
Luiz DeRose © Cray Inc.

 Optimized libraries for Cray Hardware
• AMD-Interlagos
• Magny-Cours, …

 Compiler Support and Verification
• CCE
• GNU
• Intel
• PGI

 Auto-tuning / Adaptive Kernels
• Alternative optimized kernels
• Tuned kernels selected based on problem size
• Iterative Refinement Toolkit (IRT)

S f f Simplified Interface
• CRAFFT
• PETSc/Trilinos simplified application build

Cra Adapti e Eigensol er• Cray Adaptive Eigensolver

November, 2011 2Luiz DeRose © Cray Inc.

 There are many libsci libraries on the systems

 One for each of One for each of
• Compiler (cray, gnu, pgi, intel)
• Single thread, multiple thread
• Target (interlagos, mc12, mc8, …)a get (te agos, c , c8,)

 Best way to use libsci is to ignore all of this

 Load the xtpe-module
• module load xtpe-interlagos / xtpe-mc12 / xtpe-mc8

 Cray’s compiler drivers will link the library automatically

 PETSc, Trilinos, fftw, acml all have their own module

November, 2011 3Luiz DeRose © Cray Inc.

 We recommend adding options to the linker to make sure you have the
correct library loaded.
• -Wl adds a command to the linker from the driver

 You can ask for the linker to tell you where an object was resolved from
using the –y option.us g t e y opt o
• E.g. –Wl, -ydgemm_

 Will return :
cc -L./ -o mmulator blas_test.o netlib_dgemm.o -Wl,-ydgemm_
bl t t f t dblas_test.o: reference to dgemm_
/opt/xt-libsci/10.4.9/cray/lib/libsci.a(dgemm.o): definition of dgemm_

November, 2011 4Luiz DeRose © Cray Inc.

 Threading capabilities in previous libsci versions were poor
• Used PTHREADS (more explicit affinity etc)
• Required explicit linking to a mp version of libsciq p g _ p
• Was a source of concern for some applications that need hybrid

performance and interoperability with openMP

 LibSci 10.4.2 (February 2010)
• OpenMP-aware LibSci
• Allows calling of BLAS inside or outside parallel regionAllows calling of BLAS inside or outside parallel region
• Single library supported (there is still a single thread lib)

U l d th t d l f t (i t l) Usage – load the xtpe module for your system (interlagos)

 Use OMP NUM THREADSUse OMP_NUM_THREADS
• GOTO_NUM_THREADS outmoded

November, 2011 5Luiz DeRose © Cray Inc.

 Allows seamless calling of the BLAS within or without a
parallel region

e.g. OMP_NUM_THREADS = 16

call dgemm(…) threaded dgemm is used with 16 threads
!$OMP PARALLEL DO
dodo

call dgemm(…) single thread dgemm is used
end do

November, 2011 6Luiz DeRose © Cray Inc.

120

Libsci DGEMM efficiency

100

60

80

O
Ps 1thread

40

60

G
FL
O

3threads
6threads
9threads

20

40
12threads

0

Dimension (square)
November, 2011 7Luiz DeRose © Cray Inc.

120

140

Libsci‐10.5.2 performance on 2 x MC12 2.0 GHz
(Cray XE6)

K=64

100

120 (Cray XE6)
K=128

K=200

80

PS

K=228

K=256

60G
FL
O K=256

K=300

40
K=400

K=500

20 K=600

K=700

8

0
1 2 4 8 12 16 20 24

Number of threads
K=800

November, 2011 Luiz DeRose © Cray Inc.

 Use the number of ScaLAPACK grid points you want to
correspond to the number of MPI ranks you want

 Rely on the BLAS to operate with the number of threads you
desiredesire

 Use OMP_NUM_THREADS and the aprun options to set the
number of threads you need for on-node parallelism

S t th th d d f lib i BLAS ith Set the threads per node from libsci BLAS with
OMP_NUM_THREADS

 Use aprun options –n and –d for nodes and threads
November, 2011 9Luiz DeRose © Cray Inc.

 On Gemini systems, the choice of underlying broadcast
algorithm used in ScaLAPACK is very important

 Unfortunately this is not exposed to the user since it is hard
coded into BLACS

 One type of BCAST, the I-Ring can effectively become a
node-aware broadcast
• Can perform extremely well on Gemini

 Added the environment variablesAdded the environment variables
• SCALAPACK_LU_RBCAST
• SCALAPACK_LLT_UBCAST
• SCALAPACK LLT LBCASTSCALAPACK_LLT_LBCAST

November, 2011 10Luiz DeRose © Cray Inc.

 Mixed precision can yield a big win on x86 machines.

 SSE (and AVX) units issue double the number of single precision () g p
operations per cycle.

 On CPU, single precision is always 2x as fast as double, g p y

 Accelerators sometimes have a bigger ratio
• Cell – 10xCell 10x
• Older NVIDIA cards – 7x
• New NVIDIA cards (2x)
• Newer AMD cards (2x) ()

 IRT is a suite of tools to help exploit single precision
• A library for direct solversA library for direct solvers
• An automatic framework to use mixed precision under the covers

November, 2011 11Luiz DeRose © Cray Inc.

 Various tools for solves linear systems in mixed precision

 Obtaining solutions accurate to double precision
• For well conditioned problems

 Serial and Parallel versions of LU, Cholesky, and QR

 2 usage methods
• IRT Benchmark routines

 Uses IRT 'under-the-covers' without changing your code
o Simply set an environment variable
o Useful when you cannot alter source code

• Advanced IRT API
 If greater control of the iterative refinement process is required If greater control of the iterative refinement process is required

o Allows
» condition number estimation
» error bounds return
» minimization of either forward or backward error
» 'fall back' to full precision if the condition number is too high
» max number of iterations can be altered by users

November, 2011 12Luiz DeRose © Cray Inc.

 “High Power Electromagnetic Wave
Heating in the ITER Burning Plasma’’

 rf heating in tokamak

 Maxwell-Bolzmann Eqns

 FFT

 Dense linear system

 Calc Quasi linear op Calc Quasi-linear op

Theoretical Peak

Courtesy
Richard Barrett

November, 2011 Slide 13Luiz DeRose © Cray Inc.

Decide if you want to use advanced API or benchmark API
benchmark API :

setenv IRT USE SOLVERS 1setenv IRT_USE_SOLVERS 1
advanced API :

1. Locate the factor and solve in your code (LAPACK or ScaLAPACK)
2 R l f t d l ith ll t IRT ti2. Replace factor and solve with a call to IRT routine

• e.g. dgesv -> irt_lu_real_serial
• e.g. pzgesv -> irt_lu_complex_parallel
• e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments
• Forward error convergence for most accurate solutiong
• Condition number estimate
• “fall-back” to full precision if condition number too high

November, 2011 14Luiz DeRose © Cray Inc.

 The Cray PETSc 3.1.09 is equivalent to the official patch
release of PETSc-3.1-p8 by Argonne National Laboratory
S i l d P ll l i f it ti li l Serial and Parallel versions of sparse iterative linear solvers
• Suites of iterative solvers

 CG, GMRES, BiCG, QMR, etc.
• Suites of preconditioning methods

 IC, ILU, diagonal block (ILU/IC), Additive Schwartz, Jacobi, SOR
• Support block sparse matrix data format for better performance
• Interface to external packages (Hypre, SuperLU_DIST,MUMPS)
• Fortran and C support
• Newton-type nonlinear solvers

 Large user community
 http://www-unix.mcs.anl.gov/petsc/petsc-as

November, 2011 15Luiz DeRose © Cray Inc.

 Cray provides external scientific computing packages to
strengthen the capability of PETSc
• Hypre: scalable parallel preconditionersHypre: scalable parallel preconditioners
 AMG (Very scalable and efficient for specific class of problems)
 2 different ILUs (General purpose)
 Sparse Approximate Inverse (General purpose) Sparse Approximate Inverse (General purpose)

• ParMetis: parallel graph partitioning package
• MUMPS: parallel multifrontal sparse direct solver
• SuperLU: sequential left looking sparse solver• SuperLU: sequential left-looking sparse solver
• SuperLU_DIST: parallel right-looking sparse direct solver

with static pivoting

November, 2011 16Luiz DeRose © Cray Inc.

 The Cray Trilinos 10.6.4.0 is equivalent to the official patch
release of Trilinos 10.6.4 by Sandia National Labratories

 The Trilinos module is dependent on the petsc, xt-libsci, and
xt-asyncpe modulesxt asyncpe modules
• Make certain these modules are loaded before using Trilinos

 To use the Trilinos packages, load your choice of PrgEnv and
then load the Trilinos module
%Module load trilinos% odu e oad t os

 Several packages are incorporated
• man trilinos (3) for details

November, 2011 Luiz DeRose © Cray Inc. 17

 Scientific Libraries today have three concentrations to
increase productivity with enhanced performance
• Standardization• Standardization
• Autotuning
• Adaptive Libraries

 Cray adaptive model
• Runtime analysis allows best library/kernel to be used dynamically• Runtime analysis allows best library/kernel to be used dynamically
• Extensive offline testing allows library to make decisions or remove

the need for those decisions
• Decision depends on the system on previous performance info• Decision depends on the system, on previous performance info,

obtained previously, and characteristics of calling problem

November, 2011 18Luiz DeRose © Cray Inc.

 Automation of code optimization
• Includes automation of the following ‘components’

 Code generationg
 Compilation
 Batch submission
 Parameter Search
 Result Analysis Result Analysis

 Allows many more optimizations to be studied
 ‘Search’ component means allows massive optimization

space to be studied in realistic time
 Currently employed in two projects at Cray

• CASK: Cray Adaptive Sparse KernelsCASK: Cray Adaptive Sparse Kernels
 Optimize PETSc and Trilinos on Cray without the user even knowing

• CRAFFT: Cray Adaptive FFT
 Provides one very simple interface into all existing FFT libraries
 Uses previous performance information to decide where to go

November, 2011 Luiz DeRose © Cray Inc. 19

Specialization
inputs
Blocksize

Reference
kernel

Perform Search

Blocksize
threads
dimensions

kernel
Parameterized
transformations

Offline - autotuning

runtime

Runtime
Performance
model

Calling
problem

Table lookup

Specialized
kernel library

Table lookup
for best
kernel under
calling
conditions

This is all invisible to the user :: all you will see is good performance
November, 2011 20Luiz DeRose © Cray Inc.

 Sparse matrix operations in PETSc and Trilinos on Cray
systems are optimized via CASK

 CASK is a prod ct de eloped at Cra sing the CASK is a product developed at Cray using the
Cray Auto-tuning Framework (Cray ATF)

 Uses ATF auto-tuning, specialization and Adaptation concepts
 Offline :

• ATF program builds many thousands of sparse kernel
• Testing program defines matrix categories based on density,

dimension etc
• Each kernel variant is tested against each matrix class
• Performance table is built and adaptive library constructed

 Runtime
• Scan matrix at very low cost
• Map user’s calling sequence to nearest table matchMap user s calling sequence to nearest table match
• Assign best kernel to the calling sequence
• Optimized kernel used in iterative solver execution

November, 2011 21Luiz DeRose © Cray Inc.

60000

70000

PETSc Strong Scalability on Shanghai XT5

40000

50000

60000

lo
ps

10000

20000

30000M
F

0
0 50 100 150 200 250 300

of PEs80000

PETSc Weak Scalability on Shanghai XT5
N=65,536‐16,777,216
PETSc‐3.1 PETSC‐3.1 CASK

40000

60000

80000

Fl
op

s

, , ,

0

20000

M
F

0 50 100 150 200 250 300
of PEs

PETSc‐3.1 PETSC‐3.1 CASKNovember, 2011 22Luiz DeRose © Cray Inc.

1 3

1.4 CASK + PETSc XT5 single node (60 matrices)

Speedup on Parallel SpMV on 8 cores, 60 different matrices
1.2

1.3

Sp
ee
d‐
up

1

1.1

S

0 10 20 30 40 50 60

1500

2000 Trilinos + CASK on Instanbul, single node

1000

1500

M
Fl
op

s

0

500

Matrix Name
November, 2011 23Luiz DeRose © Cray Inc.

As easy as you can get :

module load petsc

or
module load trilinos

That’s all you needThat s all you need

November, 2011 24Luiz DeRose © Cray Inc.

 Serial CRAFFT is largely a productivity enhancer
 Some FFT developers have problems such as

• Which library choice to use?
• How to use complicated interfaces (e.g., FFTW)

 Standard FFT practice
• Do a plan stage
• Do an execute• Do an execute

 CRAFFT is designed with simple-to-use interfaces
• Planning and execution stage can be combined into one function call
• Underneath the interfaces CRAFFT calls the appropriate FFT kernelUnderneath the interfaces, CRAFFT calls the appropriate FFT kernel

25November, 2011 Luiz DeRose © Cray Inc.

1 L d d l fft /3 2 0 hi h1. Load module fftw/3.2.0 or higher.
2. Add a Fortran statement “use crafft”
3 call crafft init()3. call crafft_init()
4. Call crafft transform using none, some or all optional

arguments (as shown in red)
In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

in place explicit memory managementin-place, explicit memory management
call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)

out-of-place, explicit memory management :
crafft z2z3d(n1 n2 n3 input ld in ld in2 output ld out ld out2 isign work)crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the
CRAFFT PLANNING environment variable and the do exe optionalCRAFFT_PLANNING environment variable and the do_exe optional
argument, please see the intro_crafft man page.

26November, 2011 Luiz DeRose © Cray Inc.

 Parallel CRAFFT is meant as a performance improvement to
FFTW2 distributed transforms
• Uses FFTW3 for the serial transform
• Uses ALLTOALL instead of ALLTOALLV where possible
• Overlaps the local transpose with the parallel communications
• Uses a more adaptive communication scheme based on input

L t f d d h i id d i d ti• Lots of more advanced research in one-sided messaging and active
messages

 Can provide impressive performance improvements over FFTW2
C tl i l t d Currently implemented
• complex-complex
• Real-complex and complex-real
• 3 d 2 d 1d• 3-d, 2-d, 1d
• In-place and out-of-place
• FFTW interfaces
• C language support for serial and parallelC language support for serial and parallel
• Generic interfaces for C users (use C++ compiler to get these)

November, 2011 Luiz DeRose © Cray Inc. 27

1 Add “use crafft” to Fortran code1. Add use crafft to Fortran code
2. Initialize CRAFFT using crafft_init
3. Assume MPI initialized and data distributed (see3. Assume MPI initialized and data distributed (see

manpage)
4. Call crafft, e.g. (optional arguments in red)

2-d complex-complex, in-place, internal mem management :
call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

2 d complex complex in place with no internal memory :2-d complex-complex, in-place with no internal memory :
call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

2-d complex-complex, out-of-place, internal mem manager :
call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

2-d complex-complex, out-of-place, no internal memory :
crafft pz2z2d(n1,n2,input,output,isign,flag,comm,work)crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. Also see 3d equivalent :
man crafft_pz2z3d 28November, 2011 Luiz DeRose © Cray Inc.

 At the end of 2011, Cray will transition to a completely new
BLAS library called CrayBLAS
 This library will be 100% autotuned This library will be 100% autotuned
 General concept – create a completely general DGEMM

1. Arbitrarily blocked
2 H bit b f l l f bl ki2. Has an arbitrary number of levels of blocking
3. Has an arbitrary ordering
4. Has an arbitrary number of bufferings
5 Has an arbitrary mapping into buffer space5. Has an arbitrary mapping into buffer space

 Then, in the same style as CASK we create a completely
adaptive library interface

Th ’ lli bl i t h d t th b t i l t ti f• The user’s calling problem is matched to the best implementation from
the auto-tuning

 Should lead to better performance for all problem sizes
E l di i h• Even unusual dimensions or shapes

November, 2011 Luiz DeRose © Cray Inc. 29

© Cray Inc.

