CRANY

Cray XMT™ Debugger Reference Guide

S-2467-20

© 2001, 2005, 2007—2009, 2011 Cray Inc. All Rights Reserved. This document or parts thereof may not be
reproduced in any form unless permitted by contract or by written permission of Cray Inc.

BSD Open Source License Notice: Copyright (c) 2008, Cray Inc. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, thislist of conditions and the following
disclaimer. * Redistributions in binary form must reproduce the above copyright notice, thislist of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name
Cray Inc. nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
AND CONTRIBUTORS"ASIS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Your use of this Cray XMT release constitutes your
acceptance of the License terms and conditions.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software” as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

AMD and AMD Opteron are trademarks of Advanced Micro Devices, Inc. GNU is atrademark of The Free
Software Foundation. Opteron is atrademark of Advanced Micro Devices, Inc. Lustre is atrademark of Sun
Microsystems, Inc. in the United States and other countries. UNIX, the “ X device,” X Window System, and X/Open
are trademarks of The Open Group in the United States and other countries. All other trademarks are the property of
their respective owners.

RECORD OF REVISION

S-2467-20 Published May 2011 Supports release 2.0 GA running on Cray XMT compute nodes and on Cray XT
3.1UP02 service nodes. This release uses the System Management Workstation (SMW) version 5.1UP03.

1.4 Published December 2009 Supports release 1.4 running on Cray XMT compute nodes and on Cray XT 2.2.UPO1
service nodes. This release uses the System Management Workstation (SMW) version 4.0.UP02.

1.3 Published March 2009 Supports release 1.3 running on Cray XMT compute nodes and on Cray XT 2.1.5HD
service nodes. This release uses the System Management Workstation (SMW) version 3.1.09.

1.2 Published August 2008 Supports release 1.2 running on Cray XMT compute nodes and on Cray XT 2.0.49
service nodes. This release uses the System Management Workstation (SMW) version 3.1.04.

Contents

Page

Overview [1] 7
1.1 Prerequisites 7
1.1.1 Loading the Module 7
1.1.2 Compiling for Debugging 8
1.1.3 Working Directories 9
1.1.4 Environment Variables e e e 10
1.2 Getting Started e e s e 10
1.2.1 Selecting a Program to Debug C e 11
1211FleCommandso 11
1.2.1.2 Module Commands e e 13
1.2.1.3 Object Directory Commands Ce e e e 14
1.2.1.4 Shared Library Directory Commands 15

1.2.2 Running the Program e e e s s 16
1.2.2.1 Working Directoryo 16
1.2.2.2 Program 1/O C e e e 17
1.2.2.3 Ervironment Variables Lo 17
1.2.2.4 Runtime Arguments e e 19

1.3 Debugging aCurrently RunningJob 19
1.4 EndingaDebugging Session 20
Breakpoints and Watchpoints [2] 21
2.1 Breskpointsand Watchpoints L ... 21
2.1.1 Setting Breakpoints L oL L Lo 23
2.1.1.1 Specia Breakpoint Situations L L. L L. 24

2.1.2 Setting Watchpointso 26
2.1.3 Deleting Breakpoints and Watchpoints 26
2.1.4 Disabling Breakpoints and Watchpoints e e 27
2.1.5 Break Conditions C e e e e 28
2.1.6 Commands Executed on Bresking 30
22Continuing L L L 31

S-2467-20 3

Cray XMT™ Debugger Reference Guide

2.3 Stepping

Under standing Multithreading [3]
3.1 Thread Names

3.2 Thread States

3.3 Focus Thread

Examining the Stack [4]
4.1 Stack Frames

4.2 Backtraces

4.3 Selecting a Frame

4.4 Information on a Frame

Examining Source Files [5]
5.1 Printing Source Lines

5.2 Searching Source Files

5.3 Specifying Source Directories
5.4 Examining Instructions

Examining Data [6]
6.1 Expressions
6.2 Program Variables
6.3 State Bits
6.4 Artificial Arrays
6.5 Format Options
6.6 Output Formats
6.6.1 Examining Memory
6.7 Automatic Display
6.8 Vaue History
6.9 Convenience Variables
6.10 Registers
6.11 Register Examples

Examining Symbols [7]
7.1 Archive Symbol Visibility

Altering Execution [8]
8.1 Assignment to Variables

8.1.1 Altering Variables Kept in Registers
8.2 Changing the Full/Empty Bit

Page

32

35
35
36
37

M
4
42

45

47
47
49
50
51

53
53

55
56
57
59
60
62

65
66
67

69
70

73
73
74
75

S-2467-20

Contents

Stored Sequences of Commands [9]
9.1 User-defined Commands

9.2 Command Files

9.3 Commands for Controlled Output

Options and Arguments for ndb [10]
10.1 Mode Options

10.2 File-specifying Options

10.3 Communication Options and Variables
10.4 Breakpoint-behavior Options

10.5 Miscellaneous Options

10.6 Other Arguments

Appendix A GNU General Public License
A.1Preamble
A.2 Terms and Conditions

A.3 How to Apply These Termsto Your New Programs
Appendix B Using ndb under GNU Emacs
Appendix C ndb Input and Output Conventions

Glossary

S-2467-20

Page

79
79
80
81

83
83
84
84
85
85

85

87
87
88
90

93
95

99

Overview [1]

This guideis for application programmers who develop code that runs on Cray XMT
systems.

The mdb debugger is based on the Free Software Foundation's GDB debugger
(version 3.5), as adapted for use on Cray XMT systems. The ndb debugger provides
both source-level and machine-level debugging.

While using the ndb debugger you can:

e Launch your program and specify conditions that might affect the behavior of
the program

» Set breakpoints and watchpoints to make the program either suspend execution at
a specified point in the code or upon meeting a specified condition

* Examine program information after such a stop to determine exactly what is
happening at this point in the program execution

* Modify conditions and resume program execution as desired

Additional information isin the mdb(1) man page and in the mdb online help system,
which you can view by entering hel p at the ndb command line prompt.

1.1 Prerequisites

Before using the ndb debugger, verify that the programming environment module
is loaded and that your application was compiled for debugging, as described in
Compiling for Debugging on page 8.

1.1.1 Loading the Module

S-2467-20

The nmdb debugger isincluded as part of the Cray XM T programming environment,
which is available by loading the mt a- pe module. Programs intended for use

on Cray XMT systems cannot be compiled or debugged in a cross-compiler
environment. You must be logged into the Cray XMT system in order to use the
programming environment.

wor kst ati on% ssh - X XMT_system
Passwor d:

XMT_syst en> nodul e | oad nt a- pe

Cray XMT™ Debugger Reference Guide

To see which modules are available on your system, type nodul e avai | .

To see which modules are loaded in your user environment, typemodul e |i st.

1.1.2 Compiling for Debugging

When you debug a program, the level of detail mdb provides depends on the level of
debugging information that was generated and stored in the program library when you
compiled the program. This information includes the location and data type of each
variable or function, as well as the relationship between lines in the source code and
addresses in the executable code.

There is an inverse relationship between debugging information and compiler
optimization. The more debugging information that you request when compiling
the code, the less optimization can be performed by the compiler. Asaresult, code
compiled for debugging runs more slowly than code compiled for normal execution.

Conversely, as the level of compiler optimization is increased, the speed of program
execution increases, but the correlation between your source code and the resulting
executable code decreases. In some cases, this means that mdb may not be able to
perform those debugging operations that depend on a close correspondence between
source and executable code. In these cases, the debugger typically generates a
message warning that due to compiler optimizations the effect of the debugging
operation cannot be guaranteed. However, there may be situations where the
debugger may lack sufficient information to determine that this problem even exists.

8 S-2467-20

Overview [1]

Use the following compiler options to determine the level of debugging information
generated and compiler optimizations performed when compiling your program.

-g2 Most debugging information; least optimization. The compiler
generates parallelism for future statements but does not automatically
paralelize loops or other code. The debugger supports basic
debugging operations at statement boundaries. At a breakpoint, you
may read or modify any visible variable or memory state, and you
may resume execution in ways that are fully consistent with your
source code.

-gl | -g Moderate debugging information and optimization. The compiler
automatically parallelizes code, with some restrictions, based in
part on only volatile-qualified data being updated from outside the
program. At a breakpoint, you may read any visible variable or
memory state, and you modify any volatile-qualified data and resume
execution in ways that are fully consistent with your source code.

(omit - g option)

Least debugging information; most optimization. 1f you omit the

- g option, the compiler places no restrictions on optimizations and
retains no debugging information. You can set breakpoints and pause
and resume program execution, but the source and executable code
may diverge substantially. You can read global data, but the debugger
may not be able to find other variables.

For example, to compile your program and generate the most debugging information
and perform the fewest compiler optimizations, use the following command:

XMI_systen> cc -g2 myprogram. c

Note: As part of the optimization process, the compiler may inline aroutine

by replacing a statement that calls a routine with the actual body of that routine,

if the compiler determines that the resulting code will be more efficient. This
optimization can occur at all debugging levels, and each inlined routine retains the
debugging level that was specified when it was compiled. For routines inlined

by the compiler, in most debugging operations, ndb presents the debugging
information asif the routine was invoked normally, and not inlined.

1.1.3 Working Directories

S-2467-20

The nmdb debugger inherits its working directory from the shell used to launch the
debugging session. Thisworking directory also serves as the default location for
debugger commands that specify files.

After you launch ndb, use the cd command to change the default directory. For more
information, see Working Directory on page 16.

Cray XMT™ Debugger Reference Guide

1.1.4 Environment Variables

Environment variables are typically used to define such things as your user name,
home directory, terminal type, search path, and other conditions that affect program
operation. The ndb debugger inherits its environment variable settings from the shell
used to launch the debugging session.

After you launch mdb, usethei nf o envi ronnment andset environnent
commands to view and change environment variable settings. For more information,
see Environment Variables on page 17.

1.2 Getting Started

10

To begin using ndb:
1. Log onto the Cray XMT system.
wor kst ati on% ssh - X XMT_system
2. Load the Programming Environment module.
XMT_syst enr nodul e | oad nt a- pe
3. If needed, change to your working directory.
XMT_systent cd workdir

4, Enter the shell command ndb.

XMT_syst em wor kdi r> ndb [-ntarun-args arguments] [program]

Usethe- nt ar un- ar gs option to pass runtime arguments through to nt ar un.
For more information, see Running the Program on page 16.

If you specify a program name with the mdb command, the debugger reads the
symbol table in the named file. If you do not enter a program name here, you
can specify it later. For more information, see Selecting a Program to Debug on

page 11.
After the ndb copyright information displays, you will have an ndb prompt:
(ndb)

Note: The default debugger prompt is (mdb) . If desired, you can change this

to a user-defined prompt string. For more information, see Appendix C, ndb
Input and Output Conventions on page 95.

In addition to the - it ar un- ar gs and program arguments, the ndb
command supports many other options, including the use of a configuration
file. For more information, see Chapter 9, Stored Sequences of Commands
on page 79.

S-2467-20

Overview [1]

At this point, you are ready to begin debugging a program.

Note: In addition to the ndb(1) man page, the ndb debugger includes an online
help system which you can access by entering hel p at the (mdb) prompt. The
hel p command recognizes many keywords; for example, to find file-related help
content, enter the following command:

(rmdb) help files

For more information, see the online help system.

1.2.1 Selecting a Program to Debug

There are two ways to specify the program you want to debug.

Enter the name of the executable file when you start mdb.

XMI_syst em wor kdi r> ndb a. out

In this case, mdb reads the executable file and symbol table in as part of the
startup process. If you have done this, skip to Running the Program on page 16.

Alternatively, you can use mdb commands to load or swap files after ndb is
running. For example:

(mdb) file a.out

In this case, mdb takesless timeto start up and you have more control over which
files are loaded and when they are loaded.

The following subsections describe the commands used to load or swap files
after ndb is running.

1.2.1.1 File Commands

S-2467-20

Use the following commands to load files or change files during a debugging session.

at t ach[pid] [device_filename]

Attach to a process that was started up outside of ndb. This
command may take as argument a process id or a device filename.
For a process id, you must have permission to send the process a
signal, and it must have the same effective ui d asthe debugger. For
adevice filename, the file must be a connection to a remote debug
server.

Beforeusing at t ach you must usethe exec- fi | e command to
specify the program running in the process, and thesynbol -fil e
command to load its symbol table. Alternatively, usethefi |l e
command, which performs both functions.

(nmdb) fil e filename
(rmdb) att ach filename or pid

11

Cray XMT™ Debugger Reference Guide

12

info files

fil e filename

Print the path and name of the executable file currently loaded into
ndb and the path and name of the file from which the symbol table
was |oaded. For example:

(nbd) info files

Executable file "/ XMI_system users/snith/a.out"

Synbol s from " XMI_systenf users/smith/a.out"
(db)

L oad the specified executable file into ndb, along with the associated
symbol table. If you do not specify a directory and the fileisnot in
the current working directory, mdb uses the environment variable
PATH as alist of directories to search for thefile.

If afileisaready resident, you are asked to confirm that you want to
load the new file. For example:

(nbd) file b.out

Load new executable from"b.out"? (y or n) y

Readi ng executabl e from XMI_systenf users/snith/b. out
Readi ng synbol s from XMI_syst em users/sm th/b. out
done

(ndb)

exec-fil e filename

Load only the executable file. Do not load the symbol table.

symbol -fil e filename

Load the symbol table from the specified file. If you do not specify
adirectory and the file is not in the current working directory, ndb
uses the environment variable PATH as alist of directories to search
for thefile.

Thesynbol -fi | e command does not actually read the symbol
tablein full. Instead, it scans the symbol table quickly to determine
which source files and symbol tables are present. The details are read
later, one source file at atime, as needed.

The purpose of this two-stage reading strategy is to make ndb start
up faster. For the most part, it isinvisible to the user, except for
occasional messages indicating that the symbol table details for
aparticular sourcefile are being read. Usetheset ver bose
command to control whether these messages are printed; for more
information, see Appendix C, ndb Input and Output Conventions
on page 95.

S-2467-20

Overview [1]

synbol -file

To clear the symbol table, enter synbol -fi | e without specifying
afilename.

Note: Whilethefil e, exec-fil e,andsynbol -file
commands accept both absolute and relative file names as
arguments, the file names are always stored as absol ute file names.

Using the synbol - f i | e command causes ndb to purge the
contents of its convenience variables, value history, and all
breakpoints and auto-display expressions. Thisis done because
these values may contain pointers to the internal data recording
symbols and data types that are part of the old symbol table which
is being discarded.

1.2.1.2 Module Commands

S-2467-20

The mdb debugger gets the information it needs to run your program not only from
the executable file, but also from any module linked with your program. Note that in
this context the term modul e does not refer to a software module, rather to a source
fileand all of the filesit explicitly includes, as well as the corresponding objects
that result from compilation of the source module (typically, a portion of a program
library or atraditional object file). The information contained in a module includes
type definitions, source line mappings, and the locations of local and static variables.

The mdb debugger assimilates the information in each module of your program, and
reads in a module when your program needs information from that module.

13

Cray XMT™ Debugger Reference Guide

If, during a debugging session, you reach a point where ndb has yet to incorporate
the module information you want to use (for example, the full definition of a
type structure) and you know where the information is located, use the following
commands to force nmdb to load the appropriate module.

i nfo nodul es

Print the names of all modules in the program. If the moduleis
compiled separately, it is listed separately. Constituents of larger
files—for example, archives built with ar or program libraries
produced by whole-program compilation—are listed as part of the
parent library.

| oad modulename

Read information from modulename, including type definitions and
source file information.

ndb uses the relative path information specified in the root program
library to locate modulename. If you have moved your program
executable after building it, usetheset | i nkdi r command to
provide the necessary path information. For more information, see
Specifying Source Directories on page 50.

1.2.1.3 Object Directory Commands

The path to each object file used by the linker is recorded in the root program library.
If the path is absolute, it is used as-is. If the path isrelative, mdb appends the path to
the linkdir variable. (For more information about the linkdir variable, see Specifying
Source Directories on page 50.) However, if you provide mdb with an object file
search path, the debugger looks for an object file, first in the directories in the search
path, and then in the path used by the linker.

14

S-2467-20

Overview [1]

The information from an object file that is already loaded into ndb is not affected by
later modifications to the object path. When you start ndb, the object file search path
is empty. Use the following commands to add or change object file search paths.

info objdirectories
info objdir
i nfo obj Print the current object search path asalist of directories.

obj di rect ory dirname
obj di r dirname
obj dirname

Add directory dirname to the front of the object search path.

You may specify several directory names with this command, by
separating the directories with acolon (;) or ablank space. If you
specify adirectory that is already in the source path, it is moved
forward and searched earlier.

objdirectory

To clear the search path, enter obj di r ect or y without specifying a
dirname. You are asked to confirm that you want to clear the object
file search path.

1.2.1.4 Shared Library Directory Commands

Each executable file contains a list of shared libraries, along with the set of pathsto
the shared libraries that was specified when the executable was linked. The ndb
debugger reads in the symbols for the executable from each of the shared libraries,
using these paths to find the libraries. However, the shared libraries or the executable
may be moved between compilation and debugging.

The ndb debugger uses the shared library path to provide alist of directoriesto
search for shared library files. For each shared library, the debugger first tries, in
order, the directories in the list, until it finds a file with the desired name. The set of
shared library paths from the executable is permanently affixed to the end of the list.

S-2467-20 15

Cray XMT™ Debugger Reference Guide

When you start ndb, the shared library search path is empty. Use the following
commands to add or change shared library search paths.

i nfo sharedlibpath
Print the shared library path, and show which directoriesit contains.
shar edl i bpat h dirname

Add directory dirname to the front of the shared library search path.
You may specify several directory names with this command, by
separating the directories with a colon (:) or ablank space. If you
specify adirectory that is aready in the path, it is moved forward
and searched earlier.

If you know before the start of the debugging session that you need
to usetheshar edl i bpat h command, start the debugger without
using afile name argument. After the debugger isinitialized, use the
shar edl i bpat h to specify alist of directories, and then use the
fi | e command to load the executable and read in the symbol table.

shar edl i bpath

To clear the search path, enter shar edl i bpat h without specifying
adirname. You are asked to confirm that you want to clear the shared
library search path.

1.2.2 Running the Program

After your program isloaded, use the r un command to execute it.
(rmdb) run

Ther un command creates an inferior process, loads the program into the inferior
process, and sets it in motion.

The execution of your program is affected by certain information the inferior
process receives from its superior. The mdb debugger provides ways to specify this
information, which you must do before executing the program. (You can change
runtime conditions after starting the program, but these changes do not take effect
until the program is restarted.)

The following subsections discuss the different runtime conditions.

1.2.2.1 Working Directory

Each time you start your program with r un, it inheritsits working directory from the
current working directory of ndb. The ndb debugger in turn inherits its working
directory from its parent process, which is typically the shell.

16 S-2467-20

Overview [1]

The mdb working directory also serves as the default directory for the file-handling
commands described in Selecting a Program to Debug on page 11.

Use the following commands to view or reset the working directory.
pwd Print the current working directory.
cd directory

Reset the working directory to directory.

Note: Thel s command cannot be used within an ndb debugging session.

1.2.2.2 Program I/O

By default, a program run under ndb pipes I/0 to the same termina that is used by
ndb. Use sh-style redirection commands in the r un command to redirect input and
output. For example, to start your program and redirect its output to the file ouitfile,
enter this command.

(rmdb) run > outfile

1.2.2.3 Environment Variables

Environment variables are used to specify your user name, home directory, search
paths, and so on. The ndb debugger inherits its environment variables from the shell
session used to start the debugging session.

There is one environment variable that is specific to ndb.
MDB_MTARUN_ARGS

If this environment variable is set when ndb is invoked, the
contents of MDB_MIARUN_ARGS are passed along as command-line
argumentsto nt ar un, to be used when your program is executed.

Note: If this environment variable is set and mdb is invoked
using the - nt ar un- ar gs option, the arguments listed in the
- nt ar un- ar gs option take precedence.

S-2467-20 17

Cray XMT™ Debugger Reference Guide

18

Use the following commands to view and change the values of environment variables.

i nfo environnent

Print the names and values of all environment variables currently set.
You can abbreviate thiscommand toi env.

i nfo environment varname

Print the value of the environment variable varname. You can
abbreviate thiscommand toi env varname.

set environnment varname [valug]
set environnment varname=[value]

Set the environment variable varname to value. The valueis
optional; if it is omitted, the variable is set to a null value. You can
abbreviate this command to set e varname value.

When set from within a debugging session, the environment variable
value applies only to the program being debugged. When you exit
from the debugging session, the environment variable is restored to
its previous value or state.

unset environnment varname
del et e envi ronnent varname

Remove the environment variabl e varname from the environment.
Thisis different from using the set envi ronnent to set the
variable is set to anull value, as it renders the variable undefined.
You can abbreviate thiscommandtod e varname.

When unset from within a debugging session, the environment
variable no longer applies to the program being debugged. However,
when you exit from the debugging session, the environment variable
is restored to the value or state it had before entering the debugging
session.

S-2467-20

Overview [1]

1.2.2.4 Runtime Arguments

In normal operations, many programs require the use of runtime arguments appended
to the nt ar un command in order to run. There are severa ways to pass these
runtime arguments into a debugging session:

e Usethendb command - nt ar un- ar gs arguments option when starting the
debugger to specify nt ar un arguments. If you use this method, the arguments
you specify remain in force unless superseded within the debugging session.

* You can set the MDB_MIARUN_ARGS environment variable, either before or after
starting the debugging session. If it is set before starting the debugging session
and you invoke ndb using the - nt ar un- ar gs option, the - nt ar un- ar gs
arguments supersede the environment variable values.

If you set it after starting the debugging session, the environment variable
values override the - nt ar un- ar gs (if used), but are unset when you exit the
debugging session.

« After starting the debugging session, usetheset nt ar un- ar gs command
from within mdb to specify nt ar un arguments. The values you set remain in
force until superseded or unset, or until the end of the debugging session.

* You can use the Cray Extensions to the ndb command line arguments. For more
information, see the mdb(1) man page.

Additionally, your program may require runtime arguments specific to your program.
These can be set from within the debugging session by using the set ar gs
arguments command prior to issuing the r un command. The arguments you set this
way remain in force until superseded or until the end of the debugging session; to
unset these arguments, usetheset ar gs command with no arguments.

1.3 Debugging a Currently Running Job

The most straightforward way to debug arunning job is to issue the ndb with the
following arguments:

ndb file pid

where file is the running program and pid is its process ID. In this case mdb will
attach automatically to a process that was started up outside of nmdb.

S-2467-20 19

Cray XMT™ Debugger Reference Guide

Alternatively, if mdb isalready running use the following sequence of commands to
load the executable file and its associated symbol file, then attach to the running
process:

(ndb) exec-fil e filename
(rmdb) synbol -fil e filename
(rmdb) att ach device_filename or pid

The at t ach command takes as an argument either a process ID or a device
filename. To use a process I D, you must have permission to send the process asignal,
and it must have the same effective ui d as the debugger. To use a device filename,
the file must be a connection to a remote debug server.

1.4 Ending a Debugging Session

20

To end a debugging session and exit mdb, enter either qui t or q at the (ndb)
prompt. You will exit to your current working directory.

(ndb) quit
XMT_syst em wor kdi r >

The Ct r | - C command does not exit from the debugger, but rather terminates the
action of any debugger command currently in progress and returns to the (ndb)
prompt. It isgenerally safetouse Ct r | - C at any time, because the debugger
attempts to synchronize the interrupt to atime when it is safe. However, thereis
apossibility that using Ct r | - C during expression evaluation may leave locksin a
held state.

To kill the currently running inferior process, usethemdb ki I | command. Be aware
that, on large systems, the ki | | command may take some time to compl ete.

The default time-out for the ki | | command is 100 seconds. Use the ndb set
kill-timeout option to change thisvalue.

S-2467-20

Breakpoints and Watchpoints [2]

The primary purpose of using a debugger is so that you can stop it before its planned
point of normal termination, or if it failsto run that far, so that you can investigate its
behavior and find out what went wrong.

When ndb stops your program, al threads stop. The state of your entire program is
suspended, and you can examine and modify the state, depending on the debugging
level with which you compiled the source code.

2.1 Breakpoints and Watchpoints

S-2467-20

A breakpoint stops all the threads in your program whenever some thread reaches a
certain point in the program. You set breakpoints explicitly with nrdb commands,
specifying the place where the program should stop by line number, function name,
or exact address in the program. You can add other conditions to control whether
the program stops.

A watchpoint is a data breakpoint that stops all threads in your program when a
watched expression changes. A watched expression stops the program when its
value is written, though not necessarily changed, or thef ul | / enpt y bit of any
constituent memory word changes (see State Bits on page 55). Thef ul | / enpt y hit
isthe only state bit that can toggle as a result of aread; the others change only during
writes. For example, an assignment of zero to a variable whose previous value is zero
stops the program. Thisis similar to aread of awatched sync variable because the
ful I/ enpty bitchangesfromf ul | toenpty. After suspending your program,
ndb tells you the previous value of the changed watchpoint expression. You can see
the new value by printing the expression.

When ndb suspends your program due to a watchpoint, the current instruction

of athread that changed a watched expression may be some distance beyond the
instruction that triggered the watchpoint. For example, a watchpoint expression may
have been changed when control was in the previous stack frame. Thislong stopping
distance is caused by a combination of instruction pipelining by the hardware,
multiple operations per instruction, jump operations, and compiler optimizations. To
reduce this effect, compile your program at alower optimization level.

Watchpoints in ndb are as efficient to use as breakpoints. The implementation of
watchpoints is based on the hardware trap bits associated with each data memory
word (see State Bits on page 55).

21

Cray XMT™ Debugger Reference Guide

22

Watchpoints and breakpoints are differentiated by the commands you use to create
them (see Setting Breakpoints on page 23 and Setting Watchpoints on page 26). Most
of the commands for enabling, disabling, and deleting breakpoints aso apply to
watchpoints (see Deleting Breakpoints and Watchpoints on page 26 and Disabling
Breakpoints and Watchpoints on page 27).

Each breakpoint and watchpoint is assigned a number when it is created; these
numbers are successive integers starting with 1. In many of the commands for
controlling various features of breakpoints and watchpoints, you use this number to
say which point you want to change. Each breakpoint or watchpoint may be enabled
or disabled; if apoint is disabled, it has no effect on the program until you enable

it again.

Thecommandi nf o br eakpoi nts ori nfo wat chpoi nt s printsalist of each
breakpoint and watchpoint that is set but not deleted: its number, type (breakpoint or
watchpoint), disposition (whether the point is marked to be disabled or deleted when
reached), whether or not the point is enabled, where in the program it is, and any
specia featuresin use for the point (conditions, command sets). Disabled points are
included in the list, but marked as disabled (not enabled). You can abbreviatei nf o
br eakpoi nts asi nfo break oreveni b.info break withaninteger
argument lists only the associated breakpoint or watchpoint.

The following example shows a breakpoint on mai n, and a watchpoint on the
variable f 00.

[1] (mdb) info breakpoints

Num Type Disp En Address What
1 break keep y 0x524 in main (/home/users/xxx/main.c |line 33)
2 watch keep y foo

(Unlike GDB, i nf o break ori nfo wat ch in ndb does not set either the
convenience variable $_ or the default examining-address for the x command.)

When your program stops due to a breakpoint, ndb prints out the name of the
function containing the breakpoint and the function argument values. You can cause
ndb to omit the argument values by issuing theset print-functi on-args
of f command (see Format Options on page 57).

When a set of threads hit multiple breakpoints or watchpoints simultaneously, ndb
displays the names of the threads that hit them. If the thread that previously had the
focus is among the stopped threads, it retains the focus. However, if this thread has
expired or is not stopped because of a breakpoint, watchpoint, step, or fatal error,
ndb arbitrarily chooses a stopped thread to be the focus. All breakpoint commands
are executed at this time.

S-2467-20

Breakpoints and Watchpoints [2]

2.1.1 Setting Breakpoints

Breakpoints are set with the br eak command (abbreviated b). You have severa
ways to say where the breakpoint should go. Two ways require ndb to be focused:
br eak without any argument and br eak with an offset argument.

br eak function

Set a breakpoint at entry to function function. (If your programis
linked with an archive, the state of the nrdb vi si bi | ity variable
may either affect your ability to access function or determine in
which of several functions named function the breakpoint is set. See
Archive Symbol Visibility on page 70 for details.

br eak +offset, break -offset

Within the current source file, set a breakpoint some number of lines
forward or back from the position at which the focus thread stopped
in the currently selected frame. The focus thread and selected frame
determine the current source file: the current source file contains
the line the focus thread in which stopped executing in the selected
frame. (See Chapter 5, Examining Source Files on page 47.)

br eak linenum

Set a breakpoint at line linenum in the current source file. The
breakpoint stops the program immediately before any thread executes
any of the code on that line. You may not be able to set a breakpoint
by line number within a file-static function compiled without
debugging information. The compiler may inline these functions at
every call and not maintain a stand-alone version. If thisis the case,
mdb has insufficient information to set a breakpoint by line number
at an arbitrary, inlined instruction of the function. However, you can
set a breakpoint using the function name—which sets a breakpoint at
thefirst line of every inlined instance of the function.

(rmdb) break 10

No |i ne nunber 10.

(mdb) break foo

Breakpoint 1 at (0:0x412) (main): foo.c line 10.

(In the last line above, (mai n) isan artifact of the program not
having a stand-alone implementation of f 00.)

br eak filename: linenum

Set a breakpoint at line linenum in source file filename.

S-2467-20 23

Cray XMT™ Debugger Reference Guide

br eak filename: functionname

Set a breakpoint at entry to function functionname found in file
filename. Specifying afile name as well as a function nameis
superfluous except when multiple files contain similarly named
functions.

br eak *address

Set a breakpoint at address address. You can use this to set
breakpoints in parts of the program that do not have debugging
information or sourcefiles. If the instruction at addressis inlined
code, mdb does not set any additional breakpointsin corresponding
locations in the stand-alone version or other inlined instances; here
ndb does not maintain the illusion of normal function call.

br eak Set a breakpoint at the next instruction to be executed by the focus
thread in the selected stack frame (see Chapter 4, Examining the
Stack on page 41).

break ... if cond

Set a breakpoint with condition cond; evaluate the expression
cond each time the breakpoint is reached, and stop only if the
valueis nonzero. . . . standsfor one of the possible arguments
described above (or no argument) specifying where to break. See
Break Conditions on page 28, for more information on breakpoint
conditions.

t break args

Set a breakpoint enabled only for one stop. args are the same asin
the br eak command, and the breakpoint is set in the same way, but
the breakpoint is automatically disabled the first time it is hit. See
Disabling Breakpoints and Watchpoints on page 27.

ndb allows you to set any number of breakpoints at the same place in the program.
Thisis useful when the breakpoints are conditional Break Conditions on page 28.

2.1.1.1 Special Breakpoint Situations

If you set a breakpoint by any means other than br eak * address, and the breakpoint
is within code that has been inlined by the compiler, mdb maintains the illusion

of normal function call. The breakpoint appears to be set within the body of the
function—and thus is set in all other inlined copies of the function. If you set a
breakpoint by its address, and the breakpoint is within inlined code, mdb creates a
single breakpoint.

24 S-2467-20

Breakpoints and Watchpoints [2]

S-2467-20

If you set a breakpoint on aline that contains a future statement, the break occurs at
the first statement within the future body, rather than immediately before the future
statement is executed.

8 foo(){

9 j =5
10 future i () {
11 k += 3;

The command br eak 10 places a breakpoint immediately before the statement in
line 11, as opposed to immediately after the statement in line 9.

Setting a breakpoint on aline with a future and another statement, however, can cause
the break to take place outside the future body.

ndb does not allow breakpoints on a small set of instructions (instructions that
contain a MAC operation, or any of the following operations: DATA_OPA_SAVE,
DATA_OPD_SAVE, DATA OP_REDO, LEVEL_ENTER, LEVEL_RTN,
RESULTCODE_SAVE, TRAP_RESTORE, or TRAP_SAVE). If you try to set a
breakpoint on one of these instructions, ndb will ask you to choose a different
instruction for the breakpoint.

25

Cray XMT™ Debugger Reference Guide

2.1.2 Setting Watchpoints

Use awatchpoint to stop your program immediately after the value of an expression
is written, without having to identify the thread updating the expression or the
instruction where the modification takes place. Watchpoints are set with the wat ch
command (abbreviated w) and an expression Expressions on page 53.

wat ch expression

watch ...

Set awatchpoint on expression. If expression is a data memory
address, the address is preceded with an asterisk.

[1] (ndb) watch *0x40102bc000
i f cond

Set awatchpoint with condition cond; evaluate the expression cond
each time the watched expression changes, and stop only if the value
isnonzero. . .. standsfor an new expression or the number of a
previous watchpoint. To ensure that cond is in scope, cond cannot
reference any stack variables. See Break Conditions on page 28, for
more information on watchpoint conditions.

t wat ch expression

Set a watchpoint enabled only for one stop. The watchpoint
is automatically disabled the first time it is hit. See Disabling
Breakpoints and Watchpoints on page 27.

i nfo wat chpoi nts

This command prints alist of watchpoints and breakpoints. It isthe
sameasi nfo break.

2.1.3 Deleting Breakpoints and Watchpoints

26

With the cl ear command you can delete breakpoints according to where they arein
the program. With the del et e command you can delete an individual breakpoint
or watchpoint by specifying its number.

S-2467-20

Breakpoints and Watchpoints [2]

If your program stopped because one or more breakpoints were hit, it is not necessary
to delete the breakpoints for the breaking threads to proceed past them. ndb
automatically ignores all breakpointsin the first instruction to be executed by each
breaking thread.

cl ear Delete any breakpoints at the next instruction to be executed by the
focus thread in the selected stack frame (see Selecting a Frame on
page 43). When the innermost frame is selected, thisis a good way to
delete the breakpoint at which the focus thread is stopped.

cl ear function, cl ear filename: function

Delete any breakpoints set at entry to the function function.
cl ear linenum, cl ear filename: linenum

Delete any breakpoints set at or within the code of the specified line.
del et e bnum(s)

Delete the breakpoint(s) or watchpoint(s) of the numbers specified
as arguments.

Note: If you delete or disable a watchpoint while it is being processed, your
program may behave in incorrect or undefined ways. Before deleting or disabling
watchpoints, check each thread to make sure none is in the vicinity of the use of
awatched location. If you find one, try advancing it using st ep or next , or
continue to hit the watchpoint.

2.1.4 Disabling Breakpoints and Watchpoints

S-2467-20

You disable and enable breakpoints and watchpoints with the enabl e and di sabl e
commands, specifying one or more numbers as arguments. Usei nf o br eak

ori nfo wat ch to print alist of breakpoints and watchpoints if you do not know
which numbers to use.

A breakpoint or watchpoint can have any of four different states:

e Enabled. The point stops the program. A breakpoint made with the br eak
command or awatchpoint made with thewat ch command starts out in this state.

» Disabled. The point has no effect on the program.

« Enabled once. The point stops the program, but when it does so, it becomes
disabled. A breakpoint made with thet br eak command or a watchpoint made
with thet wat ch command starts out in this state.

« Enabled for deletion. The point stops the program, but immediately after it does
so, it is deleted permanently.

27

Cray XMT™ Debugger Reference Guide

You change the state of a breakpoint or watchpoint with the following commands:

di sabl e breakpoi nts bnum(s)
di sabl e bnum(s)

Disable the specified breakpoint(s) or watchpoint(s). A disabled
point has no effect but is not forgotten. All options such as ignore
counts, conditions, and commands are remembered in case the
breakpoint or watchpoint is enabled again later.

enabl e breakpoi nts bnum(s)enabl e bnum(s)
Enable the specified breakpoint(s) or watchpoint(s).

enabl e breakpoi nts once bnum(s)
enabl e once bnum(s)

Enable the specified breakpoint(s) and watchpoint(s) temporarily.
Each will be disabled again the next time it stops the program (unless
you have used one of these commands to specify a different state
before that time comes).

enabl e breakpoi nts del ete bnums
enabl e del ete bnums

Enable the specified breakpoints and watchpoints to work once and
then die. Each point is deleted the next time it stops the program
(unless you have used one of these commands to specify a different
state before that time comes).

2.1.5 Break Conditions

28

You can also specify a condition for a breakpoint or awatchpoint. A condition isa
boolean expression in your programming language. (See Expressions on page 53.) A
breakpoint or watchpoint with a condition eval uates the expression each time a thread
reaches the breakpoint or maodifies the watched expression, and the program stops
only if the condition is true. Because the expression cond must always be in scope for
watchpoints, cond cannot reference any stack variables.

Note: Avoid break conditions with side effects—for example, printing diagnostics,
updating counters, or using generic functions on sync or future variables (see
Changing the Full/Empty Bit on page 75). The behavior of break conditions with
side effectsis unpredictable: A break condition may be evaluated multiple times
when the breakpoint or watchpoint is hit. The evaluation order of conditions for
several breakpoints sharing the same address or several watchpoints associated
with a common memory word is undetermined.

S-2467-20

Breakpoints and Watchpoints [2]

Use breakpoint or watchpoint commands as an alternate to break conditions with
side effects. Command sets behave predictably and are usually more convenient and
flexible for the purpose of performing side effects when a breakpoint or watchpoint is
reached (see Commands Executed on Breaking on page 30).

You can specify break conditions when a breakpoint or watchpoint is set by using i f
in the arguments to the br eak or wat ch command. See Setting Breakpoints on
page 23 and Setting Watchpoints on page 26. They can aso be changed at any time
with the condi t i on command.

condi ti on bnum expression

Specify expression as the break condition for breakpoint or
watchpoint number bnum. From now on, this point stops the program
only if the value of expression is true (nonzero, in C). expression is
not evaluated at the time the condi t i on command is given. See
Expressions on page 53 for more information.

condi ti on bnum

Remove the condition from breakpoint or watchpoint number bnum.
It becomes an ordinary unconditional breakpoint or watchpoint.

A special case of abreakpoint or watchpoint condition isto stop only when the point
has been reached a certain number of times. Every breakpoint and watchpoint has an
ignore count, which is an integer. Most of the time, the ignore count is zero, and
therefore has no effect. But if athread reaches a breakpoint or watchpoint whose
ignore count is positive, then instead of stopping the program, it decrements the
ignore count by one and continues. As aresult, if the ignore count valueis n, the
breakpoint or watchpoint does not stop the program the next n timesit is reached.

i gnor e bnum count

Set the ignore count of breakpoint or watchpoint number bnum to
count. The next count times the point is reached, it will not stop. To
make the breakpoint or watchpoint stop the next time it is reached,
specify a count of zero.

cont count Continue execution of all threadsin the program, setting the ignore
count of the breakpoint or watchpoint that the program stopped at
to count minus one. Thus, the program does not stop at this point
until the time defined by count is reached. This command is allowed
only when the program stopped due to a breakpoint or watchpoint.
At other times, the argument to cont isignored. See Continuing
on page 31 for more information.

Note: If abreakpoint or watchpoint has an ignore count of greater than 0 and a
condition, the condition is not checked.

S-2467-20 29

Cray XMT™ Debugger Reference Guide

2.1.6 Commands Executed on Breaking

You can give any breakpoint or watchpoint a series of commands to execute when the
program stops due to that point. For example, you might want to print the values of
certain expressions, or enable other breakpoints or watchpoints.

conmands bnum

Specify commands for breakpoint or watchpoint number bnum. The
commands themselves appear on the following lines. Typetheend
command to terminate the commands.

To remove all commands from a breakpoint or watchpoint, use the
command commands and follow it immediately by end; that is,
give no commands. With no arguments, commands refersto the
last breakpoint or watchpoint set.

When your program is suspended due to a set of breakpoints or watchpoints being

hit simultaneously, for each breaking thread nmdb executes the command sequence

of each point in the set—in some arbitrary order of the command sequences. ndb
automatically resumes execution only if each breakpoint or watchpoint in the set has a
command sequence and each command sequence includes the cont command.

For each command sequence, mdb ignores all continuation commands other than
cont, aswell asal commands that follow any continuation command, including
those after cont . For example, ndb ignores st ep or f i ni sh in a command
sequence—and any commands that follow.

If you use a stepping command like st ep or next to advance athread to an
instruction that has some number of breakpoints, each of which has a command
sequence that includes acont command, ndb executes each command sequence
but does not does not resume execution.

If the first command specified in a breakpoint or watchpoint command sequence is
si | ent , the usual message about stopping at a breakpoint is not printed. This may
be desirable for points that are to print a specific message and then continue. If the
remaining commands too print nothing, you will see no sign that the breakpoint or
watchpoint was reached at all. si | ent isnot really acommand; it is meaningful
only at the beginning of the commands for a breakpoint or watchpoint.

The commands echo and out put that allow you to print precisely controlled output
are often useful in silent breakpoints or watchpoints. See Commands for Controlled
Output on page 81.

30 S-2467-20

Breakpoints and Watchpoints [2]

For example, here is how you could use breakpoint commands to print the value of x
at entry to f 00 whenever it is positive.

[1] (nmdb) break foo if x>0
[1] (mdb) conmands

si |l ent

echo x is\040

out put x

echo \n

cont

end

One application for breakpoint commands is to correct one bug so you can test
another. Put a breakpoint immediately after the erroneous line of code, giveit a
condition to detect the case in which something erroneous has been done, and give
it commands to assign correct values to any variables that need them. End with
thecont command so that the program does not stop, and start with the si | ent
command so that no output is produced. Here is an example:

[1] (rdb) break 403
[1] (mdb) conmmands
sil ent

set x =y + 4

cont

end

A similar pseudo-command isonce. When multiple threads hit a breakpoint at the
same time, by default all of the commands for that breakpoint will be executed for
each thread. If the first command specified is once, then the commands will be
executed for only one of the threads. The si | ent and once commands may be
used together; for example, if si | ent isthe first command then once may be
second.

2.2 Continuing

After your program stops, you will mostly likely want it to run some more if the bug
you are looking for has not yet occurred.

cont Continue running the entire program from the current suspended
state; al threads are active (not only the focus thread).

cont/1 Continue running only the focus thread from the current suspended
program state; all other threads remain suspended by ndb, regardiess
of individua thread state.

S-2467-20 31

Cray XMT™ Debugger Reference Guide

2.3 Stepping

32

If the program stopped because a thread hit a breakpoint, you might expect that
continuing would stop immediately at the same breakpoint when it was hit again by
the same thread. In fact, cont takes special care to prevent that from happening. You
do not need to delete the breakpoint to proceed through it after stopping at it.

You can, however, specify an ignore count for the breakpoint that the program
stopped at, by means of an argument to the cont command. See Break Conditions
on page 28.

Sepping means setting only the focus thread in motion for alimited time, so that
control returns automatically to the debugger after the focus thread executes one
line of code or one machine instruction. While the focus thread is stepping, all other
threads remain suspended.

During a step, the focus thread may toggle thef ul | / enpt y state (see State Bits

on page 55) of a sync or future variable on which threads are blocked waiting for

the opposite full/empty state. If this happens, the toggling read or write triggersin
the same step an action that satisfies one of the blocked threads request to read or
write the variable (possibly changing the value of the variable or the full/empty
state). Thistype of read or write by an initially blocked thread is the only non-focus
thread activity that occurs during stepping; threads unblocked in this fashion remain
suspended while the current focus thread is stepping, though in a state that differsasa
result of the read or write assisted by the trap handler.

ndb must be focused on athread (see Focus Thread on page 37) to execute any of the
following stepping commands.

step Continue running the focus thread until it reaches a different line,
then stop the focus thread and return control to the debugger. This
command is abbreviated s.

This command may be given when athread is within a function for
which there is no debugging information. In this case, execution
proceeds until the thread reaches a different function, or is about to
return from this function. An argument repeats this action.

step count Continuerunning asin st ep, but do so count times.

S-2467-20

Breakpoints and Watchpoints [2]

S-2467-20

next

finish

unti |

until

Similar to st ep, but any function calls appearing within the line of
code are executed by the focus thread without stopping. Execution
stops when the focus thread reaches a different line of code at the
stack level that was executing when the next command was given.
This command is abbreviated n.

An argument is arepeat count, asin st ep.

next within afunction without debugging information acts as does
st ep; any function calls appearing within the code of the function
are executed by the focus thread without stopping.

Continue running the focus thread until immediately after the
selected stack frame returns (or until there is some other reason to
stop, such asafatal signal or a breakpoint). Print value returned by
the selected stack frame (if any).

This command is used to avoid single-stepping a thread through a
loop more than once. It islikethenext command, except that when
unt i | encounters ajump, it automatically continues execution of
the focus thread until the program counter is greater than the address
of the jump.

This means that when the focus thread reaches the end of aloop after
single-stepping though it, unt i | causes the program to continue
execution until the loop is exited. In contrast, anext command at
the end of aloop steps the focus thread back to the beginning of the
loop, which forces the thread to step through the next iteration.

unt i | always stops the focus thread if it attempts to exit the current
stack frame.

Note: unti | may produce somewhat counter-intuitive results if
the order of the source lines does not match the actual, optimized
order of execution. For example, in atypical Cf or loop, the
third expression in the f or statement (the loop-step expression) is
executed after the statements in the body of the loop, but is written
before them. Therefore, theunt i | command appears to step the
focus thread back to the beginning of the loop when it advancesto
this expression. However, it has not really done so—not in terms
of the actual machine code.

location

Continue running the focus thread until either the specified location
isreached, or the current (innermost) stack frame returns. Thisform
of the command uses breakpoints, and hence is quicker thanunt i |
without an argument.

33

Cray XMT™ Debugger Reference Guide

stepi, si Executethefocusthread for one machine instruction, then stop and
return to the debugger.

It is often useful todo di spl ay/i $pc when stepping by machine
instructions. This causes the next instruction to be executed by

the focus thread to be displayed automatically at each stop. See
Automatic Display on page 62.

An argument is arepeat count, asin st ep.

nexti, ni Executethe focus thread for one machine instruction, but if the
instruction is a subroutine call, proceed until the subroutine returns.

nexti within atrap handler acts as does st epi , stopping at the
next machine instruction that is outside the trap handler.

An argument is arepeat count, asin next .

A typical technique that uses stepping is to put a breakpoint (see Breakpoints and
Watchpoints on page 21) at the beginning of the function or the section of the
program in which a problem is believed to lie, and then step one or more threads
through the suspect area, examining the variables that are interesting, until the
problem happens.

You can achieve the effect of some of the stepping commands within atrap handler
by setting breakpoints at each line or instruction of the trap handler. Other debugging
commands, such as examining and altering memory, work within trap handlers as
they normally do.

You can use the cont / 1 command after stepping to resume execution of only the
focus thread until the next breakpoint or signal. See Continuing on page 31.

Your program is probably linked with some number of standard libraries such as
libc,libmandlibrt. By default, if you step the focus thread through code that
contains a call into one of the functionsin these libraries, ndb will step completely
over the function. You can alter this behavior and have ntdb step into the function by
setting the ndb variableent er - st dl i b to true.

set enter-stdlib true

Setting ent er - st dl i b to false restores the default behavior.

34 S-2467-20

Understanding Multithreading [3]

The Cray XMT compilers automatically identify sections of source code that can be
partitioned into independent and parallel operations. When you execute this compiled
code on aCray XMT system, each program starts as a single thread. As the program
executes, it spawns new threads to perform simultaneous and parallel operations,
while existing threads may be waiting for a resource or the completion of a memory
reference, and yet other threads are completing their tasks and disappearing. Asa
result, the set of threads executing in your program changes dynamically throughout
the life of the program, in both number and nature.

At any intermediate point in the execution of your program, ndb knows only about
the threads that are currently part of the execution; that is, the threads that are running
or waiting to run. When your program is suspended under ndb, you can ask ndb for
information about the current set of threads and perform debugging operations on
individual threads (see Focus Thread on page 37).

Each thread originates either from a future statement in your source code or as part
of an automatic compiler optimization. Each future statement explicitly determines
aprimary thread responsible for executing the body of the future statement, while
compiler optimizations are performed automatically, when the compiler recognizes
an opportunity to improve code performance by executing certain sections of code
simultaneously.

For example, the compiler may recognize aloop whose iterations are relatively
independent. The compiler in this case partitions the entire execution of the loop
(where each resulting component is usually one or more loop iterations) and directs
the single thread that encounters the loop to split into a set of threads, or frays. Each
thread of the fray independently executes some component of the overall execution of
the loop, in parallel with the other fray members. If the fray size, which is determined
at runtime, is less than the number of execution components, a fray thread may
execute more than one component.

3.1 Thread Names

S-2467-20

The mdb debugger learns about the threads in your program progressively and
assigns each new thread a unique integer identifier. The mdb debugger reassigns
the identifiers, starting from O, each time your program is run. Due to timing issues
inherent in parallel programs, the mapping of identifiers to threads may be different
from one program run or debugging session to the next.

35

Cray XMT™ Debugger Reference Guide

The runtime system also assigns a name to each thread in your program. They are
of theforma. b or a. b. ¢, wherea, b, and ¢ are non-negative integers, and the
names conform to the following rules.

¢ 0. 1 namestheinitia thread.

 Theforma. b designates athread that is usually determined by afuture statement
in your source code.

e Theruntime nameform a. b. ¢ designates a thread that is generated strictly by
the compiler.

For example, afray thread has a three-component name. The runtime system gives
related names to threads in a group generated by the compiler to execute a particular
section of code. A fray isatypical example of such agroup. The names of all threads
in a compiler-generated group differ only in the third component.

You can change the form of thread name ndb useswith theset id-style
command.

set id-style system

Use the runtime system names of theform a. b or a. b. ¢ for thread
names.

set id-style ndb
Use integers for thread names. Thisis the defaullt.

You may aso start ndb using the command-line option - i d- st yl e with the same
argument choice.

On rare occasions, the thread name in the prompt may be a negative
integer—indicating a runtime thread running on a dedicated stream. See Focus
Thread on page 37 for more details.

3.2 Thread States

The state of athread persists during suspension of the program by ndb. For example,
if arunning thread t hits a breakpoint (see Breakpoints and Watchpoints on page 21)
and mdb stops your program, when ndb resumes execution, t will be running.

36 S-2467-20

Understanding Multithreading [3]

A thread t isin one of the following states:
runni ng Thread t is executing.

startabl e A threadin your program has executed the future statement that
establishes thread t; t has not run; t will run when execution resources
become available.

bl ocked Thread t is waiting for amemory reference to complete and has
released the execution resources it was using.

spinning Threadt iswaiting for a memory reference to complete; while it
waits, it continues to execute but does not make progress.

resunmabl e The memory reference on which thread t blocked has completed; t
will resume running when execution resources become available.

aborted Thread t has experienced afatal error and is not resumable.
i ndet erm nate

Thread t isin transition between two of the previous states; ndb is
unable to determine the recent or impending state of t.

ndb retains no knowledge of threads that have completed and disappeared.

3.3 Focus Thread

When you run your program under mdb, you or ndb may use thet hr ead command
to designate a single thread as the focus thread—the thread of particular interest.
Many debugging operations refer implicitly to the focus thread. If ndb isfocused on
asingle thread, the identifier of the focus thread appears on the same line as, and

in front of, the prompt.

[1] (nub)

You can change the format of the thread state description with the set

st at e- | engt h command. You can explicitly set the focus thread to be one of the
threads through the t hr ead command. The focus thread is the target thread of any
ndb command that pertains to a single thread, such as st ep or backt r ace. If
ndb is not focused when you issue such a command, ndb returns an error message
stating the need for a focus.

S-2467-20 37

Cray XMT™ Debugger Reference Guide

38

Once your program has begun running, one or more threads execute your program.
When ndb suspends execution, you can examine the threads currently comprising the
execution of your program by issuing the info threads command.

i nfo threads

Print atable of the current set of threads in your program sorted by
thread state and breakpoint number. By default, a compressed list
of thread ids are printed.

info threads/l|
Print table in long format (all thread 1Ds).
info threads/f

Sort table by the name of the function where execution is currently
stopped as well as thread state and breakpoint number.

info threads/n

Print only the total number of threads in each state or function.
i nfo threads/b number

Print only threads stopped at breakpoint number.
info threads/v

Print verbose information about the current set of threads, including
thread id, system name, and name of function where execution is
currently stopped. By default, the number of threads displayed in
verbose mode islimited to 500. Useset info-1imt tochange
the limit.

set state-length
Print the current value of st at e- | engt h.
set state-I|ength length

Set the length of the state description ndb prints before the prompt
for threads that are not in state running. The argument length may
take on one of the following values.

| ong Print the state as along name. Thisis the defaullt.
short Print the state as the first character of the long name.
none Print no state description.

S-2467-20

Understanding Multithreading [3]

S-2467-20

You can explicitly set the focus thread to be one of the threads through the thread
command. The focus thread is the target thread of any ndb command that pertainsto
asingle thread, such as step or backtrace. If ndb is not focused when you issue such
acommand, mdb returns an error message stating the need for a focus.

t hr ead thread-name

Set the target thread of subsequent mdb commands that pertain to
asingle thread to thread-name.

In the following example, i nf o t hr eads lists the names of the threads in the
program, as well as the state of each thread. Thread 1 is running, since no state is
printed to the left of the thread identifier.

[1] (mdb) info threads

Thr ead State Br k
1 runni ng 1
2 startabl e
3 startable

[1] (ndb)

Below, thet hr ead command changes the focus thread from 1 to 2 then back to 1.
Line 149 is the current source position of startable thread 2. Line 30 is the current
source position of thread 1.

[1] (nmdb) thread 2

149 future $l eft_done (data, left) { [l fork left
<startable> [2] (ndb) thread 1

30 for (int j =1; | <size; j++) {

[1] (nub)

For thet hr ead command, the square brackets ([]) around the thread name are
optional.

Program execution may be interrupted if your program receives certain UNIX signals
or if some set of parallel threads hits a breakpoint or watchpoint, raises a fatal
exception, or completes andb stepping command. After execution is suspended,
ndb determinesif thereis athread of particular interest. If so, ndb focuses on that
thread; otherwise mdb does not set a focus thread.

For example, when you type Ct r | - C, ndb remembers the previous focus thread,
which mdb retains as the new focus thread if the thread is till active. If the previous
focus thread is blocked or otherwise unable to resume execution, however, ndb prints
out a message to that effect and leaves the focus thread unset.

39

Cray XMT™ Debugger Reference Guide

40

On rare occasions, mdb may focus on athread whose name is a hegative integer.
Thisis aruntime thread whose underlying stream is dedicated to the runtime, such
as adaemon. ndb may focus on such athread if a runtime daemon hits a user-set
breakpoint or watchpoint (see Breakpoints and Watchpoints on page 21). These
runtime threads executing on dedicated streams are never listed in the output of
info threads.

If you set the focus thread to be athread that has just executed an instruction that
raised an exception and caused the thread to trap, ndb sets the current source position
to the line containing the next instruction to execute after the trap is handled, which
may be up to eight dynamic instructions beyond the trapping instruction. In this case,
any instructions between the trapping instruction and the current source position are
executed before the trap is handled. Additionally, if the trapping instruction contains
afunction return, the current source line may even be in a source file different than
the one where the trap occurred.

S-2467-20

Examining the Stack [4]

Each time a thread performs a function call, the information about where in the
program the call was made from is saved in a block of data called a stack frame. The
frame also contains the arguments of the call and the local variables of the function
that was called. For each thread, al the stack frames are alocated in aregion of
memory called the call stack.

ndb recognizes when the compiler optimizes your code by inlining a function call
(substituting the function body for the call statement). For inlined functions, mdb
maintains the illusion of a normal function call.

When your program stops, the ndb commands for examining the stack of the focus
thread allow you to see all of the information saved in the stack frame.

When the program stops, mdb automatically selects the currently executing frame of
the focus thread and describes the frame briefly as the f r ane command does (see
Information on a Frame on page 45).

Whenever you ask ndb for the value of a variable in the program, the value is found
in the selected frame. There are special mdb commands to select whichever frame of
the focus thread you are interested in.

4.1 Stack Frames

S-2467-20

The call stack of athread is divided up into contiguous pieces called stack frames, or
frames for short; each frame is the data associated with one call to one function. The
frame contains the arguments given to the function, variableslocal to that function,
and the address at which the function is executing.

When athread starts, its stack has only one frame. Thisis called the initial frame

or the outermost frame. Each time afunction is called by the thread, a new frame

is made. Each time the thread returns from a function, the frame for that function
invocation is eliminated. If afunction is recursive, there can be many frames for the
same function. The frame for the function in which the thread is actually executing is
called the innermost frame. Thisis the most recently created of all the thread stack
frames that still exist.

41

Cray XMT™ Debugger Reference Guide

Inside your program, stack frames are identified by their addresses. A stack frame
consists of many words, each of which has its own address. The address of the
first word of the frame serves as the address of the frame itself. For each thread,
this addressis kept in aregister called the stack pointer register while the thread is
executing in that frame.

For each thread, ndb assigns numbersto all existing stack frames, starting with zero
for the innermost frame, one for the frame that called it, and so on upward. These
numbers do not really exist in your program, but give you away of talking about
stack framesin mdb commands.

Many mdb commands refer implicitly to one stack frame of one parallel thread. The
implied thread can be selected by you or by ndb (see Focus Thread on page 37).
Once focused, mdb records a stack frame that is called the selected stack frame; you
can select any frame of the focus thread by using one set of ndb commands, and
then other commands will operate on that frame. When your program stops, if mdb
focuses on a thread, ndb automatically selects the innermost frame for the focus
thread.

4.2 Backtraces

42

A backtrace is a summary of how athread got where it is. It shows one line per
frame, for many frames, starting with the currently executing frame (frame zero),
followed by its caller (frame one), and on up the stack of the thread. Backstops are
initial (outermost) frames on the stack: mai n for the first thread in your program, the
initial frame for any subsequent thread.

backtrace, bt

Print a backtrace of the entire stack of the focus thread: one line per
frame for al framesin the stack. You can stop the backtrace at any
timeby typingCtrl - C.

backtrace n, bt n

Similar, but print only the innermost n frames.
backtrace -n, bt -n

Similar, but print only the outermost n frames.
backtrace/all, bt/all

Backtrace all current threads. Thisis equivalent to issuing
backt r ace for each thread in your program.

The nameswher e andi nf o st ack are additional aliasesfor backt r ace—and
require that ndb be focused.

S-2467-20

Examining the Stack [4]

Every line in the backtrace shows the frame number, the function name, and the
program counter value.

If the function isin a source file whose symbol table data has been fully read, the
backtrace shows the source file name and line number. The program counter value is
omitted if it is at the beginning of the code for that line number.

If the symbol data in the source file has only been scanned and not fully read, this
extrainformation is replaced with an elipsis. You can force the symbol datafor
that frame's source file to be read by selecting the frame. (See Selecting a Frame
on page 43).

Here is an example of a backtrace.

[1] (mdb) backtrace

#0 foobar2()(hello.c line 11)
#1 foobarl()(hello.c line 18)
#2 foo()(hello.c line 28)

#3 main(hello.c |ine 60)

4.3 Selecting a Frame

S-2467-20

Most commands for examining the stack and other datain the program work on
whichever stack frame is selected at the moment. Here are the commands for
selecting a stack frame, usually of the focus thread.

frane n Select frame nunber n of the focus thread. Recall that frame zero
isthe innermost (currently executing) frame. Frame one is the frame
that called the innermost one, and so on. The highest-numbered
frameistheinitial frame of the focus thread.

frame addr Select the frameat address addr. Thisis useful mainly if the chaining
of stack frames has been damaged by a bug, making it impossible for
ndb to assign numbers properly to all frames. In addition, this can be
useful when athread has multiple stacks and switches between them.

up n Select frame n frames up from the frame previously selected. For
positive numbers n, this advances toward the outermost frame, to
higher frame numbers, to frames that have existed longer. n defaults
to one.

down n Select the frame n frames down from the frame previously selected.
For positive numbers n, this advances toward the innermost frame, to
lower frame numbers, to frames that were created more recently. n
defaults to one.

43

Cray XMT™ Debugger Reference Guide

upt o regexp

Select the first frame in the calling stack whose function name
matches regexp. For instance, if a backtrace shows functions
sprint,printl, print andmnai n, and the current frameis
at sprint, thecommand upt o pri nt would select the frame
aprintl. upto print$ wouldgo totheframeat print.
upt o aso functions as a boolean expression and can be used as
the condition for thei f or whi | e commands. When used in this
manner, it must be the only expression within the condition. Also
when used as a condition, no frame information is printed; use the
f r ame command with no argument within the body of thei f or
whi | e to print out the frame information, if necessary.

downt 0 regexp

Select the last frame in the calling stack whose function name
matches regexp. For instance, if a backtrace shows functions
sprint,printl,print andmai n, and the current frameis at
pri nt, the command downt o pri nt would select the frame at
printl. dowmnto print$wouldgototheframeatsprint.
downt o aso functions as a boolean expression and can be used as
the condition for thei f or whi | e commands. When used in this
manner, it must be the only expression within the condition. Also
when used as a condition, no frame information is printed; use the
f r ame command with no argument within the body of thei f or
whi | e to print out the frame information, if necessary.

All of these commands (except upt o and downt o when used as a condition for i f
or whi | e) end by printing some information on the frame that has been selected: the
frame number, the function name, the arguments, the source file and line number of
execution in that frame, and the text of that source line. For example:

#3 main (argc=3, argv=??, env=??) at main.c, line 67
67 read_input _file (argv[i]);

After such aprintout, thel i st command with no arguments will print ten lines
centered on the point of execution in the frame. Printing Source Lines on page 47.

44 S-2467-20

Examining the Stack [4]

4.4 Information on a Frame

S-2467-20

There are several other commands to print information about a stack frame, usually
the selected frame of the focus thread.

frame

info frane

info frane

info args

info | ocal s

Print a brief description of the selected stack frame. You can
abbreviate it f . With an argument, this command is used to select a
stack frame; with no argument, it does not change which frame is
selected, but still prints the same information.

Print the stack level, the address of the frame, and the program
counter of the selected stack frame. This description is useful when
something has gone wrong that has made the stack format fail to fit
the usua conventions.

addr

Print the address of the selected frame along with its program
counter, function name, and source location (if known).

Print the arguments of the selected frame, each on a separate line.
Also, seetheset print-function-args commandin Format
Options on page 57.

Print the local variables of the selected frame, each on a separate
line. Every variable declared static or automatic in the current scope
IS printed.

45

Cray XMT™ Debugger Reference Guide

46 S-2467-20

Examining Source Files [5]

ndb knows which source files your program was compiled from, and can print parts
of their text. When your program stops, if ndb automatically determines the current
focus thread, then ndb spontaneoudly prints the line the focus thread stopped in.
Likewise, when you select a stack frame (see Selecting a Frame on page 43), ndb
prints the current source line in which the focus thread stopped executing in that
frame. The current source file contains the line in which the focus thread stopped
executing in the selected stack frame. If the program has not yet been run, the current
source fileisthat of mai n for C/C++ programs.

nmdb only knows about source files encountered during the course of running your
program. If you wish to access source information yet to be seen by nmdb, use the
| oad command with the pertinent module name as an argument. (See Module
Commands on page 13.)

You can also print parts of source files by explicit command.

5.1 Printing Source Lines

S-2467-20

To print lines from a sourcefile, usethel i st command (abbreviated |). There are
several ways to specify what part of the file you want to print.

Here are the forms of thel i st command most commonly used:
[ist linenum

Print ten lines centered around line number linenum in the current
source file.

l'i st function
Print ten lines centered around the beginning of function function.

list Print ten more lines. If the last lines printed were printed with a
| i st command, this printsten lines following the last lines printed;
however, if the last line printed was a solitary line printed as part of
displaying a stack frame (see Chapter 4, Examining the Stack on
page 41), this prints ten lines centered around that line.

[ist - Print the ten lines immediately before the lines last printed.

47

Cray XMT™ Debugger Reference Guide

Repeating al i st command with RET discards the argument, so it is equivaent to
typingonly | i st. Thisis more useful than listing the same lines again. An exception
is made for an argument of - ; that argument is preserved in repetition so that each
repetition moves up in thefile.

In general, thel i st command takes zero, one, or two linespecs as arguments. A
linespec is away in which a particular line in the source file can be specified; there
are several ways of writing them but the effect is aways to specify some source line.
Here is a complete description of the possible argumentsfor | i st :

l'ist linespec

Print ten lines centered around the line specified by linespec.
l'i st first, last

Print lines from first to last. Both arguments are linespecs.

list, last Printtenlines ending with last.

l'ist first,

Print ten lines starting with first.
[ist + Print the ten lines immediately after the lines last printed.
list - Print the ten lines immediately before the lines last printed.
list As described in the preceding table.

Here are the ways of specifying a single source line--all the kinds of linespec.

linenum Specifies line linenum of the current source file. When al i st
command has two linespecs, this refers to the same source file as
the first linespec.

+offset Specifies the line offset lines after the last line printed. When used as

the second linespecinal i st command that has two, this specifies
the line offset lines down from the first linespec.

- offset Specifies the line offset lines before the last line printed.
filename: linenum
Specifies line linenum in the source file filename.

function Specifies the line that begins the body of the function function.

48 S-2467-20

Examining Source Files [5]

filename: functionname

Specifies the line that begins the body of the function functionname
in the file filename. The file name is needed with a function name
only for disambiguation of identically named functions in different
source files.

* address Specifies the line containing the program address address. address
may be any expression.

Two commands relate source lines and program addresses.
info l'ine linenum

Print the starting and ending addresses of the compiled code for
source line linenum. mdb reports an address range for each inlined
instance of the source line linenum. Unlike GDB, i nfo |i ne

in mdb does not set either the default examine address for the x
command or the convenience variable $_.

i nfo pc address

Print the source lines from which the operations in the instruction
at address are derived. Because of compiler optimizations, mdb
may not be able to identify the source lines for the single given
instruction. When this happens, ndb prints the source lines for a
small range of instructions that includes the instruction at address.

(mdb) info pc 0x401

Source lines for pc range: 0x401..0x403
mai n.c: 11 (foo())

11 {

12 for (int i=0; i<20; i++) {

The default address argument for i nf o pc istheinstruction at
which the focus thread is stopped.

5.2 Searching Source Files

S-2467-20

There are two commands for searching through the current source file for a regular
expression.

The command f or war d- sear ch regexp checks each line, starting with the one
following the last line listed, for a match for regexp. It liststhe line that is found. You
can abbreviate the command name asf or .

The command r ever se- sear ch regexp checks each line, starting with the one
before the last line listed and going backward, for a match for regexp. It liststhe line
that isfound. You can abbreviate this command with aslittleasr ev.

49

Cray XMT™ Debugger Reference Guide

5.3 Specifying Source Directories

50

The path to the source file passed to the compiler or calculated by the front end (for
include files) is recorded in the corresponding program library. If the executable
moves or if any directories move between the compilation and your debugging
session, you must tell ndb where to find the source files for your program. mdb has a
list of directories to search for source files; thisis called the source path. Each time
ndb wants a source file, it tries in order the directories in the source path, until it
finds afile with the desired name. Note that the executable search path is not used
for this purpose. The current working directory is always the last item in the source
path, and is displayed as $cwd.

If mdb cannot find a source file in the source path, and the program library records
adirectory, ndb tries that directory too. If the source path is empty, and there is no
record of the compilation directory, ndb looks in the current directory asalast resort.

Whenever you reset or rearrange the source path, ndb clears out any information it
has cached about where source files are found and where each lineisin thefile.

When you start ndb, its source path is empty. To add other directories, use the
di rect ory command.

di rectory dirname, dir dirname

Add directory dirname to the front of the source path. Several
directory names may be given to this command, separated by : or
white space. You may specify adirectory that is already in the source
path; this moves it forward, so ndb searches it sooner. You can use
the string $cwd to refer to the current working directory. $cwd is
not the same as . —the former tracks the current working directory as
it changes during your mdb session, while the latter isimmediately
expanded to the current directory at the time you add an entry to the
source path.

di rectory Resetthe source path to $cwd again. This requires confirmation.
info directories

Print the source path: show which directories it contains.
set |inkdir dir

If you moved your executable after it was linked, tell ndb that your
executable was linked from directory dir. This enables ndb to find

the modules for your program based on the information in your root
program library. Note that the root program library should bein its

original directory.

S-2467-20

Examining Source Files [5]

If your source path is cluttered with directories that are no longer of interest, mdb
may sometimes cause confusion by finding the wrong versions of source. You can
correct the situation as follows:

1. Usedi r ect ory with no argument to reset the source path to $cwd.

2. Usedi r ect or y with suitable arguments to reinstall the directories you want in
the source path. You can add al the directories in one command.

5.4 Examining Instructions

Sometimes it is useful to examine the low-level machine instructions generated by
the compiler. The specialized command di sassenbl e dumps arange of memory
as machine instructions.

di sassenbl e

Disassemble the function surrounding the program counter of the
selected frame of the focus thread.

di sassenbl e function

Disassembl e the specified function.
di sassenbl e pc

Disassembl e the function surrounding the specified program counter.
di sassenbl e start_pc end_pc

Disassembl e the range of memory locations between start_pc and
end_pc.

When a program gets a data exception such as a data protection violation or data
aignment error, thei nf o opa command can be used to try to determine the
offending machine instruction. Thei nf o opa command prints out the list of
instructions that may be responsible for the trap.

Thei nf o opa command takes as an argument the value of the opa register,
the contents of thet 1 register, and the program counter where the data exception
occurred. All three are printed out when an exception is encountered.

If invoked without arguments, i nf 0 opa uses the current values of the opa and
t 1 registers and the program counter.

S-2467-20 51

Cray XMT™ Debugger Reference Guide

52 S-2467-20

Examining Data [6]

The usual way to examine datain your program is with the pri nt command
(abbreviated p). It evaluates and prints the value of any valid expression of the
language the program is written in. Enter:

[1] (nmdb) print exp

where exp is any valid expression, and the value of exp is printed in a format
appropriate to its data type.

You may need to provide ndb with type information if your program has yet to
encounter the type name or type definition you wish to use in exp. Use the | oad
command to inform ndb about type and other information contained in a module yet
to be assimilated by nmdb (see Module Commands on page 13).

If you use a function or variable name from a linked archive in an expression as part
of amdb command, the state of the ndb vi si bi | i t y variable determines whether
you can access the symbol, as well as which one of several entities with the same
name is being used. See Archive Symbol Visibility on page 70 for details.

A more low-level way of examining datais with the x command. It examines datain
memory at a specified address and printsit in a specified format.

6.1 Expressions

S-2467-20

Many different ndb commands accept an expression and compute its value. Any kind
of constant, variable, or operator defined by the programming language you are using
islegal in an expression in ndb. Thisincludes conditional expressions, function
calls, casts, and string constants. It unfortunately does not include symbols defined
by preprocessor #def i ne commands.

For parsing expressions and formatting printed data, ndb uses by default either the
language of the current module in your executable program or the most recently
known language, if the language information for the module cannot be found. This
default language mode is called aut o. If you want ndb to use a specific language
regardless of the current module, usetheset | anguage command with either C or
C++. Thecommand set | anguage aut o returns the ndblanguage mode to the
default. For the purposes of parsing expressions and formatting data, ndb considers
C and C++ to be the same language. Thei nf o | anguage command returns the
current ndb expression language.

53

Cray XMT™ Debugger Reference Guide

If evaluating an expression involves calling afunction in your program, any side
effects of the call are realized. In particular, any data references as aresult of the call
change state bits as if the references were executed by a thread in your program.

If youtype Ct r | - Cwhile mdb is evaluating an expression, mdb triesto interrupt the
evaluation at a point where no locks are held. It may fail however, and locks may

be left in an abnormal state on return from the interrupt. Typically, interrupting the
printing of alarge array or structure can be done safely.

ndb does not currently support calling a function defined in your program that
contains afuture statement. If you call such afunction from ndb, ndb may hang.

Casts are supported in C and C++. It is often useful to cast a number into a pointer
S0 as to examine a structure at that address in memory.

ndb supports three kinds of operators, in addition to those of programming
languages:

@ @is a binary operator for treating parts of memory as arrays. See
Artificial Arrays on page 56 for more information.

: . dlowsyou to specify avariable in terms of the file or function
itisdefined in. Thisuseisin addition to its use when specifying
class or namespace membership in C++. See Program Variables on
page 54.

{ typename} addr

Refers to an object of type typename stored at address addr in
memory. addr may be any expression whose value is an integer or
pointer (but parentheses are required around nonunary operators, as
with a cast). This construct is allowed regardless of what kind of data
is officially supposed to reside at addr.

6.2 Program Variables

The most common kind of expression to use is the name of a variable in your
program.

54 S-2467-20

Examining Data [6]

6.3 State Bits

S-2467-20

Variables in expressions are understood in the selected stack frame. See Selecting a
Frame on page 43 and Focus Thread on page 37.) Variables must either be global (or
static) or be visible according to the scope rules of the programming language from
the point of execution in that frame. This means that in the function:

foo (int 2);

bar (a);
{
int b =test ();
bar (b);
}
}

the variable a is visible whenever the focus thread is executing within the function
f 00, but the variable b isvisible only while the focus thread is executing inside the
block in which b is declared.

Every physical data memory cell contains a 64-hit (word) value and has associated
with it four access state bits: trap O, trap 1, forward, and f ul | / enpt y. Usethe x
command to view the value of these memory state bits for a particular word. See
Examining Memory on page 60.

When ndb prints the value of avariable in your program, ndb may also print the
state bits associated with the variable. Variables whose types occupy less than a word
may be packed several to amemory word. Each packed variable shares its memory
word state bits with other variables packed into the same word. Variables whose type
occupies one, two, or four words have a corresponding number of sets of state bits.
The examples and descriptions assume that each variable occupies no more than a
word and has a single set of state bits unless stated otherwise.

If the variable is normal—that is, if it is not qualified as being sync or future, mdb
ignoresthef ul | / enpt y bit. For each of the trap 0 and trap 1 bits, ndb prints the
names of the trap bits that are on, for each word the variable occupies.

When printing the value of a sync or future variable, ndb always lists the state of the
full/enpty bit(full orenpty), aswell asany of thetrap 0 and trap 1 bits that
are on, for each word the variable occupies.

For variables whose value is determined by following an address chain defined by
one or more set forward bits, mdb prints the value at the end of the chain. When
printing aforwarded variable, ndb gives no indication of the set forward bits. Use the
x command on the address of the word where the variable is stored to see the state

of forward bits (see Examining Memory on page 60).

When ndb prints avariable, ndb leaves the state bits unchanged. In particular, ndb
does not changethef ul | / enpt y bit from full to empty when printing a sync or
future variable. Rather than "consuming" the value, ndb looks at it.

55

Cray XMT™ Debugger Reference Guide

Suppose a$ and b$ are sync variables.
[1] (mdb) print a$

$1 =5 (full)
[1] (mdb) print a$
$2 =5 (full)

[1] (ndb) print b$
$3 = 2 (enpty)
[1] (mdb) print b$
$4 = 2 (enpty)

You may changethef ul | / enpt y bit of async or future variable, thereby perhaps
unblocking any threads that happen to be blocked on that variable, using one of the
Cray XMT generic functions to simulate an "active" read or write of a sync or future
variable. (See Changing the Full/Empty Bit on page 75.)

Similarly, when ndb assigns avalue to variables, no state bits are changed.

[1] (ndb) print b$
$3 = (enpty) 2

[1] (ndb) set b$ = 10
[1] (ndb) print b$
$5 = (enpty) 10

If any of the forward bits or the trap bits of a variable are set, the actual value of the
variable may be only indirectly accessible from its nominal address (see Examining
Memory on page 60). The ability of mdb to print the correct value of the variable
and state is not affected.

When ndb calls afunction in your program as part of evaluating an expression, any
resulting data references that normally change state bits do indeed change state bits.

6.4 Artificial Arrays

56

It is often useful to print out several successive objects of the same type in memory;
asection of an array, or an array of dynamically determined size for which only a
pointer exists in the program.

You can do this by constructing an artificial array with the binary operator @ The
left operand of @should be the first element of the desired array, as an individual
object. The right operand should be the length of the array. The result is an array
value whose elements are all of the type of the left argument. The first element

is actually the left argument; the second element comes from bytes of memory
immediately following those that hold the first element, and so on. Hereisan
example. If aprogram contains:

int *array = (int *) malloc (len * sizeof (int));
you can print the contents of ar r ay with:
[1] (mdb) p *array@en

S-2467-20

Examining Data [6]

The left operand of @must reside in memory. Array values made with @in this way
behave as other arraysin terms of subscripting—they are coerced to pointers when

used in expressions. (It would probably appear in an expression using the value
history, after you had printed it out.)

6.5 Format Options

ndb provides afew ways to control how arrays and structures are printed.

info format

Display the current settings for the format options.

set prettyprint on

Cause nmdb to print structures in an indented format with one member
per line, like this:

$1 = {
next = 0xO,
flags = {
sweet = 1,
sour =1

},
nmeat = 0x54 "Pork"
}

set prettyprint off

Cause mdb to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, nmeat = 0x54 "Pork"}
Thisis the default format.

set uni onprint on

Tell mdb to print unions that are contained in structures. Thisisthe
default setting.

S-2467-20 57

Cray XMT™ Debugger Reference Guide

set unionprint off

Tell mdb not to print unions that are contained in structures. For
example, given the declarations:

typedef enum {Tree, Bug} Speci es;
typedef enum {Big_tree, Acorn, Seedling} Tree_forns;
typedef enum {Caterpillar, Cocoon, Butterfly} Bug_fornmns;

struct thing {
Species it;
uni on {
Tree_forms tree;
Bug_f orns bug;
} form
s

struct thing foo = {Tree, {Acorn}};

withset uni onprint onineffectp foo prints:

$1 = {it = Tree, form= {tree = Acorn, bug = Cocoon}}

and withset uni onprint of f ineffectit prints.

$1 = {it = Tree, form= {...}}
set stringprint on

Tell mdb to automatically print the value of character strings. Thisis
the default setting.

set stringprint off

Tell mdb not to print the value of character strings. C arrays of
characters not on the heap are unaffected.

set print-function-args off

Turn off printing of function argument values when displaying
function information. By default, mdb prints function argument
values.

You can start a ndb session with argument printing
turned off by invoking ndb with the command-line option
-no-function-args.

set print-function-args on

Turn on printing of function argument values when displaying
function information. This s the default.

58 S-2467-20

Examining Data [6]

set array-nmax number-of-elements

If mdb is printing alarge array, it stops printing after it has printed
the number of elements set by theset arr ay- max command.
Thislimit also appliesto the display of strings. The default number
of array elements printed is 200.

6.6 Output Formats

S-2467-20

mdb normally prints all values according to their data types. Sometimes thisis not
what you want. For example, you might want to print a number in hex, or a pointer
in decimal. Or you might want to view datain memory at a certain address as a
character string or an instruction. You can do these things with output formats.

The simplest use of output formatsis to say how to print a value already computed.
Thisis done by starting the arguments of the pri nt command with aslash and a
format letter. The format |etters supported are:

X Regard the bits of the value as an integer, and print the integer in
hexadecimal.

d Print asinteger in signed decimal.

u Print as integer in unsigned decimal.

0 Print asinteger in octal.

a Print as an absolute address in hex.

C Regard as an integer and print it as a character constant.

f Regard the bits of the value as a floating-point number and print

using typical floating-point syntax.

For example, to print the program counter of the focus thread in hex (see Registers
on page 66), type:
[1] (mdb) p/x $pc

Note that no space is required before the slash; thisis because command namesin
nmdb cannot contain a slash.

To reprint the last value in the value history with a different format, you can use the
pri nt command with only aformat and no expression. For example, p/ x reprints
the last value in hex.

See Expressions on page 53 for details of theset | anguage command, which
directs mdb to format printed datain a specific programming language.

59

Cray XMT™ Debugger Reference Guide

6.6.1 Examining Memory

60

You can use the command x to examine data memory without reference to the data
types within the program. The format in which you wish to examine memory is
instead explicitly specified. The allowable formats are a superset of the formats
described in the previous section.

You cannot specify a qualified format for the x command. In particular, the x
command examines data memory without regard to whether the program considers
the data to be qualified as sync or future, or to be unqualified. x always prints the
data value of the actual memory word, as well asthe value of thef ul | / enpt y
bit associated with the examined word (even if you are looking at only a part of the
word), and any of the trap O, trap 1, and forward bits that are on.

The x command prints the value of the state bits on the examined memory if the state
bits are not in what is considered the default state. This description comes after the
value. With the/ v option, for ver bose, the state bits are printed without regard for
their values. The default statesprint as~t r ap0, ~t r ap1, enpt y, ~f wd, while the
non-defaultsaret r ap0, trapl, ful | and f wd.

If the trap O bit is set for aword w, then the value printed for w is not the value of the
variable your program associates with the variable stored in w. Instead, w holds an
identifier used by the runtime to locate the actual value of the variable associated with
w. To see the value of the variable, use the ndb pri nt command (see Chapter 6,
Examining Data on page 53) in conjunction with info address symbol (see Chapter 7,
Examining Symbols on page 69).

If the trap 1 bit is set for aword, the value of that word may not be the value of the
variable your program associates with the word. Asin the case for aset trap 0 bit, the
word may instead contain an identifier.

If the forward bit is on for the word w, you can examine the forwarded value of w by
examining the memory location stored in w.

x isfollowed by a dash and an output format specification, followed by an expression
for an address. The expression need not have a pointer value (though it may). Itis
used as an integer, as the address of a byte of memory. See Expressions on page 53
for more information on expressions. For example, x/ 4xw $sp prints the four
words of memory above the stack pointer in hexadecimal.

The output format in this case specifies how big a unit of memory to examine and
how to print the contents of that unit. It is done with one or two of the following
letters.

S-2467-20

Examining Data [6]

These |etters specify the size of unit to examine:

b Examine individual bytes.

h Examine halfwords (4 bytes each).

w Examine words (8 bytes each).

g Examine giant words (16 bytes each).

These |etters specify the way to print the contents:

X Print as integers in unsigned hexadecimal.

d Print as integersin signed decimal.

u Print as integers in unsigned decimal.

0 Print as integersin unsigned octal.

a Print as an absolute address in hex.

c Print as character constants.

f Print as floating point. Thisworks only with sizeswand g.

s Print a null-terminated string of characters. The specified unit sizeis

ignored; instead, the unit is however many bytesit takes to reach a
null character (including the null character).

[Print a machine instruction in assembler syntax (or nearly). The
specified unit size is ignored; the number of bytesin an instruction
varies depending on the type of machine, the opcode and the
addressing modes used.

If either the manner of printing or the size of unit fails to be specified, the default is
to use the same one that was used last. If you do not want to use any letters after
the slash, you can omit the slash as well.

You can also omit the address to examine. Then the address used isimmediately after
the last unit examined. Thisiswhy string and instruction formats actually compute a
unit-size based on the data: so that the next string or instruction examined will start in
theright place. The pri nt command sometimes sets the default address for the x
command; when the value printed resides in memory, the default is set to examine
the same location.

When you use RET to repeat an x command, it does not repeat exactly the same:
the address specified previoudy (if any) isignored, so that the repeated command
examines the successive locations in memory rather than the same ones.

S-2467-20 61

Cray XMT™ Debugger Reference Guide

You can examine several consecutive units of memory with one command by writing
arepeat count after the slash (before the format letters, if any). The repeat count
must be a decimal integer. It has the same effect as repeating the x command that
many times except that the output may be more compact with several units per line.
For example,

[1] (mdb) x/10i $pc

The previous command prints ten instructions, starting with the one to be executed
next, by the focus thread in the selected frame. After doing this, you could print
another ten instructions using the following command:

[1] (ndb) x/10
in which the format and address are allowed to default.

The addresses and contents printed by the x command are not put in the value history
because there are often too many of them. Instead, ndb makes these values available
for subsequent use in expressions as values of the convenience variables$_and$__.

After an x command, the last address examined is available for use in expressionsin
the convenience variable $_. The contents of that address, as examined, are available
in the convenience variable $__ .

If the x command has a repeat count, the address and contents saved are from the last
memory unit printed; thisis not the same as the last address printed if severa units
were printed on the last line of output.

6.7 Automatic Display

62

To print the value of an expression frequently (to see how it changes), you can add
the expression to the automatic display list, alist of expressions that are displayed
each time the program stops. Each element in the list is numbered; to remove an
expression from the list, you specify that number. The automatic display looks like
this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

showing item numbers, expressions and their current values.

If the expression refers to local variables, then it does not make sense outside the
lexical context for which it was set up. Such an expression is printed only when
execution isinside that lexical context. For example, if you give the command

di spl ay nane whileinside afunction with an argument nane, this argument is
displayed whenever the program stops inside that function, but not when it stops
elsewhere (because this argument does not exist el sewhere).

S-2467-20

Examining Data [6]

S-2467-20

di spl ay exp

Adds the expression exp to the list of expressionsto display each
time the program stops. See Expressions on page 53.

di splay/ fmt exp

Specifies a display format and not a size or count for fmt, adds the
expression exp to the auto-display list, and arranges to display exp
each time in the specified format fmt.

di spl ay/ fmt addr

Adds the expression addr as a memory address to be examined each
time the program stops for fmt i or s, including a unit-size or a
number of units. Examining meansin effect doing x/ fmt addr. See
Examining Memory on page 60.

di splay/i $pc
Displays the next instruction to be executed by the focus thread.
undi spl ay dnum(s), del et e di spl ay dnum(s)

Removes the item number(s) dnums from the list of expressions to
display.

di sabl e di spl ay dnum(s). ..
Disables the display of item number(s) dnum(s). A disabled display

item is not printed automatically, but is not forgotten. It may be
reenabled |ater.

enabl e di spl ay dnum(s)

Enables display of item number(s) dnum(s). It becomes effective
once again in auto display of its expression, until you specify
otherwise.

di spl ay Displays the current values of the expressions on the list, asis done
when the program stops.

i nfo display

Prints the list of expressions previously set up to display
automatically, each one with its item number, but without showing
the values. Thisincludes disabled expressions, which are marked as
such. It aso includes expressions that are not displayed right now
because they refer to automatic variables not currently available.

63

Cray XMT™ Debugger Reference Guide

6.8 Value History

64

Every value printed by the pr i nt command is saved for the entire session in the
ndb value history so that you can refer to it in other expressions.

The values printed are given history numbers for you to refer to them by. These are
successive integers starting with 1. pri nt shows you the history number assigned to
avalue by printing $num = before the value; here num s the history number.

To refer to any previous value, use $ followed by the history number of the value.
The output printed by pri nt isdesigned to remind you of this. A single $ refersto
the most recent value in the history, and $$ refers to the value before that.

For example, to see the contents of a structure to which you have printed a pointer:
[1] (nmdb) p *$

If you have a chain of structures where the component next points to the next one,
you can print the contents of the next one:

[1] (nmdb) p *$. next
It might be useful to repeat this command many times by typing RET.

Note that the history records values, not expressions. If the value of x is4 and you
type this command:

[1] (mdb) print x
[1] (mdb) set x=5

then the value recorded in the value history by the pri nt command remains 4 even
though the value of x has changed.

By extension, the type of a history value does not change when circumstances are
atered. For example, by continuing to a breakpoint in a different module or, in a
multi-threaded context, by focusing on a new thread, you may find that the new
context harbors a type whose name isidentical to that of the history value type but
whose structure differs; however, printing the value continues to produce the same
result asin the original context.

i nfo val ues

Print the last ten valuesin the value history, with their item numbers.
Thisislikep $3$9 repeated ten times, except that i nf o val ues
does not change the history.

info values n
Print ten history values centered on history item number n.
info val ues +

Print the ten history valuesimmediately after the values last printed.

S-2467-20

Examining Data [6]

6.9 Convenience Variables

ndb provides convenience variables that you can use within ndb to hold on to a
value and refer to it later. These variables exist entirely within ndb; they are not part
of your program, and setting a convenience variable has no effect on further execution
of your program. That iswhy you can use them freely.

Convenience variables have names starting with $. You can use any name starting
with $ for a convenience variable, unlessit is one of the predefined set of register
names (see Registers on page 66).

You can save a value in a convenience variable with an assignment expression, as you
would set avariable in your program. Example:

[1] (ndb) set $foo = *object_ptr
saves in $f 0o the value contained in the object pointed to by obj ect _ptr.

Using a convenience variable for the first time creates it; but its valueisvoi d until
you assign a new value. You can alter the value with another assignment at any time.

Convenience variables have no fixed types. You can assign a convenience variable
any type of value, even if it aready has a value of a different type. The convenience
variable as an expression has whatever type its current value has.

i nfo conveni ence

Print alist of convenience variables used so far, and their values.
Abbreviatedi con.

One of the ways to use a convenience variable is as a counter to be incremented or
a pointer to be advanced. For example:

[1] (ndb) set $i =0
[1] (mdb) print bar[$i ++] ->contents ..repeat that command by typing RET.

Some convenience variables are created automatically by mdb and given values likely

to be useful.

$_ The variable $_ is automatically set by the x command to the last
address examined (see Examining Memory on page 60).

$__ Thevariable$___ isautomatically set by the x command to the value

found in the last address examined.

S-2467-20 65

Cray XMT™ Debugger Reference Guide

6.10 Registers

66

Each thread in your program has an identically named set of machine registers. ndb
tracks the full set of registers for only the innermost frame. You can refer to register
contents of the focus thread in expressions as variables with names starting with $.
Usei nf o regi st ers to seethe names and values of the focus thread registers.

exception Identifiesraised exceptions.
resul t code Further refinesthe value of the except i on register.
nslots flag
Used by the trap handler.
dc [0.1,..,7], dv[01,..,7]

Used by the trap handler.

t[0,1,...,7]
Target registers. t 0 always holds the value of the primary trap
handler.

r[0,1,...,31]

General purpose registers. r 0 always holds the value O.
i nstcount Oneuseby ndb isto step athread some number of instructions.

SSW Holds the program counter ($pc), various condition codes, and
trap masks. The value isfor the innermost frame, regardless of the
selected frame.

In addition, mdb recognizes aliases for certain registers.

$pc Program counter. Lower bits of ssw.

$sp Stack pointer. Pointsto the current stack frame. Sameasr 1.
$er Exception register. Same asexcepti on.

$eps Pointer to end of memory block allocated for stack. Same as

r 5. Thisuse of $eps isvalid only when the focus thread begins
executing the function; the compiler may user 5 as ageneral purpose
register during execution of the function body.

$cch Pointer to the control block of the focus thread. Same asr 2.

S-2467-20

Examining Data [6]

6.11 Register

S-2467-20

Register values are relative to the selected stack frame (see Selecting a Frame on
page 43). This means that you get the value that the register would contain if all stack
frames farther in were exited and their saved registers restored. Registers that were
not saved may hold values irrelevant to the selected stack frame. In order to see the
real contents of all registers, you must select the innermost frame (with f r ame 0).

Note: Currently, ndb only provides correct values for registersin the innermost
frame.

info registers

Print the names and values of all registers for the focus thread relative
to the selected frame. If your are not at the frame where execution is
currently stopped (that is, in a frame that is not innermost), some
registers may not be tracked and can retain values from lower frames.

i nfo registers regname

Print the value of register regname for the focus thread. regname may
be any valid register name, with or without the initial $. When ndb
recoghizes that a general-purpose register contains a named variable
from your program (as opposed to a compiler-generated temporary or
some other value), it prints the name of the variable.

Examples

You could print the program counter of the focus thread in hex with:

[1] (mdb) p/x $pc

or print the instruction to be executed next.

[1] (mdb) x/i $pc

You can assign registers directly, but if the register holds the value of avariable, the
variable may exist in multiple locations (that is, in other registers and memory). In
this case, the compiled code does not have to keep the values in these locations

consistent or even use the locations in subsequent branching decisionsif it can obtain
information about the current value of the variable from analysis of the code.

67

Cray XMT™ Debugger Reference Guide

68 S-2467-20

Examining Symbols [7]

S-2467-20

The commands described in this chapter allow you to make inquiries for information
about the symbols (names of variables, functions and types) defined in your program.
Thisinformation is found by ndb in the program symbol table, one or more program
libraries, or one or more object files. This symbol information isinherent in the text
of your program and does not change as the program executes.

whati s exp Printthe datatype of expression exp. exp is not actually evaluated,
and any side-effecting operations (such as assignments or function
calls) inside it do not take place. See Expressions on page 53.

whati s Print the data type of $, the last value in the value history.

i nfo address symbol

Describe where the datafor symbol is stored. For aregister variable,
this says which register it is kept in. For anon-register local variable,
this prints the stack-frame offset at which the variable is always
stored.

Note the contrast with pri nt &symbol, which does not work at all
for aregister variables, and for a stack local variable prints the exact
address of the current instantiation of the variable.

pt ype typename

Print a description of data type typename. typename may be the name
of atype, or for C code it may have the form st r uct struct-tag,
uni on union-tag or enumenum-tag.

i nfo sources

Print the names of all source filesin the program. For standard
shared librariessuch asl i bc, i bmandl i brt, only the names of
the source files referenced by the program are printed.

i nf o nodul es

Print the names of all object filesin the program. Each object
fileislisted either as a stand-alone fat . o file or as one of several
components of a program library.

69

Cray XMT™ Debugger Reference Guide

nfo functions

nfo

Print the names and data types of al defined functions.

functi ons regexp

Print the names and data types of all defined functions whose names
contain amatch for regular expression regexp. Thus, i nfo fun

st ep finds all functions whose namesinclude st ep;i nfo fun -
st ep finds those whose names start with st ep.

vari abl es

Print the names and data types of al variables that are declared
outside of functions (that is, except for local variables).

vari abl es regexp

types
types

Print the names and data types of all variables (except for local
variables) whose names contain a match for regular expression

regexp.
Print all data types defined in the program.
regexp

Print al data types that are defined in the program whose names
contain amatch for regular expression regexp.

printsyns filename

Write a complete dump of the debugger symbol data into the file
filename.

Seeasothei nfo fil es commandin File Commandson page 11
and thei nf o nodul es command in Module Commands on

page 13.

7.1 Archive Symbol Visibility

On the Cray XMT, when your program is linked with an archive, your program
may or may hot see a particular global symboal in the archive. If annot at e has
been run on the archive, the linker allows your program to use only those global

70

archive symbols explicitly made available to user programs. If annot at e has not

been run, all global symbols within the archive are available. Using annot at e to
hide symbols provides for a measure of safety, analogous to that provided by static

symbols in multiple-module user programs, and allows identical names in multiple
archives, aswell asin freestanding object files (not contained within an archive), to

represent separate entities.

S-2467-20

Examining Symbols [7]

Consider the global symbolsin an archive with which your program is linked, where
annot at e has been run on the archive. The program treats the global archive
symbols exported by annot at e asvisible, and those global archive symbolsthat are
not exported as hidden.

Symbols appear in your source code in one of two contexts: as a definition or as
ause. When the linker encounters a use of a global symbol within a freestanding
module, it locates the symbol definition by searching the visible symbols defined in
freestanding modules and archives. When the linker encounters the use of a hidden
global symbol within an archive, symbols defined within the archive take precedence
over externa names.

If you request information from ndb about a hidden archive symbol or try to set a
breakpoint on a hidden function, ndb uses the internal variablevi si bil ity to
determine whether to grant access to the symbol and to resolve the ambiguity if there
are multiple hidden symbols by that name.

set visibility value

Determine the way ndb resolves conflicts between visible and
hidden global symbols.

The possible states for value are:

aut o Thisisthe default state. Given the choice between
a global exported symbol and a hidden symbol
of the same name in an archive, ndb selects the
hidden symbol if the current stack frame belongsto
afunction within that archive. When the choice is
between multiple hidden symbols, ndb selects the
local symbol rather than the one residing in another
archive. Inthis case, if no local symbol exists, ndb
chooses one of the symbols arbitrarily.

hi dden ndb resolves al conflicts in favor of hidden
symbols. When multiple hidden symbols with the
same name exist, mdb displays a menu. Consider
using this mode when there are potential conflicts
between exported and hidden symbolsin expressions
involving several global variables.

any ndb makes no attempt to resolve ambiguities. When
multiple global symbols of the same name are
present, you can choose the symbol you want from
amenu.

vi si bl e ndb resolves all conflictsin favor of the exported
symbol. If none exists, an error message is issued.

S-2467-20 71

Cray XMT™ Debugger Reference Guide

You can change visibility either strictly for archive variables or strictly for archive
function names by setting one of the subsidiary variablescode-vi si bil ity or
dat a-vi sibilitytoauto,any,visibl e, orhidden.

You may also use abbreviated forms for all these variables and values. The
variables may be abbreviated as v, cv, and dv, respectively, and the values as any
unambiguous prefix. Thus, the following command sets the visibility for archive
function names to the value any.

[1] (nmdb) set cv an

72 S-2467-20

Altering Execution [8]

Once you think you have found an error in the program, you might want to find out
for certain whether correcting the apparent error leads to correct results in the rest of
the run. You can find the answer by experiment, using the ndb features for altering
execution of the program.

For example, you can store new values into variables or memory locations, give the
program a signal, restart it at a different address, or even return prematurely from
afunction to its caler.

8.1 Assignment to Variables

S-2467-20

The ability of mdb to change the value of a variable depends on the debugging level
with which you compiled your code (see Compiling for Debugging on page 8), as
well as on the nature of the variable.

Evaluating an assignment expression is one way to alter the value of avariable. See
Expressions on page 53. For example,

[1] (mdb) print x=4

stores the value 4 into the variable x and then prints the value of the assignment
expression (which is 4).

All the assignment operators for C are supported, including the increment operators
++ and --, and combining assignments such as += and <<=.

If you are not interested in seeing the value of the assignment, use the set command
instead of the pri nt command. set isrealy thesameaspri nt except that the
value of the expression value is not printed and is not put in the value history (see
Value History on page 64). The expression is evaluated only for side effects.

Whenever the beginning of the argument string of the set command appears
identical to aset subcommand, it may be necessary to usetheset vari abl e
command. This command isidentical to set except for its lack of subcommands.
For example, the first of the following two commands sets the ndb variable r w
(equivalently r egi st er - war ni ng), and the second sets the program variable r w.

[1] (rmdb) set rw O
[1] (ndb) set variable rwO

73

Cray XMT™ Debugger Reference Guide

If the value of avariableis kept in aregister, ndb may not always be able to update
the variable in ways that are fully consistent with normal execution. See Altering
Variables Kept in Registers on page 74 for a discussion of how ndb handles such
an assignment.

If the use of a Cray XMT generic to assign a sync or future variable value changes
the full/empty state to full (see Changing the Full/Empty Bit on page 75), and there
are blocked threads waiting for the variable to become full, the write is accompanied
by a subsequent trap handling action that satisfies the request of one of the blocked
threads to write or read the variable (possibly changing the value of the variable value
or re-setting the variable to enpt y). Thus, if you print a sync or future variable
after writing to it, without resuming any threads after the write operation, the value
or ful | / enpty state of the variable may be different than you expected. The
unblocked thread remains suspended, though in a state that differs as a result of the
read or write assisted by the trap handler, until the entire program resumes or the
particular thread is explicitly set in motion from the ndb command line.

See Changing the Full/Empty Bit on page 75, for another means of changing the
full/enpty bit.

ndb allows more implicit conversions in assignments than C does; you can freely
store an integer value into a pointer variable or vice versa. You can aso convert any
structure to any other structure that is the same length or shorter.

To store values into arbitrary placesin memory, usethe{. . .} construct to generate
avalue of specified type at a specified address (see Expressions on page 53). For
example, { i nt } 0x401033b918 refers to memory location 0x401033b918 asan
integer (which implies a certain size and representation in memory), and:

[1] (mdb) set {int}0x401033b918 = 20

stores the value 20 into that memory location.

8.1.1 Altering Variables Kept in Registers

Under certain compiler optimizations, the value of a variable is sometimes kept in one
or more registers. If you change the value of the variable from ndb, ndb may change
only one of the copies. The multiple copies of the variable may not have identical
values, and further execution may have unexpected behavior. You can prevent the
compiler from performing this kind of optimization by compiling your program at the
- g2 debugging level (see Compiling for Debugging on page 8).

74 S-2467-20

Altering Execution [8]

For example, when the following program is compiled at the - g1 debugging level,
setting i to anew vaue at line 4 from ndb has no visible effect, because the
parameter to pri nt f isin adifferent register than the one changed by ndb. Also,
the loop control isin yet athird register.
mai n() {

int i;

for (i=0; i<20; i++) {

printf("%h\n", i); // line 4
b}

When you change the value of variable stored in aregister, ndb issues a warning that
the new value may not be propagated to other copies of the variable.
[1] (mdb) set foo = 10

Warning: Variable in register. New val ue may not
propagate to all copies.

You can adjust the frequency of these warning messages either by invoking ndb with
a command line option:

% ndb -regi ster-warni ng frequency
% mdb -rw frequency

or by setting andb variable during your debugging session.

set register-warning frequency
set rw freguency

In either method, frequency is one of never, first, oral ways (equivalently,

0, 1, or 2, respectively). The default warning frequency isal ways. A value of
first meansthewarning is given thefirst time an assignment is made to avariable
on a per-variable basis.

8.2 Changing the Full/Empty Bit

S-2467-20

You can use the generic functions to manipulate the f ul | / enpt y bit or bits of
avariable v while ssimultaneously reading from or writing to v. See Cray XMT
Programming Environment User's Guide for more information. You cannot directly
manipulate any of the other state bits through mdb commands (see State Bits on
page 55). You can change the other state bits by writing an appropriate function,
compiling it into your program, and calling the function from ndb.

If multiple threads are blocked on a sync variable, all are either waiting for the
variable to become full or waiting for the variable to become empty. When the

state of the variable changes, one thread resumes running. If multiple threads are
blocked on a future variable, then the variable is empty. When the state of the variable
changes from empty to full, al waiting threads resume running.

75

Cray XMT™ Debugger Reference Guide

76

ndb prints the value of a variable without changing any of the state bits. In particular,
when ndb prints the value of a sync or future variable, thef ul | / enpt y state does
not change. Suppose you want to cause resumption of athread that is blocked (see
Thread States on page 36) waiting to write the one-word sync variable v$ when

v$ becomes empty. To simulate an emptying read of v$, use the generic function
readf e.

[1] (nmdb) print v$

$1 = 4 (full,trap0)

[1] (mdb) print readfe(&$)

$2 = 4

[1] (mdb) print v$

$3 = 9 (full, trap0)

The set trap 0 bit in the second line indicates that there is at |east one thread blocked
onv$, waiting for thef ul | / enpt y bit to become empty. The generic function

r eadf e readsv$ whenthef ul | / enpt y bit isfull, simultaneously changing the
ful I / enpty bit to empty. Because there are threads blocked on v$, immediately
following ther eadf e atrap handler also satisfies one of the blocked threads--in this
example, awriter changes the value of v$ to 9, also toggling the f ul | / enpt y

bit to full. Because the trap O bit of v$ is still set after ther eadf e operation and
subsequent trap handling, more than one thread was initially blocked on v$. If only
one thread were waiting for v$ to become empty, the last line of the example above
would read $3 = (Ful I) 9. When you continue your program, the thread whose
write request (value 9) was satisfied by the trap handling resumes running; any other
threads blocked on v$ remain blocked.

In normally executing code, if v$ had been empty, the r eadf e operation would
have blocked until v$ was set to full. If v$ is empty and you issue ar eadf e of

v$ from mdb, mdb returns a message saying the operation was not done because it
would have blocked. When ntdb halts execution of your program, as long as all the
threads are suspended, it makes little sense for you to issue a generic operation on an
empty variable or memory location that depends on the variable or location being full.
Similarly, generic operations that require an object to be empty hang indefinitely on a
full object, in the absence of running threads in the program.

The generic functions are intended for use on only sync or future variables, although
neither mdb nor the compilers enforce this. Your program may behave incorrectly if
you changethef ul | / enpt y state of anormal (not sync or future) variable with one
of these generics. nmdb prints awarning message if you access a normal variable
with one of these functions as part of amdb command. Also, if you change the

ful I/ enpty bit of anormal variable whose size is less than a word, because the
ful I/ enpty bit actualy belongsto the memory word containing the variable, the
full/empty bit is changed for any other variables contained in the same word (see
State Bits on page 55).

S-2467-20

Altering Execution [8]

S-2467-20

If awatchpoint is set on the variable, that is, the x command reveals that the trap 1
bit is set (see Examining Memory on page 60), the generics will not manipulate the
ful | / enpty bit properly, nor are they guaranteed to wake up any thread blocked on
that variable. Try disabling the watchpoint before proceeding.

In your program, generics may be used on sync or future variables of types such as
| ong doubl e in C, which are composed of multiple words. This functionality
is not yet implemented in ndb.

77

Cray XMT™ Debugger Reference Guide

78 S-2467-20

Stored Sequences of Commands [9]

ndb provides two ways to store sequences of commands for execution as a unit:
user-defined commands and command files.

9.1 User-defined Commands

S-2467-20

A user-defined command is a sequence of ndb commands to which you assigh a new
name as a command. Thisis done with the def i ne command.

def i ne [commandname $argl $arg2 ...]

Define a command named commandname with optional arguments
$argl, $arg?, If thereis aready a command by that name, you are
asked to confirm that you want to redefine it.

The definition of the command is made up of other ndb command
lines, which are given following the def i ne command. The end of
these commands is marked by aline containing end.

Formal arguments must each start with a dollar sign ($) and may
contain letters, digits, and underscores. The arguments may be
used within the command lines that follow. When you invoke
commandname, you must supply the same number of actual
arguments as there are formals. The text of the actual argument is
substituted for that of the formal argument before execution of each
command line. Arguments may be contained within double quoted
material. To avoid substitution, prefix a backslash (\) before the
dollar sign.

docunent commandname

Give documentation to the user-defined command commandname.
The command commandname must already be defined. This
command reads lines of documentation the same way that def i ne
reads the lines of the command definition, ending with end.

After thedocument command is finished, hel p on command
commandname prints the documentation you have specified.

You may use the docunent command again to change the
documentation of a command. Redefining the command with
def i ne does not change the documentation.

79

Cray XMT™ Debugger Reference Guide

When user-defined commands are executed, the commands of the definition are not
printed. An error in any command stops execution of the user-defined command.

Commands that ask for confirmation if used interactively proceed without asking
when used inside a user-defined command. Many ndb commands that normally print
messages to say what they are doing omit the messages when used in a user-defined
command.

9.2 Command Files

80

A command file for ndb isafile of linesthat are ndb commands. Comments (lines
starting with #) may also be included. An empty line in acommand file does nothing;
it does not mean to repeat the last command, as it would from the terminal.

When ndb starts, it automatically executes its init files—command files named

. mdbi ni t . ndb reads the init file (if any) in your home directory and then the init
file (if any) in the current working directory. (Theinit files are not executed if ndb
isinvoked with the - nx option.) You can also request the execution of a command
file with the sour ce command:

sour ce filename
Execute the command file filename.

The linesin a command file are executed sequentially. They are not printed as they
are executed. An error in any command terminates execution of the command file.

Commands that ask for confirmation if used interactively proceed without asking
when used in a command file. Many ndb commands that normally print messages to
say what they are doing omit the messages when used in a command file.

S-2467-20

Stored Sequences of Commands [9]

9.3 Commands for Controlled Output

During the execution of a command file or a user-defined command, the only output
that appears iswhat is explicitly printed by the commands of the definition. This
section describes three commands useful for generating exactly the output you want.

echo text Print text. You can include non-printing charactersin text using C
escape sequences, such as\ n to print anewline. No newlineis
printed unless you specify one. In addition to the standard C escape
sequences a backslash followed by a space stands for a space. Thisis
useful for outputting a string with spaces at the beginning or the end,
because leading and trailing spaces are trimmed from all arguments.
Thus, toprint” and foo = ”,usethecommandecho "\ and
foo =\ ". You can use abackdash at the end of text, asin C, to
continue the command onto subsequent lines. For example,
echo This is some text\n\

that is continued\n\
onto several lines.\n

produces the same output as:

echo This is sonme text\n
echo that is continued\n
echo onto several lines.\n

out put expression

Print only the value of expression—no newlines, no $nn =. The value
is not entered in the value history either. See Expressions on page 53
for more information on expressions.

out put/ fmt expression

Print the value of expression in format fmt. See Output Formats on
page 59 for more information.

printf string, expressions. ..

Print the values of the expressions under the control of string. The
expressions are separated by commas and may be either numbers or
pointers. Their values are printed as specified by string, in general
exactly asif the program were to execute:

[1] (mdb) printf (string, expressions...);

(One minor exception is that integers are currently treated as 32 bit
numbers by mdb.) Asan example, you can print two valuesin hex
like this:

[1] (mdb) printf "foo, bar-foo = Ox%, Ox%\n", foo, bar-foo

The only backslash-escape sequences that you can use in the string
are the simple ones that consist of backslash followed by aletter.

S-2467-20 81

Cray XMT™ Debugger Reference Guide

82 S-2467-20

Options and Arguments for ndb [10]

When you invoke mdb, you can specify argumentstelling it what files to operate
on and what other things to do.

10.1 Mode Options

- nXx Do not execute commands from the init files. nmdbi ni t . Normally,
the commands in these files are executed after all the command
options and arguments have been processed. See Command Files

on page 80.
-q Quiet. Do not print the usual introductory messages.
-batch Run in batch mode. Exit with code 0 after processing all the

command files specified with - x (and . nmrdbi ni t , if not inhibited).
Exit with nonzero statusif an error occurs in executing the ndb
commands in the command files.

-ful l name Thisoption is used when Emacs runs ndb as a subprocess. It tells
ndb to output the full file name and line number in a standard,
recognizable fashion each time a stack frame is displayed (which
includes each time the program stops).

S-2467-20 83

Cray XMT™ Debugger Reference Guide

10.2 File-specifying Options

All the options and command line arguments given are processed in sequential order.
The order makes a difference when the - x option is used.

- s filename
Read symbol table from filename.
- e filename

Use filename as the executabl e file to execute when appropriate, and
for examining pure data.

- se filename
Read symbol table from filename and use it as the executablefile.
- x filename
Execute mdb commands from filename.
-d directory
Add directory to the path to search for source files.
-cd directory

Use directory as the working directory for ndb.

10.3 Communication Options and Variables

84

In each of the following pairs, the first item is the command-line option form, the
second item is the variable setting that will evoke the option behavior for subsequent
r un commands.

-rm set renote-nmanual

Start in remote-manual mode. ndb does not start the inferior—it
waits until the inferior is started manually.

-open- socket, set conmuni cati on open-socket

Use a socket as the communication channel between ndb and the
target program. ndb creates the socket.

- socket hostname, portnumber, set communi cati on socket host, port

Use the socket from hostname using portnumber as the
communication channel between ndb and the target program.

S-2467-20

Options and Arguments for ndb [10]

10.4 Breakpoint-behavior Options

- OX Execute instructions at breakpoints by creating and calling
a pseudo-function that simulates the behavior of the original
instruction. The other option, restoring the original instruction
and executing it in place, allows other activities to proceed
past the breakpoint without stopping. - ox is the default. The
-out-of -1ine-executi on optionisidentical to thisoption.

-i X Execute instructions at breakpoints by restoring the original
instruction to its rightful address, single-stepping across it and then
restoring the breakpoint. You can usethisif abug is suspected in the
pseudo-function created with - ox, but it is not recommended for
general use. Conditional breakpoints cannot be used with this option.
The-inline-execution optionisidentica to this option.

10.5 Miscellaneous Options
- Xi mm command

Execute command immediately.

10.6 Other Arguments

If there are arguments to ndb that are not options or associated with options, the first
one specifies the symbol table and executable file name (as if it were preceded by

- se). A second unassociated argument should be a decimal number which is treated
asthe processid (PID) of the running process to which ndb should attach.

When ndb attaches to a process, the process halts until you enter the r un command.
After you enter r un, ndb resumes execution of the process until either the program
exits, you type Ct r | - C, or the process reaches the next breakpoint.

S-2467-20 85

Cray XMT™ Debugger Reference Guide

86 S-2467-20

GNU General Public License [A]

A.1 Preamble

S-2467-20

Version 1, February 1989

Copyright (C) 1989 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA.

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

The license agreements of most software companiestry to keep users at the mercy of
those companies. By contrast, our General Public License isintended to guarantee
your freedom to share and change free software—to make sure the software is free for
al itsusers. The General Public License applies to the Free Software Foundation's
software and to any other program whose authors commit to using it. You can use it
for your programs, too.

When we speak of free software, we are referring to freedom, not price. Specifically,
the General Public License is designed to make sure that you have the freedom to give
away or sell copies of free software, that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions trandate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of a such a program, whether gratis or for afee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must tell them their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license that gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is
modified by someone else and passed on, we want its recipients to know that what
they have is not the original, so that any problems introduced by others will not reflect
on the origina authors' reputations.

87

Cray XMT™ Debugger Reference Guide

The precise terms and conditions for copying, distribution and modification follow.

A.2 Terms and Conditions

88

1. ThisLicense Agreement appliesto any program or other work that contains a

notice placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The Program, below, refers to any such program
or work, and awork based on the Program means either the Program or any work
containing the Program or a portion of it, either verbatim or with modifications.
Each licensee is addressed as you.

. You may copy and distribute verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this General Public License and to the
absence of any warranty; and give any other recipients of the Program a copy of
this General Public License along with the Program. You may charge afee for
the physical act of transferring a copy.

. You may modify your copy or copies of the Program or any portion of it, and

copy and distribute such modifications under the terms of Paragraph 1 above,
provided that you also do the following:

e Cause the modified files to carry prominent notices stating that you changed
the files and the date of any change; and

o Cause the whole of any work that you distribute or publish, that in whole
or in part contains the Program or any part thereof, either with or without
modifications, to be licensed at no charge to all third parties under the terms
of this General Public License (except that you may choose to grant warranty
protection to some or all third parties, at your option).

» |If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the
simplest and most usual way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide awarranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of
this Genera Public License.

* You may charge afeefor the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for afee.

Mere aggregation of another independent work with the Program (or its
derivative) on a volume of a storage or distribution medium does not bring the
other work under the scope of these terms.

S-2467-20

GNU General Public License [A]

S-2467-20

. You may copy and distribute the Program (or a portion or derivative of it, under

Paragraph 2) in object code or executable form under the terms of Paragraphs 1
and 2 above provided that you aso do one of the following:

» Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Paragraphs 1 and 2 above;
or,

e Accompany it with awritten offer, valid for at least three years, to give any
third party free (except for anominal charge for the cost of distribution) a
complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Paragraphs 1 and 2 above; or,

e Accompany it with the information you received as to where the
corresponding source code may be obtained. (This aternativeis alowed only
for noncommercial distribution and only if you received the program in object
code or executable form alone.)

Source code for awork means the preferred form of the work for making
modifications to it. For an executable file, complete source code means al the
source code for all modulesit contains; but, as a special exception, it need not
include source code for modules that are standard libraries that accompany
the operating system on which the executable file runs, or for standard header
files or definitions files that accompany that operating system.

. You may not copy, modify, sublicense, distribute or transfer the Program except

as expressly provided under this General Public License. Any attempt otherwise
to copy, modify, sublicense, distribute or transfer the Program is void, and will
automatically terminate your rights to use the Program under this License.
However, parties who have received copies, or rights to use copies, from you
under this General Public License will not have their licenses terminated so long
as such parties remain in full compliance.

. By copying, distributing or modifying the Program (or any work based on the

Program) you indicate your acceptance of this license to do so, and all its terms
and conditions.

. Each time you redistribute the Program (or any work based on the Program),

the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients' exercise of the rights
granted herein.

. The Free Software Foundation may publish revised and/or new versions of the

Genera Public License from time to time. Such new versionswill be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns. Each version is given a distinguishing version number. If the Program
specifies aversion number of the license that appliesto it and any later version,
you have the option of following the terms and conditions either of that version or

89

Cray XMT™ Debugger Reference Guide

of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the license, you may choose any version
ever published by the Free Software Foundation.

9. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software that is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will
be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

10. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS
NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING
THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM ASISWITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK ASTO THE QUALITY
AND PERFORMANCE OF THE PROGRAM ISWITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

11. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

A.3 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
humanity, the best way to achieve thisis to make it free software that everyone can
redistribute and change under these terms.

90 S-2467-20

GNU General Public License [A]

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at |east the copyright line and a pointer to where the full
notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C 19yy name of author

This programis free software; you can redistribute it and/or nodify
it under the terns of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any | ater version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the

GNU General Public License for nore details.

You shoul d have received a copy of the GNU General Public License
along with this program if not, wite to the Free Software
Foundation, Inc., 675 Mass Ave, Canbridge, MA 02139, USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short natice like this when it starts
in an interactive mode;

Gnonovi si on version 69, Copyright (C 19yy name of author

Gnonovi si on conmes with ABSOLUTELY NO WARRANTY; for details type “~show w .
This is free software, and you are welcone to redistribute it

under certain conditions; type "show c' for details.

The hypothetical commands show wand show ¢ should show the appropriate
parts of the General Public License. Of course, the commands you use may be called
something other than show wand show c; they could even be mouse-clicks or
menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a copyright disclaimer for the program, if necessary. Here a sample;
alter the names:

Yoyodyne, Inc., hereby disclains all copyright interest in the
program " Gnonovi sion' (a programto direct conpilers to nmake passes
at assenblers) witten by Janmes Hacker.

signatureof Ty Coon, 1 April 1989
Ty Coon, President of Vice

That's all thereisto it!

S-2467-20 91

Cray XMT™ Debugger Reference Guide

92 S-2467-20

Using ndb under GNU Emacs [B]

A special interface allows you to use GNU Emacs to view (and edit) the source files
for the program you are debugging with ndb. To get the interface with under Emacs
19.25, put the following linein your . emacs file:

(autol oad 'mdb "gud" "grand unified debuggi ng node" t)

To use this interface, use the command M x ndb in Emacs. Give the executable
file you want to debug as an argument. This command starts ndb as a subprocess
of Emacs, with input and output through a newly created Emacs buffer. If Emacs
produces an error message instead of starting ndb, you may be using an older
file. Remove the autoload line from your . emacs fileand use M x gdb. Then,
substitute mdb for gdb in the minibuffer.

Using ndb under Emacsis like using mdb normally except for two things:

e All terminal input and output goes through the Emacs buffer. This appliesto ndb
commands and their output, and to the input and output done by the program
you are debugging. Thisisuseful because it means that you can copy the text of
previous commands and input them again; you can even use parts of the output in
thisway. All the facilities of the Emacs Shell mode are available for this purpose.

« mdb displays source code through Emacs. Each time nmdb displays a stack frame,
Emacs automatically finds the source file for that frame and puts an arrow (=>) at
the left margin of the current line. Explicit mdb | i st or search commands still
produce output as usual, but you probably have no reason to use them.

S-2467-20 93

Cray XMT™ Debugger Reference Guide

In the ndb 1/O buffer, you can use these special Emacs commands:

Cc Cs
Cc CGn

CGc Ci
Cc CGb

Cc <

Cc >

Execute to another source line, like the mdb st ep command.

Execute to next source line in this function, skipping all function
cals, like the ndb next command.

Execute one instruction, like the mdb st epi command.

Set a breakpoint on the current line, like the mdb br eak linenum
command, where linenum corresponds to the position of (=>) in the
source file buffer.

Execute until exit from the selected stack frame, like the ndb
fi ni sh command.

Continue execution of the program, like the mdb cont command.

Evaluate the expression immediately following the cursor, like the
ndb pri nt exp command where exp is the expression immediately
following the cursor in the ndb buffer.

Go up the number of framesindicated by the numeric argument, like
the mdb up command.

Go down the number of frames indicated by the numeric argument,
like the mdb down command.

In any source file, the Emacs command C- x SPC (ndb- br eak) tellsndb to set a
breakpoint on the source line point is on.

The source files displayed in Emacs are in ordinary Emacs buffers that are visiting the
source files in the usual way. You can edit the files with these buffers if you wish; but
keep in mind that ndb communicates with Emacs in terms of line numbers. If you
add or delete lines or characters from the text, the line numbers that ndb knows will
cease to correspond properly to the code.

94

S-2467-20

ndb Input and Output Conventions [C]

To invoke ndb, enter the shell command ndb. Once started, ndb reads commands
from the terminal until you tell it to exit.

A mdb command is a single line of input. Thereis no limit on how long it can be.
It starts with a command name, which is followed by arguments whose meaning
depends on the command name. For example, the command st ep accepts an
argument that is the number of timesto step, asinst ep 5. You can aso use
the st ep command with no arguments. Some command names do not allow any
arguments.

ndb command names may always be abbreviated if the abbreviation is unambiguous.
Sometimes even ambiguous abbreviations are alowed; for example, s is specially
defined as equivalent to st ep even though there are other commands whose names
start with s. Possible command abbreviations are often stated in the documentation of
the individual commands.

A blank line as input to ndb means to repeat the previous command verbatim.
Certain commands do not allow themselves to be repeated this way; these are
commands for which unintentional repetition might cause trouble and that you are
unlikely to want to repeat. Certain others(l i st and x) act differently when repeated
because that is more useful.

A line of input starting with # is a comment; it does nothing. Thisis useful mainly in
command files (see Command Files on page 80).

ndb indicates its readiness to read a command by printing a string called the prompt.
This string is normally (ndb). If athread currently has the focus (see Focus Thread
on page 37), thefocusthread ID is printed in square brackets to the left of (mdb). If
the thread is in a non-running state (see Thread States on page 36), mdb prints the
state of the focus thread leftmost in the prompt, within angle brackets.

S-2467-20 95

Cray XMT™ Debugger Reference Guide

96

Usetheset pronpt command to change the prompt string. You can also include
system information in the prompt.

set pronpt

YpX

s X

newprompt

Directs ndb to use newprompt as its prompt string henceforth. In
addition to aliteral prompt string, newprompt may include any of the
following two-character specifications for system information:

o focus thread name

%S focus thread state

R focus thread state, if not running

% function name

%J source file name

% line number

%vi module name (. o file)

o0 program library name (. a or . pl file)
9%C program counter

% history number

Many of the specifications described above result in an empty string
if the relevant information is unknown or unavailable. For instance,
when you initialy start ndb, no thread has the focus, so %@ results
in an empty string. You can use the following three-character
specifications to control the printing of characters near the resulting
strings.

Immediately precedes a two-character specification %? from the list
above, where X is a single character of your choice. If %7 is printed,
Xisprinted to its left; otherwise X is omitted.

Immediately succeeds atwo-letter specification, where Xisasingle
character of your choice. If %? is printed, X is printed to itsright;
otherwise X is omitted.

If mdb cannot determine system information included in the prompt, ndb prints
nothing. The default prompt specification is %p<%R0s>% %[%d%s] % (ndb) .

To exit ndb, usethe qui t command (abbreviated g). Ct r | - C does not exit from
ndb, but rather terminates the action of any ndb command that isin progress and
returns to ndb command level. It is generaly safeto type Ct r | - Cat any time
because ndb attempts to synchronize the interrupt to atime when it is safe. However,
there is the possibility that Ct r | - C during expression evaluation may leave locks

in a held state.

S-2467-20

ndb Input and Output Conventions [C]

S-2467-20

Certain commands to ndb may produce large amounts of information output to

the screen. To help you read all of it, mdb pauses and asks you for input at the

end of each page of output. Press Ent er when you want to continue the outpuit.
Normally ndb knows the size of the screen from the termcap database together with
the value of the TERMenvironment variable. To change the screen size use the set
screensi ze command:

set screensize Ipp, set screensize Ipp cpl

Specify a screen height of Ipp lines and (optionally) awidth of cpl
characters. If you omit cpl, the width does not change.

If you specify a height of zero lines, mdb will not pause during
output no matter how long the output is. Thisis useful if output isto
afileor to an editor buffer.

Also, mdb may at times produce more information about its own
workings than is of interest to the you. You can turn some of
these informational messages on and off with theset ver bose
command:

set verbose on

Re-enables mdb output of certain informational messages.
set verbose off

Disables ndb output of certain informational messages.

Currently, the messages controlled by set ver bose are those
that announce that the symbol table for a source file is being read
(see File Commands on page 11), in the description of the command
synbol -file).

97

Cray XMT™ Debugger Reference Guide

98 S-2467-20

Glossary

S-2467-20

blade

1) A Cray XMT compute blade consists of Threadstorm processors, memory,
Cray SeaStar chips, and a blade control processor. 2) From a system management
perspective, alogical grouping of nodes and blade control processor that monitors
the nodes on that blade.

blade control processor

A microprocessor on a blade that communicates with a cabinet control processor
through the HSS network to monitor and control the nodes on the blade. See also
blade, LO controller, Hardware Supervisory System (HSS).

cabinet control processor

A microprocessor in the cabinet that communicates with the HSS via the HSS
network to monitor and control the devices in a system cabinet. See also Hardware
Supervisory System (HSS).

CLE
The operating system for Cray XMT systems.

fork

Occurs when processors allocate additional streamsto athread at the point whereit is
creating new threads for a parallel loop operation.

future

Implements user-specified or explicit parallelism by starting new threads. A future
is a sequence of code that can be executed by a newly created thread that is running
concurrently with other threads in the program. Futures delay the execution of code if
the code is using a value that is computed by afuture, until the future completes. The
thread that spawns the future uses parameters to pass information from the future to
the waiting thread, which then executes. In a program, the term future is used as a
type qualifier for a synchronization variable or as akeyword for afuture statement.

99

Cray XMT™ Debugger Reference Guide

100

Hardware Supervisory System (HSS)

Hardware and software that monitors the hardware components of the system and
proactively manages the health of the system. It communicates with nodes and with
the management processors over the private Ethernet network. See also system
interconnection network.

logical machine

An administrator-defined portion of a physical Cray XMT system, operating as an
independent computing resource.

login node

The service node that provides a user interface and services for compiling and
running applications.

metadata server (MDS)

The component of the Lustre file system that manages Metadata Targets (MDT) and
handles requests for access to file system metadata residing on those targets.

node

For CLE systems, the logical group of processor(s), memory, and network
components acting as a hetwork end point on the system interconnection network.
See also processing el ement.

phase

A set of one or more sections of code that the stream executes in parallel. Each
section contains an iteration of aloop. Phases and sections are contained in control
flow code generated by the compiler to control the parallel execution of afunction.

processing element

The smallest physical compute group. There are two types of processing elements: a
compute processing element consists of an AMD Opteron processor, memory, and
alink to a Cray SeaStar chip. A service processing element consists of an AMD
Opteron processor, memory, alink to a Cray SeaStar chip, and PCI-X or PClelinks.

System M anagement Wor kstation (SMW)

The workstation that is the single point of control for system administration. See
also Hardware Supervisory System (HSS).

S-2467-20

	Cray XMT Debugger Reference Guide
	Overview [1]
	1.1 Prerequisites
	1.1.1 Loading the Module
	1.1.2 Compiling for Debugging
	1.1.3 Working Directories
	1.1.4 Environment Variables

	1.2 Getting Started
	1.2.1 Selecting a Program to Debug
	1.2.1.1 File Commands
	1.2.1.2 Module Commands
	1.2.1.3 Object Directory Commands
	1.2.1.4 Shared Library Directory Commands

	1.2.2 Running the Program
	1.2.2.1 Working Directory
	1.2.2.2 Program I/O
	1.2.2.3 Environment Variables
	1.2.2.4 Runtime Arguments

	1.3 Debugging a Currently Running Job
	1.4 Ending a Debugging Session

	Breakpoints and Watchpoints [2]
	2.1 Breakpoints and Watchpoints
	2.1.1 Setting Breakpoints
	2.1.1.1 Special Breakpoint Situations

	2.1.2 Setting Watchpoints
	2.1.3 Deleting Breakpoints and Watchpoints
	2.1.4 Disabling Breakpoints and Watchpoints
	2.1.5 Break Conditions
	2.1.6 Commands Executed on Breaking

	2.2 Continuing
	2.3 Stepping

	Understanding Multithreading [3]
	3.1 Thread Names
	3.2 Thread States
	3.3 Focus Thread

	Examining the Stack [4]
	4.1 Stack Frames
	4.2 Backtraces
	4.3 Selecting a Frame
	4.4 Information on a Frame

	Examining Source Files [5]
	5.1 Printing Source Lines
	5.2 Searching Source Files
	5.3 Specifying Source Directories
	5.4 Examining Instructions

	Examining Data [6]
	6.1 Expressions
	6.2 Program Variables
	6.3 State Bits
	6.4 Artificial Arrays
	6.5 Format Options
	6.6 Output Formats
	6.6.1 Examining Memory

	6.7 Automatic Display
	6.8 Value History
	6.9 Convenience Variables
	6.10 Registers
	6.11 Register Examples

	Examining Symbols [7]
	7.1 Archive Symbol Visibility

	Altering Execution [8]
	8.1 Assignment to Variables
	8.1.1 Altering Variables Kept in Registers

	8.2 Changing the Full/Empty Bit

	Stored Sequences of Commands [9]
	9.1 User-defined Commands
	9.2 Command Files
	9.3 Commands for Controlled Output

	Options and Arguments for mdb [10]
	10.1 Mode Options
	10.2 File-specifying Options
	10.3 Communication Options and Variables
	10.4 Breakpoint-behavior Options
	10.5 Miscellaneous Options
	10.6 Other Arguments

	GNU General Public License [A]
	A.1 Preamble
	A.2 Terms and Conditions
	A.3 How to Apply These Terms to Your New Programs

	Using mdb under GNU Emacs [B]
	mdb Input and Output Conventions [C]
	Glossary

