CRANY

Cray XMT™ Performance Tools User's Guide

S-2462-20

© 2007-2011 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software” as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

BSD Licensing Notice: Copyright (c) 2008, Cray Inc. All rights reserved. Redistribution and use in source

and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, thislist of conditions and the following
disclaimer. * Redistributions in binary form must reproduce the above copyright notice, thislist of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name
Cray Inc. nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS"ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESSFOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Your use of this Cray XMT release constitutes your
acceptance of the License terms and conditions.

Cray, LibSci, and PathScale are federally registered trademarks and Active Manager, Cray Apprentice2,

Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC,
Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM,

Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2,
Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XE5m, Cray XE6, Cray XE6m, Cray XMT, Cray XR1, Cray XT,
Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5,, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort,
CRInform, ECOphlex, Gemini, Libsci, NodeKARE, RapidArray, SeaStar, SeaStar2, SeaStar2+, The Way to Better
Science, Threadstorm, and UNICOS/Ic are trademarks of Cray Inc.

Lustreis atrademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Platform is atrademark of Platform Computing Corporation. Windows is atrademark of Microsoft Corporation.
UNIX, the“X device” X Window System, and X/Open are trademarks of The Open Group in the United States and
other countries. All other trademarks are the property of their respective owners.

RECORD OF REVISION

S-2462-20 Published May 2011 Supports release 2.0 GA running on Cray XMT and Cray XMT Series compute
nodes and on Cray XT 3.1UPO2 service nodes. This release uses the System Management Workstation (SMW)
version 5.1.UP03.

S-2462-15 Published December 2010 Supports release 1.5 running on Cray XMT compute nodes and on Cray XT

service nodes running CLE 2.2.UP01. This release uses the System Management Workstation (SMW) version
4.0.UP02.

1.4 Published December 2009 Supports release 1.4 running on Cray XMT compute nodes and on Cray XT service
nodes running CLE 2.2.UPO1. Thisrelease uses the System Management Workstation (SMW) version 4.0.UPQ2.

1.3 Published March 2009 Supports release 1.3 running on Cray XMT compute nodes and on Cray XT 2.1.5HD
service nodes. This release uses the System Management Workstation (SMW) version 3.1.09.

1.2 Published August 2008 Supports general availability (GA) release 1.2 running on Cray XMT compute nodes and
on Cray XT 2.0.49 service nodes. This release uses the System Management Workstation (SMW) version 3.1.04.

1.1 Published March 2008 Supports limited availability (LA) release 1.1.01 running on Cray XMT compute nodes
and on Cray XT 2.0 service nodes.

1.0 Published August 2007 Supports Canal, Bprof, Tview, and Cray Apprentice2 version 3.2 running on Cray XMT
systems. This manual incorporates material previously published in S-2319-10, Cray MTA-2 Performance
Programming Tools Reference Manual.

Changes to this Document

Cray XMT™ Performance Tools User's Guide S-2462-20

This manual supports the 2.0 release of the Cray XM T Performance Analysis Tools.
Added information

» Support for partial tracing, which makes tracing information available even when the execution of a
tracing program terminates prematurely. See Partial Tracing on page 58.

» Added information about annotations in inlined functions in Statement-level Annotations on page 32

* New default mode for Apprentice2, which displays traps taken in system libraries, and new option
- - nosyst emto turn off this mode.

* New trace profiling report (Tprof)

Contents

Introduction [1]

1.1 The Performance Tool Set

1.2 Prerequisites
1.2.1 Module and Compiler Considerations
1.2.2 Execution Considerations
1.2.3 Data Conversion (ppr oc)

1.3 Using Cray Apprentice2
1.3.1 Modules
1.3.2 Launching the Application
1.3.3 Loading DataFiles
1.3.4 Basic Navigation
1.3.5 Comparing Files
1.3.6 Exiting from Cray Apprentice2

Compiler Analysis (Canal) [2]
2.1 CLI Version of Candl
2.2 GUI Version of Cand
2.2.1 Cana Window Layout
2.2.2 Browse Loops
2.2.3 Statement-level Annotations
2.2.4 Statement Remarks
2.2.5 Loop-level Annotations
2.2.6 Canal Configuration and Navigation Options
2.2.6.1 Select Source
2.2.6.2 Toolbars
2.2.6.3 Show/Hide Data
2.2.6.4 Change Font
2.2.6.5 Panel Actions

S-2462-20

Page

11
11
13
13
14
15
16
16
16
17
18
24
25

27
27
29
29
32
32
36

&R R &S S

46

Cray XMT™ Performance Tools User's Guide

Trace View (Tview) [3]
3.1 CLI Version of Tview
3.2 GUI Version of Tview
3.2.1Using Tview
3.2.2 Traced Data
3.2.2.1 Optional Data
3.2.2.2 Zooming In
3.2.2.3 Handling Large Trace Files
3.2.3 Event and Trap Details
3.2.3.1 Event Details
3.2.3.2 Trap Details
3.2.4 About System Library Traps
3.2.5 Tview Configuration and Navigation Options
3.2.5.1 Select Range
3.2.5.2 Panel Actions
3.3 Partial Tracing
3.4 Tuning Tracing
3.4.1 Changing the Persistent Buffer Size
3.4.2 Changing the Frequency of Trace Buffer Flushing

3.4.3 Resolving Tracing Failures

Block Profiling (Bprof) [4]
4.1 CLI Version of Bprof
4.2 GUI Version of Bprof
4.2.1 Bprof Window Layout
4.2.2 Function List
4.2.3 Calersand Callees
4.2.4 Bprof Configuration and Navigation Options
4.2.4.1 Panel Actions

Trace Profiling (Tprof) [5]
Glossary

Procedures

Procedure1. Using Candl

Procedure 2. Compiling and Linking for Tview
Procedure 3. Using Bprof

Page

47
47
48
48
50
51
52
52
52
52

56
56
57
58
58
62
62
62
63

65
65
68
69
70
71
72
73

75

77

29
48
68

S-2462-20

Contents

Page
Examples
Examplel. Canad CLlIoutput 28
Example2. Bprof CLI output —header Ce e e 66
Example3. Bprof CLI output — call tree profile Ce e 67
Example4. Bprof CLI output —routine profile Ce e 68
Example5. Bprof CLI output — routine listing and index C e e 68
Tables
Tablel. Cray Apprentice2 Navigation Functions 19
Table2. FileMenu Lo 20
Table3. HelpMenuo 21
Table4. Canal Window Layout e e 30
Table5. Cana GUI Statement Annotations Ce e 33
Table6. Cana GUI Additional Annotations 34
Table7. DataColumns 45
Table8. Canal GUI Panel Actions L. ... 46
Table9. Tview Window Layout e e 49
Table10. Tview GUI Optiona Data C e e 51
Table1ll. EventDetalls L Lo 53
Table12. TrapDetails 55
Table13. Tview GUI Configuration and Navigation Options Ce e 56
Table14. Tview GUI Panel Actions Ce e e 58
Table15. Bprof CLI SectionData 66
Table16. Bprof CLI Line Data e s 67
Table17. Description of Block Profiling Report Window C e e e 70
Table18. Bprof GUlI ReportData L. 71
Table19. Bprof GUI Cdler Detail L. 71
Table20. Bprof GUI Callee Detail C e e e 72
Table21. Bprof GUI Configuration and Navigation Options 72
Table22. Bprof GUI Panel Actions C e e 73
Figures
Figure1l. Cray Apprentice2 File Selection Dialog e e 18
Figure2. Cray Apprentice2 Window Ce e e e 19
Figure3. Save Screendump Dialog Window 21
Figure4. About Dialog Window e e e 22
Figure5. Online Help Window e e e 23
Figure 6. Comparison Report (Tdiff) C e e 25

S-2462-20 9

Cray XMT™ Performance Tools User's Guide

Page
Figure 7. Cana View in Cray Apprentice2 C e e 30
Figure8. Cana SourceFileSelection 43
Figure9. Cana Select Font Dialog Ce e e e 46
Figure10. Tview Window Layout 49
Figure11. Tview Event Details C e e 53
Figure12. Tview TrapDetails 55
Figure 13. Select Range Dialog e e e 57
Figure14. Full Traceof r adi xsort Application 59
Figure15. Partial Traceof r adi xsort Application C e 60
Figure 16. Segment of Full Trace of r adi xsort Application Ce s 61
Figure 17. Block Profiling Report Window C e 69
Figure 18. Tprof Report e e e s e 75

10 S-2462-20

Introduction [1]

This guide is for application programmers and users of Cray XMT systems.

It describes the Cray XMT performance analysis tools: Cray Apprentice2,

Canal, Tview, Tprof, and Bprof, and the associated file conversion and viewing
utilities, ppr oc and ap2vi ew. Use the information in this guide to examine the
optimizations performed by the Cray XMT C and C++ compilers during compilation
and the behavior of your program during execution.

The information provided in this guide assumes that you are aready familiar with
Cray XMT C and C++ compilers and are already able to compile, link, and execute
your program successfully. For more information about the Cray XMT programming
environment and compiler usage, see the Cray XMT Programming Environment
User's Guide. For information about debugging programs, see the Cray XMT
Debugger Reference Guide.

By default, the Cray XMT compilers produce highly optimized executable code. The
information in this guide may help you to find additional opportunities to improve
program performance.

1.1 The Performance Tool Set

S-2462-20

The Cray XMT performance analysis tool set consists of seven components.

« Cray Apprentice2 is a cross-platform data visualization tool. It provides the
graphical framework within which the GUI versions of the other performance
analysis tools operate.

e Canal (compiler analysis) uses information captured during compilation to
produce an annotated source code listing showing the optimizations performed
automatically by the compiler. Use the Canal listing to identify and correct code
that the compiler cannot optimize.

Canal isaso available in acommand-line interface (CLI1) version. Thisversionis
documented in the canal (1) man page.

« Tview (trace viewer) uses information captured during program execution to
produce graphical displays showing performance metrics over time. Use the
Tview graphsto identify when a program is running slowly.

Tview isalso available in acommand-line interface (CL1) version. Thisversionis
documented in the t vi ew(1) man page.

11

Cray XMT™ Performance Tools User's Guide

12

« Bprof (block profiling) uses information captured during program execution to
identify which functions are performing what amounts of work. When used with
Tview, Bprof can help you to identify the functions that consume the most time
while producing the least work.

Bprof is aso available in a command-lineinterface (CLI) version. Thisversionis
documented in the bpr of (1) man page.

e Tprof (trace profiling) is similar to Bprof, but it displays a profile of functions
and parallel regions from traces. The Tprof report is generated when you run
Apprentice2 in the default mode. There is no command-line interface for Tprof.

* Pprocis apost-processing data conversion tool. Use the ppr oc command to
convert the data generated by the compiler and the application into a format that
can be displayed within Cray Apprentice2.

Alternatively, append the - ppr oc option to the nt ar un command. When used
in this way, the ppr oc conversion begins automatically upon the successful
completion of program execution.

Note: The data conversion that ppr oc performsis required only by the GUI
versions of the performance tools. If you are using the CLI version of atool,
data conversion is not required.

The ppr oc command is documented in the ppr oc (1) man page.

* Ap2view isafileviewing tool. Usetheap2vi ewto view the datafile created by
pproc as XML. Theap2vi ewcommand is documented in the ap2vi ew(1)
man page.

The Canad tool can be used at any time after your program has been compiled
and linked. The Tview and Bprof tools can be used only if your program has
been compiled with the correct options and after your program has been executed
successfully.

The CLI versions of Canal, Tview, and Bprof require no further file conversion after
the program has been compiled and executed and the requisite data files generated.

The ap2vi ew command, and the GUI versions of Canal, Tview, and Bprof,
require that the data filesbein . ap2 format before they can be displayed in

Cray Apprentice2. To generate . ap?2 files, usethe ppr oc command or the nt ar un
- ppr oc option. Alternatively, you can usethe - a option with thet vi ew command
to convert just the tracing information to . ap2 format.

S-2462-20

Introduction [1]

1.2 Prerequisites

Use of the Cray XMT performance analysis tools is closely associated with use of
the Cray XMT compilers. You must compile and link your program with the correct
modules loaded and the correct compiler options invoked in order to generate an
executable that can capture performance analysis data.

The following sections discuss compiler, execution environment, and data conversion
considerations.

1.2.1 Module and Compiler Considerations

S-2462-20

The Cray XMT system uses modules in the user environment to support multiple
versions of software and to create integrated software packages. Before you can use
the performance analysis tools, you must have at least the following modules |oaded.

e m a- pe (Programming Environment and Performance Tools)
e Xxnt-tools (ntarun)

You may have other local or system-specific requirements. For a complete discussion
of the modules environment, see the Cray XMT Programming Environment User's
Guide.

The performance analysis tools work with both the Cray XMT C and C++ compilers.
To compile your program for use with the performance analysis tools, use a compiler
command similar to one of the following examples.

Note: The following examples are all C commands. The C++ commands are
identical, except that the cc command is replaced with c++.

users/smth> cc mysource. ¢

users/smth> cc -trace mysource. ¢

users/smth> cc -trace_|l evel level mysource c
users/smth> cc -profile mysource c

users/smth> cc -trace -profile mysource c
users/smth> cc -trace_|l evel level -profile mysource c

Compiling your program with no tracing or profiling options specified produces a
valid Canal listing, but executing the resulting program does not produce Tview or
Bprof data.

Use the compiler - t r ace option to prepare the program for tracing all functions
larger than 50 sourcelines. The-trace_| evel optionissimilar, but enablesyou
to specify the minimum size in source lines of the functionsto be traced. Additional
tracing options are available and are described in the cc (1) man page.

Note: Programs compiled with the - t r ace option must be executed using the
nt arun -trace option.

Use the compiler - pr of i | e option to prepare the program for block profiling. You
may combine the trace and profile options.

13

Cray XMT™ Performance Tools User's Guide

1.2.2 Execution

14

In all cases, successful compilation and linking produces two files: a. out , whichis
the actual executable, and a. out . pl , which isaprogram library file. At this point
you may either use Canal to examine the optimizations performed by the compiler, or
execute the program and collect tracing and/or profiling data.

To produce a compiler analysis (Canal) data file, see Data Conversion (ppr oc) on
page 15.

To execute the program and collect tracing (Tview) and profiling (Bprof) data, see
Section 1.2.2.

For more information about compiler options, see the Cray XMT Programming
Environment User's Guide or the cc (1) and c++(1) man pages.

Considerations

On Cray XMT systems, all programs are executed using the it ar un command. To
capture performance analysis data, you must have the xmm - t ool s module loaded
before you begin program execution.

For example, to execute the program a. out , type this command:

users/snith> ntarun a.out

Upon successful completion of program execution, one or more data files are created,
depending on the tracing and profiling options you selected when you compiled and
ran the program. For example, if you use these commands to prepare the program for
both tracing and profiling, and then execute the program with tracing enabled, the
datafilest race. out and pr ofi | e. out are created:

users/smth> cc -trace -profile myprogram. ¢
users/smith> mtarun -trace a.out

By default, tracing and profiling data files are created in the execution directory.
If you prefer, you can set the MTA_TRACE_FI LE or MTA_PROFI LE_FI LE
environment variables before execution to specify other locations for the datafiles.

The Cray XMT system allows for concurrent execution of programs. Users must
exercise caution when undertaking performance analysis on multiple programs
running concurrently. Because tracing and profiling options produce output files,
behavior is undefined when multiple executions attempt to write to the same file
location, resulting in data corruption. This situation can occur when multiple
executions are launched simultaneoudly in the same directory, or if the environment
variable to override the placement of output filesis defined and executions are
launched simultaneoudly. To ensure the integrity of the data being collected, execute
only one program at a time from the same working directory, or when directing
output to the same MTA_TRACE_FI LE or MTA_PROFI LE_FI LE.

For more information about executing programs on Cray XMT systems, and in
particular for information about improving performance when using output file
redirection, see the nt ar un(1) man page.

S-2462-20

Introduction [1]

1.2.3 Data Conversion (ppr oc)

S-2462-20

After you collect performance tool data, you must use the ppr oc utility to convert
the datato . ap2 format before you can view it in Cray Apprentice2.

Note: If you are using the command-line text-only versions of the performance
tools, it is not necessary to use data conversion.

Cana data can be converted and viewed at any time after the program is compiled. To
convert Canal data, type the following command.

users/smth> pproc a.out

Tview data can be converted and viewed only after the program completes execution
and generatesat r ace. out file. If Canal data exists, this command also converts
and incorporates the Canal data into the resulting . ap2 output file. To convert Tview
data, type the following command.

users/smth> pproc --nmtatf=trace. out a.out

Bprof data can be converted and viewed only after the program compl etes execution
and generatesapr of i | e. out file. If Canal data exists, this command also converts
and incorporates the Canal datainto the . ap2 output file. To convert Bprof data,
type the following command.

users/smth> pproc --ntapf=profile.out a.out

To convert all data, type this command:

users/smth> pproc --matf=trace.out --ntapf=profile.out a.out

In al of the above examples, ppr oc createsthefilea. out . ap2, which you can
view with Cray Apprentice2.

Note: Whilethe ppr oc utility does not support an option to specify the output file
name, you can safely rename a. out . ap?2 after it has been created, provided you
keep the . ap2 suffix.

If you move files while building, installing, or executing your program, ppr oc
may be unable to find some information. In this case, usethe ppr oc --spath
option to specify the directory containing the desired source files, or use the ppr oc
- - pronpt option to enter an interactive mode in which you are prompted to enter
paths for missing files.

When the trace file is large, ppr oc can take along time to run, up to an hour in
some cases. Using the - - ver bose when running ppr oc from the command line
will display additional information about which stage of processing ppr oc isin, the
percentage of progress, and the number of descriptors and events being processed.

For more information about the ppr oc utility, see the ppr oc(1) man page, or type
pproc --hel p atthe command line.

15

Cray XMT™ Performance Tools User's Guide

1.3 Using Cray Apprentice2

1.3.1 Modules

Cray Apprentice? is an interactive X Window System GUI tool for visualizing and
manipulating performance analysis data. Cray Apprentice2 can display awide
variety of reports and graphs, depending on the type of program being analyzed, the
computer system on which the program was run, the software tools used to capture
data, and the particular performance analysis experiments that were conducted during
program execution.

Cray Apprentice2 is a platform-independent, post-processing data exploration
tool. You do not set up and run performance analysis experiments from within
Cray Apprentice2. Rather, you use the Cray Apprentice2 GUI after a performance
analysis to examine results.

To use Cray Apprentice2 to view Cray XMT Canal, Tview, and Bprof data, you must
first use the ppr oc utility to convert the output filesto . ap2 format, as described
in Data Conversion (ppr oc) on page 15. After you do so, you are ready to launch
Cray Apprentice2 and explore the data.

Note: Alternatively, CLI versions of Canal, Tview, and Bprof area also available.
If you choose to use the CL 1 version of atool, data conversion is not necessary.

Cray Apprentice2 isincluded in the nt a- pe module. If this module is not part of
your default environment, you must load it before you can use Cray Apprentice2.

users/smth> nodul e | oad nt a- pe

1.3.2 Launching the Application

16

Use theapp2 command to launch the Cray Apprentice2 application.

users/smth> app2 &

Alternatively, you can specify the data file to load when you launch
Cray Apprentice2.

users/smth> app2 a.out.ap2 &

You can aso specify the tool to use first when you launch Cray Apprentice2. For
example, to begin with the Canal report, type this command:

users/smth> app2 a.out.ap2 --tool =canal &

S-2462-20

Introduction [1]

Cray Apprentice2 supports other options related to loading data files. For more
information, see the app2(1) man page.

Note: Cray Apprentice2 requires that the X Window System forwarding is enabled
in order to start the graphical display. If theapp2 command returns an X Window
System error message, forwarding may be disabled or set incorrectly. If this
happens, log into the Cray XMT login node, using the ssh - X option and try
again. If this does not correct the problem, contact your system administrator for
help in resolving your X Window System forwarding issues.

1.3.3 Loading Data Files

S-2462-20

After you launch Apprentice2, the report that the tool displays differs depending
upon how you compiled your application.

If you:

e Compile with tracing and profiling—the Tview report displays.
e Compile with profiling only—the Bprof report displays.

e Compile with tracing only—the Tview report displays.

e Compile with no report options—the Canal report displays.

If you did not specify a data file on the command line, you are prompted to select a
datafile to display.

17

Cray XMT™ Performance Tools User's Guide

Figure 1. Cray Apprentice2 File Selection Dialog

File selection/(on eldo12)

e

- Amplexample <

Folders
A
i

o

Documents Eﬂew Faolder

Selection: ftmp/example

i |Eiles

radixsort.x.v1.r.ap2
radixsort.x.v2.r.ap2
radixsort. x.v2.12. ap2

Eaename File rﬁ Delete File

ikl

[

]

You can use Cray Apprentice2 to simultaneously load multiple data files. For
example, you may want to load multiple files in order to compare the results
side-by-side. For each datafile loaded, Cray Apprentice2 displays the file name and
one or more icons representing the types of dataincluded in that file.

To view areport, click on an icon. Each icon spawns a separate window containing
the selected report. The appearance and behavior of the Canal, Tview, and Bprof

reports are specific to each tool and are discussed in the following chapters.

1.3.4 Basic Navigation

18

Cray Apprentice2 displays awide variety of reports, depending on the program being
studied, the type of experiment performed, and the data captured during program
execution. While the number and content of reports varies, all reports share the

general navigation features described in Table 1.

S-2462-20

Introduction [1]

Figure 2. Cray Apprentice2 Window

Eile Help
wradixsort x.v1.rl.ap2 @ | wradixsort.xv2.11.ap2 @ ¥ radixsort xv2.12.ap2 €@

2 () [2] (@

_—
w Tview ©

Traced 7415 events, dropped 0 in 246.5 seconds on 128 CPUSs running at SO0MHz, total hardware traps: 2906160 data_blocked, 1 domain_signal

128.0 289.1
Cpultil |
MemConcur Il
115.2 260.2
L e | 231.3
89.6 202.3
X
76.8 173.4 5
" S
L m
o 3
n n
5 0 64.0 144.5 §
g —_
|- >
o
i
51.2 115.6 B
38.4 ' | _\}—‘—\j—'—h 86.7
25.6 /L 57.8
12.8 W 28.9
0.0 L

B.0 24.7 49.3 74.0 98.6 123.3 147.9 172.8 197.2 221.9 2468'0
Time (Seconds)

Table 1. Cray Apprentice2 Navigation Functions

Callout Description

1 The File and Help menus contain the following items described
in Table 2 and Table 3, respectively: Open, Comparison,
Screendump, Quit, About, and Main Help.

2 The L oaded File notebook is a tabbed notebook of all the
files loaded into Apprentice2. Click atab to bring afileto
the foreground. Right-click atab for additional report-specific
options.

3 The Available Report toolbar shows the reports that can be
displayed for the data currently selected. Hover the cursor over
an individual report icon to display the report name. To view
areport, click theicon.

S-2462-20 19

Cray XMT™ Performance Tools User's Guide

Callout Description

4 The Open Report notebook shows the reports that have been
displayed thus far for the datafile currently selected. Click a
tab to bring a report to the foreground. Right-click atab for
additional report-specific options.

5 The main display varies depending on the report selected and
can be resized to suit your needs. However, most reports feature
pop-up tips that appear when you allow the cursor to hover
over an item, and active data elements that display additional
information in response to left or right clicks.

6 The Status and Progress bar shows the progress of loading or
plotting data.

Table 2. File Menu

Menu Option Description

Open Shows adialog for selecting an . ap?2 file that will be
loaded and added to the file notebook described below.

Comparison Compares the loaded files by adding a new Comparison

tab to the file notebook and showing the Tdiff report
for these files. This comparison can aso be done by
specifying - - conpar e on the command line when
running Apprentice2. There can only be one comparison
done at atime. If auser wants to add new files to this
comparison, they can close the Comparison tab, load the
file and re-select this menu item. The Tdiff report will

be described below.

Screendump Captures the current screen to an image. A dialog will
be shown to choose where to save the image.

Quit Exits the application.

20 S-2462-20

Introduction [1]

Figure 3. Save Screendump Dialog Window

% | Screendump Eilename (on eldol12) x

| tmplexample 2 |

|Folders |Eiles
A |radixsort.x.v1.11.ap2

SRR | (radixsort. x.v2.11.ap2

|radixsort. x v2.12.ap2

BiicimEnts ‘Euew Fulder| |@3ename File‘ | i Delete File‘

selection: Atmplexample
[kcreenshotooo. jpg |

‘egancel H -@QH |

Table 3. Help Menu

Menu Option Description
About Shows an about dialog.

Main Help L oads the help documentation into a separate tab. The
contents of this file are controlled by the environment variable
APP2_HELPFI LE, which should be set properly when the
nt a- pe module is loaded.

S5-2462-20 21

Cray XMT™ Performance Tools User’'s Guide

Figure 4. About Dialog Window

About (on eldo12) x

et PN

Apprentice2

4.4

buitt: 1300903342

[@]

22 5-2462-20

Introduction [1]

Eile

Figure 5. Online Help Window

T
wradixsortx.v1.r.ap2 € wradixsort xv2.1.ap2 @ | ¥radixsort xv2.12.ap2 €| ¥ Help [x]

Contents
1 Introduction

2. About XMT Data Fil¢
3 Conducting XMT Ex
3.1 Compiler Generate
32 Performance Cour
33 Instruction Count F
4. Opening Data Files
5. General Commands
6 Report Descriptions
6.1 Canal

6.1.1 Canal Annotatior
6.1.2 Additional Annot:
6.2 Tview

6.3 Bprof

S-2462-20

CRAY APPRENTICEZ - Performance Visualization

1. Introduction

Cray Apprentice2 is a platform-independent X Window System(TM) tool for visualizing performance analysis data captured during program execution. Cray Apprentice2 features
the familiar notebook-style tabbed user interface and can display a wide variety of different reports and graphs. depending on the type of program being analyzed. the computer
system on which the program was run, the software tools used to capture performance data, and the particular performance analysis experiments that were being conducted
during program execution

Cray Apprentice2 is a post-processing analysis tool. You do not set up or run performance analysis experiments from within Cray Apprentice2. Instead, use the compiler to
instrument your program and conduct performance analysis experiments. and then use Cray Apprentice2 afterwards to view and explore the resulting data files

NOTE: The number and appearance of the reports that can be generated using Cray Apprentice2 is determined solely by the kind and quantity of data captured during
program compilation and execution

At present, Cray Apprentice2 can be used to visualize the fallowing types of performance data
* Compiler feedback reports
* Hardware performance counters
* Instruction profiling tables

2. About XMT Data Files

Cray Apprentice2 uses data files which contain XML tags. The Cray Apprentice2 native file format is AP2. which is a archived and compressed form of XML

By default. the XMT runtime generates data files in a binary out format. However. if you use the mtarun -pproc option when running your program, execution of the instrumented
program will also produce data files in ap2 format. Alternately you can use the pproc command to export binary data files from _out to .ap2 format.

3. Conducting XMT Experiments
Using the XIMT compiler to conduct performance experiments and generate data files is discussed in the cc(1) man page, and at length with examples in either "Cray XMT
Performance Tools User's Guide" or the "Cray XMT Frogramming Environment User's Guide." The following procedures illustrate common ways to use the compiler to generate
data files suitable for use with Apprentice2
3.1 Compiler Generated Feedback
1. After compiling and linking the original program, use pproc to generate an _ap2 format data file containing compiler annotations
% pproc myprogram
This data file can be opened directly using Cray Apprentice2. Mo further processing or file conversion is needed.
3.2 Performance Counter Traces
1. Compile and link the original program (in this case. myprogram), using -trace to generate an instrumented version of the program
% cC -trace -0 Myprogram myprogram.c
2. Execute the instrumented program:

% mtarun -trace ./myprogram

L oaded file notebook
This area is a tabbed notebook of all the files loaded into

Apprentice2. Generally, these are all the . ap2 files loaded, but

Help

can also include a multifile comparison or help documentation, as

described above.
Available report toolbar

If the file selected in the loaded file notebook isan . ap?2 file, this

toolbar shows all the available reports for thisfile. In the image

shown, going from left to right, the icons shown are for the Canal,
Tview, and Bprof reports. When a comparison is done, only the Tdiff

icon will be shown asit is the only report.

23

Cray XMT™ Performance Tools User's Guide

Open report notebook

When areport button is clicked in the above toolbar, the report is
loaded into this notebook as a separate tab. If the report is already
open, clicking on the toolbar button makes that report the frontmost
tab. All report tabs feature right-click menus, which display both
common options and additional report-specific options. For more
information about specific options see Cana Configuration and
Navigation Options on page 43, Tview Configuration and Navigation
Options on page 56, and Bprof Configuration and Navigation
Options on page 72.

Status and progress bar

The main purpose of this areais to show the progress when large
. ap2 files are loading or when the plot in the Tview report is being
recalcul ated.

1.3.5 Comparing Files

Selecting Comparison from the main menu creates a new Comparison file tab with
a Tdiff report.

24 S-2462-20

Introduction [1]

Eile

Figure 6. Comparison Report (Tdiff)

Help

_—
wradixsort.x.vl.r.ap2 € wradixsortxv2.1.ap2 € | ¥radixsort xv2.12.ap2 € ™ Comparison <]

(ks
> Tdit @

128.0

115.2

102.4

Processors
[o}]
s
@

Y

radixsort.x.vl.rl.ap2ll
radixsort.x.v2.rl.ap2 M
radixsort.x.v2.r2.ap2

24.7

74.0 98.6 12353

Time (Seconds)

147..9 17286 1972 221.9 246.5

The Tdiff report shows a single metric for al the loaded files on the same plot.
CpuUtil is shown by default. The Tdiff report has the same menu as the Tview report
minus the Show Event Summaries and Show Trap Summaries options, which are
meaningless in the context of multiple datafiles.

1.3.6 Exiting from Cray Apprentice2

S-2462-20

To exit from an individual report, close the report window.

To close an individual datafile, right-click on the file name in the Cray Apprentice2
base window and then select Close from the pop-up window.

To exit from Cray Apprentice2 and close al report windows and data files, open the
base window File menu and select Quit. You are asked to confirm that you want
to exit from Cray Apprentice2.

25

Cray XMT™ Performance Tools User's Guide

26 S-2462-20

Compiler Analysis (Canal) [2]

The Canal report details the optimizations performed by the compiler. Canal reads the
source file, along with information extracted from the object file or program library,
and from this creates an annotated source code listing. Thislisting shows information
and remarks about the implicit parallelism recognized and exploited by the compiler,
as well as other loops that the compiler chose to execute serially because they either
lacked parallelism or could not be exploited profitably.

The Cana report is available at any time after the program has been compiled. You
do not need to execute the program in order to produce Canal report data. Instead,
depending on the compiler options you use, the remarks are saved in either afat
object (. 0) or program library (. pl) file.

The Canal report is available in two forms: atext-only command-line interface (CL1)
version, and a Cray Apprentice2 (GUI) version.

2.1 CLI Version of Canal

S-2462-20

To use the CLI version of Canal, typethe canal command, followed by the name
of the sourcefile.

users/smth> canal myprogram. c

If there is ambiguity about the source, you are prompted to use the - pl option to
specify the program library. For example:

users/sm th> canal -pl a.out.pl myprogram. c

The variable myprogram. ¢ isthe C source file for which you are creating a program
library.

Cana prints an annotated source code listing to st dout . This source listing is
divided into two sections: the first reproduces the input source with some additional
statement-level annotations at the beginning of each line, while the second provides
detailed remarks about the loops in the program and how they were optimized. A
column of vertical bar characters (|) separates the statement annotations from the
source statements, as shown in the following example.

27

Cray XMT™ Performance Tools User's Guide

Example 1. Canal CLI output

R R I b I S Rk Sk b S O R R T b O b o b ok R R R O R S R IR S S O b o S SRR S

* Cray Conpilation Report

* Source File: radi x. c
* Program Li brary: radi x. pl
* Modul e: radi x. o

R R I b S b S Rk O S R R R I kR R R o b ok bk R R R R ok S R R O ko b S b R

| unsigned* radix_sort(unsigned* array, unsigned size) {
** multiprocessor parallelization enabled (-par)
** expected to be called in a serial context
** fused nul -add al | owed
** debug level: off

for (byte = 0; byte < sizeof (unsigned); ++byte) {

I
| for (i = 0; i < buckets; ++i) {
2 Ss | cnt[i] = 0;
I }
I
| for (i =0; i <size; ++i) {
5 SP:$ | cnt [MTA_BI T_PACK(~mask, src[i])]++
I }

R I S S S O S S O O O O O

* Addi tional Loop Details

R R I b S S Rk o S R S R T b O o S R R S R S R R O S R R o R O

Loop 1in radix_sort at line 28
Expecting 8 iterations

Loop 2 inradix_sort at line 21 in loop 1
Expecting 256 iterations
Loop summary: O loads, 1 stores, O floating point operations
1 instructions, needs 50 streans for full utilization
pi pel i ned

Paral | el region 3inradix_sort inloop 1
Mul tiple processor inplenentation
Requesting at |east 45 streans

Loop 4 in radix_sort in region 3
In parallel phase 1
Dynam cal |y schedul ed, variable chunks, nin size =7
Conpi | er gener at ed

Loop 5in radix_sort at line 25 in loop 4
Loop summary: 1 loads, 1 stores, O floating point operations
2 instructions, needs 45 streans for full utilization
pi pel i ned

Annotated statements consist of a number followed by a sequence of characters.
The number is an identifier assigned to the innermost loop around a statement and
serves as an index into the detailed loop information in the second section of the
report. The absence of a number indicates that the compiler had no remark about
the implementation.

28 S-2462-20

Compiler Analysis (Canal) [2]

The sequence of characters describes how the compiler restructured the loop. In
nested |oops, the |eft character corresponds to the outermost loop, the next character
corresponds to the next loop within the nest, and so on. The meanings of the various
statement annotations and additional loop details are described in GUI Version of
Canal on page 29.

For more information about canal command syntax, seethe canal (1) man page.
You can aso type canal without atarget file name to generate a usage summary
Statement.

2.2 GUI Version of Canal

Procedure 1. Using Canal

1. Compile and link your program.

users/snith> cc mysource c

2. Usethe ppr oc utility to generate a. ap2-format datafile from the compiled
object code and program library.

users/smth> pproc a.out

3. Open theresulting . ap2-format datafilein Cray Apprentice2.

users/snith> app2 --tool =canal a.out.ap2 &

The Canal report window displays.

2.2.1 Canal Window Layout

The Canal report window is divided into three main sections.

S-2462-20 29

Cray XMT™ Performance Tools User's Guide

30

Figure 7. Canal View in Cray Apprentice2

Eile Help
wradixsort.x.v1.11.ap2 @ | wradixsort xv2.11 ap2 @ | wradixsort.x v2.12.ap2 @

T
+Tyiew €| ¥ Canal @ wBproi @

|\ad\xsort pl: radixsort-test o : radixsor-test.cpp 0 : 0

Line Notes Code Issues MemRefs Count Traps “
1L [unsigned d2 = datalr2];

75
W5y [if (dl>dz) {

// keys are out of arder

EEEE bad++;

} else if (dl==d2 && rl>=r2) {
80 // same keys, but not stable
15 P g% bad2++;
}

} i

> Loops

Details
REMARKS!
reduction moved out of 1 loop

Loop 15 in main at line 71 in loop 13
Loop summary: 19 instructions, 0 floating point operations
4 loads, 1 stores, O reloads, O spills, 3 branches, O calls

Loop 13 in main in loop 11
in parallel phase 3
dynamically scheduled, variable chunks, min size = 16
Compiler generated

Parallel Region 11 in main
multiple processor implementation
requesting at least 86 streams

Fin ‘ ‘Next fPlevmus [match case Lmel ‘ Luupl ‘

Table 4. Canal Window Layout

Callout Description

1 The Navigation toolbar shows which source code file is currently
being viewed, along with the module and library in which that file
appears. Asinlined functions may be parallelized or optimized
differently depending on where they are used, thislocation line also
shows the calling context as a pair of numbers. When an inlined
function is present, double clicking on it in the source listing will
cause the source view to jump to that source location. The Back
and Forward buttons are used to go back and forth to the original
and jumped to locations. For more information, see Statement-level
Annotations on page 32. Thistoolbar is hidden by default.

2 The Sour ce code pane shows annotated source code. Selecting aline
will cause the annotation detail areato be updated with any further
notes regarding the selected line. |f the loop browser area below
is expanded, it will be updated to show the current loop selected.

S-2462-20

Compiler Analysis (Canal) [2]

S-2462-20

Callout Description
Double clicking on an inlined function will jump to the source
location and annotations for that function as described above. The
columns shown in this table are:

Line The source line number is shown every five lines.

Notes Compiler shorthand for the optimizations done on
the source (hovering the mouse over a particular
set of notes will show atooltip defining all the
characters).

Code The source code, which will appear in blueif there
isaninlined function at that location and red if there
are traps associated with a memory allocation at that
line.

Issues The number of instructionsissued at this source line,
available only if profiling was enabled.

MemRefs The number of memory references issued at this
source line, available only if profiling was enabled.

Counts The number of times this source code line was
tripped during execution, available only if profiling
was enabled.

Traps The number of traps recorded at this location,
available only if tracing was enabled (hovering the
mouse over this value will give a breakdown of the
kinds of traps that contributed to this total).

3 The Loop Browser paneis collapsed by default and shows the
hierarchy of paralel regions and loops detected and parallelized by
the compiler. Selecting aloop will cause the source listing to shift to
the line for that loop. Thislineis often not the same line where there
are notes, as those are usually assigned to the body of the loop and
not the entry point.

4 The Annotation Details pane is updated with further details about
compiler optimizations done for a particular source line when that
lineis selected in the source listing.

5 The Search Toolbar searchesin the source based on an arbitrary

string, aline number, or aloop number. When a string is entered, the
Next and Previous buttons will jump to the next or previous match
provided there are more than one. The search is case insensitive
unless that checkbox is marked. This toolbar is hidden by default.

31

Cray XMT™ Performance Tools User's Guide

2.2.2 Browse Loops

The Browse L oops window displays a hierarchical tree that lists all functions or
procedures in the file that contain loops or parallel regions. To expand an entry and
display an indented list of the loops contained within the parent loop or parallel
region, click the arrow icon. To contract an indented list, click the arrow icon again.

To jump to the area of interest in the source code listing, double-click on the item
in the Browse L oops window.

In the canal report, there are lines of code displayed in red and blue. Blue indicates
that thisis aninlined function. If you double-click on the blue text, it jumps directly
to the inlined function. Red text indicates that there are traps associated with a
memory alocation at that line.

2.2.3 Statement-level Annotations

Statement-level annotations are printed in the Notes column, specific to their
context, and consist of apha and numeric codes identifying the type of optimization
performed and the innermost loop or parallel region within which the annotated line
of code occurs. The leading number in an annotation identifies the loop or parallel
region; this number is assigned by Canal and has no correspondence to line numbers
or other identifiers in the source code.

Note: Functionsthat are always inlined will not be compiled, thus the source of the
function will not show any annotations. Instead, the annotations will appear at the
location where the function was inlined. Usethe#pragnma nta no inline

to prevent inlining of functions and force their compilation. This will cause the
annotations to appear in the function source. Be aware, however, that this will
affect performance. Also, the annotations may not necessarily match what actually
occurs when the function isinlined, as the context into which it isinline can affect
how and whether loops are parallelized.

If aloop is restructured by the compiler, the loop identifier is followed by one
alpha character for each source loop within which the statement was nested before
restructuring. If, in restructuring the code, the compiler has reordered the loop nest,
the apha character is followed by a numeric code indicating the loop's new position
in the loop nest.

To view atool-tip showing more information about an annotation, hover the mouse
pointer over the annotation code. To see the full annotation or comment associated
with an optimization, click on the line in the source code display.

32 S-2462-20

Compiler Analysis (Canal) [2]

S-2462-20

The Back and Forward buttons are used to navigate inlined code. An inlined
function may be optimized differently, depending on where it isinlined, and it
appears in the Canal listing as blue text, which functions as alink. Double-click on
blue text to jump to the source file for the inlined function. After you have done so,
the Back and Forwar d buttons become active. Use the Back button to return to
the call site, or, when back at the call site, use the Forward button to return to the
inlined function source.

Table 5. Canal GUI Statement Annotations

Code

Description

P

Indicates that the loop is executed in parallel. The exact scheduling
mechanism used to implement this is described in the statement
remarks.

Indicates that the loop is executed in parallel because of anassert
paral | el directive.

Indicates that the function has been inlined.

Indicates that the loop is executed concurrently dueto an asser t
par al | el directive, even though the marked statement appears
to contain a dependency that would otherwise prevent parallel
execution.

Indicates that the loop is alinear recurrence or reduction rewritten to
be explicitly paralel using a cyclic-reduction technique.

Indicates that the loop is executed serially due to a compiler directive
or flag.

Indicates that the loop is executed serialy and that the marked
statement inhibits parallelism.

Indicates that the loop is executed serially because the number of
iterations in the loop is too small to warrant parallelization.

Indicates that the loop is executed serially because it is not
structurally suitable (i.e., not an inductive loop)

Indicates that the loop is unrolled.

Indicates an error condition. If this occurs, please provide atest case
demonstrating this behavior to Cray support.

Basic loop annotations can be followed by a colon (:) and then an additional
character providing more information about the type of optimization performed. The
additional character indicates a place where the compiler has performed a more
complex optimization and may therefore have introduced more overhead.

33

Cray XMT™ Performance Tools User's Guide

34

Table 6. Canal GUI Additional Annotations

Code

Description

t

A triangular loop collapse was performed. Triangular loops have the
following general form:
for (i =0; i <n; ++i) {
for (j =0; j <a*i +b; ++) {
ALl = Bli][jl];
}

Variables for a and b are integer expressions invariant with respect
tothei loop. Thisis collapsed to a single suitable loop where the
individual i andj valuesfor an iteration are recovered directly
from the resulting loop index. The compiler generally uses block
scheduling on this loop to reduce the cost of this computation.

A general loop collapse was performed. A general loop nest has the
following form.
for (i =0; i <n; ++) {

for (j =0; j <f(i); ++) {

}
}

Wheref (i) isany expression involving the outer loop control
variable and values which are invariant with respect to that loop.
Thisloop is collapsed by first creating atemporary array t of the
following form:
t[0] = O;
for (i =0; i <n; ++i) {

tli + 1] = t[i] + f(i);
}

Then the original loop nest is replaced by a single loop of the
following form:
for (k =0; k <t[n]; ++k) {

}

Wheretheoriginal i andj values are recovered by doing a binary
search onthe array t . The compiler generally uses block scheduling
to reduce the cost of the binary search.

If nissmall andf (i) islarge, ageneral loop collapse may not be
the best solution. Instead, consider usingal oop seri al directive
on the inner loop to improve performance in this case.

S-2462-20

Compiler Analysis (Canal) [2]

Code Description

w The loop nest was wavefronted in one or more dimensions. A loop
nest is wavefronted by adding synchronization to a sequentially
executed inner loop, thereby allowing the execution of the outer
loops in the nest to be staged. Staging the outer loops allows the
outer loops to be executed in parallel by guaranteeing that no
iteration of an inner loop in one thread will begin until al iterations
on which it depends have completed, even if those iterations are
being performed by other threads. For example, consider the
following loop:

for (i =1; i <n; ++i) {
for (j =1; j <m ++) {
afillj] =a[i - 11[j] + a[il[ji - 1I;

}
}

In this example, the outer loop is parallelized while execution of the
inner loop remains serial. To do this, the compiler transforms the
code so that it is equivalent to the following loop:
forall (i =1; i <n; ++i) {
for (j =1; j <m ++) {
if (i >21) wait(i - 1, j);
ali]li] =ali - 11[j] + a[i]l[j - 1];
if (i <n) signal (i, j);
}
}

Wheref or al | indicates aloop donein paralel andwai t (i,)
delays execution until a corresponding si gnal (i,) operationis
performed.

When n is small and mis large, wavefronting may not be the best
solution. Instead, consider using al oop seri al directive on the
outer loop to improve performance by treating the loop nest as a
series of linear recurrences.

S-2462-20 35

Cray XMT™ Performance Tools User's Guide

2.2.4 Statement Remarks

36

Code

Description

A scalar variable was expanded into atemporary variable to permit
loop distribution. For example, consider the following loop:
for (i =0; i <n; ++i) {

t = sqgrt(ali + 1]);

a[i] =t + ...

}

In this example, the variablet might be expanded into a temporary
variable, so that the anti-dependence is preserved by distribution, as
shown in the following example:
for (i =0; i <n; ++) {

t[i] sqrt(a[i + 1]);

ali] t[i] + ...
}

An associative operation was converted to an atomic form to alow
paralelization. For example, consider the following loop:
for (i =0; i <m ++i) {
x[idx[i]] = x[idx[i]] + f(i);
}

In this example, the fetch, add, and store of the array element
x(idx(i)) isturnedinto an atomic operation, which permits the
loop to be parallelized by guaranteeing that no other thread may
access the same array element until this operation completes.

Atomic updates of floating point data may produce small differences
in results. If these differences are significant to computation, use the
no recurrence directive to prevent this transformation.

In addition to statement-level annotations, statements may also have separate remarks.
The presence of aremark isindicated by an asterisk (*) character at the end of the

annotation.

S-2462-20

Compiler Analysis (Canal) [2]

S-2462-20

The Cand listing may include the following remarks:
Function with unknown side effects: function name

The behavior of function_name is unknown to the compiler. This
applies only to statements inside loops that are candidates for
paralelization.

Indirect function inhibits parallelism

Thereis an indirect function call through a pointer variable, and the
compiler has no knowledge of the function's behavior. This applies
only to statements inside |oops that are candidates for parallelization.

Loop exit A secondary exit from the loop inhibits parallelization.
Loop rerolling applied

A loop rerolling transformation was applied to the loop. For
example, consider the following loop:

for (i =0; i <300; i +=3) {

a[i] = b[i];
a[i + 1] = b[i + 1];
a[i + 2] =Db[i + 2];

}

In loop rerolling, the above loop is replaced with the following loop:
for (i

ali]
}

Programwith infinite | oop

0; i < 300; ++i) {
b[i];

The loop has no obvious exit and cannot terminate normally, This
is not necessarily an error, but such aloop cannot ordinarily be
paralelized.

37

Cray XMT™ Performance Tools User's Guide

Reduction noved out of number | oops

This remark identifies a statement that performs a data reduction
inside aloop involving a single memory location. For example:
for (i =0; i <m ++) {

a=a+x[i];

}

This loop performs a sum reduction of x(1: m) into the location a.
The compiler tries to change this loop so that each stream computes
apartial sum, and these partial sums are combined into a complete
sum after the loop finishes. The value of nunber is positive and
indicates the number of loops that the combining stage of the
reduction was moved out of.

Unr eachabl e

The statement in the code can never be executed and thus was
removed by the compiler.

Unused or forward substituted

The statement does not affect the behavior of the program. This
remark is also used to identify definitions of variables when the
defining expression is substituted for the variable throughout the
program. Thisis done to eliminate unnecessary constraints on loop
restructuring.

2.2.5 Loop-level Annotations

38

Annotations are generated for each loop in the optimized program. Annotations are
also generated for parallel regions created by the compiler. Such parallel regions may
contain one or more loops, which may in turn be nested within another loop.

Each loop or parallel region begins with a header line that provides the unique
identifying number assigned to this loop or region, the name of the function in which
this loop occurs, and optionally the unique identifying number assigned to the loop or
region within which this loop or parallel region is nested. These unique identifying
numbers correspond to those used in the statement-level annotations, although only
the number corresponding to the innermost loop or region is used in statement-level

annotations.

Each parallel region annotation can include information on the technique used to
implement the region and the minimum number of streams per processor requested.

S-2462-20

Compiler Analysis (Canal) [2]

S-2462-20

The Cand listing may include the following loop-level annotations:
bl ock schedul ed
Block scheduling was used to implement a parallel loop.
Conpi | er gener at ed
Loop was created by the compiler as part of the optimization process.
Dependenci es carried by: variable

Loop paralelism was inhibited by assumed inter-iteration
interactions involving variable.

dynami cal | y schedul ed

Dynamic scheduling was used to implement a parallel loop.
Iterations of the loop are assigned to individual threads one iteration
at atime.

dynami cal |y schedul ed, chunk size = n

A dynamically scheduled loop where threads schedule n iterations at
atime.

dynami cal |y schedul ed, variable chunks, nmin size = size

Dynamic scheduling was used to implement a parallel loop.
Iterations of the loop are assigned to individual threads in blocks
of variable numbers of iterations, beginning with large blocks and
decreasing to blocks of size iterations.

Expecting size iterations

The compiler assumed this loop executes for size number of
iterations. This assumption affects the order of loopsin the final loop
nest and the choice of implementation techniques.

Expecting size iterations based on array bounds

The compiler assumed that this loop executes for size number of
iterations. The number of iterations was derived by examining the
declared bounds of arrays referenced inside the loop.

| mpl enented with futures

The paralel loop was implemented using threads created by the
runtime using f ut ur e statements.

39

Cray XMT™ Performance Tools User's Guide

in parallel phase number

The loop was in phase number. Phases are numbered starting with 1.
There are no barriers between loops in the same phase, while there
are barriers between different phases. The number is aso used to
annotate trace information available in Tview.

Initial array val ue cache for recurrence

A loop was created by the compiler to cache certain array values.
These values are overwritten by later stages of a recurrence.

interl eave schedul ed
Interleave scheduling was used to implement a parallel 1oop.
Loop noved fromlevel nto level m

The order of loops in a nest has been atered by moving the current
loop from source level n to destination level m. The outermost loop
inanestislevel 1.

Loop sunmmary: details

The details indicate the number of memory operations, floating-point
operations, and instructions executed per iteration of the loop.

Loop not pipelined: reason

An attempt was made to use the special loop scheduler for this
loop, but the attempt failed for the listed reason and the standard
instruction scheduler was used instead. Valid reasons include:

Debuggi ng | evel too high

Loop scheduling is not applied for debugging levels
-gl and-g2.

Loop too | arge

The loop exceeds the size threshold above which
loop scheduling is not attempted.

Not structurally K

There are structural requirements such as control
flow or function calls that inhibit loop scheduling.

Too many condition codes

Condition codes are used to implement test
operations for comparisons. However, alarge
number of condition codes inhibits loop scheduling.

40 S-2462-20

Compiler Analysis (Canal) [2]

S-2462-20

Loop unroll
ninstructi
ninstructi

Too many pseudo registers

Pseudo registers are internal names for values. Using
alarge number of pseudo registers can exhaust the
available supply and inhibit loop scheduling.

Too many registers

The scheduler was unable to find an acceptable
schedule that fit in the available hardware registers.

ed ntines

The loop was unrolled n times, so that there are n+1 copies of the
original loop body. Unrolling istypically applied to an outer loop
when the inner loops are fused together. This transformation is
done only when the compiler expects to reduce the total number of
memory operations for the loop nest.

ons added to satisfy recurrence

Thisindicates that there is a cycle of interactions between statements
in this loop, and that the compiler was unable to schedule the loop in
the minimum number of instructions predicted from the simple set
of operations.

This recurrence may include fal se dependencies between memory
operations, which can be eliminated by usingano dependence
directive.

ons added to reduce register requirenents

The compiler was unable to pack the operations of thisloop into the
minimum number of instructions.

Needs number streams for full utilization

Odd iterati

Indicates that the compiler assumes this loop will achieve full
processor utilization if the loop body is executed concurrently on
number streams per processor. This annotation may also appear

on loops that are not parallelized. In this case it indicates that the
compiler assumes full utilization would be achieved if the serial loop
was executed in a parallel context (e.g., inside another parallel loop
or in afunction called from a parallel loop) with at least number
streams per processor.

ons for unrolled | oop

When aloop is unrolled and the amount of the unrolling is not known
to be an exact divisor of the number of iterations of the loop, a copy
of the original loop is created to handle the small number of extra
iterations.

41

Cray XMT™ Performance Tools User's Guide

42

parallel region initialization

pi pel i ned

A loop was added to initialize the full-empty bits. When a
single-processor paralel region that includes a recurrence or
reduction is implemented, it needs a block of memory with the
full-empty bits set to empty.

A speciaized instruction-scheduling technique was applied to the
loop to increase memory concurrency and reduce loop overhead.

private variable: var

Recurrence

Recurrence

For the variable var, a private copy was created for each stream
working on the loop. These variables may have been asserted local
or proven loca by the compiler.

control |oop, chunk size =n

Implementation of arecurrence may reguire caching of values from
one stage to the next. In this case, each stream performs the loop in
fixed-size chunks, and there is an outer control loop that implements
the entire recurrence loop in batches of iterations. The number of
iterations per chunk is n; thus the number of iterations per batch is

n times the number of streams.

control |oop, non-iterating

The outer control loop for arecurrence performs al iterations as a
single batch and will not iterate.

Scheduled to mnimze serial tine

The non-loop scheduled serial loop indicated was implemented so as
to minimize time rather than instruction issues.

singl e processor inplenmentation

St age n of

St age n of

The parallel loop or region indicated was implemented to use only a
single physical processor.

recurrence
Thisindicates a particular stage of alinear recurrence computation.
recurrence conmmuni cation

This indicates a communication loop that follows a particular stage
of arecurrence.

S-2462-20

Compiler Analysis (Canal) [2]

Usi ng max concurrency c

Indicates that the parallel region will use a maximum concurrency

of ¢ because the user specified the max concurrency c
pragmaon all parallel loops in this region. For single processor
parallel regions this means the parallel loops will use at most

¢ streams. For multiprocessor parallel regions this means at

most max(1, ¢/num_streams) processors will be used, where
num_streams is the number of streams the compiler requests for each
processor. For loop future parallel regions this means that at most

c futures will be created.

Usi ng max n processors

Indicates that the parallel region will use at most n processors
because the user specifiedthemax n processor s pragmaon
al paralel loopsin this region.

Note: See the note in Statement-level Annotations on page 32 for information
about annotations of inlined functions.

2.2.6 Canal Configuration and Navigation Options

The Canal report provides a number of options for configuring the display and
finding information. All of these options are accessed by right-clicking on the Canal
tab in the upper-left corner of the window. When you do so, a pop-up menu displays,
offering the following options.

2.2.6.1 Select Source

After you choose Select Sour ce from the pop-up menu, the Select Sour ce window
displays.

Figure 8. Canal Source File Selection

(on eldo12)

Lnable to locate radixsor-test.cpp

‘ egancel ‘ Ig“‘a,Eind

S-2462-20 43

Cray XMT™ Performance Tools User's Guide

2.2.6.2 Toolbars

Use thiswindow to navigate to and select the source file you want to examine in the
Canadl report. To select afile, highlight it in this window and click the OK button.

After you select afile, it is displayed in the Canal window.

The Canal window has two optional toolbars: Navigation and Search. By default, the
Navigation toolbar and the Search toolbar are hidden.

To show or hide atoolbar, select Toolbar s from the pop-up menu, and select the
toolbar you want to show or hide.

The Search functions are hidden by default. To show the Search function, select
Sear ch from the Toolbars menu. After you do so, the Search toolbar displays at the
bottom of the window.

To search for atext string, enter the text in the Find box and press Ent er . To search
for the next or previous iteration of the sametext, click the Next or Previous buttons.
To match the text string exactly, check the M atch Case box.

The Search toolbar is used to find specific text, line numbers, or loops in the source
code.

To search for a specific line of code by line number, enter the line number in the Line
box and press Ent er .

To search for aloop by its unique sequence number, type the number in the L oop
box and press Ent er .

Thereisno "clear" function. Only the search mode you are using is relevant; any text
or values in the other entry fields are ignored.

The Navigation toolbar lists the files used to generate the Canal report and contains
the L oops button. This toolbar is not displayed by default and discussed in Canal
Window Layout on page 29.

2.2.6.3 Show/Hide Data

44

By default, the Canal report displays all information currently available.

To reduce the amount of information displayed, select Columns from the pop-up
menu, and then select the data column you want to show or hide. The columns and
their contents are described in Table 7. You cannot choose to hide the source listing.

S-2462-20

Compiler Analysis (Canal) [2]

Table 7. Data Columns

Column Heading

Description

Li ne

Loop

| ssues

MenRef s
Count s
Not es

Tr aps

The source code line number in increments of five,

The loop number and annotation codes. Hovering the
mouse pointer over the Loop column causes a pop-up tool
tip to display the meaning of the annotation code.

The number of machine instructions issued. Issues and
Counts data are available only if profiling was done.

The number of memory references.
The number of times this line of code was executed.

Compiler shorthand for the optimizations done on the
source. Hovering the mouse over a particular set of notes
will show atooltip defining all the characters.

The number of traps recorded at thisline. Traps datais
available only if tracing was done. Traps data isimportant
for detecting hotspots in code. Hovering the mouse pointer
over avalue in the Traps column causes a pop-up tool tip
to display the kinds and number of traps that contributed
to this number. A high number of LATENCY _LIM T
traps may indicate a hotspot.

2.2.6.4 Change Font

S-2462-20

To change the face, size, or style of the Canal window display font, select Change
Font from the pop-up menu. The Select Font window displays.

45

Cray XMT™ Performance Tools User’'s Guide

Figure 9. Canal Select Font Dialog

[« | Select Font (on eldo12) x
Eamily: Style: Size:
FAICTG. et 7= 7
F’ g 2]
Misc Fixed . =
[talic [~]
Misc Fixed Wide 10

Bold
Monospace
T ul| |

Monotype Sorts

MUTT Clearlyl) Alternate Gly |
RALITT T laarkegd | P11LA IE‘ 14
(< B & ~
Freview:

abcdefghijk ABCDEFGHIJK ‘

|°gancel H ok |

Use the options on this window to select the font face, style, and size used in the
Canal window. To accept your changes, click the OK button.

Note: This option affects only the Canal window. It does not affect the Tview or
Bprof windows.

2.2.6.5 Panel Actions

To manipulate the Canal report window, select Panel Actions from the pop-up
window.

Table 8. Canal GUI Panel Actions

Action Description

Detach Panel Displaysthe report in a new window. The original window
remains blank.

Remove Panel Closes the report window.

Freeze Panel Freezes the report as shown. Subsequent changes to other
parameters do not change the appearance of the frozen
report.

46 5-2462-20

Trace View (Tview) [3]

The Tview report uses information captured during program execution to produce
awhole-program view of performance metrics over time. When used with Bprof,
the Tview report can help you to identify the functions that consume the most of
amount of execution time while producing the least amount of work. The Tview
report is available in two forms: atext-only command-line interface (CLI) version,
and a Cray Apprentice2 (GUI) version.

The compiler -t r ace option enables tracing for al functions larger than 50
sourcelines. The-trace_| evel optionissimilar, but allows you to specify the
minimum size in source lines of the functions to be traced. Likewise, the-t r acef
option alows you to specify a comma-delimited list of function names to be traced.
Additional tracing options are available and are described in the cc (1) and c++(1)
man pages.

When afunction istraced, calls to the event-tracing library are placed at the function's
entry and exit points. In addition, any compiler-generated parallelism within the
function has trace-library calls placed at its fork, join, and barrier portions. Inlined
functions are never traced, regardless of the tracing level.

Because thet r ace file can grow very large, only the first 512 occurrences of each
individual traced event are recorded in the trace file. Thislimit can be increased or
decreased by callsto the runtime function it a_set _trace_li m t,whichis
described inthenmt a_set _trace_| i m t (3) man page.

3.1 CLI Version of Tview

S-2462-20

The CLI version of Tview displays the trace data in one of three formats: XML,
Apprentice2, or compressed (gzip). By default the trace datais displayed as XML to
st dout .

To use the CLI version of Tview, typethet vi ewcommand. Given that trace files are
typically fairly large, it is generally advisable to pipe the results to an output file or
through the mor e command.

users/smth> tview | nore

47

Cray XMT™ Performance Tools User's Guide

The contents of thet r ace. out fileare displayed as XML code. Alternatively, you
can create a compressed XML file by using the - z option.

users/smth> tview -z -o fil enane. gz

Finally, to create afile in Apprentice2 format, which you can view with the GUI
version of Tview, use the - a option.

users/smth> tview -a -o fil enane. ap2

Note: An. ap2 file generated using the CL I version of Tview will contain only
the Tview report. To generate . ap2 files that contain additional reports use
ppr oc, as described in (Data Conversion (ppr oc) on page 15).

For more information about thet vi ew command syntax, seethet vi ew(1) man
page. You can also typet vi ew - h at the command line to generate a usage
summary.

3.2 GUI Version of Tview
To use the GUI version of Tview, do the following:

Procedure 2. Compiling and Linking for Tview

1. Compile and link your program using thet r ace option.
users/snmith> cc -trace mysource c
2. Execute your program using thent ar un -t r ace option.

users/smth> nmarun -trace a.out

Upon successful completion of program execution, nt ar un generates a data
filenamed t r ace. out isgenerated.

3. Usethe ppr oc utility with the - - nt at f option to generate an . ap2-format
data file from the binary executable and the trace data.

users/snmith> pproc --ntatf=trace.out a.out

4. Open theresulting . ap2-format data file in Cray Apprentice2, or use the
command-line interface.

users/snith> app2 a.out.ap2 &

The Tview report window displays.

3.2.1 Using Tview

The Tview report window is divided into three main sections.

48 S-2462-20

Trace View (Tview) [3]

Figure 10. Tview Window Layout

Eile Help
wradixsort x.v1.rl.ap2 @ | wradixsort.xv2.11.ap2 @ ¥ radixsort xv2.12.ap2 €@

_—
w Tview ©

Traced 7415 events, dropped 0 in 246.5 seconds on 128 CPUSs running at SO0MHz, total hardware traps: 2906160 data_blocked, 1 domain_signal

2 128.0 289.1
Cpultil |
MemConcur Il
115.2 260.2
L e | 231.3
89.6 202.3
X
76.8 173.4 5
" S
L m
o 3
n n
0 64.0 144.5 §
g —_
|- >
o
i
51.2 115.6 B
38.4 ' | _\}—‘—\j—'—h 86.7
25.6 /L 57.8
12.8 28.9
0.0 L

B.0 24.7 49.3 74.0 98.6 123.3 147.9 172.8 197.2 221.9 2468'0
Time (Seconds)

Table 9. Tview Window Layout

Callout Description
1 Summary line of trace events and traps recorded at run time.
2 Performance metric plot of metric derived during run time, plotted

against execution time.

The Summary line describes how many trace events were recorded, how many were
lost due to the throttling of the tracing system in the runtime, the number of CPUs
and the clock speed, and the number of dat a_bl ocked and f | oat _ext ensi on
traps as recorded by the trap counters in the runtime.

S-2462-20 49

Cray XMT™ Performance Tools User's Guide

The Performance Metric plot displays various performance metrics derived from
the hardware counters are plotted against the execution time. By default, Tview
displays a graph showing processor utilization CpuUtil against memory concurrency
MemConcur. Each of these metrics has a different unit so they are shown on two
Separate y-axes. As can be seen in the screenshot, the labels for each axis shows the
units, and the scales differ accordingly. A horizontal dashed line at or near the top

of the plot shows the system limit for any metrics that have a maximum value or the
injection limit for processing references, beyond which abottleneck will occur. These
limits are defined in Table 10.

Use the ShowM etric menu to hide or select additional metrics. If a new metric
selected has the same units as one of the metrics currently shown it is added; if not
you will need to unselect one or more of the metrics shown to free up one of the
y-axes.

The performance metric plot areais interactive. When the cursor is a crosshair (+),
you can select an area of the plot by clicking on the plot with the mouse, holding
down the button, and moving the mouse. When you release the button the plot will
zoom into this region. Repeat this action multiple times to zoom into an area of
interest. When you right-click on the plot the view will return to the previous zoom
level.

The legend in the upper right corner shows which metrics are currently shown. Each
of these titles has a small box with each line's color. When the cursor is an arrow,
clicking on one of these boxes brings up a dialog window allowing you to change
the color of the line.

3.2.2 Traced Data

50

The Tview graph presents information from the trace file in a graphical format to
simplify the analysis of performance data. The x-axis of the graph shows the time

in seconds relative to the start of program execution, and the y-axis shows various
performance metrics derived from the hardware counters. The availability of a second
y-axis allows Tview to show metrics with two different scales.

When the event or trap detail paneisfirst opened, the first event or trap in the detail
pane will be selected. A selection line appears on the plot, corresponding to the time
when the selected trap or event was recorded. This selection line has a small handle
in the middle. When the mouse pointer is over the handle and the cursor becomes
an arrow, clicking and holding down the mouse button will alow usersto drag this
selection line to a previous or subsequent event. Because there is not an event for
every possible position of the selection line, it is possible to release the mouse button
somewhere between two events. In this case, the line will "snap" to the closest event.

The Event and Trap Detail paneis not visible by default, but will appear if Show
Event Summariesor Show Trap Summariesis selected from the Tview context
menu. When both are shown, there are tabs at the top of the region allowing
navigation between one detail or the other.

S-2462-20

Trace View (Tview) [3]

3.2.2.1 Optional Data

S-2462-20

By default, Tview displays CpuUtil and MemConcur data. In addition, other types
of data are available. To display these values, right-click on the Tview tab in the
upper-left corner of the window, and toggle the values that you want to show or hide.

Table 10. Tview GUI Optional Data

Metric

Unit

Description

CpuUtil

CpuAvail

StrmuUtil

StrmReady

MemRefs

MemConcur

FloatOps

Retries

Creates

Traps

Processors

Processors

Streams

Stream

References

References

References

Operations

Operations

Traps

Shows processor utilization based on the
instruction issue counter. The maximum valueis
the number of teams used.

Shows processor availability based on the issues
vs. issues and phantoms. The maximum valueis
the number of teams used.

Shows average stream utilization based on the
stream reservation counter. The maximum vaue
is the maximum number of streams multiplied
by the number of teams.

Shows streams ready to issue instructions but not
currently executing, based on the stream ready
counter.

Shows LOAD, STORE, | NT_FETCH_ADD, and
STATE operations issued, based on the memory
reference counter. The maximum value is the
number of teams used.

Shows memory references issued but not
completed. Based on the concurrency counter.
The limit is the injection limit, which represents
a bottleneck for processing the references over
that limit. This limit is the number of teams
multiplied by the network limit.

Shows floating point operations. Based on a
programmable counter; not valid if changed.

Shows retried memory operations. Based on a
programmable counter; not valid if changed.

Shows stream create operations. Based on a
programmable counter; not valid if changed.

Shows traps taken. Based on a programmable
counter; not valid if changed.

51

Cray XMT™ Performance Tools User's Guide

3.2.2.2 Zooming In

By default, Tview shows data for the entire length of the program run. To zoom in

on asmaller span of time, hover the cursor over the graph until it changesto a+
character, and then left-click and drag to define a bounding box. The graph is redrawn
to show the selected time span.

To zoom out again, right-click anywhere on the graph.

Alternatively, you can use the Select Range option to enter numeric values for
the starting and ending times that define the range of data to be displayed. For
more information about the Select Range and Clear Selection options, see Tview
Configuration and Navigation Options on page 56.

3.2.2.3 Handling Large Trace Files

3.2.3 Event and

The APP2_SWAPFI LE environment variable is set when Apprentice2 needs

to handle very large trace files. Set APP2_SWAPFI LE to the root name

of some temporary files that Apprentice2 creates to help offset memory

usage on the XMT login nodes that lack swap. For example, export
APP2_SWAPFI LE=/ nmmt / | ustr e/ user s/ app2 might be a reasonable
choice for this variable. Apprentice2 then creates a couple of files with the name
/)t /1 ustre/users/app2. XXXXXX where XXXXXX is replaced by some
random string. These files are cleaned up if Apprentice? is exited properly.

Trap Details

This paneis not visible by default, but will appear if Show Event Summaries or
Show Trap Summariesis selected from the Tview context menu. When both are
shown, there are tabs at the top of the region allowing navigation between one detail
or the other.

Events and Traps are displayed in atabular format. Click a column heading to sort the
data by that type.

If you zoom into a particular time range on the plot in the pane above, only the events
or traps for that time range will be shown. Selecting an individual event or trap draws
aline on the plot, showing the location of that event in the timeline. The line includes
a handle, which you can use to drag the line around the plot. Asthe line moves, the
event selected in the Event Detail will change. Double clicking on an event or trap
will jump to that source location in the Canal report.

3.2.3.1 Event Details

52

The Eventstab displays the timestamp, type of event, team performing the event,
and function name for every traced event within the range currently displayed on
the Tview graph. Click the expandable area below the table, 1abeled Filter, to filter
events by kind. To disable filtering, un-expand this area.

S-2462-20

Trace View (Tview) [3]

Figure 11. Tview Event Details

Eile Help

—_—
wradixsort.x.v1.11.ap2 @ | wradixsort xv2.11. ap2 @ | wradixsort.x v2.12.ap2 @

mvcanal © wBprot @

Traced 7415 events, dropped 0 in 246.5 seconds on 128 CPUs running at S00MHz, total hardware traps: 2906160 data_blocked, 1 domain_signal

128.0 289.1
115.2 CpuUtil W|260.2
B0 | T | EECT R, S e MenConcur Moz 3 4
m
89.6 202.3 o
n ke |
S 76.8 173.4 8
n 0
§ 64.0 144.5 §
nE_ 51.2 115.6 %
38.4 — i ——yf 86.7 5
N
25.6 578
. ‘ |
12.8 _,—‘—U = —F— 28.9
0.0 .0
0.0 24.7 49.3 74.0 98.6 123.3 147.9 172.6 197.2 221.9 262

Time (Seconds)

Runtime Event Summaries | Runtime Trap Summaries

Time Kind Proc Name Streams 25% Done 50% Done 75% D}::
L e —
69.187375 FUNCTION_ENTRY 0 mmap_malloc
69.187454 FUNCTION_ENTRY 0 __mmap_malloc_cstub Ei
69241715 FUNCTION_EXIT 0 __mmap_malloc_cstub
69241783 FUNCTION_EXIT 0 mmap_malloc
69242011 USER_SPECIFIED 0 radix sort first histogram
69244063 PAR_REGION_ENTRY 124 void radixsort<T1, T2=(T1 * T1 * unsigned int. unsigned int. T2) [with T1=unsigned int, T2=BitsIndirect] fork 1 60
69244071 PAR_REGION_ENTRY 115 void radixsort<T1, T2=(T1 * T1 * unsigned int. unsigned int, T2) [with T1=unsigned int, T2=BitsIndirect] fork 1 60
69244100 PAR_REGION_ENTRY 118 void radixsort<T1, T2=(T1 * T1 * unsigned int. unsigned int, T2) [with T1=unsigned int, T2=BitsIndirect] fork 1 60
69244127 PAR_REGION_ENTRY 112 void radixsort<T1, T2=(T1 * T1 * unsigned int. unsigned int, T2) [with T1=unsigned int, T2=BitsIndirect] fork 1 60
69244142 PAR_REGION_ENTRY 80 wvoid radixsort<T1. T2=(T1 * T1 * unsigned int. unsigned int. T2) [with T1=unsigned int, T2=BitsIndirect] fork 1 60
69244148 PAR_REGION_ENTRY 98 wvoid radixsort<T1. T2=(T1* T1 * unsigned int, unsigned int, T2) [with T1=unsigned int, T2=BitsIndirect] fork 1 60 ‘?\
@ I 1 B
I Filter a

Table 11. Event Details

Heading Description

Time The time at which the event occurred.

Kind The kind of event: FUNCTI ON_ENTRY, FUNCTI ON_EXI T,
PAR_REG ON_ENTRY, PAR REG ON _EXI T,
PAR_REG ON_BARRI ER, START _FUTURE, or
USER_SPECI FI ED.

Proc The processor on which the event occurred.

Name The name of the event.

Streams The number of streamsrequested at PAR_REA ON_ENTRY.
25% Done The time at which 25% of the streams in aregion reached a

PAR_REG ON_BARRI ERor PAR_REG ON_EXI T.

S5-2462-20 53

Cray XMT™ Performance Tools User's Guide

Heading Description

50% Done The time at which 50% of the streams in aregion reached a
PAR_REQ ON_BARRI ERor PAR_REG ON_EXI T.

75% Done The time at which 75% of the streamsin aregion reached a
PAR_REQ ON_BARRI ERor PAR_REG ON_EXI T.

100% Done The time at which 100% of the streams in aregion reached a

PAR_REG ON_BARRI ERor PAR_REG ON_EXI T.

3.2.3.2 Trap Details

54

The Traps tab shows al the traps recorded into the trace during execution. A
checkbox below the table can be used for collating or grouping the traps by their
program counter. When collated, several of the columns will change as they are not
relevant to this summarized view.

Traps data is useful for determining the reasons for certain types of poor program
performance, such as memory hotspotting. During program execution, if the rate
of traps exceeds a certain threshold, the Cray XMT runtime generates a trace event
providing information about the range of traps that were encountered.

The number of traps listed in the detail will almost always be less than those shown
in the summary at the top. The difference isthat al the traps handled by the runtime
are captured by the counters, but only those that occur at a rate exceeding a given
threshold will cause an event. This threshold is controlled by the MTA_PARANS
environment variable.

The rate is equal to the minimum dump threshold over the frequency of even
sampling. Specify the threshold by setting MTA_PARAMS to PC_HASH n, m, |,
where n, m, | are the hash size, age threshold, and dump threshold, respectively.
Events are hashed based on pc and event type, so the hash size determines how often
the event hash will have to wait for afree row. The age threshold determines the
frequency of trap event sampling, as well as when atrap event is considered stale.
The dump threshold determines the minimum number of events that must be hashed
before an event is generated. The default valuesfor n, m, | are 1009, 30000000,
and 5, respectively.

Note: The number of traps in the summary includes traps taken in the system
libraries. The default behavior of the app2 command is to capture all of the traps
and events that occur, whether they are in the user code or the system code. To hide
the system traps, start Apprentice2 with the - - nosyst emflag to run in system
mode. Thisflag is documented in the app2(1) man page.

S-2462-20

Trace View (Tview) [3]

Figure 12. Tview Trap Details

Eile Help
_——
wradixsort.x.v1.11.ap2 @ | wradixsort xv2.11. ap2 @ | wradixsort.x v2.12.ap2 @
[+Tview © |
> Tview @ |wcanal © Bproi @
Traced 7415 events, dropped 0 in 246.5 seconds on 128 CPUs running at S00MHz, total hardware traps: 2906160 data_blocked, 1 domain_signal
128.0 289.1
1152 CpuUtil M |266.2
MemConcur
102.41------ S S YU YU FOUS | B SRS SRR, BRPRPRRRR | c[»)y o0} 231.3 »
o
89.6 202.3 o
E =X
o 76.8 173.4 §
o 0
o 64.0 144.5 §
7]
2 51.2 115.6 %
o I | =
38.4 v v — 86.7 @
N
25.6 57.8
. ‘ |
12.8 ___{____“—qi = —] t—y —F— 28.9
0.0 g.@
0.0 24.7 49.3 74.0 98.6 123.3 147.9 172.6 197.2 221.9 246.
Time (Seconds)
—
Runtime Event Summaries | Runtime Trap Summaries
Type Data Result Code Retry Op Code Count FProgram Counter Library Module Source Line
DATA_BLOCKED DATA_TRAFPO LOAD 89 0x4314e2 0
DATA_BLOCKED RETRY_LIMIT LOAD -] 0x4314e2 0
DATA_BLOCKED RETRY_LIMIT LOAD 5870 0x43c752 0
DATA BLOCKED RETRY_LIMIT LOAD 13528 0x43c7da 0
DATA_BLOCKED RETRY_LIMIT LOAD 543 0x43c755 0
DATA BLOCKED LATENCY_LIMIT LOAD 1902 0x43c752 0
DATA_BLOCKED RETRY_LIMIT LOAD 293 0x43c7dd 0
DATA_BLOCKED RETRY_LIMIT LOAD 36 0x4362e9 0
DATA_BLOCKED DATA_TRAFO STORE 12 0x4365€67 0
DATA_BLOCKED LATENCY _LIMIT INT_FETCH_ADD 147 0x4a9a70 radixsort.pl radixsort-testo /gdbs/radixsort.h 42

W Collate by program counter

S-2462-20

Table 12. Trap Details

Heading

Description

Kind

Data Result Code
Retry Op Code

Count

Rate

Time

The type of trap, either DATA_BLOCKED or

FLOAT_EXTENSI ON.

The result code or subtype of DATA BLOCKED traps.
The machine operation which caused the trap, either LOAD,

STORE, or | NT_FETCH_ADD.

The number of traps that occurred in the sample period, or

the total number when collated.

The rate at which the traps occurred in the sample period.

This detail is absent when collated.

The time at which the trap event was recorded, which is not
necessarily the time of the trap. This detail is absent when

collated.

55

Cray XMT™ Performance Tools User's Guide

Heading Description

Destination The destination register of the memory operation for
Register DATA BLOCKED traps. This detail is absent when collated.
Data Address The data address of the memory operation for

DATA BLOCKED traps. This detail is absent when collated.

Program Counter The program counter at which the trap was taken. Typically
thisistheinstruction immediately after the one that caused

the trap.

Library The library in which the traps occurred. This detail isvisible
when collated.

Module The module in which the traps occurred. This detail isvisible
when collated.

Source The source file in which the traps occurred. This detail is

visible when collated.

Line The source line number at which the traps occurred. This
detail is visible when collated.

3.2.4 About System Library Traps

Effective with Cray XMT 2.0, Tview shows not only the traps and events that
occurred within your program, but also the traps that occurred inside system code.
Previoudly this information was available only when you invoked Apprentice2 with
the - - syst emoption.

3.2.5 Tview Configuration and Navigation Options

The Tview report provides a number of options for configuring the display. All of
these options are accessed by right-clicking on the Tview tab in the upper-left corner
of the window.

Table 13. Tview GUI Configuration and Navigation Options

Option Description

Select Range Opens a window that enables you to zoom-in on a
portion of the data, by selecting the beginning and ending
time-points. For more information, see Select Range on
page 57.

Clear Selection Resets the range to zero and the end of the program
execution.

56 S-2462-20

Trace View (Tview) [3]

Option Description

Show Metric Enables you to show or hidethe St rimti |,
St r mReady, MenRef s, MenConcur , Fl oat Ops,
Traps, Retri es, or Cr eat es data. For more
information, see Optional Data on page 51.

Show Details Shows/hides tracing details. For more information, see
Event and Trap Details on page 52.

Position L egend Position the graph legend at the left edge or right edge of
the window, or hide it altogether.

Change Font Changes the font for text displayed in the window.

Panel Actions Performs the standard Cray Apprentice2 actions. detach,

remove, or freeze a panel. For more information, see
Panel Actions on page 58.

Panel Help Displays panel-specific help, if available.

3.2.5.1 Select Range

S-2462-20

By default, Tview shows data for the entire length of the program run. To zoom-in on
asmaller span of time, use the Select Range option to enter numeric values for the
starting and ending times that define the range of data you want displayed.

Figure 13. Select Range Dialog
ﬂ Set Range (on eldo12)

| | to | 246 54 -
of Apply egancel Dok

Alternatively, you can hover the cursor over the graph until it changesto a +
character, and then left-click and drag to define a bounding box. After you either
enter range values or draw a bounding box, the graph is redrawn to show only the
selected time span.

To undo a zoom-in, either use the Clear Selection option, or right-click anywhere
on the graph.

57

Cray XMT™ Performance Tools User's Guide

3.2.5.2 Panel Actions

To manipulate the Tview report window, select Panel Actions from the pop-up
window.

Table 14. Tview GUI Panel Actions

Action Description

Detach Panel Display the report in a new window. The origina window
remains blank.

Remove Panel Close the report window.

Freeze Panel Freeze the report as shown. Subsequent changes to other
parameters do not change the appearance of the frozen
report.

3.3 Partial Tracing

If the execution of atracing program terminates prematurely, tracing information
may still be available. If so, thet r ace. out filewill still be produced in the same
directory as would be expected for a successfully completed execution. The data may
vary slightly, depending on the reason for the termination. In general, however, the
output of a premature termination will be the same as what would have been seen up
to that point in afull execution. For example consider this trace from afull execution
of ther adi xsort application.

58 S-2462-20

Trace View (Tview) [3]

Figure 14. Full Trace of r adi xsort Application

File
wradixsort x ap2 full € | wradixsort.x ap2.partial €
))
- Tview €
Traced 7393 events, dropped 0 in 158 9 seconds on 128 CPUs running at S00MHz. total hardware traps: 2763632 data_blocked. 1 domain_signal
128.0 368.9
Cpultil M
MemConcur Il
115.2 332:R
102.4 295.1
89.6 2582
76.8 221.3
(1]
=
o
0
D B4.0 184.4
[V}
o
%
o
Sl 147.6
38.4 110.7
25.6 T 73.8
12.8 —{ 36.9
0.0 .0
0.0 47.7 63.6 79.5 95.4 T1L.3 12910 143.0 158.8
Time (Seconds)
S-2462-20

Help

(z0T X) seduadajsy

59

Cray XMT™ Performance Tools User's Guide

Figure 15 shows a partial trace of the same application.

Figure 15. Partial Trace of r adi xsort Application

Eile Help
TSI
¥ radixsort. x ap2.full © | wradixsort.x. ap2.partial [x]

—_——
- Tview @

Traced 4877 events, dropped 0 in 108.3 seconds on 128 CPUs running at S00MHz, total hardware traps: 3207389 data_blocked, 2 domain_signal

128.0 368.9
Cpultil M
MemConcur ll
gl B3t 33250
102.4 295.1
89.6 DEBLD
___ -
76.8 2213 %
[
n =
L o
(=] 3
: 2
o 64.0 184.4 @
o —
'S >
o
-
52 147.6 @
38.4 110.7
25.6 73.8
|
128 S 36.9
O'OE).E) 21.7 32.5 43.73 54.2 65.0 75,18 86.7 97.5 108.9'9

Time (Seconds)

By zooming in on the same segment of the program in the full trace asis shown in the
partia trace (Figure 16) we can see that the two executions show similar plots up to
88 seconds, which is when the program was terminated with a SI G NT. After that
the plot tapers off in the partial trace, but continues as expected in the full trace.

60 S-2462-20

Trace View (Tview) [3]

Figure 16. Segment of Full Trace of r adi xsort Application

File Help
—_—
wradixsort x ap2ull € | wradixsort x ap2.partial €

ey
- Tview €

Traced 7393 events, dropped 0 in 158 9 seconds on 128 CPUs running at S00MHz. total hardware traps: 2763632 data_blocked. 1 domain_signal

128.0 368.9
Cpultil M
MemConcur Il
1152 332.0
102.4 285.1
89.6 288.2
,, -
76.8 2713 &
m
n =
e o
o 3
" a
o 64.0 184.4 3
o —_
[>
o [|
-
512) Ta7i =
38.4 = 1107
25.6 E— 73.8
12.8 ’—|_|_L [36 9
B'OO.G 26.1 34.8 43.5 522 6@.9 69.6 78.3 87.@6'6

Time (Seconds)

Partial tracing is available for any execution that terminates prematurely, provided
tracing was initialized and tracing data was gathered prior to termination. However,
tracing data is gathered and stored in runtime trace buffers. Only three termination
signals will initiate flushing of these buffers to the persistent mmapped buffers that
are shared between the runtime and it ar un. Those signalsare SI G NT, SI GQUI T,
and SI GTERM All other causes of termination will leave the data in the runtime trace
buffers and output only what was already writtento thet r ace. out file, and what
remainsin the persistent mmapped buffers. It is possible to tune the frequency with
which the trace buffers are flushed to the persistent buffers, thus making the trace
buffer data more accessible. Thistuning is described in Changing the Frequency of
Trace Buffer Flushing on page 62.

S-2462-20 61

Cray XMT™ Performance Tools User's Guide

3.4 Tuning Tracing

3.4.1 Changing the Persistent Buffer Size

As described in Partial Tracing, tracing datais gathered during program execution
and stored in runtime trace buffers. Periodically these buffers are dumped to
persistent buffers, which are shared between the runtime and nt ar un. The size

of the persistent buffers determines how much tracing data can be gathered before
requiring a dump of the gathered datato thet r ace. out file. The default size of
these buffersis 16,777,216 words (16 MB), which is aso the maximum size. This
default provides the lowest overhead in writing to the trace file. Depending on the
requirements of your application, you may want to change the size of these buffersto
free up memory. To do this use the MTA_PARAMmrap_buf f er _si ze, to specify
the desired size in words.

MIA_PARAME" mmap_buf f er _si ze 8192"

3.4.2 Changing the Frequency of Trace Buffer Flushing

Datathat is held in the runtime trace buffersis dumped periodically to the persistent
buffers. It isthe datain the persistent buffers that is output upon termination of a
program. This meansthat if a program isterminated prematurely, there may be data
in the runtime trace buffers that was not yet dumped to the persistent buffers. To
minimize this dataloss you can use the MTA_PARAMNust _dunp_si ze to reduce
the size of the trace buffer from the default size of 512 words. Again, the tradeoff

is that the runtime trace buffers will be dumped more frequently during program
execution, which can have an impact on performance.

MIA_PARAME" nust _dunp_si ze 256"

On the other hand, when an application requires alarge number of streams, fewer
streams may be available for tracing. This can cause a bottleneck in tracing because
the teams have to wait for streamsin order to dump their data to the persistent buffers.
If alarge number of traps are being taken due to tracing at larger scales, raising the
value of must _dunp_si ze can alleviate the bottleneck.

62 S-2462-20

Trace View (Tview) [3]

3.4.3 Resolving Tracing Failures

S-2462-20

Tracing failures generally are caused by one of the following issues:

When tracing failsto initialize, program execution continues without tracing. To
override this default behavior and force your program to exit if tracing fails, use
the MTA_PARAMexit _on_trace_fail

MIA_PARAME"exit _on_trace_fail"

A trace. out file can be empty when program execution is terminated
prematurely by any signal other than SI G NT, SI GQUI T, or SI GTERM
preventing data in the runtime trace buffers from being dumped to the persistent
buffers. If your trace file is empty, try increasing the frequency with which the
trace buffers are dumped, as described in Changing the Frequency of Trace Buffer
Flushing on page 62.

63

Cray XMT™ Performance Tools User's Guide

64 S-2462-20

Block Profiling (Bprof) [4]

The Bprof report uses information captured during program execution to provide a
function-level view of program performance. When combined with Tview, it can help
you to identify the functions that consume the greatest amount of execution time
while producing the least amount of work.

To produce the Bprof report, you must first compile the program using the compiler's
- pr of i | e option, and then execute the program using nt ar un. For example:

users/smth> cc -profile myprogram. ¢
users/snmith> ntarun a.out

The variable myprogram is the name of the source file that is being compiled. This
produces a profile datafile, pr of i | e. out , which is saved in either the execution
directory or the directory specified in the MTA_PROFI LE_FI LE environment
variable.

Note: If the executable binary file for aprogram is not altered between executions,
the profile data file is updated rather than removed and rewritten each time the
program is run. This allows you to generate profile reports that reflect the typical
performance of your program over many runs, rather than the unique and perhaps
exceptional performance of asingle run.

When a program is profiled, the system records the number of instructions issued

by instrumented routines during program execution, but not the amount of time
spent executing any given routine. The compiler - pr of i | e option enables block
profiling for all routines compiled and linked using the - pr of i | e flag, aswell asall
routines inlined into a routine that was compiled and linked with the - pr of i | e flag.
However, any routine called by a profiled routine, but not inlined into that routine,
shows up in the Bprof output has having generated no instruction issues.

The Bprof report is available in two forms. atext-only command-line interface (CL1)
version, and a Cray Apprentice2 (GUI) version.

4.1 CLI Version of Bprof

S-2462-20

The CLI version of Bprof displays the profile data as formatted text. To run this
version, use the bpr of command. The command defaultsto using a. out asthe
name of the executable and pr of i | e. out asthe name of the profile datafile.

Given that profile data files are typically fairly large, it is generally advisable to pipe
the results to an output file or through nor e.

65

Cray XMT™ Performance Tools User's Guide

66

For example:

users/smth> bprof | nore

The text report generated by bpr of consists of a header followed by three sections.
The header contains a summary of total instructions issued for profiled routines, as
well asalist of various sources of program overhead.

Example 2. Bprof CLI output — header

Approxi mate total: 133256589 issues, profiled: 166411 issues
Approxi mat e anpunt of the programthat was profiled: 0.1%
Total function call overheads: 42 issues (0.0%

Total parallel overheads: 14729 issues (8.9%

Total profiling overheads: 11239 issues (6.8%

Total unknown overheads: 0 issues (0.0%

The first section of the report provides a profile of the program execution in terms
of instructions issued for each call tree branch. This section is broken down into
subsections, each of which provides information about one routine, along with its
parent and child routines. These subsections are organized within the first section
based on the number of instructions issued by the routine and all of its descendants,
and each subsection provides the following information.

Table 15. Bprof CLI Section Data

Data Tag Description

% | ssues Percent of total profiled instructions issued by the routine
and all its children combined.

% MenRef s Percent of total memory references.

Sel f Instruction counts for the routine itself and for each

individual parent or child of the routine, in units of 100M.

Tot al Instruction counts for al descendents of the routine and for
the descendants of each individual parent or child of the
routine, in units of 100 M.

% Cal | s For the routine, the total number of times the routine was
called; for a parent, the number of times it called the routine
Call's out of the total number of times the routine was called; for a

child the number of timesit was called by the routine out of
the total number of times it was called.

Nare Name of the routine.

Par ent s Name of the parents and children of the routine.

Chi l dren

I ndex The index number assigned to the routine in the second
section.

S-2462-20

Block Profiling (Bprof) [4]

Example 3. Bprof CLI ou
Cal | graph:

Index % ssues Self

tput — call tree profile

% Cal | s Parent s
Tot al Calls Nane
% Calls Chi | dren
166M 1 mai n
156M 100.0 radi x [1]
3 100.0 atoi [6]
n/a 100.0 prand_i nt [22]
n/ a 25.0 mal | oc [8]
n/a 25.0 free [14]
156M 100.0 mai n [2]
156M 1 radi x
n/a 75.0 mal | oc [8]
n/ a 75.0 free [14]

(example truncated for length)

The second section of the

report provides a profile of the program execution in terms

of instructions issued per individual routine. This section is organized in descending
order, from greatest number of instructions issued to least. Each line provides the

following information.

Table 16. Bprof CLI Line Data

Data Tag Description

% | ssues Percent of total profiled instructions issued by the
individual routine.

Cunul Thetotal of the instructions issued by this routine and all
routines above it in this section, in units of 100M.

Sel f Number of instructions issued by this routine, in units of
100M.

Calls Number of times this routine was called.

Sel f/ Cal | Issues that result from one call to this routine (not
counting descendants).

Total / Cal | Issues that result from one call to this routine (counting
descendants).

Nane Name of the routine being profiled in this line followed

by an index number that provides a numbering of the
profiled routine from largest number of instructions issued
to smallest.

S-2462-20

67

Cray XMT™ Performance Tools User's Guide

(examp

The second section looks like this example.
Example 4. Bprof CLI output — routine profile

Fl at profile:

% | ssues Cunul Self Calls Self/Call Total/Call Nane

93.6 155M 155M 1 155M 156M radix [1]
6.2 166M 10M 1 10M 166M main [2]
0.0 166M 3 1 3 3 atoi [6]
0.0 166M n/a 4 0 0 malloc [8]
0.0 166M n/a 1 0 0 strtol [9]
0.0 166M n/a 4 0 0 free [14]
0.0 166M n/a 1 0 0 prand_int [22]
le truncated for length)

The third section of the Bprof report provides an alphabetic listing of the routines and
their associated index number from the second section.

Example 5. Bprof CLI output — routine listing and index

Functi on i ndex:

[6] atoi

[14] free

[2] main
[8] nalloc

[22] prand_int

[1] radix
[9] strtol (example truncated for length)

For more information about bpr of command syntax, see the bpr of (1) man page.
You can also type bpr of - h to generate a usage statement.

4.2 GUI Version of Bprof

68

To use the GUI version of Bprof, you must do the following.
Procedure 3. Using Bprof

1. Compile and link your program using the compiler - pr of i | e option.

users/snmth> cc -profile mysource c
. Execute your program using nt ar un.
users/smth> nmtarun a.out

Upon successful completion of program execution, a data file named
profile. out isgenerated.

. Usethe ppr oc utility with the - - mt apf option to generate an . ap2-format
data file from the binary executable and the profiling data.

users/snith> pproc --ntapf=profile.out a.out

S-2462-20

Block Profiling (Bprof) [4]

4. Open theresulting . ap2-format datafile in Cray Apprentice2.

users/snith> app2 a.out.ap2 &

The Bprof report window displays.

4.2.1 Bprof Window Layout

The Bprof report window is divided into three main sections.

Figure 17. Block Profiling Report Window

Eile

Help
wradixsortxv1.11.ap2 @ | wradixsort xv2.11.ap2 € wradixsortx.v2.12.3p2 ©

> Tview @ ¥canal @ =Bt @

Frofiled 82.06% of execution (1.82T of approximately 2.06T issues), overheads: profiing 10.09%, parallel 7.56%, spill 0.00%, other 0.00%

2 — | Function % Issues Total Issues Issues Calls Issues/Call Total Issues/Call E

11.35 206162193238 206162193238
6,30 114554024321 114554024321

main

206162193238.00 206162193238.00
1 114554024321.00 114554024321.00

void radixsort<T1, T2=>(T1 * T1 * unsigned int. unsigned int, T2) [with T1=unsigned int, T2=BitsIndirect]

BitsIndirect operator O{unsigned int, unsigned int. unsigned int) const 0.00 o 0 229064922450 0.00 0.00

RT_Task:.get_max_procs(0.00 o 0 1 0.00 0.00

atoi 0.00 o 0 1 0.00 0.00

RUsage::print() const 0.00 o 0 1 0.00 0.00

BitsIndirect::Bitsindirectiunsigned int * 0.00 o 0 1 0.00 0.00 =l
3 Callers

Function % Issues Issues Calls

Callees

Function % lssues Issues Calls

__mta_trace 0.00 L] 3

mta_get_max_teams 0.00 L] 1

RT_Task::get_max_procs() 0.00 L] 1

Bitsindirect:: operator (unsigned int, unsigned int, unsigned inf) const 0.00 0 229064322450

S5-2462-20 69

Cray XMT™ Performance Tools User's Guide

Table 17. Description of Block Profiling Report Window

Callout

Description

1

The Summary line displays a summary of the profiled routines,
including profiling and programming overhead. A variety of
configuration options are provided on a pop-up menu that displays
when you right-click on the Bpr of tab in the upper-left corner of the
window. These are discussed in greater detail in Bprof Configuration
and Navigation Options on page 72.

The Function pane displays the functions that have been profiled,
along with all data collected about each function. This section is
discussed in more detail in Function List on page 70.

The Callers and Callees pane displays the names of and data about the
functions that call and are called by the selected function. This section
is discussed in more detail in Callers and Callees on page 71.

4.2.2 Function List

The Detail area makes up the majority of the Bprof display. It presentsin tabular
format all of the data collected during program execution.

Note: If the executable binary file for a program is not altered between executions,
the profile data file is updated rather than removed and rewritten each time the
program is run. This allows you to generate profile reports that reflect the typical
performance of your program over many runs, rather than the unique and perhaps
exceptional performance of asingle run.

Each column header is an active button. Click on the column header to sort the report
by the datain that column, and click again to toggle between sorting in ascending and
descending order.

On the Bprof report window, you can toggle between views of issues and memory
reference information. On the Bprof tab, right-click the blue arrow to display the
options menu. You can change the display between the default | ssues display to the
MemRefs display.

Note: The following table describes each column displayed when you use the
I ssues option. For the MemRefs option, the report displays the same type of
information, but in this context it pertains to memory references rather than issues.

70

S-2462-20

Block Profiling (Bprof) [4]

Table 18. Bprof GUI Report Data

Name Description
Functi on The name of the profiled function.
% | ssues The percent of total profiled instructions issued by

Total |ssues

| ssues

Calls
| ssues/ Cal |
Total |ssues/Call

the routine and all of its children combined.

Thetotal of the instructions issued by this routine
and all routines above it in the calling tree.

The total number of instruction issues that the
profiled function is responsible for.

The total number of calls to the profiled function.
The ratio of issuesto calls.

The ratio of cumulative issues to calls.

To view detailed caller and callee information for a specific function, click on the

function name.

4.2.3 Callers and Callees

If you click on afunction name in the Profiling Detail section of the window, more
information is displayed in the Callers and Callees section of the report window.

S-2462-20

The Caller detail lists the functions that call the profiled function.

Note: The following table describes each column displayed when you use the

I ssues option. For the MemRefs option, the report displays the same type of
information shown in the following table, but in this context it pertains to memory
references rather than issues.

Table 19. Bprof GUI Caller Detail

Name

Description

Functi on

% | ssues

| ssues
Calls

The name of the function that called the profiled function.

The percentage of the total number of issues for which
this caller's descendants are responsible that originated
from the profiled function.

The total number instructions issued by this function.

The number of times that this caller called the profiled
routine.

71

Cray XMT™ Performance Tools User's Guide

The Callee detail lists the functions that were called by the profiled function.

Note: The following table describes each column displayed when you use the
I ssues option. For the MemRefs option, the report displays the same type

of information shown in the following table only now it pertains to memory
references rather than issues.

Table 20. Bprof GUI Callee Detail

Name Description

Functi on The name of the function called by the profiled function.

% | ssues The percentage of the total number of issues that this
callee and its descendants are responsible for.

| ssues The total number instructionsissued to this function.

Calls The number of times that this caller was called by the

profiled routine.

The Callers and Callees sections of the report window are displayed by default, but
can be hidden or shown independently of each other. To hide or show either the
Callersor Callees section, right-click on the Bprof tab in the upper-left corner of
the window, and then select the desired hide or show option from the pop-up menu

that displays.

4.2.4 Bprof Configuration and Navigation Options

72

The Bprof report provides a number of options for configuring the display. All of
these options are accessed by right-clicking on the Bprof tab in the upper-left corner

of the window.

Table 21. Bprof GUI Configuration and Navigation Options

Option Description

| ssues/M emrefs Toggles between showing issues versus memory
references.

Hide Callers Shows/hides the Callers section of the report. For more
information, see Callers and Callees on page 71.

Hide Callees Shows/hides the Callees section of the report. For more

Panel Actions

Panel Help

information, see Callers and Callees on page 71.

Performs the standard Cray Apprentice2 actions. detach,
remove, or freeze a panel. For more information, see
Panel Actions on page 73.

Displays panel-specific help, if available.

S-2462-20

Block Profiling (Bprof) [4]

4.2.4.1 Panel Actions

To manipulate the Bprof report window, select Panel Actions from the pop-up
window.

Table 22. Bprof GUI Panel Actions

Action Description

Detach Panel Displaysthe report in a new window. The original window
remains blank.

Remove Panel Closes the report window.

Freeze Panel Freezes the report as shown. Subsequent changes to other
parameters do not change the appearance of the frozen
report.

S-2462-20 73

Cray XMT™ Performance Tools User's Guide

74 S-2462-20

Trace Profiling (Tprof) [5]

The Tprof report is asimple profile of the functions and parallel regionsin the code,
based on traces. This sample report shows each function entry/exit pair and each
parallel region entry/exit pair. The entry events are marked Excl usi ve and show
the amount of time spent in that function or region, less the time spent in any child
functions or regions. The exit events are marked | ncl usi ve and show the time
spent in that function or region plus any time spent in any child functions or regions.

Figure 18. Tprof Report

Eile Help
| = radixsort xv1.1.ap2 @ | w ragixsort xv2.11 ap2 @ wradixsotxv2r2ap2 @
] [Z] [®]

wTview € wcCanal € | ¥Bprof O"TFIOT)

‘Name : Kind Calls Time

getpid Exclusive 1.000000 0.000674
getpid Inclusive 1.000000 0.000674
mmap Exclusive 1.000000 0.065418
mmap Inclusive 1.000000 0.065418
mmap_malloc Exclusive 19.000000 0.002742
mmap_malloc Inclusive 19.000000 6.278275
__mmap_malloc_cstub Exclusive 19.000000 6.275533
__mmap_malloc_cstub Inclusive 19.000000 6.275533
main fork 1 Exclusive 128.000000 3921 372617
main join 1 Inclusive 128.000000 30635625
main fork 2 Exclusive 128.000000 3177 428252
main join 2 Inclusive 128.000000 24823984
main Exclusive 1.000000 88403160
main Inclusive 1.000000 246.022126
void radixsot<T1, T2=(T1 * T1* unsigned int. unsigned int. T2) [with T1=unsigned int, T2=BitsIndirect] fork 1 Exclusive 128.000000 13446155588
void radixsot<T1. T2=(T1 * T1 * unsigned int, unsigned int. T2) [with T1=unsigned int, T2=BitsIndirect] join 1 Inclusive 128.000000 151823606

void radixsort<T1, T2>(T1 * T1* unsigned int. unsigned int, T2) [with T1=unsigned int. T2=Bitsindirect

Exclusive 1.000000 151.830938
void radixsort<T1, T2>(T1 * T1* unsigned int. unsigned int, T2) [with T1=unsigned int. T2=Bitsindirect

Inclusive 1.000000 153.874757

S-2462-20 75

Cray XMT™ Performance Tools User's Guide

The Tprof report was originally created for debugging operating system traces and is
generally not of use to the typical user. Note that the Tprof report is generated only
when Apprentice2 is running in system mode (the default).

76 S-2462-20

Glossary

S-2462-20

barrier

In code, abarrier is used after a phase. The barrier delays the streams that were
executing parallel operations in the phase until all the streams from the phase reach
the barrier. Once all the streams reach the barrier, the streams begin work on the
next phase.

block scheduling

A method of loop scheduling used by the compiler, where contiguous blocks of
loop iterations are divided equally and assigned to available streams. For example,
if there are 100 loop iterations and 10 streams, the compiler assigns 10 contiguous
iterations to each stream. The advantages to this method are that data in registers
can be reused across adjacent iterations, and there is no overhead due to accessing a
shared iteration counter.

dynamic scheduling

In a dynamic schedule, the compiler does not bind iterations to streams at loop
startup. Instead, streams compete for each iteration using a shared counter.

fork

Occurs when processors allocate additional streamsto athread at the point whereit is
creating new threads for a parallel loop operation.

inductive loop

An inductive loop is one that contains no loop-carried dependencies and has the
following characteristics: a single entrance at the top of the loop; controlled by an
induction variable; and has a single exit that is controlled by comparing the induction
variable against an invariant.

join

The point where threads that have previously forked to perform parallel operations
join back together into a single thread.

77

Cray XMT™ Performance Tools User's Guide

78

linear recurrence

A special type of recurrence that can be parallelized. See the Cray XMT
Programming Environment User's Guide.

phase

A set of one or more sections of code that the program may execute in parallel.
The code in a section may consist of either a parallel loop or a seria block of code.
No barriers are inserted between sections of a phase, however barriers are inserted
between different phases of aregion.

recurrence

Occurs when aloop uses values computed in one iteration in subsequent iterations.
These subsequent uses of the value imply loop-carried dependences and thus usually
prevent parallelization. To increase parallelization, use linear recurrence.

reduction

A simple form of recurrence that reduces alarge amount of datato asinglevalue. Itis
commonly used to find the minimum and maximum elements of avector. Although
similar to areduction, it is easier to parallelize and uses less memory.

region
An areain code where threads are forked in order to perform a parallel operation.

The region ends at the point where the threads join back together at the end of the
parallel operation.

S-2462-20

	Cray XMT Performance Tools User's Guide
	Changes to this Document
	Introduction [1]
	1.1 The Performance Tool Set
	1.2 Prerequisites
	1.2.1 Module and Compiler Considerations
	1.2.2 Execution Considerations
	1.2.3 Data Conversion (pproc)

	1.3 Using Cray Apprentice2
	1.3.1 Modules
	1.3.2 Launching the Application
	1.3.3 Loading Data Files
	1.3.4 Basic Navigation
	1.3.5 Comparing Files
	1.3.6 Exiting from Cray Apprentice2

	Compiler Analysis (Canal) [2]
	2.1 CLI Version of Canal
	2.2 GUI Version of Canal
	2.2.1 Canal Window Layout
	2.2.2 Browse Loops
	2.2.3 Statement-level Annotations
	2.2.4 Statement Remarks
	2.2.5 Loop-level Annotations
	2.2.6 Canal Configuration and Navigation Options
	2.2.6.1 Select Source
	2.2.6.2 Toolbars
	2.2.6.3 Show/Hide Data
	2.2.6.4 Change Font
	2.2.6.5 Panel Actions

	Trace View (Tview) [3]
	3.1 CLI Version of Tview
	3.2 GUI Version of Tview
	3.2.1 Using Tview
	3.2.2 Traced Data
	3.2.2.1 Optional Data
	3.2.2.2 Zooming In
	3.2.2.3 Handling Large Trace Files

	3.2.3 Event and Trap Details
	3.2.3.1 Event Details
	3.2.3.2 Trap Details

	3.2.4 About System Library Traps
	3.2.5 Tview Configuration and Navigation Options
	3.2.5.1 Select Range
	3.2.5.2 Panel Actions

	3.3 Partial Tracing
	3.4 Tuning Tracing
	3.4.1 Changing the Persistent Buffer Size
	3.4.2 Changing the Frequency of Trace Buffer Flushing
	3.4.3 Resolving Tracing Failures

	Block Profiling (Bprof) [4]
	4.1 CLI Version of Bprof
	4.2 GUI Version of Bprof
	4.2.1 Bprof Window Layout
	4.2.2 Function List
	4.2.3 Callers and Callees
	4.2.4 Bprof Configuration and Navigation Options
	4.2.4.1 Panel Actions

	Trace Profiling (Tprof) [5]
	Glossary
	List of Figures
	Figure 1. Cray Apprentice2 File Selection Dialog
	Figure 2. Cray Apprentice2 Window
	Figure 3. Save Screendump Dialog Window
	Figure 4. About Dialog Window
	Figure 5. Online Help Window
	Figure 6. Comparison Report (Tdiff)
	Figure 7. Canal View in Cray Apprentice2
	Figure 8. Canal Source File Selection
	Figure 9. Canal Select Font Dialog
	Figure 10. Tview Window Layout
	Figure 11. Tview Event Details
	Figure 12. Tview Trap Details
	Figure 13. Select Range Dialog
	Figure 14. Full Trace of radixsort Application
	Figure 15. Partial Trace of radixsort Application
	Figure 16. Segment of Full Trace of radixsort Application
	Figure 17. Block Profiling Report Window
	Figure 18. Tprof Report

	List of Examples
	Example 1. Canal CLI output
	Example 2. Bprof CLI output � header
	Example 3. Bprof CLI output � call tree profile
	Example 4. Bprof CLI output � routine profile
	Example 5. Bprof CLI output � routine listing and index

	List of Procedures
	Procedure 1. Using Canal
	Procedure 2. Compiling and Linking for Tview
	Procedure 3. Using Bprof

	List of Tables
	Table 1. Cray Apprentice2 Navigation Functions
	Table 2. File Menu
	Table 3. Help Menu
	Table 4. Canal Window Layout
	Table 5. Canal GUI Statement Annotations
	Table 6. Canal GUI Additional Annotations
	Table 7. Data Columns
	Table 8. Canal GUI Panel Actions
	Table 9. Tview Window Layout
	Table 10. Tview GUI Optional Data
	Table 11. Event Details
	Table 12. Trap Details
	Table 13. Tview GUI Configuration and Navigation Options
	Table 14. Tview GUI Panel Actions
	Table 15. Bprof CLI Section Data
	Table 16. Bprof CLI Line Data
	Table 17. Description of Block Profiling Report Window
	Table 18. Bprof GUI Report Data
	Table 19. Bprof GUI Caller Detail
	Table 20. Bprof GUI Callee Detail
	Table 21. Bprof GUI Configuration and Navigation Options
	Table 22. Bprof GUI Panel Actions

