp _ y_p g
• pat_build –w my_program

 Run application Run application
 Create report with loop statistics

• pat_report my_program.xf > loops_report

CSCS Workshop, November 7-9 2011 Cray Inc. 19

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

| | | | | PE=HIDE| | | | | PE HIDE

| | | | | Thread=HIDE

100.0% | 176.687480 | -- | -- | 17108.0 |Total

||--

| 85.3% | 150.789559 | -- | -- | 8.0 |USER

||---

| 85.0% | 150.215785 | 24.876709 | 14.4% | 2.0 | jacobi_.LOOPS

||===

| 12.2% | 21.600616 | -- | -- | 16071.0 |MPI

||---

| 11.9% | 21.104488 | 41.016738 | 67.1% | 3009.0 | mpi_waitall

||===

| 2.4% | 4.297301 | -- | -- | 1007.0 |MPI_SYNC

||---

| 2.4% | 4.166092 | 4.135016 | 99.3% | 1004.0 | mpi allreduce (sync)| | | | | | _ _

|==

CSCS Workshop, November 7-9 2011 Cray Inc. 20

Table 3: Inclusive Loop Time from -hprofile_generate

Loop Incl | Loop | Loop | Loop |Function=/.LOOP[.]

Time | Hit | Trips | Trips | PE=HIDETime | Hit | Trips | Trips | PE HIDE

Total | | Min | Max |

|---

…

| 175 676881 | 2 | 0 | 1003 |jacobi LOOP 07 li 267| 175.676881 | 2 | 0 | 1003 |jacobi_.LOOP.07.li.267

| 0.917107 | 1003 | 0 | 260 |jacobi_.LOOP.08.li.276

| 0.907515 | 129888 | 0 | 260 |jacobi_.LOOP.09.li.277

| 0.446784 | 1003 | 0 | 260 |jacobi_.LOOP.10.li.288

| 0.425763 | 129888 | 0 | 516 |jacobi_.LOOP.11.li.289

| 0.395003 | 1003 | 0 | 260 |jacobi_.LOOP.12.li.300

| 0.374206 | 129888 | 0 | 516 |jacobi_.LOOP.13.li.301

| 126.250610 | 1003 | 0 | 256 |jacobi_.LOOP.14.li.312

| 126.223035 | 127882 | 0 | 256 |jacobi_.LOOP.15.li.313

| 124.298650 | 16305019 | 0 | 512 |jacobi_.LOOP.16.li.314

| 20.875086 | 1003 | 0 | 256 |jacobi_.LOOP.17.li.336

| 20.862715 | 127882 | 0 | 256 |jacobi .LOOP.18.li.337| | | | | _

| 19.428085 | 16305019 | 0 | 512 |jacobi_.LOOP.19.li.338

|===

CSCS Workshop, November 7-9 2011 Cray Inc. 21

 Sampling is useful to determine where the program spends most of its
time (functions and lines)

 Th i t i bl PAT RT EXPERIMENT ll th The environment variable PAT_RT_EXPERIMENT allows the
specification of the type of experiment prior to execution
• samp_pc_time (default)

 Samples the PC at intervals of 10 000 microseconds Samples the PC at intervals of 10,000 microseconds
 Measures user CPU and system CPU time
 Returns total program time and absolute and relative times each program

counter was recordedcounter was recorded
 Optionally record the values of hardware counters specified with

PAT_RT_HWPC

• samp_pc_ovfl
 Samples the PC at a given overflow of a HW counter
 Does not allow collection of hardware counters

CSCS Workshop, November 7-9 2011 Cray Inc. 23

• samp_cs_time
 Sample the call stack at a given time interval

 blas Basic Linear Algebra subprograms
 CAF Co-Array Fortran (Cray CCE compiler only)
 HDF5manages extremely large and complex data collections
 heap dynamic heap
 io includes stdio and sysio groups
 lapack Linear Algebra Package
 math ANSI math math ANSI math
 mpi MPI
 omp OpenMP API
 omp-rtl OpenMP runtime library (not supported on Catamount) omp-rtl OpenMP runtime library (not supported on Catamount)
 pthreads POSIX threads (not supported on Catamount)
 shmem SHMEM
 sysio I/O system callssysio I/O system calls
 system system calls
 upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

CSCS Workshop, November 7-9 2011 Cray Inc. 24

heidi@kaibab:/lus/scratch/heidi> pat_report -O –h

pat_report: Help for -O option:
Available option values are in left column, a prefix can be p , p
specified:
ct -O calltree
defaults <Tables that would appear by default.>
heap -O heap program,heap hiwater,heap leaksp p_p g , p_ , p_
io -O read_stats,write_stats
lb -O load_balance
load_balance -O lb_program,lb_group,lb_function
mpi -O mpi callersp p _

D1_D2_observation Observation about Functions with low

D1+D2 cache hit ratio
D1 D2 util Functions with low D1+D2 cache hit ratio_ _
D1_observation Observation about Functions with low D1

cache hit ratio
D1_util Functions with low D1 cache hit ratio
TLB observation Observation about Functions with low TLB

CSCS Workshop, November 7-9 2011

_
refs/miss
TLB_util Functions with low TLB refs/miss

Cray Inc. 25

 -g heap
• calloc, cfree, malloc, free, malloc_trim, malloc_usable_size, mallopt,

memalign posix memalign pvalloc realloc vallocmemalign, posix_memalign, pvalloc, realloc, valloc

 -g heap
 -g sheap
 -g shmem

• shfree shfree nb shmalloc shmalloc nb shrealloc• shfree, shfree_nb, shmalloc, shmalloc_nb, shrealloc

 -g upc (automatic with –O apa)g p (p)
• upc_alloc, upc_all_alloc, upc_all_free, uc_all_lock_alloc,

upc_all_lock_free, upc_free, upc_global_alloc, upc_global_lock_alloc,
upc lock freep _ _

CSCS Workshop, November 7-9 2011 Cray Inc. 26

Notes for table 5:

Table option:Table option:
-O heap_hiwater

Options implied by table option:
-d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm]

Thi t bl h l li ith T k d H HiW t MB t >This table shows only lines with Tracked Heap HiWater MBytes >

Table 5: Heap Stats during Main Program

Tracked | Total | Total | Tracked | Tracked |PE[mmm]
Heap | Allocs | Frees | Objects | MBytes |

HiWater | | | Not | Not |
MBytes | | | Freed | Freed |

9.794 | 915 | 910 | 4 | 1.011 |Total
|---
| 9.943 | 1170 | 1103 | 68 | 1.046 |pe.0
| 9 909 | 715 | 712 | 3 | 1 010 |pe 22

CSCS Workshop, November
7-9 2011

| 9.909 | 715 | 712 | 3 | 1.010 |pe.22
| 9.446 | 1278 | 1275 | 3 | 1.010 |pe.43
|===

Cray Inc. 27

 Fortran
include “pat_apif.h”
…
call PAT_region_begin(id, “label”, ierr)
do i = 1,n
…
enddo
call PAT_region_end(id, ierr)

 C & C++
include <pat api.h>p _ p
…
ierr = PAT_region_begin(id, “label”);
< code segment > code segment
ierr = PAT_region_end(id);

CSCS Workshop, November 7-9 2011 28Cray Inc.

 Profiles of a PGAS program can be created to show:
• Top time consuming functions/line numbers in the code
• Load imbalance information
• Performance statistics attributed to user source by default
• Can expose statistics by library as well

 To see underlying operations, such as wait time on barriers

 Data collection is based on methods used for MPI library
• PGAS data is collected by default when using Automatic Profiling Analysis

(t b ild O)(pat_build –O apa)
• Predefined wrappers for runtime libraries (caf, upc, pgas) enable attribution of

samples or time to user source

 UPC and SHMEM heap tracking available
• -g heap will track shared heap in addition to local heap

CSCS Workshop, November 7-9 2011 Cray Inc. 30

Table 1: Profile by Function

Samp % | Samp | Imb. | Imb. |Group

| | Samp | Samp % | Function| | Samp | Samp % | Function

| | | | PE='HIDE'

100.0% | 48 | -- | -- |Total

|--

| 95.8% | 46 | -- | -- |USER

||---

|| 83.3% | 40 | 1.00 | 3.3% |all2all

|| 6.2% | 3 | 0.50 | 22.2% |do_cksum

|| 2.1% | 1 | 1.00 | 66.7% |do_all2all

|| 2.1% | 1 | 0.50 | 66.7% |mpp_accum_long

|| 2 1% | 1 | 0 50 | 66 7% |mpp alloc|| 2.1% | 1 | 0.50 | 66.7% |mpp_alloc

||===

| 4.2% | 2 | -- | -- |ETC

||---

|| 4.2% | 2 | 0.50 | 33.3% |bzero

|==

CSCS Workshop, November 7-9 2011 Cray Inc. 31

Table 2: Profile by Group, Function, and Line

Samp % | Samp | Imb. | Imb. |Group

| | Samp | Samp % | Functionp p

| | | | Source

| | | | Line

| | | | PE='HIDE'

100.0% | 48 | -- | -- |Total

|--

| 95.8% | 46 | -- | -- |USER

||---||---

|| 83.3% | 40 | -- | -- |all2all

3| | | | | mpp_bench.c

4| | | | | line.298

|| 6 2% | 3 | | |d k|| 6.2% | 3 | -- | -- |do_cksum

3| | | | | mpp_bench.c

||||---

4||| 2.1% | 1 | 0.25 | 33.3% |line.315

4||| 4.2% | 2 | 0.25 | 16.7% |line.316

||||===

CSCS Workshop, November 7-9 2011 Cray Inc. 32

Table 1: Profile by Function and Callers, with Line Numbers

Samp % | Samp |Group

| | Function

| | Caller

| | PE='HIDE’

100.0% | 47 |Total

|---------------------------

| 93.6% | 44 |ETC

||--------------------------||--------------------------

|| 85.1% | 40 |upc_memput

3| | | all2all:mpp_bench.c:line.298

4| | | do_all2all:mpp_bench.c:line.348

5| | | main:test all2all.c:line.70_

|| 4.3% | 2 |bzero

3| | | (N/A):(N/A):line.0

|| 2.1% | 1 |upc_all_alloc

3| | | mpp_alloc:mpp_bench.c:line.143

4| | | main:test_all2all.c:line.25

|| 2.1% | 1 |upc_all_reduceUL

3| | | mpp_accum_long:mpp_bench.c:line.185

4| | | do_cksum:mpp_bench.c:line.317

5| | | d ll2 ll b h li 3415| | | do_all2all:mpp_bench.c:line.341

6| | | main:test_all2all.c:line.70

||==========================

CSCS Workshop, November 7-9 2011 Cray Inc. 33

 Measure overhead incurred entering and leaving
• Parallel regions
• Work-sharing constructs within parallel regions• Work-sharing constructs within parallel regions

 Show per-thread timings and other data

 Trace entry points automatically inserted by Cray and PGI
compilerscompilers
• Provides per-thread information

 Can use sampling to get performance data without API (per
process view… no per-thread counters)
• Run with OMP NUM THREADS=1 during samplingRun with OMP_NUM_THREADS 1 during sampling
• Watch for calls to omp_set_num_threads()

CSCS Workshop, November 7-9 2011 Cray Inc. 35

 Load imbalance calculated across all threads in all ranks for
i d MPI/O MPmixed MPI/OpenMP programs

• Can choose to see imbalance to each programming model separately

 Data displayed by default in pat_report (no options needed)
• Focus on where program is spending its time

A ll t d h ld b d• Assumes all requested resources should be used

CSCS Workshop, November 7-9 2011 Cray Inc. 36

 profile_pe.th (default view)
I b l b d th t f ll th d i th• Imbalance based on the set of all threads in the program

 profile pe thp _p _
• Highlights imbalance across MPI ranks
• Uses max for thread aggregation to avoid showing under-performers
• Aggregated thread data merged into MPI rank dataAggregated thread data merged into MPI rank data

 profile_th_pe
F h th d h i b l MPI k• For each thread, show imbalance over MPI ranks

• Example: Load imbalance shown where thread 4 in each MPI rank
didn’t get much work

CSCS Workshop, November 7-9 2011 Cray Inc. 37

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group
| | | Time % | | Function
| | | | |

OpenMP Parallel DOs
| | | | | PE.Thread='HIDE'

100.0% | 12.548996 | -- | -- | 7944.7 |Total
|--
| 97.8% | 12.277316 | -- | -- | 3371.8 |USER
||---
|| 35.6% | 4.473536 | 0.072259 | 1.6% | 498.0 |calc3 .LOOP@li.96

<function>.<region>@<line>
automatically instrumented

|| | | | | |
|| 29.1% | 3.653288 | 0.070551 | 1.9% | 500.0 |calc2_.LOOP@li.74
|| 28.3% | 3.545677 | 0.056303 | 1.6% | 500.0 |calc1_.LOOP@li.69
. . .
||===
| 1.2% | 0.155028 | -- | -- | 1000.5 |MPI_SYNC
||---
|| 1 2% | 0 154899 | 0 674518 | 82 0% | 999 0 |mpi barrier (sync)

OpenMP overhead is normally
|| 1.2% | 0.154899 | 0.674518 | 82.0% | 999.0 |mpi barrier (sync)
|| 0.0% | 0.000129 | 0.000489 | 79.8% | 1.5 |mpi_reduce_(sync)
||===
| 0.7% | 0.082943 | -- | -- | 3197.2 |MPI
||---
|| 0.4% | 0.047471 | 0.158820 | 77.6% | 999.0 |mpi_barrier_
|| 0.1% | 0.015157 | 0.295055 | 95.9% | 297.1 |mpi_waitall_

small and is filtered out on
the default report (< 0.5%).
When using “–T” the filter is
deactivated

. . .
||===
| 0.3% | 0.033683 | -- | -- | 374.5 |OMP
||---
|| 0.1% | 0.013098 | 0.078620 | 86.4% | 125.0 |calc2_.REGION@li.74(ovhd)
|| 0.1% | 0.010298 | 0.052760 | 84.3% | 124.5 |calc3_.REGION@li.96(ovhd)
|| 0.1% | 0.010287 | 0.068428 | 87.6% | 125.0 |calc1 .REGION@li.69(ovhd)

CSCS Workshop, November 7-9 2011

|| | | | | |
||===
| 0.0% | 0.000027 | 0.000128 | 83.0% | 0.8 |PTHREAD
| | | | | | pthread_create
|==

Cray Inc. 38

==
USER / calc3_.LOOP@li.96
--

Ti % 37 3%Time% 37.3%
Time 6.826587 secs
Imb.Time 0.039858 secs
Imb.Time% 0.6%
Calls 72.9 /sec 498.0 calls
DATA_CACHE_REFILLS:

L2_MODIFIED:L2_OWNED:
L2_EXCLUSIVE:L2_SHARED 64.364M/sec 439531950 fills

DATA_CACHE_REFILLS_FROM_SYSTEM:
ALL 10.760M/sec 73477950 fills

PAPI_L1_DCM 64.973M/sec 443686857 misses
PAPI L1 DCA 135.699M/sec 926662773 refsPAPI_L1_DCA 135.699M/sec 926662773 refs
User time (approx) 6.829 secs 15706256693 cycles 100.0%Time
Average Time per Call 0.013708 sec
CrayPat Overhead : Time 0.0%
D1 cache hit,miss ratios 52.1% hits 47.9% misses
D1 cache utilization (misses) 2.09 refs/miss 0.261 avg hits
D1 cache tili ation (refills) 1 81 refs/refill 0 226 a g sesD1 cache utilization (refills) 1.81 refs/refill 0.226 avg uses
D2 cache hit,miss ratio 85.7% hits 14.3% misses
D1+D2 cache hit,miss ratio 93.1% hits 6.9% misses
D1+D2 cache utilization 14.58 refs/miss 1.823 avg hits
System to D1 refill 10.760M/sec 73477950 lines
System to D1 bandwidth 656.738MB/sec 4702588826 bytes

CSCS Workshop, November 7-9 2011

D2 to D1 bandwidth 3928.490MB/sec 28130044826 bytes
==

Cray Inc. 39

 No support for nested parallel regions
• To work around this until addressed disable nested regions by setting

OMP NESTED=0OMP_NESTED 0
• Watch for calls to omp_set_nested()

If il 2 ll l i O MP t If compiler merges 2 or more parallel regions, OpenMP trace
points are not merged correctly
• To work around this until addressed, use –h thread1

 We need to add tracing support for barriers (both implicit and
explicit)explicit)
• Need support from compilers

CSCS Workshop, November 7-9 2011 Cray Inc. 40

 When code is network bound
• Look at collective time, excluding sync time: this goes up as network

becomes a problembecomes a problem
• Look at point-to-point wait times: if these go up, network may be a

problem

 When MPI starts leveling off
• Too much memory used, even if on-node shared communication is y

available
• As the number of MPI ranks increases, more off-node communication

can result, creating a network injection issue

 Adding OpenMP to memory bound codes may aggravate
memory bandwidth issues but you have more control whenmemory bandwidth issues, but you have more control when
optimizing for cache

CSCS Workshop, November 7-9 2011 Cray Inc. 41

