/O Optimization

Jan Thorbecke
jan@cray.com

e .

CSCS

Swisa National Supercomputing Centre

HPZC

A supercomputer is a device
for turning compute-
bound problems into I/O-
bound problems

Ken Batcher

ANy CSCS 3@ H PZC
THE SUPERCOMPUTER COMPANY Swiss National Supercomputing Centre 2

Agenda

® Lustre for Users
m Lustre, what is lustre and how can | use it
® Basic I/O strategies
= How can parallel I/O be done
¢ Using MPI-IO
m Performance and a few short code examples
® Asimple but non trivial MPI-IO example

=AY CSCS =
E““o“,u““ COMPANY Swisa Naticnal Supercomputing Genitre \f’ H PZC

S

3

Basic Lustre Overview

Application
processes running . =
on compute nodes
Memory Memory Memory Memory
High Speed
Network

I/O processes

o aapoiect | DS | | osso | ossi | | ossm |
Storage Servers LI B

I/O channels " " as

v v v v v i’ \4

RAID Devices
Object Storage
Targets (OST)
=P CSCS
EPEICOMPUTEH COMPANY Swiss National Supercomputing Centre H PZC 4

Basic Lustre Overview

Application
processes running
on compute nodes

High Speed
Network

I/O processes
running on Object
Storage Servers

I/O channels

RAID Devices
Object Storage
Targets (OST)

CCRAalYy"

THE SUPERCOMPUTER COMPANY

Memory Memory

#

Memory

¢

Memory

'

MDS

'

OSSO0

) =)

CSCS

Swisa National Supercomputing Centre

>

'

OSSm

5

Lustre Striping

® The user can tell lustre how to stripe a file over the OST's.

® The number of bytes written to one OST before cycling to the next on is

called the ,,Stripe Size”

® The number of OSTs across which the file is striped is the ,,Stripe

Count”

m The stripe count is limited by the number of OSTs on the filesystem
you are using and has a current absolute maximum of 160

® The ,Stripe Index“ is the starting OST of the file
m You can select the starting index, the others are selected by the SW

® You control the striping by the ,,Ifs“ command

® Your application does not directly reference OSTs or physical I/O blocks

e .

Swiss National Supemomputu?g?)ecntrse \:f’ H Pz C

6

Striping : Logical and Physical View of a File

® |ogically, a file is a linear sequence of bytes :

® Physically, a file consists of data distributed across OSTs.

ST

N

BN

=

I~

ANy CSCS H PZC
T SUPERCOMPUTER COMPANY Swiss National Supercomputing Centre 7

Physical view of striping

PO P1 P2 P3
i [imm
| |
o A
OSTO OST1 OST?2 OST3

8

Setting the stripe values

,|fs setstripe” is used to set the stripe information for a file or directory:
stefanekaibab:~> 1fs
1fs > help setstripe
setstripe: Create a new file with a specific striping pattern or
set the default striping pattern on an existing directory or
delete the default striping pattern from an existing directory
usage: setstripe [--size|-s stripe size] [--offset|-o start ost]
[--count |-c stripe count] [--pool|-p <pools>]
<dir|filename>
or
setstripe -d <dirs> (to delete default striping)
stripe size: Number of bytes on each OST (0 filesystem default)
Can be specified with k, m or g (in KB, MB and GB

respectively)
start ost: OST index of first stripe (-1 filesystem default)
stripe count: Number of OSTs to stripe over (0 default, -1 all)
pool: Name of OST pool

1fs > quit
The striping info for a file is set when the file is created. It cannot be changed
You should not change the default stripe_index value

m This to prevent a single OST being ,overused’ and running out of space

=AY CSCS ‘f
EPEICOMPUTEH COMPANY Swiss National Supercomputing Centre \\’ H PZC

9

Rules on how which striping values are used for a file

The ‘root’ filesystem has a default setting.
A file/directory will inherit the setting of the directory it is created in
You can change the setting of directory any time

= This will only have an effect on new files, old files does NOT change their
value

You can create an empty file with a different settings then the directory by
using , Ifs setstripe <filename> <your setting>" (think ,touch”)

You can create a file with specific striping values from your application using
MPI-IO (coming up later)

If you want to change the lustre settings on an existing file you have to copy
it :

1fs setstripe <your settings> newfile
cp oldfile newfile

rm oldfile

mv newfile oldfile

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:ff H Pz C 10

Available Lustre filesystems and their basic information

® To check for available lustre filesystems, you do Ifs df —h.

stefan66@emil-login2:~> 1lfs df -h
UUID bytes Used Available Use% Mounted on

lustrefs-MDT0000 UUID
lustrefs-0ST0000 UUID
lustrefs-0ST0001 UUID
lustrefs-0ST0002 UUID
lustrefs-0ST0003 UUID

filesystem summary:

1.

4T

3.6T

w w w

14

.6T
.6T
.6T
.3T

655
658.
717
712.
676

.5M

7G

.4G

0G
9G

2.7T 10

D DNDDNDDND R

.3T 0% /mnt/lustre server [MDT:O0]
.8T 17% /mnt/lustre server [OST:
.7T 19% /mnt/lustre server [OST:
.7T 19% /mnt/lustre server [O

7T 18% /mnt/lustre server[O

w N BRP O

ST:
ST:

.9T 18% /mnt/lustre server

UUID bytes Used Available Use% Mounted on
534 .3M 229.5G 0% /cfs/scratch[MDT:0]

ferlin-MDT0000 UUID
ferlin-OST0000 UUID
ferlin-OST0001 UUID
ferlin-OST0002 UUID
ferlin-OST0003 UUID
ferlin-OST0004 UUID
filesystem summary:

244 .0G

8

B 00 00 00 ™

7T
7T
7T
7T
7T
3.6

stefan66@emil-login2:~>

CCRAalYy"

THE SUPERCOMPUTER COMPANY

4.

(O I S S N

T

8T
.8T
.8T
.8T
2T
24 .4T

w w w w w

.5T
5T
.5T
.5T
AT

17

54% /cfs/scratch[0OST
54% /cfs/scratch[OST
54% /cfs/scratch[OST
55% /cfs/scratch[OST
59% /cfs/scratch[OST
.1T 55% /cfs/scratch

CSCS \‘f

Swisa National Supercomputing Centre \’

: 0
: 1
1 2
: 3
: 4

_t e e ed

HPZC

11

Getting the stripe values

o Ifs getstripe” will return the striping information for a file or

directory :

stefan@kaibab:/lus/scratch/stefan> touch delme
stefan@kaibab:/lus/scratch/stefan> 1fs getstripe delme

delme

lmm_ stripe count:
lmm stripe size:
lmm stripe offset:

obdidx

CCRAalYy"

THE SUPERCOMPUTER COMPANY

5

=
o

O W oYk 0 L N VO

=

1048576

objid
29742704
28810965
29259443
28570631
29447652
30365044
29045694
30015537
27747228
27327312
29428807
30076269

objid
0x1c5de670
0x1b79ed5
0x1lbe76b3
0x1b3f407
Ox1lcl55e4
0x1cf5574
0x1bb33be
0x1ca0031
Oxla7639c
0x1a0fb50
0x1cl0c47
Oxlcaedeéd

CSCS \‘f’

Swisa National Supercomputing Centre -

group

O O O O O O O o o o o o

HPZC

12

And Ifs can more. Check the build-in help

stefan@kaibab:/lus/scratch/stefan> 1fs
1fs > help
Available commands are:

setstripe

getstripe

pool list

find

check

catinfo

join

osts

df

(quota arguments removed)

quota

quotainv

path2fid

help

exit

quit
For more help type: help command-name
1fs >

et — V-t CSCS 2@

THE SUPERCOMPUTER COMPANY Swisa National Supercomputing Centre <

HPZC

13

Shared Lustre: Conceptual View

10 GigE LAN

Cray XE6

CLE Lustre Clients
LNET routers - Layered LNET — XIO Placement

IB QDR Fabric

Dell R710s + CentOS
Switch Topology - Failover
Lustre 1.8.x
Water-cooled doors

DDN SFA10000 Lustre Storage

SS7000 disk enclosures
Water-cooled doors

Eﬁﬁ:’: Swiss National Supemomputt?g?)ecntrse * H Pz C 144

/O Strategies

How can parallel I/0O be done

=AY CSCS =
E““o“,u““ COMPANY Swisa Naticnal Supercomputing Genitre \‘f H PZC

Spokesperson, basically serial 1/0

® One process performs 1/0O.
m Data Aggregation or Duplication
= Limited by single I/O process.

® Easy to program

® Pattern does not scale.

m Time increases linearly with
amount of data.

= Time increases with number of
processes.

® Care has to be taken when doing the

,all to one“-kind of communication at A
scale _/

® (Can be used for a dedicated 10 Server
(not easy to program) Disk

ﬁﬁﬁ:’: Swiss National Supewomputlg;sct?nti ‘:f’ H Pz C 16

One file per process

e All processes perform I/0O to
individual files.

» Limited by file system.
® Easy to program

® Pattern does not scale at large
process counts.

= Number of files creates
bottleneck with
metadata operations.

= Number of simultaneous
disk accesses creates
contention for file system
resources.
AN CSCS <

Swisa National Supercomputing Centre

(T11]

filesystem

Y11

H PZC 17

Shared File

® Each process performs 1/O to a
single file which is shared.

® Performance

m Data layout within the
shared file is very
important.

= At large process counts —> -
contention can build for file M

system resources.

® Programming language does not
support it

m C/C++ can work with fseek

m No real Fortran standard
AN CSCs

Swisa National Supercomputing Centre

18

A little bit of all, using a subset of processes

m Aggregation to a processor group which processes the data.
® Serializes 1/0 in group.
= |/O process may access independent files.

® Limits the number of files accessed.

= Group of processes perform parallel I/0 to a shared file.
® |ncreases the number of shares to increase file system usage.

® Decreases number of processes which access a shared file to decrease
file system contention.

il Bkl Shthl L

=Rac st ;2 HPZC 19

Special Case : Standard Output and Error

e Standard Output and Error streams are
effectively serial I/0O.

e All STDIN, STDOUT, and STDERR I/O
serialize through aprun

® Disable debugging messages when
running in production mode.

= “Hello, I’'m task 32000!” >
= “Task 64000, made it through loop.”

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:f’ H Pz C 20

CRAY IO Software stack

Application
HDF5 NETCDF

MPI-10

AN CSCS

Swisa National Supercomputing Centre

HPZC 2

/O Optimizations

,outside* and ,inside‘ your application

Ry

Swiss National Supemomputu?g?)ecntrse \:ff H Pz C

First step : Select best striping values

e Selecting the striping values will have an impact on the I/O
performance of your application

® Rule of thumb :

1. #files > #OSTs => Set stripe_count=1
You will reduce the lustre contension and OST file locking this
way and gain performance

2. #files==1 => Set stripe_count=#0STs
Assuming you have more then 1 1/0O client

3. #files<#OSTs => Select stripe_count so that you use all OSTs
Example : You have 8 OSTs and write 4 files at the same time,
then select stripe_count=2

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:f’ H Pz C 23

Case Study 1 : Spokesman

® 32 MB per OST (32 MB — 5 GB) and 32 MB Transfer Size
= Unable to take advantage of file system parallelism
= Access to multiple disks adds overhead which hurts performance

= Note : XE6 numbers might be better
Single Writer

Write Performance
120

100

80

B 1 MB Stripe

m 32 MB Stripe
Stripe Count

=Rony s HPZC 24

60

Write (MB/s)

40

20 ~

1 2 4 16 32 64 128 160

Case Study 2 : Parallel I/0 into a single file

® A particular code both reads and writes a 377 GB file. Runs on 6000
cores.

= Total I/O volume (reads and writes) is 850 GB.
m Utilizes parallel HDF5
e Default Stripe settings:
count =4, size=1M, index =-1. s
= 1800 s run time (~ 30 minutes) = '_>

® Stripe settings: count=-1, size=1M, index =-1.

m 625 s run time (~ 10 minutes)
® Results

m 66% decrease in run time.

Eﬁ.ﬁ:’: Swiss National Supewomputlg;sct?nti ‘:f’ H Pz C 25

Case Study 3 : Single File Per Process

e 128 MB per file and a 32 MB Transfer size, each file has a stripe_count of 1

12000

10000 /.

8000
| / \ —&=—1 VB Stripe
6000

9 —fi—32 MB Stripe

4000

2000 A

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:f’ H Pz C 206

Scaling the Met Office Unified Model on Cray XT

e The Met Office Unified Model (UM) is the numerical modelling system developed at the Met Office

= |t has been designed to allow different configurations of the same model to be used to produce weather
forecasts and climate predictions

= The system has been in continual development since 1990, taking advantage of steadily increasing
supercomputer power, improved understanding of atmospheric processes, and an increasing range of
observational data sources

= The UM is highly versatile, capable of modelling a wide range of time and space scales including kilometre-
scale mesoscale nowcasts, limited-area weather forecasts, global weather forecasts (including the
stratosphere), seasonal foreasts, global and regional climate predictions as well as being run as part of an
ensemble prediction system

= The UM can be coupled to other models which represent different aspects of the Earth's environment that
influence the weather and climate, such as the ocean and ocean waves, sea-ice, land surface, atmospheric
chemistry and carbon cycle.

e Shown in the following is the N512L76 benchmark case
= N512L76is a 76 vertical level, 25km horizontal resolution (at mid-latitudes) global forecast model
= The benchmark case is running 1 forecast day (normally run for 7 in operations)

= The UM for this is running in a non-hydrostatic formulation, with Semi-Lagrangian advection and GCR solver.
The grid used is an Arakawa C lat-long regular grid with Charney-Phillips vertical co-ordinate

e Acknowledgements
= Paul Selwood — Met Office
= Eckhard Tschirschnitz — Cray

Eﬁﬁ:’: Swiss National Supemomputt?g?)ecntrse \:f H Pz C 27

UM Major Phases

e Startup
= Reading and distributing the initial input data

® Goal: keep startup time constant as core count increases

e Simulation

= Computation per timestep

® Goal: optimize for cache based architecture

® Goal: utilize hybrid MPI / OpenMP parallelism resulting in fewer and larger messages
e Goal: optimi lect; . hich inl | scall
= Collecting and writing the result data (frequency depending upon model)

e Goal: fully hide behind computation through asynchronous I/0

e Shutdown

= Collecting and writing the final Unified Model dump file

® Goal: keep shutdown time constant as core count increases

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:f H Pz C 28

UM per Timestep 1/0O

e UM already had implemented a definable number of asynchronous I/O servers
= Each handling a certain number of files (Fortran |/O units)

e When doubling the number of cores, ideally compute time AND amount of 1/O per
core is reduced to half
e |I/0O time should scale — but it doesn‘t — how come?
e The single I/O server per file becomes overwhelmed
* Increasing number of smaller packets

* |/O server collects data in a prescribed order, compute tasks wait for completion

]]]] L]
- L
Eﬁ.ﬁ:’: Swiss National Supewomputlisct?nti H Pz C 29

Impact of small Effects

e What works well at small core counts, may not at large core counts, and most likely will not at very
large counts

= Don‘t trust simple extrapolations
= Fitting in between measurements is ok

1.0
\ N512L76

0.9
0.8
0.7
0.6 Total time no longer
0.5 dominated by (still
scaling) compute

0.4
0.3 Init and shutdown not
0.2 yet constant
01 Diagnostic PHYDIA

' becoming important
0.0 - ' ' ' ' ' ' out of nowhere

1440 2880 3840 5760 7680 12288 15360

—— |nitial 10 overlappablel0) —=—finallO —=—PHYDIA —=—Compute —=—total

Recurring 10 is fully overlapped at
all core counts
THE SUPERCOMPUTER COMPANY Swiss National Supercomputing Centre - 30

1/0 Performance : To keep in mind

® There is no “One Size Fits All” solution to the I/O problem.
e Many I/O patterns work well for some range of parameters.

® Bottlenecks in performance can occur in many locations.
(Application and/or File system)

® Going to extremes with an I/O pattern will typically lead to
problems.

® |/Ois a shared resource. Expect timing variation

Eﬁﬁ:’: Swisa National Supemomputt?g?)ecntrse \:ff H Pz C 31

MPI-10

e .

CSCS
>

Swisa National Supercomputing Centre

HPZC

A simple MPI-IO program in C

MPI File fh;
MPI Status status;

MPI Comm rank (MPI COMM WORLD, &rank) ;
MPI Comm_ size (MPI_ COMM WORLD, &nprocs);
bufsize = FILESIZE/nprocs;

nints = bufsize/sizeof (int) ;

MPI File open (MPI COMM WORLD, ‘FILE’,

MPI MODE RDONLY, MPI INFO NULL, &fh);
MPI File seek (fh, rank * bufsize, MPI SEEK SET);
MPI File read(fh, buf, nints, MPI INT, &status);
MPI File close (&fh) ;

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:f H Pz C 33

And now in Fortran using explicit offsets

use mpi ! or include 'mpif.h®
integer status (MPI_ STATUS SIZE)

integer (kind=MPI OFFSET KIND) offset ! Note : might be integer*8

call MPI FILE OPEN(MPI COMM WORLD, ‘FILE’, &
MPI MODE RDONLY, MPI INFO NULL, fh, ierr)

nints = FILESIZE / (nprocs*INTSIZE)

offset = rank * nints * INTSIZE

call MPI FILE READ AT(fh, offset, buf, nints, MPI INTEGER, status,

ierr)
call MPI GET COUNT (status, MPI INTEGER, count, ierr)
print *, 'process ', rank, 'read ', count, 'integers'

call MPI FILE CLOSE(fh, ierr)

® The * AT routines are thread save (seek+l0 operation in one call)

ATy Swiss National Supemomputt?gscgltrse \:f H Pz C

THE SUPERCOMPUTER COMPANY

34

Write instead of Read

® Use MPI_File_write or MPI_File_write_at

e Use MPI_MODE_WRONLY or MPI_MODE_RDWR as the flags to
MPI_File_open

¢ |f the file doesn’t exist previously, the flag MPI_MODE_CREATE must
be passed to MPI_File_open

® \We can pass multiple flags by using bitwise-or ‘|’ in C, or addition ‘+’
or IOR in Fortran

® |f not writing to a file, using MPI_MODE_RDONLY might have a
performance benefit. Try it.

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:ff H Pz C 35

MPI_File_set_view

® VIPl File set view assigns regions of the file to separate processes

e Specified by a triplet (displacement, etype, and filetype) passed to
MPI_File set view
m displacement = number of bytes to be skipped from the start of the file
m etype = basic unit of data access (can be any basic or derived datatype)
m filetype = specifies which portion of the file is visible to the process

® Example:
MPI File fh;
for (i=0; 1<BUFSIZE; i++) buf[i] = myrank * BUFSIZE + 1;

MPI File open (MPI COMM WORLD, "testfile",MPI MODE CREATE
MPI MODE WRONLY, MPI INFO NULL, &fh);
MPI File set view(fh, myrank * BUFSIZE * gsizeof (int), MPI INT,
MPI INT, ‘native’, MPI_ INFO NULL) ;
MPI_File_write(fh, buf, BUFSIZE, MPI INT, MPI_STATUS_IGNORE);
MPI File close (&fh) ;

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:f H Pz C 36

MPI_File_set_view (Syntax)

® Describes that part of the file accessed by a single MPI process.
® Arguments to MPI_File set_view:

m MPI_File file

m MPI_Offset disp

= MPI_Datatype etype

= MPI_Datatype filetype

= char *datarep

= MPI_Info info

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:f’ H Pz C 37

Collective 10 with MPI-IO

® VPl _File read_all, MPI_File _read_at_all, ...

e all indicates that all processes in the group specified by the
communicator passed to MPI_File_open will call this function

® Each process specifies only its own access information — the
argument list is the same as for the non-collective functions

® MPI-IO library is given a lot of information in this case:
m Collection of processes reading or writing data
m Structured description of the regions

® The library has some options for how to use this data
= Noncontiguous data access optimizations
= Collective I/O optimizations

=AY CSCS ‘f
EPEICOMPUTEH COMPANY Swiss National Supercomputing Centre \\’ H PZC

38

Two techniques : Sieving and Aggregation

® Data sieving is used to combine lots of small accesses into a single
larger one

= Reducing # of operations important (latency)
= A system buffer/cache is one example

® Aggregation refers to the concept of moving data through
intermediate nodes

= Different numbers of nodes performing 1/O (transparent to the
user)

® Both techniques are used by MPI-IO and triggered with HINTS.

Eﬁ.ﬁ:’: Swiss Nationel Supewomputlg;sct?nti \:f’ H Pz C 39

Lustre problem : ,,OST Sharing”

® A file is written by several tasks :

Task 1

® The file is stored like this (one single stripe per OST for all tasks) :

=
NN

N~

\

Task 3

_—

S~

Task 4

o st N
(D
NEN

~

e => Performance Problem (like ,False Sharing” in thread progamming)

e flock mount option needed. only 1 task can write to an OST any time

Swisa National Supercomputing Centre

HPZC n

Collective buffering: aggregating data

PO P1 P2

Aggregator O Aggregator 1

P3

1y
FH B e

CSCS
Swisa National Supercomputing Centre

HPZC

41

collective buffering: writing data

PO

Aggregator O

P2

Aggregator 1

Stripe 0

Offset 0MiB 1 MiB

e .

Stripe 1

Stripe 2 ‘Stripe3 ‘ Stripe 4 ‘ Stripe 5 ‘Stripe6 ‘

2 MiB 3 MiB 4 MiB 5 MiB 6 MiB 7 MiB

Swiss National Supemomputu?g?)ecntrse \:f’ H Pz C

42

MPI-IO Interaction with Lustre

® Included in the Cray MPT library.

® Environmental variable used to help MPI-IO optimize I/0O
performance.

= MPICH_MPIIO_CB_ALIGN Environmental Variable. (Default 2)
= MPICH_MPIIO_HINTS Environmental Variable

m Can set striping_factor and striping_unit for files created with
MPI-IO.

= |f writes and/or reads utilize collective calls, collective buffering
can be utilized (romio_cb_read/write) to approximately stripe
align 1/O within Lustre.

® HDF5 and NETCDF are both implemented on top of MPI-10 and thus
also uses the MPI-10 env. Variables.

Eﬁ.ﬁ:’: Swiss National Supewomputlg;sct?nti \:f’ H Pz C 43

MPICH_MPIIO_CB_ALIGN: collective buffering

¢ |f set to 2, an algorithm is used to divide the I/O workload into
Lustre stripe-sized pieces and assigns them to collective buffering
nodes (aggregators), so that each aggregator always accesses the

same set of stripes and no other aggregator accesses those stripes.

If the overhead associated with dividing the 1/O workload can in

some cases exceed the time otherwise saved by using this method.

e |f setto 1, an algorithm is used that takes into account physical I/O
boundaries and the size of I/O requests in order to determine how
to divide the I/O workload when collective buffering is enabled.
However, unlike mode 2, there is no fixed association between file
stripe and aggregator from one call to the next.

® |f set to zero or defined but not assigned a value, an algorithm is
used to divide the I/O workload equally amongst all aggregators
without regard to physical I/O boundaries or Lustre stripes.

=AY CSCS ‘f
EPEICOMPUTEH COMPANY Swiss National Supercomputing Centre \\’ H PZC

44

MPI-I10 Hints (part 1)

e MPICH MPIIO_HINTS DISPLAY - Rank 0 displays the name
and values of the MPI-10 hints

e MPICH_MPIO HINTS - Sets the MPI-10 hints for files opened
with the MPI_File_Open routine

= Overrides any values set in the application by the MPI1_Info_set
routine

= Following hints supported:

direct_io cb_nodes romio_ds_write
romio_cb_read cb_config_list ind_rd_buffer size
romio_cb_write romio_no_indep_rw Ind_wr_buffer_size
cb_buffer_size romio_ds_read striping_factor
striping_unit

Eﬁ. ﬁ::: Swiss National Supemomputt?g?)ecntrse \:ff H Pz C 45

Env. Variable MPICH_MPIO_HINTS (part 2)

¢ |f set, override the default value of one or more MPI /O hints. This also overrides any
values that were set by using calls to MPI_Info_set in the application code. The new
values apply to the file the next time it is opened using a MPI_File_open() call.

e After the MPI_File_open() call, subsequent MPI_Info_set calls can be used to pass new
MPI 1/0 hints that take precedence over some of the environment variable values.
Other MPI 1/0 hints such as striping factor, striping_unit, cb_nodes, and cb_config_list
cannot be changed after the MPI_File_open() call, as these are evaluated and applied
only during the file open process.

® The syntax for this environment variable is a comma-separated list of specifications.
Each individual specification is a pathname_pattern followed by a colon-separated list
of one or more key=value pairs. In each key=value pair, the key is the MPI-10 hint
name, and the value is its value as it would be coded for an MPI_Info_set library call.

® Example:

MPICH_MPIIO_HINTS=filel:direct_io=true,file2:romio_ds_write=disable,/scratch/user
/me/dump.*:romio_cb_write=enable:cb_nodes=8

Eﬁ.ﬁ:’: Swiss National Supewomputlg;sct?nti \:ff H Pz C 46

IOR benchmark 1,000,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and
transfers both of 1M bytes and a strided access pattern. Tested on an XT5 with
32 PEs, 8 cores/node, 16 stripes, 16 aggregators, 3220 segments, 96 GB file

1800
1600
1400
1200
1000
800
600
400 -
200 -

0 -

<
45

S o
P° X

Eﬁ.ﬁ:’: Swiss National Supewomputlg;sct?nti H Pz C 47

IOR benchmark 10,000 bytes

MPI-IO API , non-power-of-2 blocks and transfers, in this case blocks and
transfers both of 10K bytes and a strided access pattern. Tested on an XT5 with
32 PEs, 8 cores/node, 16 stripes, 16 aggregators, 3220 segments, 96 GB file

160
140
120
100
80
60
40
20 .
0 | | | |
e Q
N T A A
ey © . HPZC "

HYCOM MPI-2 1/0

On 5107 PEs, and by application design, a subset of the PEs(88), do the writes.
With collective buffering, this is further reduced to 22 aggregators (cb_nodes)
writing to 22 stripes. Tested on an XT5 with 5107 PEs, 8 cores/node

4000
3500
3000
2500
2000
1500
1000
500
[J— -

& 0

& &
AN CSCS

Swisa National Supercomputing Centre

49

HDF5 format dump file from all PEs

Total file size 6.4 GiB. Mesh of 64M bytes 32M elements, with work divided amongst all
PEs. Original problem was very poor scaling. For example, without collective buffering,
8000 PEs take over 5 minutes to dump. Note that disabling data sieving was necessary.
Tested on an XT5, 8 stripes, 8 cb_nodes

1000
—w/0 CB
-—CB=1

; —CB=2
10 -

1
~9°° '\9°° & <b°°°
Eﬁ.ﬁ:’: Swisa Naticnal Supewomputlg;?;:'r‘-ti H Pz C

50

MPI-10 Example

Storing a distributed Domain into a single File

oAy CSCS

Swisa National Supercomputing Centre

HPZC

Problem we want to solve

® \We have 2 dim domain on a 2 dimensional processor grid
® Each local subdomain has a halo (ghost cells).

® The data (without halo) is going to be stored in a single file, which
can be re-read by any processor count

® Here an example with 2x3 procesor grid :

X -
Px >Inx
[uuwmumuumumu
\)

Y | ,;2%,
P . J
y AR
THE SUPERCOMPUTER COMPANY Swiss National Supercomputing Gentre

52

Approach for writing the file

® First step is to create the MPI 2 dimensional processor grid

® Second step is to describe the local data layout using a MPI datatype
® Then we create a ,global MPI datatype” describing how the data

should be stored
e Finaly we do the I/O

e .

CSCS w

Swisa National Supercomputing Centre \‘,

HPZC

53

Basic MPI setup

nx=512; ny=512 ! Global Domain Size

call MPI Init (mpierr)

call MPI Comm size (MPI COMM WORLD, mysize, mpilerr)
call MPI Comm rank (MPI COMM WORLD, myrank, mpierr)

dom size(l)=2; dom size(2)=mysize/dom size (1)
lnx=nx/dom size(l) ; 1lny=ny/dom size(2) ! Local Domain size
periods=.false. ; reorder=.false.

call MPI Cart create(MPI COMM WORLD, dim, dom size, periods, reorder,
comm_ cart, mpierr)
call MPI Cart coords(comm cart, myrank, dim, my coords, mpierr)

halo=1
allocate (domain(0:1lnx+halo, 0:1ny+halo))

Eﬁ.ﬁ:’: Swiss National Supewomputlg;sct?nti \:f H Pz C 54

Creating the local data type

— |nx

|
Iny
gsize(l)=1nx+2; gsize(2)=1ny+2
lsize(1l)=1nx; lsize(2)=1ny
start (1)=1; start(2)=1
call MPI Type create subarray(dim, gsize, lsize, start,
MPI ORDER FORTRAN, MPI INTEGER, type local, mpierr)
call MPI Type commit (type local, mpilerr)

P CSCS ‘f
EPEICOMPUTEH COMPANY Swiss National Supercomputing Centre ‘-\: H PZC

55

And now the global datatype

NnXx
Py
\)
Y
ny
gsize(l)=nx; gsize=ny py

lsize(1l)=1nx; lsize(2)=1ny

start (1) =1lnx*my coords(1l); start(2)=1lny*my coords(2)

call MPI Type create subarray(dim, gsize, lsize, start,
MPI ORDER FORTRAN, MPI INTEGER, type domain, mpierr)

call MPI Type commit (type domain, mpierr)
e o CSCS HPZC

THE SUPERCOMPUTER COMPANY Swiss National Supercomputing Centre

56

Now we have all together

call MPI Info create(fileinfo, mpilerr)
call MPI File delete('FILE', MPI INFO NULL, mpierr)
call MPI File open(MPI COMM WORLD, 'FILE',
IOR (MPI_MODE RDWR,MPI MODE CREATE), fileinfo, fh, mpierr)

disp=0 ! Note : INTEGER (kind=MPI OFFSET KIND) :: disp

call MPI File set view(fh, disp, MPI INTEGER, type domain, 'nmative',
fileinfo, mpierr)

call MPI File write all(fh, domain, 1, type local, status, mpierr)

call MPI File close(fh, mpierr)

Eﬁ.ﬁ:’: Swiss National Supewomputlg;sct?nti \:f H Pz C 57

|/O Performance Summary

e Buy sufficient I/O hardware for the machine
= As your job grows, so does your need for I/O bandwidth
= You might have to change your I/O implementation when scaling

® Lustre
= Minimize contention for file system resources.
= Asingle process should not access more than 4 OSTs, less might be better

® Performance
= Performance is limited for single process I/0.
= Parallel I/0 utilizing a file-per-process or a single shared file is limited at large
scales.
m Potential solution is to utilize multiple shared file or a subset of processes
which perform |/0.
= A dedicated I/O Server process (or more) might also help

» Did not really talk about the MDS

EﬁAY Swise Nationel Supemomputt?g?)ecntrse \:f’ H Pz C 58

PUTER COMPANY

And there is more

e http://docs.cray.com

m Search for MPI-IO : , Getting started with MPI 1/0“, ,,Optimizing
MPI-10 for Applications on CRAY XT Systems*”

m Search for lustre (a lot for admins but not only)
= Message Passing Toolkit

® Man pages (man mpi, man <mpi_routine>, ...)
® mpich2 standard :
http://www.mcs.anl.gov/research/projects/mpich2/

=AY CSCS =
E““o“,u““ COMPANY Swisa Naticnal Supercomputing Genitre \f’ H PZC

S

59

