Cray Performance Measurement and

Analysis Tools

Heidi Poxon
Manager & Technical Lead, Performance Tools
Cray Inc.

CSCS =
H PZC 7_9 Novem ber’ 2011 Swiss National Supercomputing Centre \\i,f-

More on Cray Performance Tools e I

= Analysis assistance

e |oad imbalance
e automatic grid detection

e |oop work estimates

= Other interesting performance statistics

CSCS Workshop, November 7-9 2011 Cray Inc. £

Load Imbalance Analysis

Performance Measurement and Analysis e

= | oad imbalance

e |dentifies computational code regions and synchronization calls that
could benefit most from load balance optimization (some processes
have less work than others, some are waiting longer on barriers, etc)

e Estimates savings if corresponding section of code were balanced
e MPI sync time (determines late arrivers to barriers)

e MPI rank placement suggestions (maximize on-node communication)
e Imbalance metrics (user functions, MPI functions, OpenMP threads)

CSCS Workshop, November 7-9 2011 Cray Inc. 4

Motivation for Load Imbalance Analysis e

" |Increasing system software and architecture complexity

e Current trend in high end computing is to have systems with tens of
thousands of processors
> This is being accentuated with multi-core processors

= Applications have to be very well balanced In order to
perform at scale on these MPP systems

e Efficient application scaling includes a balanced use of requested
computing resources

= Desire to minimize computing resource “waste”
e |dentify slower paths through code
e |dentify inefficient “stalls” within an application

CSCS Workshop, November 7-9 2011 Cray Inc. 5

MPI Sync Time o

= Measure load imbalance in programs instrumented to trace
MPI functions to determine if MPI ranks arrive at collectives
together

= Separates potential load imbalance from data transfer
= Sync times reported by default if MPI functions traced

= |f desired, PAT_RT_MPI_SYNC=0 deactivates this feature

CSCS Workshop, November 7-9 2011 Cray Inc. 6

Imbalance Time CRRANY

= Metric based on execution time

= |t Is dependent on the type of activity:

e User functions
Imbalance time = Maximum time — Average time

e Synchronization (Collective communication and barriers)
Imbalance time = Average time — Minimum time
= |dentifies computational code regions and synchronization
calls that could benefit most from load balance optimization

= Estimates how much overall program time could be saved if
corresponding section of code had a perfect balance

e Represents upper bound on “potential savings”

e Assumes other processes are waiting, not doing useful work while
slowest member finishes

CSCS Workshop, November 7-9 2011 Cray Inc. 7

Imbalance % T

Imbalance time o N
Max Time N-1

Imbalance% =100 X

= Represents % of resources available for parallelism that is
“wasted”

= Corresponds to % of time that rest of team is not engaged In
useful work on the given function

= Perfectly balanced code segment has imbalance of 0%

= Serial code segment has imbalance of 100%

CSCS Workshop, November 7-9 2011 Cray Inc. 8

Load Distribution

File

C=RANY

THE SUPERCOMPUTER COMPANY

w 090921P+hycomBase.ap2 & |

(Min, Avg, and Max
Values

w Overview X' |vCaII§mph X ~vwloadBalance X|

FE Calls
PE #184
PE #240
PE #232
PE #213
PE #248
PE #198
PE #0086
PE #145
PE #225
PE #233
PE #192
PE #144
PE #212
PE #1485
PE #241
PE #185
PE #193
PE #007
PE #215
PE #203
PE #228
PE #239
PE #168
PE #000
PE #005
PE #122
PE #1939
PE #1458
PE #177
PE #140
PE #1786
PE #220
PE #243
PE #242
PE #100
PE #214
PE #167
PE #003
PE #1589
PE #210
PE #211
PE #029

Load Balance: mpi_waitall_

]

W Help

Be+04

12e+02

43e+02_ |~

090921P+hycomBase.ap2 (605,339 events in 23.985s)

CSCS Workshop, November 7-9 2011

Cray Inc.

MPI Rank Placement Suggestions

Automatic Communication Grid Detection 3.0

= Analyze runtime performance data to identify grids in a
program to maximize on-node communication

e Example: nearest neighbor exchange in 2 dimensions
> Sweep3d uses a 2-D grid for communication

= Determine whether or not a custom MPI rank order will
produce a significant performance benefit

= Grid detection is helpful for programs with significant point-to-
point communication

= Doesn’t interfere with MPI collective communication
optimizations

CSCS Workshop, November 7-9 2011 Cray Inc. 1

Automatic Grid Detection (cont'd) e

= Tools produce a custom rank order if it's beneficial based on
grid size, grid order and cost metric

= Summarized findings in report
= Available if MPI functions traced (-g mpi)

= Describe how to re-run with custom rank order

CSCS Workshop, November 7-9 2011 Cray Inc. 12

C=RANY

Example: Observations and Suggestions o soreneowraren omra

MPI Grid Detection:

There appears to be point-to-point MPI

communication in a 22 X 18 grid pattern. The 48.6% of the total

execution time spent in MPI functions might be reduced with a rank

order that maximizes communication between ranks on the same node.

The effect of several rank orders is estimated below.

A file named MPICH RANK ORDER.Custom was generated along with this

report and contains the Custom rank order from the following table.

This file also contains usage instructions and a table of

alternative rank orders.

Rank

Order

Custom
SMP
Fold

RoundRobin

On-Node

Bytes/PE

7.80e+06
5.59e+06
2.59e+05
0.00e+00

CSCS Workshop, November 7-9 2011

78.
56.

On-Node
Bytes/PE%
of Total
Bytes/PE

37%
21%

.60%
.00%

MPICH RANK REORDER METHOD

o N B W

Cray Inc. 13

MPICH_RANK_ORDER File Example o .

The 'Custom' rank order in this file targets nodes with multi-core

processors, based on Sent Msg Total Bytes collected for:

#

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi

Ap2 File: sweep3d.mpi+pat+27054-89t.ap2

Number PEs: 48

Max PEs/Node: 4

#

To use this file, make a copy nhamed MPICH_RANK_ ORDER, and set the
environment variable MPICH_RANK REORDER_METHOD to 3 prior to
executing the program.

#

The following table lists rank order alternatives and the grid_order

command-line options that can be used to generate a new order.

CSCS Workshop, November 7-9 2011 Cray Inc. 14

Example 2 - Hycom

HEH = == = = — = = = = = Observations and Suggestions e e e e e = e e e e e

MPI grid detection:

There appears to be point-to-point MPI communication in a 33 X 41
grid pattern. The 26.1% of the total execution time spent in MPI
functions might be reduced with a rank order that maximizes
communication between ranks on the same node. The effect of several

rank orders is estimated below.

A file named MPICH RANK ORDER.Custom was generated along with this
report and contains the Custom rank order from the following table.
This file also contains usage instructions and a table of

alternative rank orders.

Rank On-Node On-Node MPICH RANK REORDER METHOD

Order Bytes/PE Bytes/PE%

of Total
Bytes/PE
Custom 1.20e+09 32.21% 3
SMP 8.70e+08 23.27% 1
Fold 3.55e+07 0.95% 2
RoundRobin 1.99e+05 0.01% O

== — — — — — == End Observations HeE e = = — e — = — = =]

CSCs Wo‘rkshop, November 7-9 2011 Cray Inc.

C=RANY

THE SUPERCOMPUTER COMPANY

15

Example 2 - Hycom

= Run on 1353 MPI ranks, 24 ranks per node

= Overall program wallclock:
e Default MPI rank order: 1450s
e Custom MPI rank order: 1315s
e ~10% improvement in execution time!

= Time spent in MPI routines:
e Default rank order: 377s
e Custom rank order: 303s

CSCS Workshop, November 7-9 2011 Cray Inc.

C=RANY

THE SUPERCOMPUTER COMPANY

16

Loop Work Estimates

Loop Work Estimates SRy

= Helps identify loops to optimize (parallelize serial loops):
e | oop timings approximate how much work exists within a loop
e Trip counts can be used to help carve up loop on GPU

= Enabled with CCE —h profile _generate option

e Should be done as separate experiment — compiler optimizations are
restricted with this feature

= | oop statistics reported by default in pat_report table

= Next enhancement: integrate loop information in profile
e Get exclusive times and loops attributed to functions

CSCS Workshop, November 7-9 2011 Cray Inc. 18

Collecting Loop Statistics s

= | oad PrgEnv-cray software
= | oad perftools software

= Compile AND link with —h profile_generate

= |[nstrument binary for tracing
e pat_build —u my_ program or
e pat build —-w my_program

= Run application

= Create report with loop statistics
e pat_report my_ program.xf > loops_report

CSCS Workshop, November 7-9 2011 Cray Inc. 19

Example Report — Loop Work Estimates e

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

| | | | | PE=HIDE

| | | | | Thread=HIDE
100.0% | 176.687480 | - -- | 17108.0 |Total
L
| 85.3% | 150.789559 | - -- 8.0 |USER
B R e

85.0% | 150.215785 | 24.876709 14.4% 2.0 | jacobi_ .LOOPS

| | | | | | _
||===
| 12.2% | 21.600616 | - -- | 16071.0 |MPI
e
| 11.9% | 21.104488 | 41.016738 | 67.1% | 3009.0 | mpi waitall
||===
| 2.4% | 4.297301 | -- | -- | 1007.0 |MPI_SYNC
e e
| 2.4% | 4.166092 | 4.135016 | 99.3% | 1004.0 | mpi allreduce (sync)

CSCS Workshop, November 7-9 2011 Cray Inc. 20

Example Report — Loop Work Estimates (2)

Table 3:

Loop Incl

175.

0
0
0
0
0

126
126
124

20.

20
19

CSCS Workshop, November 7-9 2011

|
|
|
|
|
|
| 0.
|
|
|
|
|
|

Time

Total

676881
.917107
.907515
.446784
.425763
.395003
374206
.250610
.223035
.298650
875086
.862715
.428085

Loop
Hit

1003
129888
1003
129888
1003
129888
1003
127882
16305019
1003
127882
16305019

Loop

| Trips

Min

Loop

| Trips

Max

Inclusive Loop Time from -hprofile generate

| Function=/.LOOP[.]

| PE=HIDE

| jacobi
| jacobi .
| jacobi .
| jacobi .
| jacobi
| jacobi .
| jacobi .
| jacobi .
| jacobi .
| jacobi .
| jacobi .
| jacobi .

| jacobi .

Cray Inc.

.LOOP.
LOOP.
LOOP.
LOOP.
.LOOP.
LOOP.
LOOP.
LOOP.
LOOP.
LOOP.
LOOP.
LOOP.

C=RANY

THE SUPERCOMPUTER COMPANY

21

Other Interesting Performance Data

Program Instrumentation — Sampling Tt 5

= Sampling is useful to determine where the program spends most of its
time (functions and lines)

= The environment variable PAT_RT_EXPERIMENT allows the
specification of the type of experiment prior to execution
e samp_pc_time (default)
» Samples the PC at intervals of 10,000 microseconds
> Measures user CPU and system CPU time

> Returns total program time and absolute and relative times each program
counter was recorded

> Optionally record the values of hardware counters specified with
PAT_RT _HWPC

e samp_pc_ovfl
» Samples the PC at a given overflow of a HW counter
> Does not allow collection of hardware counters

e samp_cs time
» Sample the call stack at a given time interval

CSCS Workshop, November 7-9 2011 Cray Inc. 23

C=RANY

-g tracegroup (subset) e
= blas Basic Linear Algebra subprograms

= CAF Co-Array Fortran (Cray CCE compiler only)

= HDF5manages extremely large and complex data collections

= heap dynamic heap

" 0 Includes stdio and sysio groups

= |apack Linear Algebra Package

= math ANSI math

= mpi MPI

= omp OpenMP API

= omp-rtl OpenMP runtime library (not supported on Catamount)
= pthreads POSIX threads (not supported on Catamount)

= shmem SHMEM

= SySio /O system calls

= system system calls

" upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

CSCS Workshop, November 7-9 2011 Cray Inc. 24

C=RANY

Specific Tables in pat_report
heitdi@kaibab:/lus/scratch/heidi> pat report -0 —h
pat_report: Help for -0 option:
Available option values are in left column, a prefix can be
specified:

ct -0 calltree

defaults <Tables that would appear by default.>

heap -0 heap program,heap hiwater,heap leaks

10 -0 read_stats,write_stats

Ib -0 load balance

load balance -0 Ib_program, Ib_group, Ib_function

mpi -0 mpi_callers

D1 D2 observation Observation about Functions with low
D1+D2 cache hit ratio

D1 D2 util Functions with low D1+D2 cache hit ratio

D1 observation Observation about Functions with low D1
cache hit ratio

D1 util Functions with low D1 cache hit ratio

TLB_observation Observation about Functions with low
refs/miss

TLB util Functions with low TLB refs/miss

CSCS Workshop, November 7-9 2011 Cray Inc. 25

Heap Statistics SRy

= g heap

e calloc, cfree, malloc, free, malloc_trim, malloc_usable size, mallopt,
memalign, posix_memalign, pvalloc, realloc, valloc

= g heap
= g sheap

= g shmem
e shfree, shfree _nb, shmalloc, shmalloc_nb, shrealloc

= g upc (automatic with —O apa)
e upc_alloc, upc_all alloc, upc_all free, uc_all lock alloc,
upc_all lock free, upc_free, upc_global alloc, upc_global lock alloc,
upc_lock free

CSCS Workshop, November 7-9 2011 Cray Inc. 26

Heap Statistics S

Notes for table 5:
Table option:
-0 heap_hiwater
Options mmplied by table option:
-d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm]

This table shows only lines with Tracked Heap HiWater MBytes [>

Table 5: Heap Stats during Main Program

Tracked | Total | Total | Tracked | Tracked [|PE[mmm]
Heap | Allocs | Frees | Objects | MBytes |
Hiwater | | | Not | Not |
MBytes | | | Freed | Freed |
9.794 | 915 | 910 | 4 | 1.011 |Total
9.943 | 1170 | 1103 | 68 | 1.046 |pe.O
9.909 | 715 | 712 | 3 | 1.010 |pe.222

0.446 | 1278 | 1275 | 3| 1.010 |pe.43 Z:;;7

CSCS Workshop, November
7-9 2011 Cray Inc.

27

CrayPat API - For Fine Grain Instrumentation

= Fortran
include “pat_apif.h”

call PAT_region_begin(id, “label”, ierr)
doi=1,n

enddo

call PAT _region_end(id, ierr)

= C&C++

Include <pat_api.h>

lerr = PAT _region_begin(id, “label”);
< code segment >
lerr = PAT _region_end(id);

CSCS Workshop, November 7-9 2011 Cray Inc.

C=RANY

THE SUPERCOMPUTER COMPANY

28

PGAS (UPC, CAF) Support

PGAS Support s

= Profiles of a PGAS program can be created to show:
e Top time consuming functions/line numbers in the code
e | oad imbalance information
e Performance statistics attributed to user source by default

e Can expose statistics by library as well
> To see underlying operations, such as wait time on barriers

= Data collection is based on methods used for MPI library
e PGAS data is collected by default when using Automatic Profiling Analysis
(pat_build —O apa)
e Predefined wrappers for runtime libraries (caf, upc, pgas) enable attribution of
samples or time to user source

= UPC and SHMEM heap tracking available

e -—g heap will track shared heap in addition to local heap

CSCS Workshop, November 7-9 2011 Cray Inc. 30

PGAS Default Report Table 1 s

Table 1: Profile by Function

Samp % | Samp | Imb. | Imb. |Group
| | Samp | Samp % | Function

| | | | PE="HIDE"

100.0% | 48 | -— -- |Total
I __
| 95.8% | 46 | — -- JUSER
e
Il 83.3% | 40 | 1.00 | 3.3% Jall2all
11 6.2% | 3] 0.50 | 22.2%]do_cksum
11 2.1% | 1] 1.00 | 66.7% |do_all2all
11 2.1% | 1] 0.50 | 66.7% |mpp_accum long
11 2.1% | 1] 0.50 | 66.7% |mpp_alloc
I I e
| 4.2% | 2 | — -- |ETC

CSCS Workshop, November 7-9 2011 Cray Inc. 31

PGAS Default Report Table 2 s

Table 2: Profile by Group, Function, and Line

Samp % | Samp | Imb. | Imb. |Group
| | Samp | Samp % | Function
| | | | Source
| | | | Line
I | I | PE="HIDE"
100.0% | 48 | -1 -- |Total
I __
| 95.8% | 46 | -— -- JUSER
.
Il 83.3% | 40 | - -- Jall2all
3] | | | | mpp_bench.c
4 | | | | 1ine.298
11 6.2% | 3| -— | -— |do_cksum
3] | | | | mpp_bench.c
.
4111 2.1% | 1] 0.25 | 33.3% Jline.315
4111 4.2% | 2] 0.25] 16.7% |line.316

CSCS Workshop, November 7-9 2011 Cray Inc. 32

PGAS Report Showing Library Functions with Callers R

Table 1: Profile by Function and Callers, with Line Numbers

Samp % | Samp |Group

| | Function
| | Caller
| | PE="HIDE”

100.0% | 47 |Total

| 93.6% | 44 |ETC

Il 85.-1% | 40 Jupc_memput

3] | | all2all:mpp_bench.c:1ine.298

4] | | do_all2all:mpp_bench.c:line.348
5] | | main:test all2all.c:line.70

11 4.3% | 2 |bzero

3] | | (NVA):(N/A):line.O

11 2.1% | 1 Jupc_all_alloc

3] | | mpp_alloc:mpp_bench.c:line.143

4] | | main:test all2all.c:line.25

11 2.1% | 1 Jupc_all_reduceUL

3] | | mpp_accum_long:mpp_bench.c:line.185
4] | | do _cksum:mpp_bench.c:line.317

5] | | do_all2all:mpp_bench.c:1ine.341
6] | | main:test_all2all.c:1ine.70

CSCS Workshop, November 7-9 2011 Cray Inc. 33

OpenMP Support

OpenMP Data Collection and Reporting Tt 5

= Measure overhead incurred entering and leaving
e Parallel regions
e \Work-sharing constructs within parallel regions

= Show per-thread timings and other data

= Trace entry points automatically inserted by Cray and PGl
compilers
e Provides per-thread information

= Can use sampling to get performance data without API (per
process view... no per-thread counters)
e Run with OMP_NUM_THREADS=1 during sampling
e Waitch for calls to omp_set_num_threads()

CSCS Workshop, November 7-9 2011 Cray Inc. 35

OpenMP Data Collection and Reporting (2) e

= | oad imbalance calculated across all threads in all ranks for
mixed MPI/OpenMP programs
e Can choose to see imbalance to each programming model separately

= Data displayed by default in pat_report (no options needed)
e Focus on where program is spending its time
e Assumes all requested resources should be used

CSCS Workshop, November 7-9 2011 Cray Inc. 36

Imbalance Options for Data Display (pat_report -0 ...) e 5

= profile_pe.th (default view)
e |Imbalance based on the set of all threads in the program

= profile_pe th
e Highlights imbalance across MPI ranks
e Uses max for thread aggregation to avoid showing under-performers
e Aggregated thread data merged into MPI rank data

= profile_th_pe
e For each thread, show imbalance over MPI ranks

e Example: Load imbalance shown where thread 4 in each MPI rank
didn’t get much work

CSCS Workshop, November 7-9 2011 Cray Inc. 37

Profile by Function Group and Function (with —T)

C=RANY

THE SUPERCOMPUTER COMPANY

Table 1: Profile by Function Group and Function
Time % | Time |Imb. Time | Imb. | Calls |Group
| | | Time % | | Function
| | | | | PE.Thread='HIDE'
100.0% | 12.548996 | -- -- | 7944.7 |Total
97.8% | 12.277316 | -- | -- | 3371.8 |USER
| ___
| 35.6% | 4.473536 | 0.072259 | 1.6% | 498.0 |calc3 .LOOP@li.96
| 29.1% | 3.653288 | 0.070551 | 1.9% 500.0 |calc2 .LOOP@li.74
| 28.3% | 3.545677 | 0.056303 | 1.6% | 500.0 |calcl .LOOP@li.69
| S S S S S S S S S S S S S S S S S S sSCsSEsEEsEsSsS=sS=E=E=m===E=
1.2% | 0.155028 | -- | -- | 1000.5 |MPI SYNC
1.2% | 0.154899 | 0.674518 | 82.0% | 999.0 |mpi barrier (sync)
0.0% | 0.000129 | 0.000489 | 79.8% | 1.5 |mpi reduce (sync)
0.7% | 0.082943 | - | -- | 3197.2 |mMPI
0.4% | 0.047471 | 0.158820 | 77.6% | 999.0 |mpi barrier
0.1% | 0.015157 | 0.295055 | 95.9% | 297.1 |mpi waitall
| S S S S S S S S S S S S S S S S S S sSCsSEsEEsEsSsS=sS=E=E=m===E=
0.3% | 0.033683 | - | -- | 374.5 |omp
0.1% 0.013098 | 0.078620 | 86.4% | 125.0 |calc2 .REGION@li.74 (ovhd)
0.1% | 0.010298 | 0.052760 | 84.3% | 124.5 |calc3 .REGION@li.96 (ovhd)
0.1% | 0.010287 | 0.068428 | 87.6% | 125.0 |calcl .REGION@li.69 (ovhd)
| S S S S S S S S S S S S S S S S S S sSCsSEsEEsEsSsS=sS=E=E=m===E=
0.0% | 0.000027 | 0.000128 | 83.0% | 0.8 |PTHREAD
| | | | | pthread create

OpenMP Parallel DOs
<function>.<region>@<line>
automatically instrumented

OpenMP overhead is normally
small and is filtered out on
the default report (< 0.5%).
When using “=T” the filter is
deactivated

J

CSCS Workshop, November 7-9 2011

Cray Inc.

38

Hardware Counters Information at Loop Level

C=RANY

THE SUPERCOMPUTER COMPANY

Time% 37.3%
Time 6.826587
Imb.Time 0.039858
Imb.Time% 0.6%
Calls 72.9 /sec 498.0
DATA CACHE REFILLS:

L2 MODIFIED:L2 OWNED:

L2 EXCLUSIVE:L2 SHARED 64.364M/sec 439531950
DATA CACHE REFILLS FROM SYSTEM:

ALL 10.760M/sec 73477950
PAPI L1 DCM 64.973M/sec 443686857
PAPI L1 DCA 135.699M/sec 926662773
User time (approx) 6.829 secs 15706256693
Average Time per Call 0.013708
CrayPat Overhead : Time 0.0%

D1 cache hit,miss ratios 52.1% hits 47 .9%
D1 cache utilization (misses) 2.09 refs/miss 0.261
D1 cache utilization (refills) 1.81 refs/refill 0.226
D2 cache hit,miss ratio 85.7% hits 14.3%
D1+D2 cache hit,miss ratio 93.1% hits 6.9%
D1+D2 cache utilization 14.58 refs/miss 1.823
System to D1 refill 10.760M/sec 73477950
System to D1 bandwidth 656.738MB/sec 4702588826
D2 to D1 bandwidth 3928.490MB/sec 28130044826

fills

fills
misses
refs
cycles
sec

misses
avg hits
avg uses
misses
misses
avg hits
lines

100.0%Time

CSCS Workshop, November 7-9 2011

Cray Inc.

39

Caveats CRRANY

= No support for nested parallel regions

e To work around this until addressed disable nested regions by setting
OMP_NESTED=0

e \Watch for calls to omp_set_nested()

= |f compiler merges 2 or more parallel regions, OpenMP trace
points are not merged correctly
e To work around this until addressed, use —h threadl

= \We need to add tracing support for barriers (both implicit and

explicit)
e Need support from compilers

CSCS Workshop, November 7-9 2011 Cray Inc. 40

Try Adding OpenMP to an MPI Code When... e B

= \When code Is network bound

e | ook at collective time, excluding sync time: this goes up as network
becomes a problem

e ook at point-to-point wait times: if these go up, network may be a
problem

= \When MPI starts leveling off

e Too much memory used, even if on-node shared communication is
available

e As the number of MPI ranks increases, more off-node communication
can result, creating a network injection issue

= Adding OpenMP to memory bound codes may aggravate
memory bandwidth issues, but you have more control when
optimizing for cache

CSCS Workshop, November 7-9 2011 Cray Inc. af

Questions

??

