
TMTM

Cray XMT™ Performance Tools User's Guide

S–2462–20

© 2007–2011 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

BSD Licensing Notice: Copyright (c) 2008, Cray Inc. All rights reserved. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name
Cray Inc. nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Your use of this Cray XMT release constitutes your
acceptance of the License terms and conditions.

Cray, LibSci, and PathScale are federally registered trademarks and Active Manager, Cray Apprentice2,
Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC,
Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM,
Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2,
Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XE5m, Cray XE6, Cray XE6m, Cray XMT, Cray XR1, Cray XT,
Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort,
CRInform, ECOphlex, Gemini, Libsci, NodeKARE, RapidArray, SeaStar, SeaStar2, SeaStar2+, The Way to Better
Science, Threadstorm, and UNICOS/lc are trademarks of Cray Inc.

Lustre is a trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Platform is a trademark of Platform Computing Corporation. Windows is a trademark of Microsoft Corporation.
UNIX, the “X device,” X Window System, and X/Open are trademarks of The Open Group in the United States and
other countries. All other trademarks are the property of their respective owners.

RECORD OF REVISION

S–2462–20 Published May 2011 Supports release 2.0 GA running on Cray XMT and Cray XMT Series compute
nodes and on Cray XT 3.1UP02 service nodes. This release uses the System Management Workstation (SMW)
version 5.1.UP03.

S–2462–15 Published December 2010 Supports release 1.5 running on Cray XMT compute nodes and on Cray XT
service nodes running CLE 2.2.UP01. This release uses the System Management Workstation (SMW) version
4.0.UP02.

1.4 Published December 2009 Supports release 1.4 running on Cray XMT compute nodes and on Cray XT service
nodes running CLE 2.2.UP01. This release uses the System Management Workstation (SMW) version 4.0.UP02.

1.3 Published March 2009 Supports release 1.3 running on Cray XMT compute nodes and on Cray XT 2.1.5HD
service nodes. This release uses the System Management Workstation (SMW) version 3.1.09.

1.2 Published August 2008 Supports general availability (GA) release 1.2 running on Cray XMT compute nodes and
on Cray XT 2.0.49 service nodes. This release uses the System Management Workstation (SMW) version 3.1.04.

1.1 Published March 2008 Supports limited availability (LA) release 1.1.01 running on Cray XMT compute nodes
and on Cray XT 2.0 service nodes.

1.0 Published August 2007 Supports Canal, Bprof, Tview, and Cray Apprentice2 version 3.2 running on Cray XMT
systems. This manual incorporates material previously published in S-2319-10, Cray MTA-2 Performance
Programming Tools Reference Manual.

Changes to this Document

Cray XMT™ Performance Tools User's Guide S–2462–20

This manual supports the 2.0 release of the Cray XMT Performance Analysis Tools.

Added information

• Support for partial tracing, which makes tracing information available even when the execution of a
tracing program terminates prematurely. See Partial Tracing on page 58.

• Added information about annotations in inlined functions in Statement-level Annotations on page 32

• New default mode for Apprentice2, which displays traps taken in system libraries, and new option
--nosystem to turn off this mode.

• New trace profiling report (Tprof)

Contents

Page

Introduction [1] 11

1.1 The Performance Tool Set . 11

1.2 Prerequisites . 13

1.2.1 Module and Compiler Considerations 13

1.2.2 Execution Considerations . 14

1.2.3 Data Conversion (pproc) . 15

1.3 Using Cray Apprentice2 . 16

1.3.1 Modules . 16

1.3.2 Launching the Application . 16

1.3.3 Loading Data Files . 17

1.3.4 Basic Navigation . 18

1.3.5 Comparing Files . 24

1.3.6 Exiting from Cray Apprentice2 25

Compiler Analysis (Canal) [2] 27

2.1 CLI Version of Canal . 27

2.2 GUI Version of Canal . 29

2.2.1 Canal Window Layout . 29

2.2.2 Browse Loops . 32

2.2.3 Statement-level Annotations 32

2.2.4 Statement Remarks . 36

2.2.5 Loop-level Annotations . 38

2.2.6 Canal Configuration and Navigation Options 43

2.2.6.1 Select Source . 43

2.2.6.2 Toolbars . 44

2.2.6.3 Show/Hide Data . 44

2.2.6.4 Change Font . 45

2.2.6.5 Panel Actions . 46

S–2462–20 7

Cray XMT™ Performance Tools User’s Guide

Page

Trace View (Tview) [3] 47

3.1 CLI Version of Tview . 47

3.2 GUI Version of Tview . 48

3.2.1 Using Tview . 48

3.2.2 Traced Data . 50

3.2.2.1 Optional Data . 51

3.2.2.2 Zooming In . 52

3.2.2.3 Handling Large Trace Files 52

3.2.3 Event and Trap Details . 52

3.2.3.1 Event Details . 52

3.2.3.2 Trap Details . 54

3.2.4 About System Library Traps 56

3.2.5 Tview Configuration and Navigation Options 56

3.2.5.1 Select Range . 57

3.2.5.2 Panel Actions . 58

3.3 Partial Tracing . 58

3.4 Tuning Tracing . 62

3.4.1 Changing the Persistent Buffer Size 62

3.4.2 Changing the Frequency of Trace Buffer Flushing 62

3.4.3 Resolving Tracing Failures . 63

Block Profiling (Bprof) [4] 65

4.1 CLI Version of Bprof . 65

4.2 GUI Version of Bprof . 68

4.2.1 Bprof Window Layout . 69

4.2.2 Function List . 70

4.2.3 Callers and Callees . 71

4.2.4 Bprof Configuration and Navigation Options 72

4.2.4.1 Panel Actions . 73

Trace Profiling (Tprof) [5] 75

Glossary 77

Procedures
Procedure 1. Using Canal . 29

Procedure 2. Compiling and Linking for Tview 48

Procedure 3. Using Bprof . 68

8 S–2462–20

Contents

Page

Examples
Example 1. Canal CLI output . 28

Example 2. Bprof CLI output – header 66

Example 3. Bprof CLI output – call tree profile 67

Example 4. Bprof CLI output – routine profile 68

Example 5. Bprof CLI output – routine listing and index 68

Tables
Table 1. Cray Apprentice2 Navigation Functions 19

Table 2. File Menu . 20

Table 3. Help Menu . 21

Table 4. Canal Window Layout . 30

Table 5. Canal GUI Statement Annotations 33

Table 6. Canal GUI Additional Annotations 34

Table 7. Data Columns . 45

Table 8. Canal GUI Panel Actions . 46

Table 9. Tview Window Layout . 49

Table 10. Tview GUI Optional Data 51

Table 11. Event Details . 53

Table 12. Trap Details . 55

Table 13. Tview GUI Configuration and Navigation Options 56

Table 14. Tview GUI Panel Actions 58

Table 15. Bprof CLI Section Data . 66

Table 16. Bprof CLI Line Data . 67

Table 17. Description of Block Profiling Report Window 70

Table 18. Bprof GUI Report Data . 71

Table 19. Bprof GUI Caller Detail . 71

Table 20. Bprof GUI Callee Detail 72

Table 21. Bprof GUI Configuration and Navigation Options 72

Table 22. Bprof GUI Panel Actions 73

Figures
Figure 1. Cray Apprentice2 File Selection Dialog 18

Figure 2. Cray Apprentice2 Window 19

Figure 3. Save Screendump Dialog Window 21

Figure 4. About Dialog Window . 22

Figure 5. Online Help Window . 23

Figure 6. Comparison Report (Tdiff) 25

S–2462–20 9

Cray XMT™ Performance Tools User’s Guide

Page

Figure 7. Canal View in Cray Apprentice2 30

Figure 8. Canal Source File Selection 43

Figure 9. Canal Select Font Dialog 46

Figure 10. Tview Window Layout . 49

Figure 11. Tview Event Details . 53

Figure 12. Tview Trap Details . 55

Figure 13. Select Range Dialog . 57

Figure 14. Full Trace of radixsort Application 59

Figure 15. Partial Trace of radixsort Application 60

Figure 16. Segment of Full Trace of radixsort Application 61

Figure 17. Block Profiling Report Window 69

Figure 18. Tprof Report . 75

10 S–2462–20

Introduction [1]

This guide is for application programmers and users of Cray XMT systems.
It describes the Cray XMT performance analysis tools: Cray Apprentice2,
Canal, Tview, Tprof, and Bprof, and the associated file conversion and viewing
utilities, pproc and ap2view. Use the information in this guide to examine the
optimizations performed by the Cray XMT C and C++ compilers during compilation
and the behavior of your program during execution.

The information provided in this guide assumes that you are already familiar with
Cray XMT C and C++ compilers and are already able to compile, link, and execute
your program successfully. For more information about the Cray XMT programming
environment and compiler usage, see the Cray XMT Programming Environment
User's Guide. For information about debugging programs, see the Cray XMT
Debugger Reference Guide.

By default, the Cray XMT compilers produce highly optimized executable code. The
information in this guide may help you to find additional opportunities to improve
program performance.

1.1 The Performance Tool Set
The Cray XMT performance analysis tool set consists of seven components.

• Cray Apprentice2 is a cross-platform data visualization tool. It provides the
graphical framework within which the GUI versions of the other performance
analysis tools operate.

• Canal (compiler analysis) uses information captured during compilation to
produce an annotated source code listing showing the optimizations performed
automatically by the compiler. Use the Canal listing to identify and correct code
that the compiler cannot optimize.

Canal is also available in a command-line interface (CLI) version. This version is
documented in the canal(1) man page.

• Tview (trace viewer) uses information captured during program execution to
produce graphical displays showing performance metrics over time. Use the
Tview graphs to identify when a program is running slowly.

Tview is also available in a command-line interface (CLI) version. This version is
documented in the tview(1) man page.

S–2462–20 11

Cray XMT™ Performance Tools User’s Guide

• Bprof (block profiling) uses information captured during program execution to
identify which functions are performing what amounts of work. When used with
Tview, Bprof can help you to identify the functions that consume the most time
while producing the least work.

Bprof is also available in a command-line interface (CLI) version. This version is
documented in the bprof(1) man page.

• Tprof (trace profiling) is similar to Bprof, but it displays a profile of functions
and parallel regions from traces. The Tprof report is generated when you run
Apprentice2 in the default mode. There is no command-line interface for Tprof.

• Pproc is a post-processing data conversion tool. Use the pproc command to
convert the data generated by the compiler and the application into a format that
can be displayed within Cray Apprentice2.

Alternatively, append the -pproc option to the mtarun command. When used
in this way, the pproc conversion begins automatically upon the successful
completion of program execution.

Note: The data conversion that pproc performs is required only by the GUI
versions of the performance tools. If you are using the CLI version of a tool,
data conversion is not required.

The pproc command is documented in the pproc(1) man page.

• Ap2view is a file viewing tool. Use the ap2view to view the data file created by
pproc as XML. The ap2view command is documented in the ap2view(1)
man page.

The Canal tool can be used at any time after your program has been compiled
and linked. The Tview and Bprof tools can be used only if your program has
been compiled with the correct options and after your program has been executed
successfully.

The CLI versions of Canal, Tview, and Bprof require no further file conversion after
the program has been compiled and executed and the requisite data files generated.

The ap2view command, and the GUI versions of Canal, Tview, and Bprof,
require that the data files be in .ap2 format before they can be displayed in
Cray Apprentice2. To generate .ap2 files, use the pproc command or the mtarun
-pproc option. Alternatively, you can use the -a option with the tview command
to convert just the tracing information to .ap2 format.

12 S–2462–20

Introduction [1]

1.2 Prerequisites
Use of the Cray XMT performance analysis tools is closely associated with use of
the Cray XMT compilers. You must compile and link your program with the correct
modules loaded and the correct compiler options invoked in order to generate an
executable that can capture performance analysis data.

The following sections discuss compiler, execution environment, and data conversion
considerations.

1.2.1 Module and Compiler Considerations

The Cray XMT system uses modules in the user environment to support multiple
versions of software and to create integrated software packages. Before you can use
the performance analysis tools, you must have at least the following modules loaded.

• mta-pe (Programming Environment and Performance Tools)

• xmt-tools (mtarun)

You may have other local or system-specific requirements. For a complete discussion
of the modules environment, see the Cray XMT Programming Environment User's
Guide.

The performance analysis tools work with both the Cray XMT C and C++ compilers.
To compile your program for use with the performance analysis tools, use a compiler
command similar to one of the following examples.

Note: The following examples are all C commands. The C++ commands are
identical, except that the cc command is replaced with c++.

users/smith> cc mysource.c
users/smith> cc -trace mysource.c
users/smith> cc -trace_level level mysource.c
users/smith> cc -profile mysource.c
users/smith> cc -trace -profile mysource.c
users/smith> cc -trace_level level -profile mysource.c

Compiling your program with no tracing or profiling options specified produces a
valid Canal listing, but executing the resulting program does not produce Tview or
Bprof data.

Use the compiler -trace option to prepare the program for tracing all functions
larger than 50 source lines. The -trace_level option is similar, but enables you
to specify the minimum size in source lines of the functions to be traced. Additional
tracing options are available and are described in the cc(1) man page.

Note: Programs compiled with the -trace option must be executed using the
mtarun -trace option.

Use the compiler -profile option to prepare the program for block profiling. You
may combine the trace and profile options.

S–2462–20 13

Cray XMT™ Performance Tools User’s Guide

In all cases, successful compilation and linking produces two files: a.out, which is
the actual executable, and a.out.pl, which is a program library file. At this point
you may either use Canal to examine the optimizations performed by the compiler, or
execute the program and collect tracing and/or profiling data.

To produce a compiler analysis (Canal) data file, see Data Conversion (pproc) on
page 15.

To execute the program and collect tracing (Tview) and profiling (Bprof) data, see
Section 1.2.2.

For more information about compiler options, see the Cray XMT Programming
Environment User's Guide or the cc(1) and c++(1) man pages.

1.2.2 Execution Considerations

On Cray XMT systems, all programs are executed using the mtarun command. To
capture performance analysis data, you must have the xmt-tools module loaded
before you begin program execution.

For example, to execute the program a.out, type this command:

users/smith> mtarun a.out

Upon successful completion of program execution, one or more data files are created,
depending on the tracing and profiling options you selected when you compiled and
ran the program. For example, if you use these commands to prepare the program for
both tracing and profiling, and then execute the program with tracing enabled, the
data files trace.out and profile.out are created:

users/smith> cc -trace -profile myprogram.c
users/smith> mtarun -trace a.out

By default, tracing and profiling data files are created in the execution directory.
If you prefer, you can set the MTA_TRACE_FILE or MTA_PROFILE_FILE
environment variables before execution to specify other locations for the data files.

The Cray XMT system allows for concurrent execution of programs. Users must
exercise caution when undertaking performance analysis on multiple programs
running concurrently. Because tracing and profiling options produce output files,
behavior is undefined when multiple executions attempt to write to the same file
location, resulting in data corruption. This situation can occur when multiple
executions are launched simultaneously in the same directory, or if the environment
variable to override the placement of output files is defined and executions are
launched simultaneously. To ensure the integrity of the data being collected, execute
only one program at a time from the same working directory, or when directing
output to the same MTA_TRACE_FILE or MTA_PROFILE_FILE.

For more information about executing programs on Cray XMT systems, and in
particular for information about improving performance when using output file
redirection, see the mtarun(1) man page.

14 S–2462–20

Introduction [1]

1.2.3 Data Conversion (pproc)

After you collect performance tool data, you must use the pproc utility to convert
the data to .ap2 format before you can view it in Cray Apprentice2.

Note: If you are using the command-line text-only versions of the performance
tools, it is not necessary to use data conversion.

Canal data can be converted and viewed at any time after the program is compiled. To
convert Canal data, type the following command.

users/smith> pproc a.out

Tview data can be converted and viewed only after the program completes execution
and generates a trace.out file. If Canal data exists, this command also converts
and incorporates the Canal data into the resulting .ap2 output file. To convert Tview
data, type the following command.

users/smith> pproc --mtatf=trace.out a.out

Bprof data can be converted and viewed only after the program completes execution
and generates a profile.out file. If Canal data exists, this command also converts
and incorporates the Canal data into the .ap2 output file. To convert Bprof data,
type the following command.

users/smith> pproc --mtapf=profile.out a.out

To convert all data, type this command:

users/smith> pproc --mtatf=trace.out --mtapf=profile.out a.out

In all of the above examples, pproc creates the file a.out.ap2, which you can
view with Cray Apprentice2.

Note: While the pproc utility does not support an option to specify the output file
name, you can safely rename a.out.ap2 after it has been created, provided you
keep the .ap2 suffix.

If you move files while building, installing, or executing your program, pproc
may be unable to find some information. In this case, use the pproc --spath
option to specify the directory containing the desired source files, or use the pproc
--prompt option to enter an interactive mode in which you are prompted to enter
paths for missing files.

When the trace file is large, pproc can take a long time to run, up to an hour in
some cases. Using the --verbose when running pproc from the command line
will display additional information about which stage of processing pproc is in, the
percentage of progress, and the number of descriptors and events being processed.

For more information about the pproc utility, see the pproc(1) man page, or type
pproc --help at the command line.

S–2462–20 15

Cray XMT™ Performance Tools User’s Guide

1.3 Using Cray Apprentice2
Cray Apprentice2 is an interactive X Window System GUI tool for visualizing and
manipulating performance analysis data. Cray Apprentice2 can display a wide
variety of reports and graphs, depending on the type of program being analyzed, the
computer system on which the program was run, the software tools used to capture
data, and the particular performance analysis experiments that were conducted during
program execution.

Cray Apprentice2 is a platform-independent, post-processing data exploration
tool. You do not set up and run performance analysis experiments from within
Cray Apprentice2. Rather, you use the Cray Apprentice2 GUI after a performance
analysis to examine results.

To use Cray Apprentice2 to view Cray XMT Canal, Tview, and Bprof data, you must
first use the pproc utility to convert the output files to .ap2 format, as described
in Data Conversion (pproc) on page 15. After you do so, you are ready to launch
Cray Apprentice2 and explore the data.

Note: Alternatively, CLI versions of Canal, Tview, and Bprof area also available.
If you choose to use the CLI version of a tool, data conversion is not necessary.

1.3.1 Modules

Cray Apprentice2 is included in the mta-pe module. If this module is not part of
your default environment, you must load it before you can use Cray Apprentice2.

users/smith> module load mta-pe

1.3.2 Launching the Application

Use the app2 command to launch the Cray Apprentice2 application.

users/smith> app2 &

Alternatively, you can specify the data file to load when you launch
Cray Apprentice2.

users/smith> app2 a.out.ap2 &

You can also specify the tool to use first when you launch Cray Apprentice2. For
example, to begin with the Canal report, type this command:

users/smith> app2 a.out.ap2 --tool=canal &

16 S–2462–20

Introduction [1]

Cray Apprentice2 supports other options related to loading data files. For more
information, see the app2(1) man page.

Note: Cray Apprentice2 requires that the X Window System forwarding is enabled
in order to start the graphical display. If the app2 command returns an X Window
System error message, forwarding may be disabled or set incorrectly. If this
happens, log into the Cray XMT login node, using the ssh -X option and try
again. If this does not correct the problem, contact your system administrator for
help in resolving your X Window System forwarding issues.

1.3.3 Loading Data Files

After you launch Apprentice2, the report that the tool displays differs depending
upon how you compiled your application.

If you:

• Compile with tracing and profiling—the Tview report displays.

• Compile with profiling only—the Bprof report displays.

• Compile with tracing only—the Tview report displays.

• Compile with no report options—the Canal report displays.

If you did not specify a data file on the command line, you are prompted to select a
data file to display.

S–2462–20 17

Cray XMT™ Performance Tools User’s Guide

Figure 1. Cray Apprentice2 File Selection Dialog

You can use Cray Apprentice2 to simultaneously load multiple data files. For
example, you may want to load multiple files in order to compare the results
side-by-side. For each data file loaded, Cray Apprentice2 displays the file name and
one or more icons representing the types of data included in that file.

To view a report, click on an icon. Each icon spawns a separate window containing
the selected report. The appearance and behavior of the Canal, Tview, and Bprof
reports are specific to each tool and are discussed in the following chapters.

1.3.4 Basic Navigation

Cray Apprentice2 displays a wide variety of reports, depending on the program being
studied, the type of experiment performed, and the data captured during program
execution. While the number and content of reports varies, all reports share the
general navigation features described in Table 1.

18 S–2462–20

Introduction [1]

Figure 2. Cray Apprentice2 Window

1

2

3

4

5

6

Table 1. Cray Apprentice2 Navigation Functions

Callout Description

1 The File and Help menus contain the following items described
in Table 2 and Table 3, respectively: Open, Comparison,
Screendump, Quit, About, and Main Help.

2 The Loaded File notebook is a tabbed notebook of all the
files loaded into Apprentice2. Click a tab to bring a file to
the foreground. Right-click a tab for additional report-specific
options.

3 The Available Report toolbar shows the reports that can be
displayed for the data currently selected. Hover the cursor over
an individual report icon to display the report name. To view
a report, click the icon.

S–2462–20 19

Cray XMT™ Performance Tools User’s Guide

Callout Description

4 The Open Report notebook shows the reports that have been
displayed thus far for the data file currently selected. Click a
tab to bring a report to the foreground. Right-click a tab for
additional report-specific options.

5 The main display varies depending on the report selected and
can be resized to suit your needs. However, most reports feature
pop-up tips that appear when you allow the cursor to hover
over an item, and active data elements that display additional
information in response to left or right clicks.

6 The Status and Progress bar shows the progress of loading or
plotting data.

Table 2. File Menu

Menu Option Description

Open Shows a dialog for selecting an .ap2 file that will be
loaded and added to the file notebook described below.

Comparison Compares the loaded files by adding a new Comparison
tab to the file notebook and showing the Tdiff report
for these files. This comparison can also be done by
specifying --compare on the command line when
running Apprentice2. There can only be one comparison
done at a time. If a user wants to add new files to this
comparison, they can close the Comparison tab, load the
file and re-select this menu item. The Tdiff report will
be described below.

Screendump Captures the current screen to an image. A dialog will
be shown to choose where to save the image.

Quit Exits the application.

20 S–2462–20

Introduction [1]

Figure 3. Save Screendump Dialog Window

Table 3. Help Menu

Menu Option Description

About Shows an about dialog.

Main Help Loads the help documentation into a separate tab. The
contents of this file are controlled by the environment variable
APP2_HELPFILE, which should be set properly when the
mta-pe module is loaded.

S–2462–20 21

Cray XMT™ Performance Tools User’s Guide

Figure 4. About Dialog Window

22 S–2462–20

Introduction [1]

Figure 5. Online Help Window

Loaded file notebook

This area is a tabbed notebook of all the files loaded into
Apprentice2. Generally, these are all the .ap2 files loaded, but
can also include a multifile comparison or help documentation, as
described above.

Available report toolbar

If the file selected in the loaded file notebook is an .ap2 file, this
toolbar shows all the available reports for this file. In the image
shown, going from left to right, the icons shown are for the Canal,
Tview, and Bprof reports. When a comparison is done, only the Tdiff
icon will be shown as it is the only report.

S–2462–20 23

Cray XMT™ Performance Tools User’s Guide

Open report notebook

When a report button is clicked in the above toolbar, the report is
loaded into this notebook as a separate tab. If the report is already
open, clicking on the toolbar button makes that report the frontmost
tab. All report tabs feature right-click menus, which display both
common options and additional report-specific options. For more
information about specific options see Canal Configuration and
Navigation Options on page 43, Tview Configuration and Navigation
Options on page 56, and Bprof Configuration and Navigation
Options on page 72.

Status and progress bar

The main purpose of this area is to show the progress when large
.ap2 files are loading or when the plot in the Tview report is being
recalculated.

1.3.5 Comparing Files

Selecting Comparison from the main menu creates a new Comparison file tab with
a Tdiff report.

24 S–2462–20

Introduction [1]

Figure 6. Comparison Report (Tdiff)

The Tdiff report shows a single metric for all the loaded files on the same plot.
CpuUtil is shown by default. The Tdiff report has the same menu as the Tview report
minus the Show Event Summaries and Show Trap Summaries options, which are
meaningless in the context of multiple data files.

1.3.6 Exiting from Cray Apprentice2

To exit from an individual report, close the report window.

To close an individual data file, right-click on the file name in the Cray Apprentice2
base window and then select Close from the pop-up window.

To exit from Cray Apprentice2 and close all report windows and data files, open the
base window File menu and select Quit. You are asked to confirm that you want
to exit from Cray Apprentice2.

S–2462–20 25

Cray XMT™ Performance Tools User’s Guide

26 S–2462–20

Compiler Analysis (Canal) [2]

The Canal report details the optimizations performed by the compiler. Canal reads the
source file, along with information extracted from the object file or program library,
and from this creates an annotated source code listing. This listing shows information
and remarks about the implicit parallelism recognized and exploited by the compiler,
as well as other loops that the compiler chose to execute serially because they either
lacked parallelism or could not be exploited profitably.

The Canal report is available at any time after the program has been compiled. You
do not need to execute the program in order to produce Canal report data. Instead,
depending on the compiler options you use, the remarks are saved in either a fat
object (.o) or program library (.pl) file.

The Canal report is available in two forms: a text-only command-line interface (CLI)
version, and a Cray Apprentice2 (GUI) version.

2.1 CLI Version of Canal
To use the CLI version of Canal, type the canal command, followed by the name
of the source file.

users/smith> canal myprogram.c

If there is ambiguity about the source, you are prompted to use the -pl option to
specify the program library. For example:

users/smith> canal -pl a.out.pl myprogram.c

The variable myprogram.c is the C source file for which you are creating a program
library.

Canal prints an annotated source code listing to stdout. This source listing is
divided into two sections: the first reproduces the input source with some additional
statement-level annotations at the beginning of each line, while the second provides
detailed remarks about the loops in the program and how they were optimized. A
column of vertical bar characters (|) separates the statement annotations from the
source statements, as shown in the following example.

S–2462–20 27

Cray XMT™ Performance Tools User’s Guide

Example 1. Canal CLI output

**
* Cray Compilation Report
* Source File: radix.c
* Program Library: radix.pl
* Module: radix.o
**

| unsigned* radix_sort(unsigned* array, unsigned size) {
** multiprocessor parallelization enabled (-par)
** expected to be called in a serial context
** fused mul-add allowed
** debug level: off

| for (byte = 0; byte < sizeof(unsigned); ++byte) {
| for (i = 0; i < buckets; ++i) {

2 Ss | cnt[i] = 0;
| }
|
| for (i = 0; i < size; ++i) {

5 SP:$ | cnt[MTA_BIT_PACK(~mask, src[i])]++;
| }

**
* Additional Loop Details
**

Loop 1 in radix_sort at line 28
Expecting 8 iterations

Loop 2 in radix_sort at line 21 in loop 1
Expecting 256 iterations
Loop summary: 0 loads, 1 stores, 0 floating point operations

1 instructions, needs 50 streams for full utilization
pipelined

Parallel region 3 in radix_sort in loop 1
Multiple processor implementation
Requesting at least 45 streams

Loop 4 in radix_sort in region 3
In parallel phase 1
Dynamically scheduled, variable chunks, min size = 7
Compiler generated

Loop 5 in radix_sort at line 25 in loop 4
Loop summary: 1 loads, 1 stores, 0 floating point operations

2 instructions, needs 45 streams for full utilization
pipelined

Annotated statements consist of a number followed by a sequence of characters.
The number is an identifier assigned to the innermost loop around a statement and
serves as an index into the detailed loop information in the second section of the
report. The absence of a number indicates that the compiler had no remark about
the implementation.

28 S–2462–20

Compiler Analysis (Canal) [2]

The sequence of characters describes how the compiler restructured the loop. In
nested loops, the left character corresponds to the outermost loop, the next character
corresponds to the next loop within the nest, and so on. The meanings of the various
statement annotations and additional loop details are described in GUI Version of
Canal on page 29.

For more information about canal command syntax, see the canal(1) man page.
You can also type canal without a target file name to generate a usage summary
statement.

2.2 GUI Version of Canal
Procedure 1. Using Canal

1. Compile and link your program.

users/smith> cc mysource.c

2. Use the pproc utility to generate a .ap2-format data file from the compiled
object code and program library.

users/smith> pproc a.out

3. Open the resulting .ap2-format data file in Cray Apprentice2.

users/smith> app2 --tool=canal a.out.ap2 &

The Canal report window displays.

2.2.1 Canal Window Layout

The Canal report window is divided into three main sections.

S–2462–20 29

Cray XMT™ Performance Tools User’s Guide

Figure 7. Canal View in Cray Apprentice2

1

2

3

4

5

Table 4. Canal Window Layout

Callout Description

1 The Navigation toolbar shows which source code file is currently
being viewed, along with the module and library in which that file
appears. As inlined functions may be parallelized or optimized
differently depending on where they are used, this location line also
shows the calling context as a pair of numbers. When an inlined
function is present, double clicking on it in the source listing will
cause the source view to jump to that source location. The Back
and Forward buttons are used to go back and forth to the original
and jumped to locations. For more information, see Statement-level
Annotations on page 32. This toolbar is hidden by default.

2 The Source code pane shows annotated source code. Selecting a line
will cause the annotation detail area to be updated with any further
notes regarding the selected line. If the loop browser area below
is expanded, it will be updated to show the current loop selected.

30 S–2462–20

Compiler Analysis (Canal) [2]

Callout Description

Double clicking on an inlined function will jump to the source
location and annotations for that function as described above. The
columns shown in this table are:

Line The source line number is shown every five lines.

Notes Compiler shorthand for the optimizations done on
the source (hovering the mouse over a particular
set of notes will show a tooltip defining all the
characters).

Code The source code, which will appear in blue if there
is an inlined function at that location and red if there
are traps associated with a memory allocation at that
line.

Issues The number of instructions issued at this source line,
available only if profiling was enabled.

MemRefs The number of memory references issued at this
source line, available only if profiling was enabled.

Counts The number of times this source code line was
tripped during execution, available only if profiling
was enabled.

Traps The number of traps recorded at this location,
available only if tracing was enabled (hovering the
mouse over this value will give a breakdown of the
kinds of traps that contributed to this total).

3 The Loop Browser pane is collapsed by default and shows the
hierarchy of parallel regions and loops detected and parallelized by
the compiler. Selecting a loop will cause the source listing to shift to
the line for that loop. This line is often not the same line where there
are notes, as those are usually assigned to the body of the loop and
not the entry point.

4 The Annotation Details pane is updated with further details about
compiler optimizations done for a particular source line when that
line is selected in the source listing.

5 The Search Toolbar searches in the source based on an arbitrary
string, a line number, or a loop number. When a string is entered, the
Next and Previous buttons will jump to the next or previous match
provided there are more than one. The search is case insensitive
unless that checkbox is marked. This toolbar is hidden by default.

S–2462–20 31

Cray XMT™ Performance Tools User’s Guide

2.2.2 Browse Loops

The Browse Loops window displays a hierarchical tree that lists all functions or
procedures in the file that contain loops or parallel regions. To expand an entry and
display an indented list of the loops contained within the parent loop or parallel
region, click the arrow icon. To contract an indented list, click the arrow icon again.

To jump to the area of interest in the source code listing, double-click on the item
in the Browse Loops window.

In the canal report, there are lines of code displayed in red and blue. Blue indicates
that this is an inlined function. If you double-click on the blue text, it jumps directly
to the inlined function. Red text indicates that there are traps associated with a
memory allocation at that line.

2.2.3 Statement-level Annotations

Statement-level annotations are printed in the Notes column, specific to their
context, and consist of alpha and numeric codes identifying the type of optimization
performed and the innermost loop or parallel region within which the annotated line
of code occurs. The leading number in an annotation identifies the loop or parallel
region; this number is assigned by Canal and has no correspondence to line numbers
or other identifiers in the source code.

Note: Functions that are always inlined will not be compiled, thus the source of the
function will not show any annotations. Instead, the annotations will appear at the
location where the function was inlined. Use the #pragma mta no inline
to prevent inlining of functions and force their compilation. This will cause the
annotations to appear in the function source. Be aware, however, that this will
affect performance. Also, the annotations may not necessarily match what actually
occurs when the function is inlined, as the context into which it is inline can affect
how and whether loops are parallelized.

If a loop is restructured by the compiler, the loop identifier is followed by one
alpha character for each source loop within which the statement was nested before
restructuring. If, in restructuring the code, the compiler has reordered the loop nest,
the alpha character is followed by a numeric code indicating the loop's new position
in the loop nest.

To view a tool-tip showing more information about an annotation, hover the mouse
pointer over the annotation code. To see the full annotation or comment associated
with an optimization, click on the line in the source code display.

32 S–2462–20

Compiler Analysis (Canal) [2]

The Back and Forward buttons are used to navigate inlined code. An inlined
function may be optimized differently, depending on where it is inlined, and it
appears in the Canal listing as blue text, which functions as a link. Double-click on
blue text to jump to the source file for the inlined function. After you have done so,
the Back and Forward buttons become active. Use the Back button to return to
the call site, or, when back at the call site, use the Forward button to return to the
inlined function source.

Table 5. Canal GUI Statement Annotations

Code Description

P Indicates that the loop is executed in parallel. The exact scheduling
mechanism used to implement this is described in the statement
remarks.

p Indicates that the loop is executed in parallel because of an assert
parallel directive.

I Indicates that the function has been inlined.

D Indicates that the loop is executed concurrently due to an assert
parallel directive, even though the marked statement appears
to contain a dependency that would otherwise prevent parallel
execution.

L Indicates that the loop is a linear recurrence or reduction rewritten to
be explicitly parallel using a cyclic-reduction technique.

- Indicates that the loop is executed serially due to a compiler directive
or flag.

S Indicates that the loop is executed serially and that the marked
statement inhibits parallelism.

s Indicates that the loop is executed serially because the number of
iterations in the loop is too small to warrant parallelization.

X Indicates that the loop is executed serially because it is not
structurally suitable (i.e., not an inductive loop)

U Indicates that the loop is unrolled.

? Indicates an error condition. If this occurs, please provide a test case
demonstrating this behavior to Cray support.

Basic loop annotations can be followed by a colon (:) and then an additional
character providing more information about the type of optimization performed. The
additional character indicates a place where the compiler has performed a more
complex optimization and may therefore have introduced more overhead.

S–2462–20 33

Cray XMT™ Performance Tools User’s Guide

Table 6. Canal GUI Additional Annotations

Code Description

t A triangular loop collapse was performed. Triangular loops have the
following general form:
for (i = 0; i < n; ++i) {

for (j = 0; j < a*i + b; ++j) {

A[i] = B[i][j];

}

Variables for a and b are integer expressions invariant with respect
to the i loop. This is collapsed to a single suitable loop where the
individual i and j values for an iteration are recovered directly
from the resulting loop index. The compiler generally uses block
scheduling on this loop to reduce the cost of this computation.

m A general loop collapse was performed. A general loop nest has the
following form.
for (i = 0; i < n; ++i) {

for (j = 0; j < f(i); ++j) {

...

}

}

Where f(i) is any expression involving the outer loop control
variable and values which are invariant with respect to that loop.
This loop is collapsed by first creating a temporary array t of the
following form:
t[0] = 0;

for (i = 0; i < n; ++i) {

t[i + 1] = t[i] + f(i);

}

Then the original loop nest is replaced by a single loop of the
following form:
for (k = 0; k < t[n]; ++k) {

...

}

Where the original i and j values are recovered by doing a binary
search on the array t. The compiler generally uses block scheduling
to reduce the cost of the binary search.

If n is small and f(i) is large, a general loop collapse may not be
the best solution. Instead, consider using a loop serial directive
on the inner loop to improve performance in this case.

34 S–2462–20

Compiler Analysis (Canal) [2]

Code Description

w The loop nest was wavefronted in one or more dimensions. A loop
nest is wavefronted by adding synchronization to a sequentially
executed inner loop, thereby allowing the execution of the outer
loops in the nest to be staged. Staging the outer loops allows the
outer loops to be executed in parallel by guaranteeing that no
iteration of an inner loop in one thread will begin until all iterations
on which it depends have completed, even if those iterations are
being performed by other threads. For example, consider the
following loop:
for (i = 1; i < n; ++i) {

for (j = 1; j < m; ++j) {

a[i][j] = a[i - 1][j] + a[i][j - 1];

}

}

In this example, the outer loop is parallelized while execution of the
inner loop remains serial. To do this, the compiler transforms the
code so that it is equivalent to the following loop:
forall (i = 1; i < n; ++i) {

for (j = 1; j < m; ++j) {

if (i > 1) wait(i - 1, j);

a[i][j] = a[i - 1][j] + a[i][j - 1];

if (i < n) signal(i, j);

}

}

Where forall indicates a loop done in parallel and wait(i,j)
delays execution until a corresponding signal(i,j) operation is
performed.

When n is small and m is large, wavefronting may not be the best
solution. Instead, consider using a loop serial directive on the
outer loop to improve performance by treating the loop nest as a
series of linear recurrences.

S–2462–20 35

Cray XMT™ Performance Tools User’s Guide

Code Description

e A scalar variable was expanded into a temporary variable to permit
loop distribution. For example, consider the following loop:
for (i = 0; i < n; ++i) {

t = sqrt(a[i + 1]);

a[i] = t + ...

}

In this example, the variable t might be expanded into a temporary
variable, so that the anti-dependence is preserved by distribution, as
shown in the following example:
for (i = 0; i < n; ++i) {

t[i] = sqrt(a[i + 1]);

a[i] = t[i] + ...

}

$ An associative operation was converted to an atomic form to allow
parallelization. For example, consider the following loop:
for (i = 0; i < m; ++i) {

x[idx[i]] = x[idx[i]] + f(i);

}

In this example, the fetch, add, and store of the array element
x(idx(i)) is turned into an atomic operation, which permits the
loop to be parallelized by guaranteeing that no other thread may
access the same array element until this operation completes.

Atomic updates of floating point data may produce small differences
in results. If these differences are significant to computation, use the
no recurrence directive to prevent this transformation.

2.2.4 Statement Remarks

In addition to statement-level annotations, statements may also have separate remarks.
The presence of a remark is indicated by an asterisk (*) character at the end of the
annotation.

36 S–2462–20

Compiler Analysis (Canal) [2]

The Canal listing may include the following remarks:

Function with unknown side effects: function_name

The behavior of function_name is unknown to the compiler. This
applies only to statements inside loops that are candidates for
parallelization.

Indirect function inhibits parallelism

There is an indirect function call through a pointer variable, and the
compiler has no knowledge of the function's behavior. This applies
only to statements inside loops that are candidates for parallelization.

Loop exit A secondary exit from the loop inhibits parallelization.

Loop rerolling applied

A loop rerolling transformation was applied to the loop. For
example, consider the following loop:

for (i = 0; i < 300; i += 3) {
a[i] = b[i];
a[i + 1] = b[i + 1];
a[i + 2] = b[i + 2];

}

In loop rerolling, the above loop is replaced with the following loop:

for (i = 0; i < 300; ++i) {
a[i] = b[i];

}

Program with infinite loop

The loop has no obvious exit and cannot terminate normally, This
is not necessarily an error, but such a loop cannot ordinarily be
parallelized.

S–2462–20 37

Cray XMT™ Performance Tools User’s Guide

Reduction moved out of number loops

This remark identifies a statement that performs a data reduction
inside a loop involving a single memory location. For example:

for (i = 0; i < m; ++i) {
a = a + x[i];

}

This loop performs a sum reduction of x(1:m) into the location a.
The compiler tries to change this loop so that each stream computes
a partial sum, and these partial sums are combined into a complete
sum after the loop finishes. The value of number is positive and
indicates the number of loops that the combining stage of the
reduction was moved out of.

Unreachable

The statement in the code can never be executed and thus was
removed by the compiler.

Unused or forward substituted

The statement does not affect the behavior of the program. This
remark is also used to identify definitions of variables when the
defining expression is substituted for the variable throughout the
program. This is done to eliminate unnecessary constraints on loop
restructuring.

2.2.5 Loop-level Annotations

Annotations are generated for each loop in the optimized program. Annotations are
also generated for parallel regions created by the compiler. Such parallel regions may
contain one or more loops, which may in turn be nested within another loop.

Each loop or parallel region begins with a header line that provides the unique
identifying number assigned to this loop or region, the name of the function in which
this loop occurs, and optionally the unique identifying number assigned to the loop or
region within which this loop or parallel region is nested. These unique identifying
numbers correspond to those used in the statement-level annotations, although only
the number corresponding to the innermost loop or region is used in statement-level
annotations.

Each parallel region annotation can include information on the technique used to
implement the region and the minimum number of streams per processor requested.

38 S–2462–20

Compiler Analysis (Canal) [2]

The Canal listing may include the following loop-level annotations:

block scheduled

Block scheduling was used to implement a parallel loop.

Compiler generated

Loop was created by the compiler as part of the optimization process.

Dependencies carried by: variable

Loop parallelism was inhibited by assumed inter-iteration
interactions involving variable.

dynamically scheduled

Dynamic scheduling was used to implement a parallel loop.
Iterations of the loop are assigned to individual threads one iteration
at a time.

dynamically scheduled, chunk size = n

A dynamically scheduled loop where threads schedule n iterations at
a time.

dynamically scheduled, variable chunks, min size = size

Dynamic scheduling was used to implement a parallel loop.
Iterations of the loop are assigned to individual threads in blocks
of variable numbers of iterations, beginning with large blocks and
decreasing to blocks of size iterations.

Expecting size iterations

The compiler assumed this loop executes for size number of
iterations. This assumption affects the order of loops in the final loop
nest and the choice of implementation techniques.

Expecting size iterations based on array bounds

The compiler assumed that this loop executes for size number of
iterations. The number of iterations was derived by examining the
declared bounds of arrays referenced inside the loop.

Implemented with futures

The parallel loop was implemented using threads created by the
runtime using future statements.

S–2462–20 39

Cray XMT™ Performance Tools User’s Guide

in parallel phase number

The loop was in phase number. Phases are numbered starting with 1.
There are no barriers between loops in the same phase, while there
are barriers between different phases. The number is also used to
annotate trace information available in Tview.

Initial array value cache for recurrence

A loop was created by the compiler to cache certain array values.
These values are overwritten by later stages of a recurrence.

interleave scheduled

Interleave scheduling was used to implement a parallel loop.

Loop moved from level n to level m

The order of loops in a nest has been altered by moving the current
loop from source level n to destination level m. The outermost loop
in a nest is level 1.

Loop summary: details

The details indicate the number of memory operations, floating-point
operations, and instructions executed per iteration of the loop.

Loop not pipelined: reason

An attempt was made to use the special loop scheduler for this
loop, but the attempt failed for the listed reason and the standard
instruction scheduler was used instead. Valid reasons include:

Debugging level too high

Loop scheduling is not applied for debugging levels
-g1 and -g2.

Loop too large

The loop exceeds the size threshold above which
loop scheduling is not attempted.

Not structurally OK

There are structural requirements such as control
flow or function calls that inhibit loop scheduling.

Too many condition codes

Condition codes are used to implement test
operations for comparisons. However, a large
number of condition codes inhibits loop scheduling.

40 S–2462–20

Compiler Analysis (Canal) [2]

Too many pseudo registers

Pseudo registers are internal names for values. Using
a large number of pseudo registers can exhaust the
available supply and inhibit loop scheduling.

Too many registers

The scheduler was unable to find an acceptable
schedule that fit in the available hardware registers.

Loop unrolled n times

The loop was unrolled n times, so that there are n+1 copies of the
original loop body. Unrolling is typically applied to an outer loop
when the inner loops are fused together. This transformation is
done only when the compiler expects to reduce the total number of
memory operations for the loop nest.

n instructions added to satisfy recurrence

This indicates that there is a cycle of interactions between statements
in this loop, and that the compiler was unable to schedule the loop in
the minimum number of instructions predicted from the simple set
of operations.

This recurrence may include false dependencies between memory
operations, which can be eliminated by using a no dependence
directive.

n instructions added to reduce register requirements

The compiler was unable to pack the operations of this loop into the
minimum number of instructions.

Needs number streams for full utilization

Indicates that the compiler assumes this loop will achieve full
processor utilization if the loop body is executed concurrently on
number streams per processor. This annotation may also appear
on loops that are not parallelized. In this case it indicates that the
compiler assumes full utilization would be achieved if the serial loop
was executed in a parallel context (e.g., inside another parallel loop
or in a function called from a parallel loop) with at least number
streams per processor.

Odd iterations for unrolled loop

When a loop is unrolled and the amount of the unrolling is not known
to be an exact divisor of the number of iterations of the loop, a copy
of the original loop is created to handle the small number of extra
iterations.

S–2462–20 41

Cray XMT™ Performance Tools User’s Guide

parallel region initialization

A loop was added to initialize the full-empty bits. When a
single-processor parallel region that includes a recurrence or
reduction is implemented, it needs a block of memory with the
full-empty bits set to empty.

pipelined A specialized instruction-scheduling technique was applied to the
loop to increase memory concurrency and reduce loop overhead.

private variable: var

For the variable var, a private copy was created for each stream
working on the loop. These variables may have been asserted local
or proven local by the compiler.

Recurrence control loop, chunk size = n

Implementation of a recurrence may require caching of values from
one stage to the next. In this case, each stream performs the loop in
fixed-size chunks, and there is an outer control loop that implements
the entire recurrence loop in batches of iterations. The number of
iterations per chunk is n; thus the number of iterations per batch is
n times the number of streams.

Recurrence control loop, non-iterating

The outer control loop for a recurrence performs all iterations as a
single batch and will not iterate.

Scheduled to minimize serial time

The non-loop scheduled serial loop indicated was implemented so as
to minimize time rather than instruction issues.

single processor implementation

The parallel loop or region indicated was implemented to use only a
single physical processor.

Stage n of recurrence

This indicates a particular stage of a linear recurrence computation.

Stage n of recurrence communication

This indicates a communication loop that follows a particular stage
of a recurrence.

42 S–2462–20

Compiler Analysis (Canal) [2]

Using max concurrency c

Indicates that the parallel region will use a maximum concurrency
of c because the user specified the max concurrency c
pragma on all parallel loops in this region. For single processor
parallel regions this means the parallel loops will use at most
c streams. For multiprocessor parallel regions this means at
most max(1,c/num_streams) processors will be used, where
num_streams is the number of streams the compiler requests for each
processor. For loop future parallel regions this means that at most
c futures will be created.

Using max n processors

Indicates that the parallel region will use at most n processors
because the user specified the max n processors pragma on
all parallel loops in this region.

Note: See the note in Statement-level Annotations on page 32 for information
about annotations of inlined functions.

2.2.6 Canal Configuration and Navigation Options

The Canal report provides a number of options for configuring the display and
finding information. All of these options are accessed by right-clicking on the Canal
tab in the upper-left corner of the window. When you do so, a pop-up menu displays,
offering the following options.

2.2.6.1 Select Source

After you choose Select Source from the pop-up menu, the Select Source window
displays.

Figure 8. Canal Source File Selection

S–2462–20 43

Cray XMT™ Performance Tools User’s Guide

Use this window to navigate to and select the source file you want to examine in the
Canal report. To select a file, highlight it in this window and click the OK button.

After you select a file, it is displayed in the Canal window.

2.2.6.2 Toolbars

The Canal window has two optional toolbars: Navigation and Search. By default, the
Navigation toolbar and the Search toolbar are hidden.

To show or hide a toolbar, select Toolbars from the pop-up menu, and select the
toolbar you want to show or hide.

The Search functions are hidden by default. To show the Search function, select
Search from the Toolbars menu. After you do so, the Search toolbar displays at the
bottom of the window.

To search for a text string, enter the text in the Find box and press Enter. To search
for the next or previous iteration of the same text, click the Next or Previous buttons.
To match the text string exactly, check the Match Case box.

The Search toolbar is used to find specific text, line numbers, or loops in the source
code.

To search for a specific line of code by line number, enter the line number in the Line
box and press Enter.

To search for a loop by its unique sequence number, type the number in the Loop
box and press Enter.

There is no "clear" function. Only the search mode you are using is relevant; any text
or values in the other entry fields are ignored.

The Navigation toolbar lists the files used to generate the Canal report and contains
the Loops button. This toolbar is not displayed by default and discussed in Canal
Window Layout on page 29.

2.2.6.3 Show/Hide Data

By default, the Canal report displays all information currently available.

To reduce the amount of information displayed, select Columns from the pop-up
menu, and then select the data column you want to show or hide. The columns and
their contents are described in Table 7. You cannot choose to hide the source listing.

44 S–2462–20

Compiler Analysis (Canal) [2]

Table 7. Data Columns

Column Heading Description

Line The source code line number in increments of five.

Loop The loop number and annotation codes. Hovering the
mouse pointer over the Loop column causes a pop-up tool
tip to display the meaning of the annotation code.

Issues The number of machine instructions issued. Issues and
Counts data are available only if profiling was done.

MemRefs The number of memory references.

Counts The number of times this line of code was executed.

Notes Compiler shorthand for the optimizations done on the
source. Hovering the mouse over a particular set of notes
will show a tooltip defining all the characters.

Traps The number of traps recorded at this line. Traps data is
available only if tracing was done. Traps data is important
for detecting hotspots in code. Hovering the mouse pointer
over a value in the Traps column causes a pop-up tool tip
to display the kinds and number of traps that contributed
to this number. A high number of LATENCY_LIMIT
traps may indicate a hotspot.

2.2.6.4 Change Font

To change the face, size, or style of the Canal window display font, select Change
Font from the pop-up menu. The Select Font window displays.

S–2462–20 45

Cray XMT™ Performance Tools User’s Guide

Figure 9. Canal Select Font Dialog

Use the options on this window to select the font face, style, and size used in the
Canal window. To accept your changes, click the OK button.

Note: This option affects only the Canal window. It does not affect the Tview or
Bprof windows.

2.2.6.5 Panel Actions

To manipulate the Canal report window, select Panel Actions from the pop-up
window.

Table 8. Canal GUI Panel Actions

Action Description

Detach Panel Displays the report in a new window. The original window
remains blank.

Remove Panel Closes the report window.

Freeze Panel Freezes the report as shown. Subsequent changes to other
parameters do not change the appearance of the frozen
report.

46 S–2462–20

Trace View (Tview) [3]

The Tview report uses information captured during program execution to produce
a whole-program view of performance metrics over time. When used with Bprof,
the Tview report can help you to identify the functions that consume the most of
amount of execution time while producing the least amount of work. The Tview
report is available in two forms: a text-only command-line interface (CLI) version,
and a Cray Apprentice2 (GUI) version.

The compiler -trace option enables tracing for all functions larger than 50
source lines. The -trace_level option is similar, but allows you to specify the
minimum size in source lines of the functions to be traced. Likewise, the -tracef
option allows you to specify a comma-delimited list of function names to be traced.
Additional tracing options are available and are described in the cc(1) and c++(1)
man pages.

When a function is traced, calls to the event-tracing library are placed at the function's
entry and exit points. In addition, any compiler-generated parallelism within the
function has trace-library calls placed at its fork, join, and barrier portions. Inlined
functions are never traced, regardless of the tracing level.

Because the trace file can grow very large, only the first 512 occurrences of each
individual traced event are recorded in the trace file. This limit can be increased or
decreased by calls to the runtime function mta_set_trace_limit, which is
described in the mta_set_trace_limit(3) man page.

3.1 CLI Version of Tview
The CLI version of Tview displays the trace data in one of three formats: XML,
Apprentice2, or compressed (gzip). By default the trace data is displayed as XML to
stdout.

To use the CLI version of Tview, type the tview command. Given that trace files are
typically fairly large, it is generally advisable to pipe the results to an output file or
through the more command.

users/smith> tview | more

S–2462–20 47

Cray XMT™ Performance Tools User’s Guide

The contents of the trace.out file are displayed as XML code. Alternatively, you
can create a compressed XML file by using the -z option.

users/smith> tview -z -o filename.gz

Finally, to create a file in Apprentice2 format, which you can view with the GUI
version of Tview, use the -a option.

users/smith> tview -a -o filename.ap2

Note: An .ap2 file generated using the CLI version of Tview will contain only
the Tview report. To generate .ap2 files that contain additional reports use
pproc, as described in (Data Conversion (pproc) on page 15).

For more information about the tview command syntax, see the tview(1) man
page. You can also type tview -h at the command line to generate a usage
summary.

3.2 GUI Version of Tview
To use the GUI version of Tview, do the following:

Procedure 2. Compiling and Linking for Tview

1. Compile and link your program using the trace option.

users/smith> cc -trace mysource.c

2. Execute your program using the mtarun -trace option.

users/smith> mtarun -trace a.out

Upon successful completion of program execution, mtarun generates a data
file named trace.out is generated.

3. Use the pproc utility with the --mtatf option to generate an .ap2-format
data file from the binary executable and the trace data.

users/smith> pproc --mtatf=trace.out a.out

4. Open the resulting .ap2-format data file in Cray Apprentice2, or use the
command-line interface.

users/smith> app2 a.out.ap2 &

The Tview report window displays.

3.2.1 Using Tview

The Tview report window is divided into three main sections.

48 S–2462–20

Trace View (Tview) [3]

Figure 10. Tview Window Layout

1

2

Table 9. Tview Window Layout

Callout Description

1 Summary line of trace events and traps recorded at run time.

2 Performance metric plot of metric derived during run time, plotted
against execution time.

The Summary line describes how many trace events were recorded, how many were
lost due to the throttling of the tracing system in the runtime, the number of CPUs
and the clock speed, and the number of data_blocked and float_extension
traps as recorded by the trap counters in the runtime.

S–2462–20 49

Cray XMT™ Performance Tools User’s Guide

The Performance Metric plot displays various performance metrics derived from
the hardware counters are plotted against the execution time. By default, Tview
displays a graph showing processor utilization CpuUtil against memory concurrency
MemConcur. Each of these metrics has a different unit so they are shown on two
separate y-axes. As can be seen in the screenshot, the labels for each axis shows the
units, and the scales differ accordingly. A horizontal dashed line at or near the top
of the plot shows the system limit for any metrics that have a maximum value or the
injection limit for processing references, beyond which a bottleneck will occur. These
limits are defined in Table 10.

Use the ShowMetric menu to hide or select additional metrics. If a new metric
selected has the same units as one of the metrics currently shown it is added; if not
you will need to unselect one or more of the metrics shown to free up one of the
y-axes.

The performance metric plot area is interactive. When the cursor is a crosshair (+),
you can select an area of the plot by clicking on the plot with the mouse, holding
down the button, and moving the mouse. When you release the button the plot will
zoom into this region. Repeat this action multiple times to zoom into an area of
interest. When you right-click on the plot the view will return to the previous zoom
level.

The legend in the upper right corner shows which metrics are currently shown. Each
of these titles has a small box with each line's color. When the cursor is an arrow,
clicking on one of these boxes brings up a dialog window allowing you to change
the color of the line.

3.2.2 Traced Data

The Tview graph presents information from the trace file in a graphical format to
simplify the analysis of performance data. The x-axis of the graph shows the time
in seconds relative to the start of program execution, and the y-axis shows various
performance metrics derived from the hardware counters. The availability of a second
y-axis allows Tview to show metrics with two different scales.

When the event or trap detail pane is first opened, the first event or trap in the detail
pane will be selected. A selection line appears on the plot, corresponding to the time
when the selected trap or event was recorded. This selection line has a small handle
in the middle. When the mouse pointer is over the handle and the cursor becomes
an arrow, clicking and holding down the mouse button will allow users to drag this
selection line to a previous or subsequent event. Because there is not an event for
every possible position of the selection line, it is possible to release the mouse button
somewhere between two events. In this case, the line will "snap" to the closest event.

The Event and Trap Detail pane is not visible by default, but will appear if Show
Event Summaries or Show Trap Summaries is selected from the Tview context
menu. When both are shown, there are tabs at the top of the region allowing
navigation between one detail or the other.

50 S–2462–20

Trace View (Tview) [3]

3.2.2.1 Optional Data

By default, Tview displays CpuUtil and MemConcur data. In addition, other types
of data are available. To display these values, right-click on the Tview tab in the
upper-left corner of the window, and toggle the values that you want to show or hide.

Table 10. Tview GUI Optional Data

Metric Unit Description

CpuUtil Processors Shows processor utilization based on the
instruction issue counter. The maximum value is
the number of teams used.

CpuAvail Processors Shows processor availability based on the issues
vs. issues and phantoms. The maximum value is
the number of teams used.

StrmUtil Streams Shows average stream utilization based on the
stream reservation counter. The maximum value
is the maximum number of streams multiplied
by the number of teams.

StrmReady Stream Shows streams ready to issue instructions but not
currently executing, based on the stream ready
counter.

MemRefs References Shows LOAD, STORE, INT_FETCH_ADD, and
STATE operations issued, based on the memory
reference counter. The maximum value is the
number of teams used.

MemConcur References Shows memory references issued but not
completed. Based on the concurrency counter.
The limit is the injection limit, which represents
a bottleneck for processing the references over
that limit. This limit is the number of teams
multiplied by the network limit.

FloatOps References Shows floating point operations. Based on a
programmable counter; not valid if changed.

Retries Operations Shows retried memory operations. Based on a
programmable counter; not valid if changed.

Creates Operations Shows stream create operations. Based on a
programmable counter; not valid if changed.

Traps Traps Shows traps taken. Based on a programmable
counter; not valid if changed.

S–2462–20 51

Cray XMT™ Performance Tools User’s Guide

3.2.2.2 Zooming In

By default, Tview shows data for the entire length of the program run. To zoom in
on a smaller span of time, hover the cursor over the graph until it changes to a +
character, and then left-click and drag to define a bounding box. The graph is redrawn
to show the selected time span.

To zoom out again, right-click anywhere on the graph.

Alternatively, you can use the Select Range option to enter numeric values for
the starting and ending times that define the range of data to be displayed. For
more information about the Select Range and Clear Selection options, see Tview
Configuration and Navigation Options on page 56.

3.2.2.3 Handling Large Trace Files

The APP2_SWAPFILE environment variable is set when Apprentice2 needs
to handle very large trace files. Set APP2_SWAPFILE to the root name
of some temporary files that Apprentice2 creates to help offset memory
usage on the XMT login nodes that lack swap. For example, export
APP2_SWAPFILE=/mnt/lustre/users/app2 might be a reasonable
choice for this variable. Apprentice2 then creates a couple of files with the name
/mnt/lustre/users/app2.XXXXXX where XXXXXX is replaced by some
random string. These files are cleaned up if Apprentice2 is exited properly.

3.2.3 Event and Trap Details

This pane is not visible by default, but will appear if Show Event Summaries or
Show Trap Summaries is selected from the Tview context menu. When both are
shown, there are tabs at the top of the region allowing navigation between one detail
or the other.

Events and Traps are displayed in a tabular format. Click a column heading to sort the
data by that type.

If you zoom into a particular time range on the plot in the pane above, only the events
or traps for that time range will be shown. Selecting an individual event or trap draws
a line on the plot, showing the location of that event in the timeline. The line includes
a handle, which you can use to drag the line around the plot. As the line moves, the
event selected in the Event Detail will change. Double clicking on an event or trap
will jump to that source location in the Canal report.

3.2.3.1 Event Details

The Events tab displays the timestamp, type of event, team performing the event,
and function name for every traced event within the range currently displayed on
the Tview graph. Click the expandable area below the table, labeled Filter, to filter
events by kind. To disable filtering, un-expand this area.

52 S–2462–20

Trace View (Tview) [3]

Figure 11. Tview Event Details

Table 11. Event Details

Heading Description

Time The time at which the event occurred.

Kind The kind of event: FUNCTION_ENTRY, FUNCTION_EXIT,
PAR_REGION_ENTRY, PAR_REGION_EXIT,
PAR_REGION_BARRIER, START_FUTURE, or
USER_SPECIFIED.

Proc The processor on which the event occurred.

Name The name of the event.

Streams The number of streams requested at PAR_REGION_ENTRY.

25% Done The time at which 25% of the streams in a region reached a
PAR_REGION_BARRIER or PAR_REGION_EXIT.

S–2462–20 53

Cray XMT™ Performance Tools User’s Guide

Heading Description

50% Done The time at which 50% of the streams in a region reached a
PAR_REGION_BARRIER or PAR_REGION_EXIT.

75% Done The time at which 75% of the streams in a region reached a
PAR_REGION_BARRIER or PAR_REGION_EXIT.

100% Done The time at which 100% of the streams in a region reached a
PAR_REGION_BARRIER or PAR_REGION_EXIT.

3.2.3.2 Trap Details

The Traps tab shows all the traps recorded into the trace during execution. A
checkbox below the table can be used for collating or grouping the traps by their
program counter. When collated, several of the columns will change as they are not
relevant to this summarized view.

Traps data is useful for determining the reasons for certain types of poor program
performance, such as memory hotspotting. During program execution, if the rate
of traps exceeds a certain threshold, the Cray XMT runtime generates a trace event
providing information about the range of traps that were encountered.

The number of traps listed in the detail will almost always be less than those shown
in the summary at the top. The difference is that all the traps handled by the runtime
are captured by the counters, but only those that occur at a rate exceeding a given
threshold will cause an event. This threshold is controlled by the MTA_PARAMS
environment variable.

The rate is equal to the minimum dump threshold over the frequency of even
sampling. Specify the threshold by setting MTA_PARAMS to PC_HASH n, m, l,
where n, m, l are the hash size, age threshold, and dump threshold, respectively.
Events are hashed based on pc and event type, so the hash size determines how often
the event hash will have to wait for a free row. The age threshold determines the
frequency of trap event sampling, as well as when a trap event is considered stale.
The dump threshold determines the minimum number of events that must be hashed
before an event is generated. The default values for n, m, l are 1009, 30000000,
and 5, respectively.

Note: The number of traps in the summary includes traps taken in the system
libraries. The default behavior of the app2 command is to capture all of the traps
and events that occur, whether they are in the user code or the system code. To hide
the system traps, start Apprentice2 with the --nosystem flag to run in system
mode. This flag is documented in the app2(1) man page.

54 S–2462–20

Trace View (Tview) [3]

Figure 12. Tview Trap Details

Table 12. Trap Details

Heading Description

Kind The type of trap, either DATA_BLOCKED or
FLOAT_EXTENSION.

Data Result Code The result code or subtype of DATA_BLOCKED traps.

Retry Op Code The machine operation which caused the trap, either LOAD,
STORE, or INT_FETCH_ADD.

Count The number of traps that occurred in the sample period, or
the total number when collated.

Rate The rate at which the traps occurred in the sample period.
This detail is absent when collated.

Time The time at which the trap event was recorded, which is not
necessarily the time of the trap. This detail is absent when
collated.

S–2462–20 55

Cray XMT™ Performance Tools User’s Guide

Heading Description

Destination
Register

The destination register of the memory operation for
DATA_BLOCKED traps. This detail is absent when collated.

Data Address The data address of the memory operation for
DATA_BLOCKED traps. This detail is absent when collated.

Program Counter The program counter at which the trap was taken. Typically
this is the instruction immediately after the one that caused
the trap.

Library The library in which the traps occurred. This detail is visible
when collated.

Module The module in which the traps occurred. This detail is visible
when collated.

Source The source file in which the traps occurred. This detail is
visible when collated.

Line The source line number at which the traps occurred. This
detail is visible when collated.

3.2.4 About System Library Traps

Effective with Cray XMT 2.0, Tview shows not only the traps and events that
occurred within your program, but also the traps that occurred inside system code.
Previously this information was available only when you invoked Apprentice2 with
the --system option.

3.2.5 Tview Configuration and Navigation Options

The Tview report provides a number of options for configuring the display. All of
these options are accessed by right-clicking on the Tview tab in the upper-left corner
of the window.

Table 13. Tview GUI Configuration and Navigation Options

Option Description

Select Range Opens a window that enables you to zoom-in on a
portion of the data, by selecting the beginning and ending
time-points. For more information, see Select Range on
page 57.

Clear Selection Resets the range to zero and the end of the program
execution.

56 S–2462–20

Trace View (Tview) [3]

Option Description

Show Metric Enables you to show or hide the StrmUtil,
StrmReady, MemRefs, MemConcur, FloatOps,
Traps, Retries, or Creates data. For more
information, see Optional Data on page 51.

Show Details Shows/hides tracing details. For more information, see
Event and Trap Details on page 52.

Position Legend Position the graph legend at the left edge or right edge of
the window, or hide it altogether.

Change Font Changes the font for text displayed in the window.

Panel Actions Performs the standard Cray Apprentice2 actions: detach,
remove, or freeze a panel. For more information, see
Panel Actions on page 58.

Panel Help Displays panel-specific help, if available.

3.2.5.1 Select Range

By default, Tview shows data for the entire length of the program run. To zoom-in on
a smaller span of time, use the Select Range option to enter numeric values for the
starting and ending times that define the range of data you want displayed.

Figure 13. Select Range Dialog

Alternatively, you can hover the cursor over the graph until it changes to a +
character, and then left-click and drag to define a bounding box. After you either
enter range values or draw a bounding box, the graph is redrawn to show only the
selected time span.

To undo a zoom-in, either use the Clear Selection option, or right-click anywhere
on the graph.

S–2462–20 57

Cray XMT™ Performance Tools User’s Guide

3.2.5.2 Panel Actions

To manipulate the Tview report window, select Panel Actions from the pop-up
window.

Table 14. Tview GUI Panel Actions

Action Description

Detach Panel Display the report in a new window. The original window
remains blank.

Remove Panel Close the report window.

Freeze Panel Freeze the report as shown. Subsequent changes to other
parameters do not change the appearance of the frozen
report.

3.3 Partial Tracing
If the execution of a tracing program terminates prematurely, tracing information
may still be available. If so, the trace.out file will still be produced in the same
directory as would be expected for a successfully completed execution. The data may
vary slightly, depending on the reason for the termination. In general, however, the
output of a premature termination will be the same as what would have been seen up
to that point in a full execution. For example consider this trace from a full execution
of the radixsort application.

58 S–2462–20

Trace View (Tview) [3]

Figure 14. Full Trace of radixsort Application

S–2462–20 59

Cray XMT™ Performance Tools User’s Guide

Figure 15 shows a partial trace of the same application.

Figure 15. Partial Trace of radixsort Application

By zooming in on the same segment of the program in the full trace as is shown in the
partial trace (Figure 16) we can see that the two executions show similar plots up to
88 seconds, which is when the program was terminated with a SIGINT. After that
the plot tapers off in the partial trace, but continues as expected in the full trace.

60 S–2462–20

Trace View (Tview) [3]

Figure 16. Segment of Full Trace of radixsort Application

Partial tracing is available for any execution that terminates prematurely, provided
tracing was initialized and tracing data was gathered prior to termination. However,
tracing data is gathered and stored in runtime trace buffers. Only three termination
signals will initiate flushing of these buffers to the persistent mmapped buffers that
are shared between the runtime and mtarun. Those signals are SIGINT, SIGQUIT,
and SIGTERM. All other causes of termination will leave the data in the runtime trace
buffers and output only what was already written to the trace.out file, and what
remains in the persistent mmapped buffers. It is possible to tune the frequency with
which the trace buffers are flushed to the persistent buffers, thus making the trace
buffer data more accessible. This tuning is described in Changing the Frequency of
Trace Buffer Flushing on page 62.

S–2462–20 61

Cray XMT™ Performance Tools User’s Guide

3.4 Tuning Tracing

3.4.1 Changing the Persistent Buffer Size

As described in Partial Tracing, tracing data is gathered during program execution
and stored in runtime trace buffers. Periodically these buffers are dumped to
persistent buffers, which are shared between the runtime and mtarun. The size
of the persistent buffers determines how much tracing data can be gathered before
requiring a dump of the gathered data to the trace.out file. The default size of
these buffers is 16,777,216 words (16 MB), which is also the maximum size. This
default provides the lowest overhead in writing to the trace file. Depending on the
requirements of your application, you may want to change the size of these buffers to
free up memory. To do this use the MTA_PARAM mmap_buffer_size, to specify
the desired size in words.

MTA_PARAM="mmap_buffer_size 8192"

3.4.2 Changing the Frequency of Trace Buffer Flushing

Data that is held in the runtime trace buffers is dumped periodically to the persistent
buffers. It is the data in the persistent buffers that is output upon termination of a
program. This means that if a program is terminated prematurely, there may be data
in the runtime trace buffers that was not yet dumped to the persistent buffers. To
minimize this data loss you can use the MTA_PARAM must_dump_size to reduce
the size of the trace buffer from the default size of 512 words. Again, the tradeoff
is that the runtime trace buffers will be dumped more frequently during program
execution, which can have an impact on performance.

MTA_PARAM="must_dump_size 256"

On the other hand, when an application requires a large number of streams, fewer
streams may be available for tracing. This can cause a bottleneck in tracing because
the teams have to wait for streams in order to dump their data to the persistent buffers.
If a large number of traps are being taken due to tracing at larger scales, raising the
value of must_dump_size can alleviate the bottleneck.

62 S–2462–20

Trace View (Tview) [3]

3.4.3 Resolving Tracing Failures

Tracing failures generally are caused by one of the following issues:

• When tracing fails to initialize, program execution continues without tracing. To
override this default behavior and force your program to exit if tracing fails, use
the MTA_PARAM exit_on_trace_fail

MTA_PARAM="exit_on_trace_fail"

• A trace.out file can be empty when program execution is terminated
prematurely by any signal other than SIGINT, SIGQUIT, or SIGTERM,
preventing data in the runtime trace buffers from being dumped to the persistent
buffers. If your trace file is empty, try increasing the frequency with which the
trace buffers are dumped, as described in Changing the Frequency of Trace Buffer
Flushing on page 62.

S–2462–20 63

Cray XMT™ Performance Tools User’s Guide

64 S–2462–20

Block Profiling (Bprof) [4]

The Bprof report uses information captured during program execution to provide a
function-level view of program performance. When combined with Tview, it can help
you to identify the functions that consume the greatest amount of execution time
while producing the least amount of work.

To produce the Bprof report, you must first compile the program using the compiler's
-profile option, and then execute the program using mtarun. For example:

users/smith> cc -profile myprogram.c
users/smith> mtarun a.out

The variable myprogram is the name of the source file that is being compiled. This
produces a profile data file, profile.out, which is saved in either the execution
directory or the directory specified in the MTA_PROFILE_FILE environment
variable.

Note: If the executable binary file for a program is not altered between executions,
the profile data file is updated rather than removed and rewritten each time the
program is run. This allows you to generate profile reports that reflect the typical
performance of your program over many runs, rather than the unique and perhaps
exceptional performance of a single run.

When a program is profiled, the system records the number of instructions issued
by instrumented routines during program execution, but not the amount of time
spent executing any given routine. The compiler -profile option enables block
profiling for all routines compiled and linked using the -profile flag, as well as all
routines inlined into a routine that was compiled and linked with the -profile flag.
However, any routine called by a profiled routine, but not inlined into that routine,
shows up in the Bprof output has having generated no instruction issues.

The Bprof report is available in two forms: a text-only command-line interface (CLI)
version, and a Cray Apprentice2 (GUI) version.

4.1 CLI Version of Bprof
The CLI version of Bprof displays the profile data as formatted text. To run this
version, use the bprof command. The command defaults to using a.out as the
name of the executable and profile.out as the name of the profile data file.

Given that profile data files are typically fairly large, it is generally advisable to pipe
the results to an output file or through more.

S–2462–20 65

Cray XMT™ Performance Tools User’s Guide

For example:

users/smith> bprof | more

The text report generated by bprof consists of a header followed by three sections.
The header contains a summary of total instructions issued for profiled routines, as
well as a list of various sources of program overhead.

Example 2. Bprof CLI output – header

Approximate total: 133256589 issues, profiled: 166411 issues
Approximate amount of the program that was profiled: 0.1%
Total function call overheads: 42 issues (0.0%)
Total parallel overheads: 14729 issues (8.9%)
Total profiling overheads: 11239 issues (6.8%)
Total unknown overheads: 0 issues (0.0%)

The first section of the report provides a profile of the program execution in terms
of instructions issued for each call tree branch. This section is broken down into
subsections, each of which provides information about one routine, along with its
parent and child routines. These subsections are organized within the first section
based on the number of instructions issued by the routine and all of its descendants,
and each subsection provides the following information.

Table 15. Bprof CLI Section Data

Data Tag Description

% Issues Percent of total profiled instructions issued by the routine
and all its children combined.

% MemRefs Percent of total memory references.

Self Instruction counts for the routine itself and for each
individual parent or child of the routine, in units of 100M.

Total Instruction counts for all descendents of the routine and for
the descendants of each individual parent or child of the
routine, in units of 100 M.

% Calls

Calls

For the routine, the total number of times the routine was
called; for a parent, the number of times it called the routine
out of the total number of times the routine was called; for a
child the number of times it was called by the routine out of
the total number of times it was called.

Name Name of the routine.

Parents
Children

Name of the parents and children of the routine.

Index The index number assigned to the routine in the second
section.

66 S–2462–20

Block Profiling (Bprof) [4]

Example 3. Bprof CLI output – call tree profile

Call graph:

% Calls Parents
Index % Issues Self Total Calls Name

% Calls Children

[2] 100.0 10M 166M 1 main
155M 156M 100.0 radix [1]

3 3 100.0 atoi [6]
n/a n/a 100.0 prand_int [22]
n/a n/a 25.0 malloc [8]
n/a n/a 25.0 free [14]

155M 156M 100.0 main [2]

[1] 93.8 155M 156M 1 radix
n/a n/a 75.0 malloc [8]
n/a n/a 75.0 free [14]

(example truncated for length)

The second section of the report provides a profile of the program execution in terms
of instructions issued per individual routine. This section is organized in descending
order, from greatest number of instructions issued to least. Each line provides the
following information.

Table 16. Bprof CLI Line Data

Data Tag Description

% Issues Percent of total profiled instructions issued by the
individual routine.

Cumul The total of the instructions issued by this routine and all
routines above it in this section, in units of 100M.

Self Number of instructions issued by this routine, in units of
100M.

Calls Number of times this routine was called.

Self/Call Issues that result from one call to this routine (not
counting descendants).

Total/Call Issues that result from one call to this routine (counting
descendants).

Name Name of the routine being profiled in this line followed
by an index number that provides a numbering of the
profiled routine from largest number of instructions issued
to smallest.

S–2462–20 67

Cray XMT™ Performance Tools User’s Guide

The second section looks like this example.

Example 4. Bprof CLI output – routine profile

Flat profile:

% Issues Cumul Self Calls Self/Call Total/Call Name
93.6 155M 155M 1 155M 156M radix [1]
6.2 166M 10M 1 10M 166M main [2]
0.0 166M 3 1 3 3 atoi [6]
0.0 166M n/a 4 0 0 malloc [8]
0.0 166M n/a 1 0 0 strtol [9]
0.0 166M n/a 4 0 0 free [14]
0.0 166M n/a 1 0 0 prand_int [22]

(example truncated for length)

The third section of the Bprof report provides an alphabetic listing of the routines and
their associated index number from the second section.

Example 5. Bprof CLI output – routine listing and index

Function index:

[6] atoi
[14] free
[2] main
[8] malloc

[22] prand_int
[1] radix
[9] strtol (example truncated for length)

For more information about bprof command syntax, see the bprof(1) man page.
You can also type bprof -h to generate a usage statement.

4.2 GUI Version of Bprof
To use the GUI version of Bprof, you must do the following.

Procedure 3. Using Bprof

1. Compile and link your program using the compiler -profile option.

users/smith> cc -profile mysource.c

2. Execute your program using mtarun.

users/smith> mtarun a.out

Upon successful completion of program execution, a data file named
profile.out is generated.

3. Use the pproc utility with the --mtapf option to generate an .ap2-format
data file from the binary executable and the profiling data.

users/smith> pproc --mtapf=profile.out a.out

68 S–2462–20

Block Profiling (Bprof) [4]

4. Open the resulting .ap2-format data file in Cray Apprentice2.

users/smith> app2 a.out.ap2 &

The Bprof report window displays.

4.2.1 Bprof Window Layout

The Bprof report window is divided into three main sections.

Figure 17. Block Profiling Report Window

1

2

3

S–2462–20 69

Cray XMT™ Performance Tools User’s Guide

Table 17. Description of Block Profiling Report Window

Callout Description

1 The Summary line displays a summary of the profiled routines,
including profiling and programming overhead. A variety of
configuration options are provided on a pop-up menu that displays
when you right-click on the Bprof tab in the upper-left corner of the
window. These are discussed in greater detail in Bprof Configuration
and Navigation Options on page 72.

2 The Function pane displays the functions that have been profiled,
along with all data collected about each function. This section is
discussed in more detail in Function List on page 70.

3 The Callers and Callees pane displays the names of and data about the
functions that call and are called by the selected function. This section
is discussed in more detail in Callers and Callees on page 71.

4.2.2 Function List

The Detail area makes up the majority of the Bprof display. It presents in tabular
format all of the data collected during program execution.

Note: If the executable binary file for a program is not altered between executions,
the profile data file is updated rather than removed and rewritten each time the
program is run. This allows you to generate profile reports that reflect the typical
performance of your program over many runs, rather than the unique and perhaps
exceptional performance of a single run.

Each column header is an active button. Click on the column header to sort the report
by the data in that column, and click again to toggle between sorting in ascending and
descending order.

On the Bprof report window, you can toggle between views of issues and memory
reference information. On the Bprof tab, right-click the blue arrow to display the
options menu. You can change the display between the default Issues display to the
MemRefs display.

Note: The following table describes each column displayed when you use the
Issues option. For the MemRefs option, the report displays the same type of
information, but in this context it pertains to memory references rather than issues.

70 S–2462–20

Block Profiling (Bprof) [4]

Table 18. Bprof GUI Report Data

Name Description

Function The name of the profiled function.

% Issues The percent of total profiled instructions issued by
the routine and all of its children combined.

Total Issues The total of the instructions issued by this routine
and all routines above it in the calling tree.

Issues The total number of instruction issues that the
profiled function is responsible for.

Calls The total number of calls to the profiled function.

Issues/Call The ratio of issues to calls.

Total Issues/Call The ratio of cumulative issues to calls.

To view detailed caller and callee information for a specific function, click on the
function name.

4.2.3 Callers and Callees

If you click on a function name in the Profiling Detail section of the window, more
information is displayed in the Callers and Callees section of the report window.

The Caller detail lists the functions that call the profiled function.

Note: The following table describes each column displayed when you use the
Issues option. For the MemRefs option, the report displays the same type of
information shown in the following table, but in this context it pertains to memory
references rather than issues.

Table 19. Bprof GUI Caller Detail

Name Description

Function The name of the function that called the profiled function.

% Issues The percentage of the total number of issues for which
this caller's descendants are responsible that originated
from the profiled function.

Issues The total number instructions issued by this function.

Calls The number of times that this caller called the profiled
routine.

S–2462–20 71

Cray XMT™ Performance Tools User’s Guide

The Callee detail lists the functions that were called by the profiled function.

Note: The following table describes each column displayed when you use the
Issues option. For the MemRefs option, the report displays the same type
of information shown in the following table only now it pertains to memory
references rather than issues.

Table 20. Bprof GUI Callee Detail

Name Description

Function The name of the function called by the profiled function.

% Issues The percentage of the total number of issues that this
callee and its descendants are responsible for.

Issues The total number instructions issued to this function.

Calls The number of times that this caller was called by the
profiled routine.

The Callers and Callees sections of the report window are displayed by default, but
can be hidden or shown independently of each other. To hide or show either the
Callers or Callees section, right-click on the Bprof tab in the upper-left corner of
the window, and then select the desired hide or show option from the pop-up menu
that displays.

4.2.4 Bprof Configuration and Navigation Options

The Bprof report provides a number of options for configuring the display. All of
these options are accessed by right-clicking on the Bprof tab in the upper-left corner
of the window.

Table 21. Bprof GUI Configuration and Navigation Options

Option Description

Issues/Memrefs Toggles between showing issues versus memory
references.

Hide Callers Shows/hides the Callers section of the report. For more
information, see Callers and Callees on page 71.

Hide Callees Shows/hides the Callees section of the report. For more
information, see Callers and Callees on page 71.

Panel Actions Performs the standard Cray Apprentice2 actions: detach,
remove, or freeze a panel. For more information, see
Panel Actions on page 73.

Panel Help Displays panel-specific help, if available.

72 S–2462–20

Block Profiling (Bprof) [4]

4.2.4.1 Panel Actions

To manipulate the Bprof report window, select Panel Actions from the pop-up
window.

Table 22. Bprof GUI Panel Actions

Action Description

Detach Panel Displays the report in a new window. The original window
remains blank.

Remove Panel Closes the report window.

Freeze Panel Freezes the report as shown. Subsequent changes to other
parameters do not change the appearance of the frozen
report.

S–2462–20 73

Cray XMT™ Performance Tools User’s Guide

74 S–2462–20

Trace Profiling (Tprof) [5]

The Tprof report is a simple profile of the functions and parallel regions in the code,
based on traces. This sample report shows each function entry/exit pair and each
parallel region entry/exit pair. The entry events are marked Exclusive and show
the amount of time spent in that function or region, less the time spent in any child
functions or regions. The exit events are marked Inclusive and show the time
spent in that function or region plus any time spent in any child functions or regions.

Figure 18. Tprof Report

S–2462–20 75

Cray XMT™ Performance Tools User’s Guide

The Tprof report was originally created for debugging operating system traces and is
generally not of use to the typical user. Note that the Tprof report is generated only
when Apprentice2 is running in system mode (the default).

76 S–2462–20

Glossary

barrier

In code, a barrier is used after a phase. The barrier delays the streams that were
executing parallel operations in the phase until all the streams from the phase reach
the barrier. Once all the streams reach the barrier, the streams begin work on the
next phase.

block scheduling

A method of loop scheduling used by the compiler, where contiguous blocks of
loop iterations are divided equally and assigned to available streams. For example,
if there are 100 loop iterations and 10 streams, the compiler assigns 10 contiguous
iterations to each stream. The advantages to this method are that data in registers
can be reused across adjacent iterations, and there is no overhead due to accessing a
shared iteration counter.

dynamic scheduling

In a dynamic schedule, the compiler does not bind iterations to streams at loop
startup. Instead, streams compete for each iteration using a shared counter.

fork

Occurs when processors allocate additional streams to a thread at the point where it is
creating new threads for a parallel loop operation.

inductive loop

An inductive loop is one that contains no loop-carried dependencies and has the
following characteristics: a single entrance at the top of the loop; controlled by an
induction variable; and has a single exit that is controlled by comparing the induction
variable against an invariant.

join

The point where threads that have previously forked to perform parallel operations
join back together into a single thread.

S–2462–20 77

Cray XMT™ Performance Tools User’s Guide

linear recurrence

A special type of recurrence that can be parallelized. See the Cray XMT
Programming Environment User's Guide.

phase

A set of one or more sections of code that the program may execute in parallel.
The code in a section may consist of either a parallel loop or a serial block of code.
No barriers are inserted between sections of a phase, however barriers are inserted
between different phases of a region.

recurrence

Occurs when a loop uses values computed in one iteration in subsequent iterations.
These subsequent uses of the value imply loop-carried dependences and thus usually
prevent parallelization. To increase parallelization, use linear recurrence.

reduction

A simple form of recurrence that reduces a large amount of data to a single value. It is
commonly used to find the minimum and maximum elements of a vector. Although
similar to a reduction, it is easier to parallelize and uses less memory.

region

An area in code where threads are forked in order to perform a parallel operation.
The region ends at the point where the threads join back together at the end of the
parallel operation.

78 S–2462–20

	Cray XMT Performance Tools User's Guide
	Changes to this Document
	Introduction [1]
	1.1 The Performance Tool Set
	1.2 Prerequisites
	1.2.1 Module and Compiler Considerations
	1.2.2 Execution Considerations
	1.2.3 Data Conversion (pproc)

	1.3 Using Cray Apprentice2
	1.3.1 Modules
	1.3.2 Launching the Application
	1.3.3 Loading Data Files
	1.3.4 Basic Navigation
	1.3.5 Comparing Files
	1.3.6 Exiting from Cray Apprentice2

	Compiler Analysis (Canal) [2]
	2.1 CLI Version of Canal
	2.2 GUI Version of Canal
	2.2.1 Canal Window Layout
	2.2.2 Browse Loops
	2.2.3 Statement-level Annotations
	2.2.4 Statement Remarks
	2.2.5 Loop-level Annotations
	2.2.6 Canal Configuration and Navigation Options
	2.2.6.1 Select Source
	2.2.6.2 Toolbars
	2.2.6.3 Show/Hide Data
	2.2.6.4 Change Font
	2.2.6.5 Panel Actions

	Trace View (Tview) [3]
	3.1 CLI Version of Tview
	3.2 GUI Version of Tview
	3.2.1 Using Tview
	3.2.2 Traced Data
	3.2.2.1 Optional Data
	3.2.2.2 Zooming In
	3.2.2.3 Handling Large Trace Files

	3.2.3 Event and Trap Details
	3.2.3.1 Event Details
	3.2.3.2 Trap Details

	3.2.4 About System Library Traps
	3.2.5 Tview Configuration and Navigation Options
	3.2.5.1 Select Range
	3.2.5.2 Panel Actions

	3.3 Partial Tracing
	3.4 Tuning Tracing
	3.4.1 Changing the Persistent Buffer Size
	3.4.2 Changing the Frequency of Trace Buffer Flushing
	3.4.3 Resolving Tracing Failures

	Block Profiling (Bprof) [4]
	4.1 CLI Version of Bprof
	4.2 GUI Version of Bprof
	4.2.1 Bprof Window Layout
	4.2.2 Function List
	4.2.3 Callers and Callees
	4.2.4 Bprof Configuration and Navigation Options
	4.2.4.1 Panel Actions

	Trace Profiling (Tprof) [5]
	Glossary
	List of Figures
	Figure 1. Cray Apprentice2 File Selection Dialog
	Figure 2. Cray Apprentice2 Window
	Figure 3. Save Screendump Dialog Window
	Figure 4. About Dialog Window
	Figure 5. Online Help Window
	Figure 6. Comparison Report (Tdiff)
	Figure 7. Canal View in Cray Apprentice2
	Figure 8. Canal Source File Selection
	Figure 9. Canal Select Font Dialog
	Figure 10. Tview Window Layout
	Figure 11. Tview Event Details
	Figure 12. Tview Trap Details
	Figure 13. Select Range Dialog
	Figure 14. Full Trace of radixsort Application
	Figure 15. Partial Trace of radixsort Application
	Figure 16. Segment of Full Trace of radixsort Application
	Figure 17. Block Profiling Report Window
	Figure 18. Tprof Report

	List of Examples
	Example 1. Canal CLI output
	Example 2. Bprof CLI output � header
	Example 3. Bprof CLI output � call tree profile
	Example 4. Bprof CLI output � routine profile
	Example 5. Bprof CLI output � routine listing and index

	List of Procedures
	Procedure 1. Using Canal
	Procedure 2. Compiling and Linking for Tview
	Procedure 3. Using Bprof

	List of Tables
	Table 1. Cray Apprentice2 Navigation Functions
	Table 2. File Menu
	Table 3. Help Menu
	Table 4. Canal Window Layout
	Table 5. Canal GUI Statement Annotations
	Table 6. Canal GUI Additional Annotations
	Table 7. Data Columns
	Table 8. Canal GUI Panel Actions
	Table 9. Tview Window Layout
	Table 10. Tview GUI Optional Data
	Table 11. Event Details
	Table 12. Trap Details
	Table 13. Tview GUI Configuration and Navigation Options
	Table 14. Tview GUI Panel Actions
	Table 15. Bprof CLI Section Data
	Table 16. Bprof CLI Line Data
	Table 17. Description of Block Profiling Report Window
	Table 18. Bprof GUI Report Data
	Table 19. Bprof GUI Caller Detail
	Table 20. Bprof GUI Callee Detail
	Table 21. Bprof GUI Configuration and Navigation Options
	Table 22. Bprof GUI Panel Actions

