
TMTM

Cray XMT™ Programming Environment User's Guide

S–2479–20

© 2007–2011 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Cray Inc.

Copyright (c) 2008, 2010, 2011 Cray Inc. All rights reserved. Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the following conditions are met: * Redistributions
of source code must retain the above copyright notice, this list of conditions and the following disclaimer. *
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name Cray Inc.
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Your use of this Cray XMT release constitutes your
acceptance of the License terms and conditions.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

Cray, LibSci, and PathScale are federally registered trademarks and Active Manager, Cray Apprentice2,
Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC,
Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM,
Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2,
Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XE5m, Cray XE6, Cray XE6m, Cray XMT, Cray XR1, Cray XT,
Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort,
CRInform, ECOphlex, Gemini, Libsci, NodeKARE, RapidArray, SeaStar, SeaStar2, SeaStar2+, The Way to Better
Science, Threadstorm, and UNICOS/lc are trademarks of Cray Inc.

GNU is a trademark of The Free Software Foundation. ISO is a trademark of International Organization for
Standardization (Organisation Internationale de Normalisation). Linux is a trademark of Linus Torvalds. Lustre
and NFS are trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners. Opteron is a trademark of Advanced Micro Devices, Inc. Platform is a trademark of Platform Computing
Corporation. RSA is a trademark of RSA Security Inc. UNIX, the “X device,” X Window System, and X/Open are
trademarks of The Open Group in the United States and other countries. All other trademarks are the property of
their respective owners.

RECORD OF REVISION

S–2479–20 Published May 2011 Supports release 2.0 GA running on Cray XMT compute nodes and on Cray XT
3.1UP02 service nodes. This release uses the System Management Workstation (SMW) version 5.1UP03.

1.5 Published December 2010 Supports release 1.5 running on Cray XMT compute nodes and Cray Linux
Environment (CLE) release 2.241A on Cray XT service nodes. This release requires the System Management
Workstation (SMW) version 4.0.UP02, which is based on the SLES10 SP3 base operating system.

1.4 Published December 2009 Supports release 1.4 running on Cray XMT compute nodes and Cray Linux
Environment (CLE) release 2.241A on Cray XT service nodes. This release requires the System Management
Workstation (SMW) version 4.0.UP02, which is based on the SLES10 SP3 base operating system.

1.3 Published March 2009 Supports release 1.3 running on Cray XMT compute nodes and on Cray XT 2.1.50HD
service nodes. This release requires the System Management Workstation (SMW) version 3.1.09 that is based on
the SLES10 SP1 base operating system.

1.2 Published August 2008 Supports general availability (GA) release 1.2 running on Cray XMT compute nodes and
on Cray XT 2.0.49 service nodes. This release uses the System Management Workstation (SMW) version 3.1.04
that is based on the SLES9 SP2 base operating system.

1.1 LA Published March 2008 Supports limited availability (LA) release 1.1.01 running on Cray XMT compute
nodes and on Cray XT 2.0 service nodes.

1.0 LA Published August 2007 Draft documentation to support Cray XMT limited-availability (LA) systems.

Changes to this Document

Cray XMT™ Programming Environment User's Guide S–2479–20

This rewrite of Cray XMT Programming Environment User's Guide supports the 2.0 release of the Cray XMT
operating system and programming environment. For more information see the release announcement that
accompanies this release.

Added information

• Two new pragmas: #pragma mta max n processors and #pragma mta max
concurrency c. See Compilation Directives on page 109.

• Additional programming examples.

Revised information

• The snapshot documentation has been revised extensively. See Chapter 6, Managing Lustre I/O with the
Snapshot Library on page 67.

• Technical and editorial corrections.

The conceptual content that made up the first chapters of previous versions of this guide have been moved to a
new document, Cray XMT Programming Model.

Contents

Page

Introduction [1] 13

1.1 The Cray XMT Programming Environment 13

Setting Up the User Environment [2] 15

2.1 Setting Up a Secure Shell . 15

2.1.1 RSA Authentication . 15

2.1.2 Additional Information . 16

2.2 Using Modules . 17

2.2.1 Modifying the PATH Variable 17

2.2.2 Software Locations . 17

2.2.3 Module Commands . 18

Developing an Application [3] 19

3.1 The Cray XMT Programming Environment 19

3.2 Overview of Cray XMT Generic and Intrinsic Functions 20

3.2.1 Generic Functions . 20

3.2.1.1 Generic Write Functions 21

3.2.1.2 Generic Read Functions 22

3.2.2 Intrinsic Functions . 24

3.3 Adding Synchronization to an Application 24

3.3.1 Synchronizing Data Using int_fetch_add 25

3.3.2 Avoiding Deadlock . 25

3.4 Programming Considerations for Floating-point Operations 26

3.4.1 Differences from IEEE Floating-point Arithmetic 28

3.4.2 Differences from Cray Floating-point Arithmetic 29

3.4.3 32-bit and 64-bit Implementation of Floating-point Arithmetic 30

3.4.4 Rounding Results of Floating-point Operations 30

3.5 Using Futures in an Application . 31

3.5.1 Improving Performance of Future Statements 32

3.5.2 Anonymous futures . 34

S–2479–20 7

Cray XMT™ Programming Environment User’s Guide

Page

3.6 Testing Expressions Using Condition Codes 34

3.7 File I/O . 36

3.7.1 Language-level I/O . 36

3.7.2 System-level I/O . 39

3.8 Porting Programs to the Cray XMT 43

3.9 Debugging the Program . 45

Shared Memory Between Processes [4] 47

4.1 Mapping a Memory Region for Data Sharing 47

4.2 Persisting Shared Memory . 49

Developing LUC Applications [5] 53

5.1 Programming Considerations for LUC Applications 53

5.2 Creating and Using a LUC Client 53

5.3 Creating and Using a LUC Server 56

5.4 Communication Between LUC Objects 57

5.5 LUC Client/Server Example . 60

5.6 Fast I/O Memory Usage . 65

Managing Lustre I/O with the Snapshot Library [6] 67

6.1 About the Snapshot Library . 67

6.2 The Snapshot Library Interface . 68

6.3 Maintaining File System and I/O Parallelism 70

6.4 Examples . 71

6.5 Managing File I/O on File Systems Other Than Lustre 74

Compiler Overview [7] 75

7.1 The Compilation Process . 76

7.1.1 File Types Accepted by the Compiler 79

7.2 Invoking the Compiler . 80

7.3 Setting the Compiler Mode . 80

7.3.1 Whole-program Mode . 81

7.3.2 Separate-module Mode . 82

7.3.3 Mixed Mode . 83

7.4 Inlining Functions . 84

7.5 Optimizing Parallelization . 85

7.6 Incremental Recompilation and Relinking 86

7.7 Creating New Libraries . 87

7.8 Compiler Messages . 88

8 S–2479–20

Contents

Page

7.9 Setting Debugger Options during Compilation 88

7.10 Using Compiler Directives and Assertions 89

Running an Application [8] 91

8.1 Launching the Application . 91

8.2 User Runtime Environment Variables 92

8.3 Improving Performance . 93

Optional Optimizations [9] 95

9.1 Scalar Replacement of Aggregates 95

9.2 Optimizing Calls to memcpy and memset 98

Appendix A Error Messages 99

Appendix B User Runtime Functions 103

Appendix C Compiler Directives and Assertions 109

C.1 Compilation Directives . 109

C.2 Parallelization Directives . 124

C.3 Semantic Assertions . 125

C.4 Implementation Hints . 130

Appendix D Condition Codes 133

Appendix E Data Types 137

Appendix F Keywords 139

Appendix G MTA_PARAMS 143

Appendix H LUC API Reference 147

H.1 LucEndpoint Class . 147

H.2 luc_allocate_endpoint Function 149

H.3 LUC Methods . 149

H.3.1 startService Method 149

H.3.2 stopService Method . 150

H.3.3 getMyEndpointID Method 150

H.3.4 remoteCall Method . 151

H.3.5 remoteCallSync Method 153

H.3.6 registerRemoteCall Method 154

H.3.7 setConfigValue Method 155

H.3.8 getConfigValue Method 158

S–2479–20 9

Cray XMT™ Programming Environment User’s Guide

Page

H.4 LUC Type Definitions . 159

H.5 LUC Callback Functions . 160

H.5.1 LUC_RPC_Function_InOut 160

H.5.2 LUC_Mem_Avail_Completion 161

H.5.3 LUC_Completion_Handler 162

H.6 LUC Return Codes . 162

Glossary 167

Procedures
Procedure 1. Setting up RSA authentication with a passphrase 15

Procedure 2. Using RSA authentication without a passphrase 16

Procedure 3. Creating and using a LUC client object 54

Procedure 4. Creating and using a LUC server object 56

Examples
Example 1. Testing a shift-left operation for a carried number 34

Example 2. Retrieving a condition code and result of a previous operation 35

Example 3. Retrieving a condition code set by a previous operation 35

Example 4. Calling standard I/O functions from parallel code 37

Example 5. Calling record-oriented I/O functions from parallel code 37

Example 6. Preventing racing when calling I/O functions 38

Example 7. Calling UNIX I/O functions from parallel code 40

Example 8. Using synchronization with UNIX I/O functions 41

Example 9. Using synchronization with UNIX record-oriented I/O functions 41

Example 10. Mapping memory to share among multiple processes 47

Example 11. LUC client code example 55

Example 12. LUC Server code example 57

Example 13. Allocating and using LucEndpoint objects to communicate 57

Example 14. Using dslr_snapshot and dslr_restore to save and restore data in a file. . . 71

Example 15. Using dslr_pwrite to write data to a file and dslr_pread to read back the data . . 72

Tables
Table 1. mta-pe Utilities . 19

Table 2. Condition Codes . 133

Table 3. Condition Masks . 133

Table 4. C/C++ Keywords Recognized by the Cray XMT Compiler 139

Table 5. Standard C++ Keywords Recognized by the Cray XMT Compiler 139

10 S–2479–20

Contents

Page

Figures
Figure 1. Snapshot Library Data Paths 67

Figure 2. Comparison of Whole-program and Separate-module Modes 78

S–2479–20 11

Introduction [1]

This guide describes the Cray XMT Programming Environment. It includes
procedures and examples that show you how to set up your user environment
and build and run optimized applications. The intended audience is application
programmers and users of the Cray XMT system. For information about debugging
your application, see Cray XMT Debugger Reference Guide. For information about
performance analysis tools that you can use to tune your application, see Cray XMT
Performance Tools User's Guide.

This chapter presents a general overview of the Cray XMT. Subsequent chapters of
this manual cover the details for how to write programs for the Cray XMT.

1.1 The Cray XMT Programming Environment
The Cray XMT Programming Environment (XMT-PE) includes the following:

• Cray XMT compilers for C and C++

• Cray mdb debugger, which is an adaptation of the Free Software Foundation's
gdb debugger

• Apprentice2 performance analysis tool

The XMT-PE runs on a Linux operating system on a service node. You write and
compile your program on the service partition and launch it from the service partition
onto the compute partition.

S–2479–20 13

Cray XMT™ Programming Environment User’s Guide

14 S–2479–20

Setting Up the User Environment [2]

Configuring your user environment on a Cray XMT system is similar to configuring a
typical Linux workstation.

2.1 Setting Up a Secure Shell
Cray XMT systems use ssh and ssh-enabled applications such as scp for secure,
password-free remote access to the login nodes.

Before you can use the ssh commands, you must generate an RSA authentication
key. The process for generating the key depends on the authentication method
you use. There are two methods of passwordless authentication: with or without
a passphrase. Although both methods are described here, you must use the latter
method to access the compute nodes through a script or when using a single-system
view (SSV) command.

2.1.1 RSA Authentication

You can set up RSA authentication with or without a passphrase.

Procedure 1. Setting up RSA authentication with a passphrase

To enable ssh with a passphrase, complete the following steps.

1. Generate the RSA keys by typing the following command and follow the
prompts. The program requests you to supply a passphrase.

% ssh-keygen -t rsa

2. Create a $HOME/.ssh directory and set permissions so that only the file's owner
can access them by typing the following commands:

% mkdir $HOME/.ssh
% chmod 700 $HOME/.ssh

3. The public key is stored in your $HOME/.ssh directory. Copy the key to your
home directory on the remote host (or hosts) by typing the following command:

% scp $HOME/.ssh/key_filename.pub \
username@system_name:.ssh/authorized_keys

S–2479–20 15

Cray XMT™ Programming Environment User’s Guide

4. Connect to the remote host by typing the following commands.

If you are using a C shell, type:

% eval s` sh-agent

%

`

ssh-add

If you are using a bash shell, type:

$ eval s` sh-agent -s

$

`

ssh-add

5. Enter your passphrase when prompted, followed by:

% ssh remote_host_name

Procedure 2. Using RSA authentication without a passphrase

To enable ssh without a passphrase, complete the following steps.

1. Generate the RSA keys by typing the following command:

% ssh-keygen -t rsa -N ""

2. Create a $HOME/.ssh directory and set permissions so that only the file's owner
can access them by typing the following command:

% mkdir $HOME/.ssh
% chmod 700 $HOME/.ssh

3. The public key is stored in your $HOME/.ssh directory. Copy the key to your
home directory on the remote host (or hosts) by typing the following command:

% scp $HOME/.ssh/key_filename.pub \
username@system_name:.ssh/authorized_keys

Note: This step is not required if your home directory is shared.

4. Connect to the remote host by typing the following command:

% ssh remote_host_name

2.1.2 Additional Information

For more information about setting up and using a secure shell, see the ssh(1),
ssh-keygen(1), ssh-agent(1), ssh-add(1), and scp(1) man pages.

16 S–2479–20

Setting Up the User Environment [2]

2.2 Using Modules
The Cray XMT system uses modules in the user environment to support multiple
versions of software, such as compilers, and to create integrated software packages.
As new versions of the supported software and associated man pages become
available, they are added automatically to the Programming Environment, while
earlier versions are retained to support legacy applications. By specifying the module
to load, you can choose the default version of an application or another version.

The modules for the compilers and associated products are:

• mta-pe for the C and C++ compilers. This is the default environment.

Modules also provide a simple mechanism for updating certain environment
variables, such as PATH, MANPATH, and LD_LIBRARY_PATH. In general, you
should make use of the modules system rather than embedding specific directory
paths into your startup files, makefiles, and scripts.

The following subsections describe the information you need to manage your user
environment.

2.2.1 Modifying the PATH Variable

Do not reinitialize the system-defined PATH. The following example shows how to
modify it for a specific purpose (in this case to add $HOME/bin to the path).

If you are using a C shell, type:

% set path = ($path $HOME/bin)

If you are using bash, type:

$ export $PATH=$PATH:$HOME/bin

2.2.2 Software Locations

On a typical Linux system, compilers and other software packages are located in the
/bin or /usr/bin directories. However, on Cray XMT systems these files are in
versioned locations under the /opt directory.

Cray software is self-contained and is installed as follows:

• Base prefix: /opt/pkgname/pkgversion/, such as /opt/mta-pe/default

• Package environment variables: /opt/pkgname/pkgversion/var

• Package configurations: /opt/pkgname/pkgversion/etc

Note: To run a Programming Environment product, specify the command
name (and arguments) only; do not enter an explicit path to the Programming
Environment product. Likewise, job files and makefiles should not have explicit
paths to Programming Environment products embedded in them.

S–2479–20 17

Cray XMT™ Programming Environment User’s Guide

2.2.3 Module Commands

The mta-pe modules are loaded by default.

To find out what modules have been loaded, type:

% module list

To switch from one Programming Environment to another, type:

% module swap switch_from_module switch_to_module

For example, to switch from the Cray XMT Programming Environment to the GNU
Programming Environment, type:

% module swap mta-pe PrgEnv-gnu

For further information about the module utility, see the module(1) and
modulefile(4) man pages.

18 S–2479–20

Developing an Application [3]

This chapter provides an overview of some Cray XMT functions and describes how
to perform some common programming tasks, such as floating-point operations,
sorting, dataflow, searching, and I/O.

Before you begin developing your program, you must log in to the login node using
ssh. You develop, compile, debug, and launch your program from the login node.

Before developing your application, review the data types and keywords that are
supported by the Cray XMT compilers. For a list of data types, see Appendix E, Data
Types on page 137. For a list of keywords, see Appendix F, Keywords on page 139.

3.1 The Cray XMT Programming Environment
The Cray XMT Programming Environment (XMT-PE) contains the following
modules:

• mta-pe

• xmt-tools

• mta-man

The mta-pe module contains the C/C++ compilers and some utilities that are useful
during the development process. The following table lists the commands for mta-pe
utilities and provides a brief description.

Table 1. mta-pe Utilities

Utility Name Description

dis Disassembles object code.

header Displays a Cray XMT Executable and Linking File (ELF)
header for a specified object, exec, or library file.

mdb Starts debugger for Cray XMT programs.

nm Lists symbols from object files.

The mta-pe module also contains support for functions that are specific to the
Cray XMT environment. For more information, see Overview of Cray XMT Generic
and Intrinsic Functions on page 20.

S–2479–20 19

Cray XMT™ Programming Environment User’s Guide

The xmt-tools module contains the tools that you use to run and monitor a
program. To run a program, use the mtarun command. For more information, see
Launching the Application on page 91 or the mtarun(1) man page. To monitor the
program, use the mtatop or dash command. For more information, see Cray XMT
System Management or the mtatop(1) man page.

The mta-man module contains the man pages for all the utilities, tools, and
functions that you find in the XMT-PE.

3.2 Overview of Cray XMT Generic and Intrinsic Functions
The Cray XMT Programming Environment (XMT-PE) supports a number of
Cray XMT functions. For a list of these functions, see the generics(1) and
mta_intrinsics(3) man pages. You can refer to the man page for each function
for details about how to use that function. Man pages for functions list the names of
the header files you must include in your program when using that function.

3.2.1 Generic Functions

The Cray XMT compiler provides a number of generic functions that operate
atomically on scalar variables (variables that hold a single value). The generic
functions perform read and write, purge, touch, and int_fetch_add
operations on variables. The most common use of the generic functions is to
manipulate sync and future variables, but you can also use all of the generic
functions, except for the touch function, on other types of variables.

Generic functions frequently affect, or have behavior that is dependent upon, the
full-empty state of the variable. Because of this, you must know the initial full-empty
state of the variable before you allocate it. For sync variables, this state is full if
you initialize the variable in the declaration, and empty if you do not initialize the
variable. For future variables, the initial state is full. For all other variables, the initial
state is full if you initialize the variable in the declaration and undefined if you do
not initialize the variable.

You should avoid using generic functions on a variable (other than a sync or future
variable) that is less than a word in length. Each 8-byte word of memory is associated
with only one full-empty bit. If two or more variables share the same word, they share
a single full-empty bit; using a generic function to modify the full-empty state of one
of the variables also changes the state of the other variable(s).

You must be careful when using multiword scalars. When you use ordinary language
constructs, a read or write operation of a sync or future multiword variable occurs
as if the multiple words are fused and have a single full-empty bit, even when there
are other read or write operations that use the same variable.

20 S–2479–20

Developing an Application [3]

When a set of generic functions access a multiword variable simultaneously, the
resulting behavior depends on the generic functions that constitute the set. If all the
generic functions in the set require the variable to be in either a full or empty state,
the functions access the variable in a serialized manner and the user-visible state
is consistent. However, if any generic function in the set does not depend on the
full-empty state (such as the purge, readxx, and writexf functions), the ability
to serialize the set is not guaranteed. If the set is not serialized, generic functions may
access words in the variable in a different order, resulting in inconsistencies in one or
more of the following: the state of the value returned by one or more of the generics;
the memory holding the variable; the data value; or the full-empty bits.

Accessing an individual memory word that is part of a multiword variable (for
example, using a cast or a union) could result in inconsistent full-empty states and a
data value partially composed of both current and obsolete memory contents. It may
also cause a deadlock to occur.

3.2.1.1 Generic Write Functions

The generic write functions write new values to variables, depending upon the
full-empty state of the variable. If the type for a value does not match the type for the
variable that stores the value, the value is cast to the correct type before being written.
For example, in the following:

int i;
writeff(&i, 2.0);

The value 2.0 (float) is cast to 2 (int) before being written to i.

S–2479–20 21

Cray XMT™ Programming Environment User’s Guide

The Cray XMT compiler recognizes the following generic write functions.

writeef(&v, value)

Writes value in variable v when v is in an empty state and sets v to
a full state. This allows one or more threads waiting for v to change
to a full state to resume execution. If v is in a full state, the write
operation is blocked until v changes to an empty state. This generic
function behaves like a write access to a sync variable.

writeff(&v, value)

Writes value in variable v when v is in a full state and leaves v
in a full state. If v is in an empty state, the write is blocked until v
changes to a full state. This generic function behaves like a write
access to a future variable that occurs outside the body of a future
statement.

writexf(&v, value)

Writes value in variable v and sets v to a full state. This allows
one or more threads waiting for v to change to a full state to resume
execution. This generic function behaves like the write of a return
value that occurs at the end of the body of a future statement but is
not like a write access to a variable declared with the future qualifier.

int_fetch_add(&v, i)

Atomically adds integer i to the value at address v, stores the sum at
v, and returns the original value from v (setting v to a full state).

Regardless of its type, i is cast as an 8-byte integer. Neither
parameter can be a multiword object. If v is less than the size of a
word, the compiler generates a warning diagnostic. If v is an empty
sync or future variable, the operation is blocked until v changes to
a full state.

purge(&v)

Writes 0, using the appropriate data type, to variable v and sets v to
an empty state.

For more information, see the generics(1) man page.

3.2.1.2 Generic Read Functions

Generic read functions return the value for a variable, depending upon the full-empty
state of the variable. When you invoke these functions, the data type of the return
value is determined by the type of the first argument in the function call.

22 S–2479–20

Developing an Application [3]

The Cray XMT compiler recognizes the following generic read functions.

readfe(&v)

Returns the value of variable v when v is in a full state and sets v
to an empty state. This allows one or more threads waiting for v to
change to an empty state to resume execution. If v is in an empty
state, the read operation is blocked until v changes to a full state.
This generic function behaves like a read access to a sync variable.

readff(&v)

Returns the value of variable v when v is in a full state and leaves v
in a full state. If v is in an empty state, the read operation is blocked
until v changes to a full state. This generic function behaves like a
read access to a future variable.

readxx(&v)

Returns the value of variable v but does not interact with the
full-empty memory state.

touch(&v)

The touch function returns the value of future variable v, where
v is associated with a future statement that has been spawned, but
whose body may or may not have already begun execution. If the
future body that writes v has not begun executing, the thread calling
touch executes the future body. If the future body associated with v
is currently being executed or has finished executing, touch(&v)
acts like a readff(&v) function.

You use the touch function with future variables that are filled
by the execution of code in the body of a future statement. Using
Futures in an Application on page 31 Touching a future variable
that is in an empty state but not bound to a future results in an
execution-time error.

For more information, see the generics(1) man page.

S–2479–20 23

Cray XMT™ Programming Environment User’s Guide

3.2.2 Intrinsic Functions

Cray provides intrinsic functions for the Cray XMT system that allow direct access to
machine operations from high-level languages. You can find a list of the C intrinsic
functions and the machine functions in the mta_intrinsics(3) man page. The
C intrinsic function names use the name of the machine operation and add a prefix
of MTA_. So, for example, the machine operation named FLOAT_ROUND becomes
the C intrinsic function named MTA_FLOAT_ROUND. When you use an intrinsic
function, it calls its associated machine operation to perform the task at the processor
level using assembly language. The result of a machine operation is passed back and
becomes the return value of the intrinsic function.

For parameters, when the assembly language version of an instruction names two
input registers and an output register, the associated intrinsic function has only two
input parameters and returns a result. For example, the machine operation that you
use to multiply bit matrices, (BIT_MAT_OR t u v), uses the intrinsic C function
_int64 MTA_BIT_MAT_OR (_int64 u, _int64 v) where the t parameter
in the machine operation becomes the return value for MTA_BIT_MAT_OR and the
u and v parameters are the operands. Invoke this intrinsic function by using the
following command:

t = MTA_BIT_MAT_OR(u, v);

For the previous statement, declare t, u, and v as integer variables by using the
_int64 data type. The intrinsic functions use the _int64 data type for 64-bit
signed integers and the _uint64 data type for 64-bit unsigned integers.

The intrinsic functions that may be most useful are the bit matrix arithmetic
functions. For example, if you want to count 1-bits or 0-bits, use the
MTA_BIT_RIGHT_ONE, MTA_BIT_LEFT_ONE, MTA_BIT_RIGHT_ZERO, or
MTA_BIT_LEFT_ZERO intrinsic functions. You can use the MTA_BIT_OR and
MTA_BIT_AND intrinsic functions to perform bitwise OR and AND operations.

Intrinsic functions support most machine operations that use signed or unsigned
integers (int), floating-point numbers (float), or bit vectors (bit) as variables.

If you do not use a constant argument where required, it results in an unresolved
reference to the intrinsic function at link time. For example, the intrinsic
MTA_TEST_CC requires a compile-time constant for its second parameter. If you
supply a variable instead, the compiler issues a warning and the invocation is
compiled as a call, resulting in a link-time failure.

3.3 Adding Synchronization to an Application
The tasks in this section explain how to add synchronization in your application.

24 S–2479–20

Developing an Application [3]

3.3.1 Synchronizing Data Using int_fetch_add

Use the int_fetch_add generic function to synchronize updates to data that
represents shared counters without using locks. This function has the following
signature:

int_fetch_add (&v, i)

The int_fetch_add function provides access to the underlying atomic
int_fetch_add machine operation. This function atomically adds i to the value at
address v, stores the sum at v, returns the original value of v, and sets the state bit to
full. In short, it does the following, as a single atomic operation:

t = v; v = v+i;
return t;

You can use int_fetch_add to identify the last of a group of threads to complete
a task, to partition data into groups, or to maintain a stack or queue index.

3.3.2 Avoiding Deadlock

Using sync variables can introduce deadlock into a program if, when the program
executes, threads attempt to do more reads than writes to a sync variable. When
you are trying to determine how many read operations the program performs, it is
important to remember that every reference to a sync variable results in a separate
read of that variable, even when the references occur in the same source code
statement. For example, in the following cases:

• Your program references a sync variable two or more times on the right side of an
assignment statement. For example, if x$ is a sync variable:

sum = x$ + x$;

• Your program references a sync variable two or more times in a conditional test.
For example, if x$ is a sync variable:

if ((x$ >= 10)&&(x$ <= 100)){}

S–2479–20 25

Cray XMT™ Programming Environment User’s Guide

In these two cases, each reference to x$ results in a separate read of that variable
and requires a separate write to x$. The second write to x$ must be performed by a
thread other than the one executing the code in the example. In the first case, it might
have been the intention of the programmer to add together two successive values of
x$. If so, this code presents no problems provided the program contains additional
code that executes concurrently with the code in the example and performs the second
write to x$. In the second case, it is doubtful that the programmer's intention was to
compare two different values of x$. Also, due to the short-circuiting rules in C and
C++, there is no guarantee that the second read will occur. Thus, you could end up
with a deadlock whether or not have two writes to x$. If you have two writes, but
the second read does not occur due to short-circuiting, your code will deadlock due
to too many writes. On the other hand, if you have one write, and the second read
does occur, your code will deadlock due to too many reads. In both of these cases, if
the intention is to read only one value for x$, a temporary variable should be used,
as in this example:

tmpx = x$;
if ((tmpx >= 10) && (tmpx <= 100)){}

Deadlock can also occur when two or more concurrent functions access global sync
variables in a different order. For example, if a$ and b$ are global sync variables,
and the function fnc1 first loads a$ and then loads b$.

tmp_a = a$;
tmp_b = b$;

In the same program, function fnc2 first loads b$ and then loads a$.

tmp_b = b$;
tmp_a = a$;

If the functions run concurrently, then there is a chance of deadlock. If fnc2 loads
b$ after fnc1 loads a$, but before fnc1 loads b$, then neither function can
continue unless a third concurrently running function eventually writes to either a$ or
b$. You can avoid this problem by always accessing a$ and $b in the same order
each time you use them in functions that may be concurrent.

3.4 Programming Considerations for Floating-point Operations
The base arithmetic for floating-point operations on the Cray XMT uses the IEEE
Standard 754 format double precision (64-bit). A 64-bit floating-point number,
known as a Float64 on the Cray XMT, consists of a sign bit, an 11-bit exponent,
and 52 bits of fraction. Ordinary numbers (those with a biased exponent not equal to
zero or 0x7FF) have an exponent bias of 1023 (0x3FF) and their absolute value can
be expressed using the following equation:

(1.0 + fraction) << (exponent - 0x3FF)

The value is negative if the sign bit is set, positive if it is not set.

26 S–2479–20

Developing an Application [3]

A number with a biased exponent of 2047 (0x7FF) is a special floating-point
number, known as a SpecialFloat64 on the Cray XMT. If all the fraction bits are
zero, the value of the number is plus or minus infinity. Infinity generally occurs in
calculations as a result of an overflow or division by zero. For example, 1.0/0.0 is
positive infinity, while 1.e300*-1.e300 is negative infinity.

Calculations such as 0.0/0.0 create a result that is called not a number (NaN).
Any 64-bit floating-point number with a biased exponent of 0x7FF and a non-zero
fraction represents NaN. After NaN enters a computation, it persists through addition,
subtraction, multiplication, and division. When a calculation produces a NaN, it
indicates an error in your program or data.

In arithmetic comparisons, NaN is not equal to any number, including itself. NaN is
neither less than nor greater than any number. In fact, such comparisons raise an
exception when one of the numbers being compared is NaN. This implies that the
opposite of less than is not greater than but greater than, equal to, or unordered.
In this case, unordered allows for the possibility that one of the numbers in the
comparison is NaN. The Cray XMT hardware supports comparisons such as less
than, equal to, or unordered, and the compilers use these comparisons as necessary
when reversing the sense of a test.

There are two representations of zero in the Cray XMT hardware. The number
0x0000000000000000 represents +0.0 while 0x8000000000000000
represents -0.0. Although +0.0 and -0.0 appear to be equal to each other, you
can distinguish between them when using them in computations. In particular,
1.0/0.0 equals positive infinity while 1.0/-0.0 equals negative infinity. These
values obey computational rules under multiplication, as shown in the following
example.

0.0*(-1.) = -0.0
(-0.0)*(-1.0) = 0.0
and so on.

For any finite nonzero x$, x - x = +0.0. This implies that b - a is not
equivalent to -(a - b). For computations with zero, the following rules hold:

+0.0 - (+0.0) = +0.0 - (-0.0) = (-0.0) - (-0.0) = +0.0
However...
-0.0 - (+0.0) = -0.0

Underflow in the Cray XMT hardware is gradual in accordance with the IEEE
754 standard. Computations that underflow, producing a rounded result smaller in
magnitude than 0x0010000000000000, or about 2.225e-308, do not all flush
to zero. If the result has an absolute value greater than or equal to min_denorm,
such as 0x0000000000000001, or about 4.94e-324, it is a subnormal number.
A subnormal number is one with a zero-biased exponent and a nonzero fraction such
as 0x0000000000000001 or 0x800FFFFFFFFFFFFF. The absolute value for
such a subnormal number is the following:

(0.0 + fraction) >> 1022

S–2479–20 27

Cray XMT™ Programming Environment User’s Guide

Subnormal numbers are less precise than normalized numbers. The smallest
subnormal number, min_denorm, has only one significant bit while the largest has
52 significant bits. However, whenever 0.5 <= x/y <= 2.0, the difference x -
y is exact, even though it may have less precision than x and y. This is not true for
machines that flush underflow to zero.

The Cray XMT floating-point hardware handles gradual underflow transparently.
Unlike many systems, the Cray XMT is not slowed by the presence (or possibility) of
subnormal numbers and gradual underflow in a computation.

3.4.1 Differences from IEEE Floating-point Arithmetic

The Cray XMT processors do not have 32-bit floating-point instructions. If you
are performing an operation on 32-bit floating-point numbers, you must first use
the MTA_FLOAT_REAL intrinsic function to convert each 32-bit number in the
operation to a 64-bit number. After the operation is complete, you can use the
MTA_REAL_FLOAT intrinsic function to round the results to 32-bit numbers. This
double rounding (first to 64 bits and then to 32 bits) is not the same as a single
rounding to 32 bits. For more information about how to use MTA_FLOAT_REAL and
MTA_REAL_FLOAT, see the mta_intrinsics(3) man page.

The Cray XMT does not provide you with control over rounding precision for
floating-point operations. The level of rounding precision is set on the processor
during the manufacturing process.

Traps on the Cray XMT are precise, but operands can be overwritten by the results of
an operation performed on the same or a different functional unit. This can make the
implementation of post-substitution difficult.

There is no exponent wrapping when an operation enables or takes an overflow or
underflow trap. The intent of wrapping is to provide for automatic rescaling when
products or quotients are used in subsequent operations. On the Cray XMT, you
must use care when rescaling.

The hardware supports fused multiply-add operations that only require a single issue
of an instruction. This operation facilitates certain computations by making it easy to
extract the lower half of the product of two 64-bit doubles. The problem is that the
compiler can evaluate statements such as the following in several different ways, each
of which may produce a different result:

x = a*b + c*d;

The previous statement can be evaluated as either:

temp = a*b;
x = temp + c*d; // For multiply-add operation

Or

temp = c*d;
x = a*b + temp; // For multiply-add operation

28 S–2479–20

Developing an Application [3]

Or

temp1 = a*b;
temp2 = c*d;
x = temp1 + temp2;

The only way to override the compiler instructions for a particular multiply-add
operation is to put each multiply operation on a separate line, as in the third example.
You can use the -no_mul_add compiler flag to disable multiply-add operations.

Rather than using a multiply-add operation, the compiler may use a common
subexpression, as shown in the following example.

x = a*b; //For multiply
y = a*b + c; //Essentially y = x + c

In cases like this, you can use the #pragma mta single round required
pragma in a C program to indicate to the compiler that it must use a multiply-add
operation.

The Cray XMT does not support signaling NaNs. For all data types, the Cray XMT
identifies uninitialized floating-point data by throwing poison errors rather than using
signaling NaNs. See Appendix A, Error Messages on page 99.

3.4.2 Differences from Cray Floating-point Arithmetic

There are several versions of floating-point arithmetic on Cray systems. Newer Cray
systems, such as the Cray XMT, use formats based on IEEE 754. Older Cray systems
used a proprietary format that differs from IEEE 754 (and from the Cray XMT
implementation of IEEE 754) in significant ways. This older format is known as
Cray floating-point arithmetic.

Cray floating-point arithmetic uses a 48-bit significand, which has less precision
than the 53-bit significand used by the Cray XMT. The significand is the part of
a floating-point number that contains its significant digits. Cray floating-point
arithmetic has a 15-bit exponent with exponents that contain values between -8192
and 8191. This is a much larger range than the exponents for the Cray XMT that
contain values between -1022 and 1023. Cray floating-point operations lack guard
digits for subtraction and are known to have certain anomalies in computations.

In general, older Cray code that does not rely on the extra-large exponent range
runs without modification on the Cray XMT. Otherwise, some rescaling is required
for the Cray XMT. In addition, programs designed for older Cray systems may
contain work-around code to handle Cray floating-point anomalies. This code is
not necessary on the Cray XMT.

S–2479–20 29

Cray XMT™ Programming Environment User’s Guide

3.4.3 32-bit and 64-bit Implementation of Floating-point Arithmetic

The double data type in C uses the format for double-precision (64-bit) arithmetic
provided by IEEE Standard 754 guidelines. Cray XMT hardware does not support
IEEE Standard 754 extended precision, and all 32-bit arithmetic is done by promotion
to 64-bit formats.

Rounding mode on the Cray XMT is controlled on a per-thread basis using mode
bits in the stream status word (SSW). A newly created stream inherits the rounding
mode of its parent.

Hardware instructions that convert from an int or unsigned int number to a
floating-point number use the same rounding mode as the SSW. You can use the
MTA_FLOAT_UNS intrinsic function when converting large unsigned integers to
a floating-point number. You can use the current rounding mode as the basis for
converting a floating-point number to an integer by using the MTA_FLOAT_ROUND
intrinsic function or use explicit rounding that ignores the mode bits in the SSW by
using the MTA_FLOAT_CEIL, MTA_FLOAT_CHOP, MTA_FLOAT_FLOOR, or
MTA_FLOAT_NEAR intrinsic functions.

Each thread has its own set of floating-point exception flags and traps that can be
enabled in its SSW. The normal mode of operation is to run with all floating-point
traps disabled.

If you convert a 64-bit floating-point number to a decimal string with at least 17
significant decimal digits and then convert it back to 64-bit floating-point number,
the result matches the original. If you convert a decimal string with n less than 15
decimal digits to 64-bit floating-point number and then convert it back to n decimal
digits, the result matches the original string.

Add, subtract, and multiply operations each use one processor instruction on the
Cray XMT. Divide operations use eight instructions, and square root operations
require ten instructions. There is room in the divide and square-root sequences for
other operations, particularly in the memory unit.

3.4.4 Rounding Results of Floating-point Operations

The standard C math and C++ cmath libraries implement a set of functions that you
can use when performing basic mathematical operations such as the log function
for logarithms. When you use the math library functions on the Cray XMT, these
mathematical operations do not necessarily produce correctly rounded results, except
for the sqrt() function. Function results are generally accurate to within one unit in
the last place, but there are exceptions, especially for large arguments. Trigonometric
functions do infinitely precise argument reduction.

Numbers are rounded according to the IEEE Standard 754. The default rounding
method is overridden when you use the following intrinsic conversion functions:
MTA_FLOAT_CEIL, MTA_INT_CHOP, and MTA_UNS_FLOOR.

30 S–2479–20

Developing an Application [3]

The current rounding mode for the math library is set to round to the nearest place
(RND_NEAR). User functions that change the rounding mode must reset it to
RND_NEAR before calling the math library functions.

Exceptions are handled silently by the math library. No messages are printed, and
errno is not set by the library. If functions return NaN or infinity, these arguments
are propagated silently by the library. Exception flags are raised as appropriate.

3.5 Using Futures in an Application
In your application, a future consists of:

• A future statement that creates a continuation pointing to a series of statements
that may be executed by another thread.

• An optional future-qualified variable, known as a future variable, that
synchronizes execution of other program threads upon completion of the future.
The name of the future variable is also the name of the future.

• Parameters used by the spawning thread to pass values to the thread executing
the future.

• The future body, which contains the statements pointed to by the continuation that
may be executed by another thread. The body may end with a return statement
that writes a value to the future variable.

The keyword future is used in two ways:

• As a type qualifier for a synchronization variable.

future int x$;

Upon allocation, the full-empty state of the future variable x$ is set to full.

• As a statement.

future x$(i)
{

return printf("i is %d\n", i);
}

In the previous statement, the full-empty state for x$ is set to empty. The
argument i is passed in to the future body by value. The stream places the future
on a queue that executes the future bodies asynchronously. Any stream can now
dequeue the future and execute its body. The return value is stored to x$. Finally,
the full-empty bit of x$ is set to full after the return value is stored in x$.

S–2479–20 31

Cray XMT™ Programming Environment User’s Guide

Future statements contain the name of a future variable and parameters, a body, and
a return statement. The future variable's value is set by the return statement. The
future variable is optional; if no future variable is specified, the return statement of
the future body supplies no value. For example:

int x, y, z
future int i$;

future i$(x, y, z)
{

/* Some body statements */
return x*y*z;

}

In the previous example, when the computation completes, the return value returns
in the future variable i$. Subsequent accesses to i$ are delayed until the future
completes.

The use of future variables is limited to scalar data types such as char, int, float,
double, pointers, and array elements. The body of a future statement may contain
any legal statement including function calls and other future statements.

For a recursive operation, you can eliminate some of the overhead of blocking a
thread by using the keyword touch in your program. This leaves the semantics
unchanged, but if the future body has not begun, the calling thread executes it
directly.

int search_tree(Tree *root, unsigned target) {
int sum = 0;
if (root) {
future int left$;
future left$(root, target) {

return search_tree(root->llink, target);
}
sum = root->data == target;
sum += search_tree(root->rlink, target);
sum += touch(&left$);

}
return sum;

}

In the previous example, the touch operation checks if any thread has started to
execute the future body associated with left$. If so, it waits for the future body to
complete. If not, the thread calling touch executes the future body itself.

3.5.1 Improving Performance of Future Statements

When your application is compiled, future statements cause the compiler to create
continuations. Continuations are structures that contain pointers to routines that
contain the code from the body of the future statement and a list of arguments to
pass to that code.

32 S–2479–20

Developing an Application [3]

Continuations are normally allocated and deallocated from the heap. However, if
the associated future variable is a scalar variable that is located on the stack, the
compiler causes the continuation to be placed on the stack. This reduces the overhead
associated with allocation and deallocation operations.

The compiler does not do this when there is an array of future variables on the
stack because this requires an array of continuations. Continuations can be large
so an array of continuations might cause the stack size to become very large. You
can force the compiler to place an array of continuations on the stack by using the
stack_continuations attribute in your application. This may improve the
performance of the application.

The attribute has the following syntax:

__attribute__((stack_continuations))

You can add this attribute to any future-qualified stack-based array declaration in
your application.

void myFutures()
{

future int children[10] __attribute__((stack_continuations));
// ...

}

Another way to improve performance is by employing the autotouch compilation
mode. This compilation mode automatically applies the touch generic whenever a
future variable is referenced. There are three ways to use autotouch:

The -autotouch compiler flag enables autotouch for all source modules compiled
with the flag.

The pragma directive mta autotouch can be applied to a single source module.
The on option enables automatic touching, the off option disables automatic
touching, and the default option reverts the autotouch mode to the default mode
for that source module, which was determined by the compile-line flags.

The gcc-style attribute future int foo$ __attribute__ ((autotouch
(on|off))); allows you to change the autotouch mode on a per-variable
basis. For example, future int foo$ __attribute__ ((autotouch
(on))). The on option enables autotouch for all references to this variable,
regardless of the current command-line flags or pragmas. Similarly, the off option
disables autotouch for all references to the variable. This attribute generates a
warning if it is applied to a variable without the future qualifier.

S–2479–20 33

Cray XMT™ Programming Environment User’s Guide

3.5.2 Anonymous futures

Often, a concurrent computation does not have a return value. An example of such
a concurrent computation is an I/O statement or a modification of global values.
You can express such a computation using an anonymous future. An anonymous
future has no name or return statement. If the anonymous future does not access
a synchronized variable referenced by the main computation, there will be no
dependence between the future and the main computation. If a future does not create
a dependence, the future may not execute. An anonymous future does not need to
execute or finish for a program to terminate normally.

3.6 Testing Expressions Using Condition Codes
When you use arithmetic expressions in your code, you can test the expressions by
using the MTA_TEST_CC intrinsic function. This function returns condition codes
that identify problems in the expression. It uses the following prototype:

MTA_TEST_CC(expression, condition-mask)

MTA_TEST_CC evaluates the expression and generates a condition code. If the
resulting condition code is a member of the set of condition values in condition-mask,
true is returned; otherwise, false is returned.

The expression can be a scalar variable, a single arithmetic operation, or a machine
intrinsic. If you use a scalar variable, you must assign a value to it in the statement
immediately preceding the call to MTA_TEST_CC. In MTA_TEST_CC, you test the
operation on the right side of the assignment statement. The condition-mask should
evaluate to a compile-time constant. The condition codes and possible values for the
condition-mask are listed in Appendix D, Condition Codes on page 133.

Example 1. Testing a shift-left operation for a carried number

MTA_TEST_CC allows branching based on any of the condition codes produced by
the machine intrinsics. For example, consider the problem of testing to see if one of
the upper 32 bits in an integer is set. One approach is to use the MTA_SHIFT_LEFT
intrinsic function, which generates a carried number if a 1 bit is shifted out. When
using MTA_SHIFT_LEFT, you can use MTA_TEST_CC with the IF_CY condition
mask to check for a carried number, as shown in the following example.

enum{IF_CY = 16+32+64+128};
if(MTA_TEST_CC(MTA_SHIFT_LEFT(i, 32), IF_CY))
{

printf("One of the upper 32 bits was set\n");
}

In the previous example, the compiler would emit a SHIFT_LEFT_IMM_TEST
operation, followed by a conditional branch on carry.

34 S–2479–20

Developing an Application [3]

Example 2. Retrieving a condition code and result of a previous operation

It is also possible to test the condition code generated by some earlier operation,
allowing you to make use of both the condition code and the result of the operation.
In the following example, MTA_TEST_CC is used to test whether there was a carry
generated by MTA_BIT_LEFT_ZEROS. MTA_BIT_LEFT_ZEROS returns the
number of consecutive 0 bits on the left end of the word.

enum{IF_CY = 16+32+64+128};

const int j = MTA_BIT_LEFT_ZEROS(i);
if(MTA_TEST_CC(j, IF_CY))
{

printf("i was zero\n");
}

else
{

printf("i had %d significant zeros\n", j);
}

Example 3. Retrieving a condition code set by a previous operation

The operation that sets the condition code does not need to be an intrinsic function.
The condition code is usually set by an ordinary addition or multiplication operation,
such as the following.

enum{IF_CY = 16+32+64+128};

const int k = i + j;
if(MTA_TEST_CC(k, IF_CY))
{

printf("carry generated\n");
}

If the expression is more complex, the condition code is only available from the last
operation. For example, the expression in the following example requires two adds
but only the second add affects the condition code. Because the compiler can evaluate
this code in three different ways, it may not yield the correct result.

enum{IF_CY = 16 + 32 + 64 + 128};

const int m = i + j + k;
if(MTA_TEST_CC(m, IF_CY))
{

printf("carry generated\n");
}

S–2479–20 35

Cray XMT™ Programming Environment User’s Guide

3.7 File I/O
The Cray XMT performs I/O to a RAM-based file system (RAMFS) and a network
file system (NFS). Neither the RAMFS nor the NFS are high-speed file systems,
therefore, any data over 2 gigabytes in size must to be written to a high-speed file
system, such as Lustre. You can use the NFS for small amounts of data, such as user
files.

During the system reboot, all data is lost from the RAMFS because it is not written
to disk. Any data that you need to retain across system boots must be written to the
Lustre file system prior to rebooting the system. The XMT-PE provides snapshot
functions that you can use to move data between the service nodes and the Cray XMT
compute nodes. Once the data is on the service nodes, you can use standard Cray XT
commands to move data to the Lustre file system.

The underlying details of the file system are abstracted behind UNIX library calls that
you can add to your program to perform I/O. The Cray XMT system provides some
support for concurrent I/O to multiple files, but you must provide explicit access
control for concurrent I/O to a single file.

The following sections discuss standard language-supported forms of I/O as well as
I/O using the low-level UNIX I/O functions. Each section discusses the semantics,
particularly parallelism, and performance possibilities.

3.7.1 Language-level I/O

In serial code, the standard I/O functions behave as specified in the ANSI C standard.
In parallel code, all calls to the standard I/O package are executed atomically. Atomic
execution means that while one call is executing, no other call can interfere with what
the first is doing. Each call appears to run from beginning to end without interruption.

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

fprintf(f,"this is iteration %d\n", i);
}

The previous code asserts that the loop is parallel. In general, it is not safe for
the compiler to parallelize a loop that contains procedure calls, especially calls to
I/O functions. The assertion indicates to the compiler that, in this case, it is safe to
parallelize the loop. The atomicity guarantee ensures that each line written to f by
this loop is of the form that follows:

this is iteration i

Two lines are never mixed together, so the following never occurs:

this is this is iteration j

36 S–2479–20

Developing an Application [3]

The actual sequence of lines is random because the different iterations are all
executed in parallel. However, for a sequence of calls such as the following:

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

fprintf(f,"this is ");
fprintf(f,"iteration %d\n", i);

}

The output may look like the following, because only the individual calls to
fprintf are atomic:

this is iteration i
this is this is iteration k
iteration j

Example 4. Calling standard I/O functions from parallel code

To avoid the previous problem, you can combine the two calls to fprintf or add
some sort of explicit synchronization. For example:

sync int flag$ = 1;

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

int j = flag$; // lock
fprintf(f,"this is ");
fprintf(f,"iteration %d\n", i);
flag$ = j; // unlock

}

The previous code manipulates the sync variable flag$ to create an atomic section
that contains two calls to fprintf. The actual value loaded from and stored to
flag$ is not important because the code uses flag$ as a lock.

Example 5. Calling record-oriented I/O functions from parallel code

For record-oriented I/O, such as that which occurs when using a combination of
fseek together with fread or fwrite, you can use explicit synchronization to
ensure correct behavior, such as in the following code example:

sync int flag$ = 1;

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

Buf buffer;
int j = flag$; // lock
fseek(f, i*sizeof(Buf), SEEK_SET);
fread(buffer, sizeof(Buf), 1, f);
flag$ = j; // unlock

// Work with buffer
}

S–2479–20 37

Cray XMT™ Programming Environment User’s Guide

In the previous code, flag$ controls access to file f, ensuring that the combination
of fseek and fread are executed atomically. In this case, you use SEEK_SET
because the SEEK_CUR (positioning relative to the current position) is not useful in
a parallel context.

Example 6. Preventing racing when calling I/O functions

You use a similar technique when using ferror with another call to ensure that
any error detected by the ferror call was not caused by a racing read or write
call from a different thread. For example, in the following code, calls to several I/O
functions are grouped together so that they are all executed atomically.

sync int flag$ = 1;

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

Buf buffer;
int err;
int j = flag$; // lock
fseek(f, i*sizeof(Buf), SEEK_SET);
fread(buffer, sizeof(Buf), 1, f);
err = ferror(f);
flag$ = j; // unlock
if (!err)
{

// Work with buffer
}

}

In the previous code, the result of the call to ferror is saved to a variable (err) for
later testing.

The same considerations apply when using futures or more complex loops, perhaps
with the I/O hidden within a nest of procedure calls. Single calls always execute
atomically. However, when a sequence of calls pertaining to a single file must be
executed atomically, you must manage the sequence of calls explicitly.

Internally, the stdio library enforces locking for each FILE object (FILE is a data
type defined in stdio.h). This causes output to a number of different files can
proceed in parallel, but output to a single file is serialized. Similarly, you can use
sprintf and sscanf independently of calls to other functions because these
functions do not use a FILE object. For example, for the loop in the following
example, every iteration refers to a different FILE object, so each call to fprintf
can run without interfering with files used by another iteration.

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

fprintf(f[i],"this is iteration %d\n", i);
}

38 S–2479–20

Developing an Application [3]

If many parallel calls refer to the same file, locking forces a serial execution order.
For example, in the following code, it makes little sense to run the loop in parallel
because the calls to fprintf are serialized by the lock on the FILE object referred
to by g. However, the interpretation of the format string is controlled by the lock.

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

fprintf(g,"this is iteration %d\n", i);
}

If the loop contains significant computations, such as in the following example, you
may want to parallelize the loop.

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

int j = expensive_function(i);
fprintf(g,"f(%d) = %d\n", i, j);

}

You cannot use the stdio functions to support concurrent file access. For example,
consider the following code:

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

Buf buffer;
FILE *f = fopen(file_name, "r");
fseek(f, i*sizeof(Buf), SEEK_SET);
fread(buffer, sizeof(Buf), 1, f);
fclose(f);

}

There are two problems in this example:

• If n is large, the system cannot support so many open files.

• The file position (set by fseek) is shared among all open versions of the file, so
races may occur.

3.7.2 System-level I/O

There are a number of low-level functions provided by the operating system to
support more flexible and efficient I/O. However, you should avoid accessing a
given file using both the high-level language-dependent methods and the low-level
functions. The high-level functions use buffering that may interact with the low-level
functions in unpredictable ways.

S–2479–20 39

Cray XMT™ Programming Environment User’s Guide

Example 7. Calling UNIX I/O functions from parallel code

In serial code, the low-level UNIX functions behave as specified by the Posix
standard. In parallel code, all calls are executed atomically. In this case, you must
explicitly manage access to a particular file by a sequence of calls, to prevent races.
For example:

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

char line[80];
int len = sprintf(line, "this is iteration %d\n", i);
write(fd, line, len);

}

The previous code asserts that the loop is parallel. In general, it is not safe for the
compiler to parallelize a loop that contains procedure calls, especially calls to I/O
functions. The assertion tells the compiler that, in this case, it is safe to parallelize
the loop. The atomicity guarantee ensures that each line written to fd by this loop is
of the form that follows:

this is iteration i

Two lines are never mixed together, so the following never occurs:

this is this is iteration j

The actual sequence of lines is random because the different iterations are all
executed in parallel. However, for a sequence of calls such as the following:

char part1[80];
int len1 = sprintf(part1, "this is iteration ");

#pragma mta assert parallel
for (i = 0; i < n; i++)
{

char part2[80];
int len2 = sprintf(part2,"%d\n", i);
write(fd, part1, len1);
write(fd, part2, len2);

}

The output may look like the following, because only the individual calls to write
are atomic:

this is iteration this is iteration i
k
this is iteration j

40 S–2479–20

Developing an Application [3]

Example 8. Using synchronization with UNIX I/O functions

To correct this problem, you can either rewrite the code in the style of the first
example or add some sort of explicit synchronization, as shown in the following
example.

sync int flag$ = 1;
char part1[80];
int len1 = sprintf(part1, "this is iteration ");

#pragma mta assert parallel

for (i = 0; i < n; i++)
{

char part2[80];
int len2 = sprintf(part2, "%d\n", i);
int j = flag$; // lock
write(fd, part1, len1);
write(fd, part2, len2);
flag$ = j; // unlock

}

The previous code manipulates the sync variable flag$ to create an atomic section
that contains two calls to write. The actual value loaded from and stored to flag$
is not important because the code uses flag$ as a lock.

Example 9. Using synchronization with UNIX record-oriented I/O functions

For record-oriented I/O, you can use explicit synchronization to ensure the correct
behavior by using a combination of lseek together with a read or write
operation, such as in the following code example.

sync int flag$ = 1;
#pragma mta assert parallel

for (i = 0; i < n; i++)
{

Buf buffer;
int j = flag$; // lock
lseek(fd, i*sizeof(Buf), SEEK_SET);
read(fd, buffer, sizeof(Buf));
flag$ = j; // unlock
//Work with buffer

}

In the previous code, flag$ controls access to file fd, ensuring that the combination
of lseek and read are executed atomically. In this case, you use SEEK_SET
because SEEK_CUR is not useful in a parallel context.

The same considerations apply when using futures or more complex loops, perhaps
with the I/O hidden within a nest of procedure calls. Single calls always execute
atomically. However, when a sequence of calls pertaining to a single file must be
executed atomically, you must manage the sequence explicitly.

S–2479–20 41

Cray XMT™ Programming Environment User’s Guide

Internally, the UNIX library enforces locking for each file descriptor so that output
to multiple files can occur in parallel, but output to a single file occurs serially. For
example, in the following loop, every iteration refers to a different file descriptor, so
each call to write runs without interfering with other calls.

#pragma mta assert parallel

for (i = 0; i < n; i++)
{

char line[80];
int len = sprintf(line, "this is iteration %d\n", i);
write(fd[i], line, len);

}

If many parallel calls refer to the same file, locking forces a serial execution order.
For example, in the following code, it makes little sense to run the loop in parallel
because calls to write are serialized by the lock on the file descriptor fd.

#pragma mta assert parallel

for (i = 0; i < n; i++)
{

char line[80];
int len = sprintf(line, "this is iteration %d\n", i);
write(fd, line, len);

}

If the loop contains a significant computation, such as in the following example, you
may want to parallelize the loop.

#pragma mta assert parallel

for (i = 0; i < n; i++)
{

char line[80];
int j = expensive_function(i);
int len = sprintf(line, "f(%d) = %d\n" ,` i, j);
write(fd, line, len);

}

You cannot use the other low-level UNIX I/O functions to support concurrent access
to a single file.

42 S–2479–20

Developing an Application [3]

3.8 Porting Programs to the Cray XMT
Use the following information when you prepare to port C and C++ programs to
the Cray XMT platform.

64-bit issues

The following list describes important 64-bit issues.

Alignment On the Cray XMT, many data types are aligned
on 8-byte boundaries that other machines align on
2- or 4-byte boundaries. The Cray XMT uses the
following alignments:

• 1-byte boundaries: char, __int8

• 2-byte boundaries: __short16, __int16

• 4-byte boundaries: short, __short32,
float, __int32

• 8-byte boundaries: int, long, double, long
double, and all pointers

Bit shift and bit mask

Be careful when using bit shift or bit mask to extract
fields of a value. Problems can occur if the size of
the value type on the Cray XMT is different from the
size on the machine you are porting from.

Conversion of floating-point data types

In C and C++ programs, floating-point data types
are converted to doubles in all expressions. This
conversion is also made on the Cray XMT, except
for long doubles (16-bytes long) which are not
converted to doubles (8 bytes long).

Unions Unions sometimes contain assumptions about the
relative sizes of data types. For example, on some
machines, two int values use the same number
of bytes as a long. However, on the Cray XMT,
int and long values use the same number of
bytes. When in doubt, use the sizeof operator to
determine the size of data types.

Posix compliance

The following list describes issues related to IEEE Portable
Operating System Interface (Posix) compliance.

S–2479–20 43

Cray XMT™ Programming Environment User’s Guide

errno.h errno is thread-specific and not a global variable.
Files that use errno in the same way that it is
used by library calls such as perror must include
errno.h. This is required by ANSI and Posix, but
most systems do not comply with this convention.
On the Cray XMT, each thread has its own value of
errno, so you must include errno.h for correct
behavior.

time.h One goal of the Cray XMT is to support a
Posix-compliant application programming interface.
As a result, when you port non-Posix programs,
you may have to change the header files that
are included. For example, you may need to
include time.h instead of, or in addition to,
sys/time.h.

Executable formats

On the Cray XMT, executable programs are in ELF format instead
of a.out format. Therefore, you should replace a.out.h in your
programs with elf64.h. Another characteristic of the ELF format
is that uninitialized and initialized global variables are both mixed
in memory.

Miscellaneous issues

The following list describes important miscellaneous issues.

printf and $

Different implementations of printf have different
ways of interpreting $. The implementation of
printf on the Cray XMT does not have a special
interpretation.

C and C++ structure passing

Structures cannot be passed by value from C to C++.

mmap mmap is based on file data-block size. The
data-block size for a Cray XMT file is different
from that on BSD 4.4 UNIX. Although you can
use mmap, the mmap_fsblk system call provides
richer semantics.

44 S–2479–20

Developing an Application [3]

Cray XMT keywords

You can disable Cray XMT specific keywords (for
example, sync and future) by using the compiler
flag -no_mta_ext. When this flag is not used,
the C compiler for the Cray XMT reserves all
keywords—even standard C++ keywords such as
new, try, throw, and catch.

Preprocessor directives

The following directives are supported on the
Cray XMT:

#define

#elif

#else

#endif

#error

#ident

#if

#ifdef

#ifndef

#include

#line

#undef

#pragma

#pragma fenv_access

#pragma noalias

#pragma once

3.9 Debugging the Program
After completing your program, refer to the Cray XMT Debugger Reference Guide for
debugging information.

S–2479–20 45

Cray XMT™ Programming Environment User’s Guide

46 S–2479–20

Shared Memory Between Processes [4]

You can share memory between multiple programs by creating a shared memory
region using the mmap system call.

4.1 Mapping a Memory Region for Data Sharing
A shared memory region is identified by a file name. Before your applications can
use shared memory, you must create an empty readable, writable file and run mmap to
map a memory region to use for shared memory. When you run mmap, it allocates
the specified amount of physical memory and maps it into the caller's address space.
Other programs may share the same memory region by specifying the same file name.
A process may use the unmap system call to unmap the shared memory region.

Example 10. Mapping memory to share among multiple processes

The following example demonstrates how to create a file and map it to a memory
location.

#include <sys/types.h>
#include <sys/mman.h>
#include <stdio.h>
#include <fcntl.h>

#define SHARED_SIZE (256*1024*1024)

int main(int argc, char *argv[])
{

int fd = open(argv[1], O_RDWR|O_CREAT);
if (fd==-1) {
perror(argv[1]);
return 1;

}

caddr_t data = mmap(0, SHARED_SIZE, PROT_READ|PROT_WRITE,
MAP_SHARED|MAP_ANON, fd, 0);

if (data == MAP_FAILED) {
perror("mmap");
return 1;

}
unsigned *words = (unsigned*)data;
// words now points to a shared memory segment

}

S–2479–20 47

Cray XMT™ Programming Environment User’s Guide

In the previous example, a new readable and writable file is created by using the
open system call with the O_RDWR and O_CREAT flags. The fd file descriptor
is allocated and refers to the file. The fd is specified as an argument to the mmap
system call and identifies the memory region. SHARED_SIZE specifies the size of
the memory region to allocate and map into the caller's address space. PROT_READ
| PROT_WRITE specifies that the caller has both read and write permissions to the
memory. MAP_SHARED specifies that this is a shared memory region. MAP_ANON
specifies that the operating system should allocate physical memory that is not backed
up to a file. The mmap system call returns a pointer to the starting virtual address at
which the memory was mapped. The data in the memory region is initialized to zeros
and the memory state is initialized to full.

The physical memory associated with a shared memory region is normally
freed when the last process that was sharing the memory unmaps the memory
from its address space. The memory is unmapped either by an explicit call to
the unmap system call or automatically upon termination of the process. The
persist_rememd function causes the remember daemon to create a mapping to
the shared memory region. This preserves the shared memory region even after all
other user processes have unmapped the region. The data is preserved only until
the system reboots, at which time all data that was in the shared memory region is
lost. The persist_rememd function will remember the file name and size of the
memory region across reboots and will automatically reallocate the shared memory
region upon reboot; the data in the shared memory region is initialized to contain
zeros and the state is initialized to full. For more information, see the rememd(8)
man page.

Additionally, programs that use synchronization must add calls to the
mta_lock_thread and mta_set_thread runtime functions, as shown in the
following example.

mta_lock_thread(); //Set retry > 0
mta_set_thread_datablocked_retry(MAXINT); //Sets retries = INF

The mta_lock_thread function locks a thread to its stream so that the thread
does not block and release the stream when it takes a retry limit exception. The
mta_set_thread function sets the retry limit to the maximum value. The result
of calling these two functions is to cause a thread to spin if a sync-qualified or
future-qualified variable is not in the appropriate state for a given memory access,
until the thread gains access to the shared data. Spinning is the act of checking the
full-empty state repeatedly until the full-empty state changes to the state that the
memory operation needs to perform its operation.

This is necessary when synchronization operations are performed between multiple
separate processes. Threads that are blocked can only be unblocked by threads within
the same process because blocking and unblocking requires access to the runtime
internal data structures that are only accessible within the process to which the thread
belongs.

For more information, see the mmap(2) man page.

48 S–2479–20

Shared Memory Between Processes [4]

4.2 Persisting Shared Memory
The remember daemon rememd retains information about shared memory so that
programs preserve shared memory throughout the life cycle of the process. Shared
memory is allocated by calling mmap with the MMAP_ANON and MMAP_SHARED
flags and a valid file descriptor.

When the rememd daemon is first started, it reads in all the records from its maps
file and calls mmap to map the specified memory into its virtual address space. The
daemon does not repopulate the memory; it only allocates it and retains a reference.
rememd does not attempt to map the same memory segment twice. Once it is
mapped, rememd increments an internal reference count on subsequent remember
requests.

Calling rememd does not guarantee that the memory is reclaimed as free. If another
program is retaining a reference to the memory, it remains allocated. If multiple
requests are made to remember the same segment, rememd decrements its internal
counter for each forget request until the counter is 0 (zero), at which point, it calls
munmap.

By holding memory references, the rememd daemon allows the memory to outlast
one or more processes that might want to use the memory.

Programs that wish to make use of the functionality offered by rememd are
required to link with the libremem library. When a method is called, a remote
procedure call is made from rememd using UNIX domain sockets. The path to
use to communicate with the daemon is specified in the configuration file found
at /etc/rememd.conf or in the path specified by the environment variable
REMEMD_CONFIG_PATH.

S–2479–20 49

Cray XMT™ Programming Environment User’s Guide

Use the following functions to call rememd from a program.

persist_remember

Causes the rememd daemon to call mmap to map the shared memory
into its virtual address space and write a record of it to disk. If
rememd has already mapped this segment, its reference count is
incremented instead. This function returns 0 on success, and errno
on failure.

persist_mmap_size

Causes the rememd daemon to return the size of the shared memory
mapped into its virtual address space. This function returns the size,
in bytes, of the memory region on success, and 0 if the region is not
found. When an error occurs, errno is set and -1 is returned.

persist_forget

Causes the rememd daemon to decrement the specified segment's
reference count. If the reference count is zero, the rememd daemon
calls munmap to unmap the shared memory from its virtual address
space and remove the record of it from disk. This function returns 0
on success, and the errno on failure.

The following example shows how to persist memory in your program.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/file.h>
#include <remem/persistmem.h>

const char *remember_path = "/tmp/my_data_handle";

void run_computation(caddr_t addr, size_t len, int ret);

int main(int argc, char **argv) {
caddr_t mmap_addr = 0;
size_t mmap_len = 4096;
int fd = -1;

// find out if memory is mapped
ssize_t ret = persist_mmap_size(remember_path);
if (-1 == ret) { // -1 indicates there was an error
printf("Unexpected error from libremem: %s\n", strerror(errno));
exit(1);

} else if (0 == ret) { // 0 indicates the memory has not been mapped yet
fd = open(remember_path, O_CREAT | O_RDWR, 0600);
if (-1 == fd) {
printf("Unexpected error opening remember_path: %s\n", strerror(errno));
exit(1);

50 S–2479–20

Shared Memory Between Processes [4]

}
mmap_addr = mmap(0, mmap_len, PROT_WRITE, MAP_ANON | MAP_SHARED, fd, 0);
if (MAP_FAILED == mmap_addr) {
printf("Unexpected error calling mmap: %s\n", strerror(errno));
close(fd);
exit(1);

}
int remember_ret = persist_remember(remember_path, mmap_len);
if(0 != remember_ret) {
printf("Unexpected error calling persist_remember: %s\n", strerror(remember_ret));
close(fd);
munmap(mmap_addr, mmap_len);
exit(1);

}
} else { // if ret is not -1 or 0, then it's the length of the mapped segment
fd = open(remember_path, O_CREAT | O_RDWR, 0600);
if (-1 == fd) {
printf("Unexpected error opening remember_path: %s\n", strerror(errno));
exit(1);

}
mmap_len = ret;
mmap_addr = mmap(0, mmap_len, PROT_WRITE, MAP_ANON | MAP_SHARED, fd, 0);
if (MAP_FAILED == mmap_addr) {
printf("Unexpected error calling mmap: %s\n", strerror(errno));
close(fd);
exit(1);

}
}

run_computation(mmap_addr, mmap_len, ret);

int forget_ret = persist_forget(remember_path, false);
if(0 != forget_ret) {
printf("Unexpected error calling persist_remember: %s\n", strerror(forget_ret));

}
if(0 != munmap(mmap_addr, mmap_len)) {
printf("Unexpected error calling munmap: %s\n", strerror(errno));

}
if(0 != close(fd)) {
printf("Unexpected error calling close: %s\n", strerror(errno));

}

return 0;
}

S–2479–20 51

Cray XMT™ Programming Environment User’s Guide

52 S–2479–20

Developing LUC Applications [5]

This chapter describes how to use the LUC library in your application. The following
tasks are discussed:

• Constructing a client

• Constructing a server

• Making remote procedure calls

5.1 Programming Considerations for LUC Applications
• On the service (Linux) nodes, int is defined as 4 bytes. On the MTK compute

nodes int is defined as 8 bytes. To avoid potential issues, programmers should
use types that have explicit sizes, for example int64_t.

• There is a limit of 256 MB of data that can be transferred in a single call. This
applies to both input and output buffers.

• Linux and MTK have different native byte ordering, Linux is little endian (4
bytes) and MTK is big endian (8 bytes). LUC does not byte-swap or otherwise
interpret the application's input and output data so you must add byte-swapping
into your application that will perform byte swapping for data transfers between
the server and client applications.

• The number of threads that are assigned to an object during a call to
startService should be determined by the length of time function calls made
by that object are expected to take. Allocate enough threads so that an operation is
never stalled while waiting for a thread to become available.

• The Linux version of the library can only honor a requestedPid value other than
PTL_PID_ANY for the first endpoint in an application process. The exception is
that subsequent values of requestedPid may be honored if they are equal to the
requestedPid of the first endpoint for a process.

5.2 Creating and Using a LUC Client
Use the following procedure to create a client object.

S–2479–20 53

Cray XMT™ Programming Environment User’s Guide

Procedure 3. Creating and using a LUC client object

1. Include the header file <luc/luc_exported.h>. This header file includes
all of the definitions required for both the client and server endpoints, including
the LucEndpoint class definition, configuration variables, and external
function prototype definitions.

2. Declare a pointer to a LucEndpoint object. A LucEndpoint is the
abstract base class for both the Linux and MTK implementations of LUC
endpoints and defines the user interface as virtual functions. Internal to
the LUC implementation, there are two subclasses that are derived from
the LucEndpoint abstract class: LucPortalsEndpoint is the Linux
implementation, and LucFioEndpoint is the MTK implementation. These
derived classes implement the virtual functions for either Linux/Portals or
MTK/FAST I/O. From the user-application perspective, both derived classes
present an identical interface.

3. Allocate the object by calling luc_allocate_endpoint(). This function
takes a service type as an argument and allocates the correct LucEndpoint
derived class object. When compiling for a Linux node, the Linux version of
the object is returned. When compiling for an MTK node, the MTK version of
the object is returned.

4. Activate the client endpoint by calling startService. This causes LUC to
allocate a system wide unique endpoint identifier and to allocate the underlying
Fast I/O data streams. If an error is encountered while activating the service,
LUC returns an error code

5. Prepare the input and output buffers. The input buffer is provided as input to
the remote server function. The output buffer contains the output data from the
remote server function. The buffers may reside in nearby or global distributed
memory.

6. Invoke a remote function synchronously by calling remoteCallSync; provide
the server endpoint identifier, the service type, the function index, and the input
and output buffers and lengths. The outputDataLen parameter specifies the
size of the data buffer provided by the caller. On return from the function, this
parameter will contain the actual size of the output data, which is less than or
equal to the original value provided by the caller.

7. The service type and function index are application defined and can be any
integer value. As illustrated in the example that follows, the function indices
need not be consecutive. The service types describe the type of service provided
by the object.

8. Wait for the remote function to complete and then process the result. The
remoteCallSync() method will not return until the remote function has
completed or an error has occurred. The return value from remoteCallSync
is either a LUC error code or the return value from the remote function.

54 S–2479–20

Developing LUC Applications [5]

9. Stop the service by calling stopService. This releases any nearby memory
that was allocated by the endpoint, closes all previously opened Fast I/O data
streams, and deactivates the object.

10. Delete the object. This invokes the virtual destructor for the derived object. If
an endpoint object is deleted before calling stopService, the destructor
automatically stops the service and deactivates the object.

Example 11. LUC client code example

user_application_defs.h // sample header

// function index definitions
// note that the values do not have to be contiguous
#define FUNC_QUERY1 1
#define FUNC_QUERY3 3
#define FUNC_QUERY8 8

// service type definitions
#define QUERY_MANAGER 1
#define QUERY_ENGINE 2
#define UPDATE_MANAGER 3
#define UPDATE_ENGINE 4

user_application.cpp //sample client code
#include <luc/luc_exported.h>
#include <user_app_definitions.h>

const int INBUF_SIZE = (1 * 1024 * 1024); // 1 MB input data
const int OUTBUF_SIZE = (2 * 1024 * 1024); // 2 MB output data

void client(luc_endpoint_id_t serverID)
{

LucEndpoint *clientEndpoint;
luc_error_t result;
char *outbuf = malloc(OUTBUF_SIZE);
char *inbuf = malloc(INBUF_SIZE);
size_t outDataLen = OUTBUF_SIZE;

clientEndpoint = luc_allocate_endpoint(LUC_CLIENT_ONLY);
result = clientEndpoint->startService();
if (result != LUC_ERR_OK)
{
// process LUC error
delete clientEndpoint;
return;

}

S–2479–20 55

Cray XMT™ Programming Environment User’s Guide

result = clientEndpoint->remoteCallSync(serverID,
QUERY_ENGINE, FUNC_QUERY1,
inbuf, INBUF_SIZE, outbuf, &outDatLen);

if(result == LUC_ERR_OK)
// The RPC was successful.
// outDataLen contains the size of data returned in outbuf.
else if result < LUC_ERR_MAX)
{

// Result contains a LUC error code.
}
else
{

// Result is the return value from remote function
}

clientEndpoint->stopService();
delete clientEndpoint;

}

5.3 Creating and Using a LUC Server
The server allocates and activates an endpoint object in a manner similar to that of
the client. Object deactivation and deletion are also similar. The primary difference
is the requirement for the server to register its remote functions. Use the following
steps to create a server object.

Procedure 4. Creating and using a LUC server object

1. Include the header file <luc/luc_exported.h>, as well as the application
defined header file.

2. Declare a pointer to a LucEndpoint object.

3. Allocate the object by calling luc_allocate_endpoint.

4. Call registerRemoteCall to register each function that will be serviced by
this endpoint. The first parameter is the service type, the second parameter is the
function index, and the third parameter is the address of the function.

5. Activate the server endpoint by calling startService. The parameter is the
number of LUC worker threads to start. The default is 1. The MTK version of
the library ignores this value and creates one worker thread for each RPC. This
method call causes LUC to allocate a number of nearby memory buffers for
incoming requests and pre-post these receive buffers with the Fast I/O driver. The
worker threads service the client requests as they come in.

6. Wait for a request to halt the service. There are many ways to accomplish this.
In the following MTK example, the main application server thread then waits to
be told to halt the service — by doing a synchronized read on an empty memory
location. When the request is received, the application stops the service and
deletes the endpoint. The application coordinates the notification to the server to

56 S–2479–20

Developing LUC Applications [5]

shutdown the service. For instance, if a serious application internal error occurs
or an application shutdown request is received, the server must be told to halt
by the application.

Example 12. LUC Server code example

#include <luc/luc_exported.h>
#include <user_app_definitions.h> (see below, step 6)

void server()
{

LucEndpoint *svrEndpoint;
luc_error_t err;

svrEndpoint = luc_allocate_endpoint(LUC_SERVER_ONLY);

err = svrEndpoint->registerRemoteCall(QUERY_ENGINE,
FUNC_QUERY1, query1);

if (err != LUC_ERR_OK)
{
// Process LUC error code
delete svrEndpoint;
return;

}
// Register more remote calls as above

err = svrEndpoint->startService();
if (err != LUC_ERR_OK)
{
// process LUC error code
delete svrEndpoint;
return;

}

readfe(&haltService); // MTK full-empty synchronization
svrEndpoint->stopService();
delete svrEndpoint;
return;

}

5.4 Communication Between LUC Objects
The following example shows how the application uses the client and server objects
to communicate.

Example 13. Allocating and using LucEndpoint objects to communicate

// Application-specific definitions
#define QUERY_ENGINE_ALIVE_FCTN_ID 1
#define QUERY_ENGINE_DATA_BOUNCE_FCTN_ID 2

//
// This asynchronous completion handler conforms to LUC_Completion_Handler
//

void ClientCompletionHandler(luc_endpoint_id_t destAddr,

S–2479–20 57

Cray XMT™ Programming Environment User’s Guide

luc_service_type_t serviceType,
int serviceFunctionIndex,
void * userHandle,
luc_error_t remoteLucError)

{
// In the example given, 'userHandle' will equal 0xf00
return;

}

void LucClientOnlyUsageModel(void)
{

// First create an endpoint. This is used to make the remote calls.
LucEndpoint *client = luc_allocate_endpoint(LUC_CLIENT_ONLY);

// In order to issue the remote calls, we need to know where to send them.
// The library uses the abstract 64 bit 'luc_endpoint_id_t' value, so the
// client application has to get this value from the server by some other
// means.

luc_endpoint_id_t serverEndpointId;

// This example assumes that 'serverEndpointId' is filled in by some
// other means; environment variable, command line option, etc.

// Enable the local endpoint. This will create worker threads and allocate
// resources.
luc_error_t lucError = client->startService();
if (LUC_ERR_OK != lucError)
{

// error case
delete client;
return;

}

// Once the client object has been started successfully, the application
// can use it to make synchronous and asynchronous calls.

// A synchronous (blocking) call.
// The application is responsible for setting serviceType and
// serviceFunctionIndex to something meaningful (ie. something
// registered by the object at 'serverEndpointId').

luc_service_type_t serviceType = LUC_ST_QueryEngine;
int serviceFunctionIndex = QUERY_ENGINE_ALIVE_FCTN_ID;

// This particular remote call passes no data.
lucError = client->remoteCallSync(serverEndpointId,

serviceType,
serviceFunctionIndex,
NULL, // void *inputData,
0, // size_t inputDataLen,
NULL, // void *outputData,
0); // size_t *outputDataLen);

if(lucError == LUC_ERR_OK)
//RPC was successful

58 S–2479–20

Developing LUC Applications [5]

else if (lucError < LUC_ERR_MAX)
// LUC library generated error code
else
// user remote function return value

//
// An asynchronous (non-blocking) call.
// Return data is not supported for asynchronous callers.
//
void *myMeaningfulHandle = 0xf00;

lucError = client->remoteCall(serverEndpointId,
serviceType,
serviceFunctionIndex,
NULL, // void *inputData,
0, // size_t inputDataLen,
myMeaningfulHandle,
ClientCompletionHandler);

// The application can do other work while the remote call is in progress.
// ClientCompletionHandler will fire in some other context at a later time.

// When the application is finished with the endpoint object, it should
// be stopped.
lucError = client->stopService();

// and destroyed.
delete client;

return;
}
// ServerQueryEngineAliveFunction:
// implements {LUC_ST_QueryEngine, QUERY_ENGINE_ALIVE_FCTN_ID}
// conforms to LUC_RPC_Function_InOut prototype
//
luc_error_t ServerQueryEngineAliveFunction(void * inData,

u_int64_t inDataLen,
void ** outData,
u_int64_t * outDataLen,
void ** completionArg,
LUC_Mem_Avail_Completion * completionFctn,
luc_endpoint_id_t callerEndpoint)

{
// This function is a simple case. It does not accept or return any data.

if (*outData)
*outData = NULL;

if (*outDataLen)
*outDataLen = 0;

// Since this function is not returning data, it does not need to register
// a memory-available (or dereference) handler.
*completionFctn = NULL;

return LUC_ERR_OK; // successful return code
}

S–2479–20 59

Cray XMT™ Programming Environment User’s Guide

void LucServerOnlyUsageModel(void)
{

// First create a communication endpoint. This is used to accept calls from
// remote clients.
LucEndpoint *server = luc_allocate_endpoint(LUC_SERVER_ONLY);

// These values correspond to values used by clients of this service.
luc_service_type_t serviceType = LUC_ST_QueryEngine;
int serviceFunctionIndex = QUERY_ENGINE_ALIVE_FCTN_ID;

// The registration routine simply records the desired function in a
// table so that future client requests know which function to fire.
lucError = server->registerRemoteCall(serviceType,

serviceFunctionIndex,
ServerQueryEngineAliveFunction);

// The LucEndpoint object must be started before it can accept remote
// function call requests.

// This example creates two server worker threads; one to do main processing
// and one to execute the ServerQueryEngineAliveFunction when it's called.
uint_t totalThreadCount = 2;

// This server doesn't need a specific Portals PID value.
uint_t requestedPid = PTL_PID_ANY;

lucError = server->startService(totalThreadCount,
requestedPid);

// If the server wants to report its endpoint id, via printf or socket-based
// communication to some other application, it can get its endpoint ID
// with the following function.
luc_endpoint_id_t myEndpointId = server->getMyEndpointId();

// A proper service can go do other work here, wait for a termination
// signal, or exit this thread (as long as the server object isn't
// destroyed).

// The endpoint object will accept and remote function requests
// until stopped at some later time with stopService.
lucError = server->stopService();

delete server;

return;
}

5.5 LUC Client/Server Example
This example implements a server-side sum of values provided by the client, with
the sum returned to the client. The program should be run once using the following
command to start the server:

% exluc -s

60 S–2479–20

Developing LUC Applications [5]

Then the client can be run multiple times using the following command:

% exluc -c id

Where id is the server endpoint ID printed to the command line when the server
starts.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <netinet/in.h> // htonl/ntohl byte swapping
#include <luc/luc_exported.h>

// The service type is an application-specific major service id.
// It identifies the general type of service requested by the client.
// One server may implement one or more service types.
// For this example, one service type is defined.

int svc_type = 0;

// The function index is an application-specific minor service id.
// It identifies a specific server function out of the functions defined
// by the server within one of its supported service types.
// Each service type may implement one or more functions.
// For this example, one function within the svc_type service type is defined.
int reduce_func_idx = 0;

#define NREDUCE 10 // number of values to be summed

// Opteron uses little-endian byte order and XMT uses big-endian byte order.
// When an Opteron client uses an XMT server, byte swapping is required
// to convert the data between the two systems.
// This example uses network byte order (big-endian) for all LUC data transfers,
// and converts to host byte order before using LUC data.

#if defined(__MTA__) || defined(NO_BYTE_SWAP)

// Host byte order is the same as network byte order on XMT,
// so no conversion is necssary.

#define NetworkToHost(b,l)
#define HostToNetwork(b,l)
#else

// Byte swap to convert between host and network byte ordering.

void ByteSwap(void *buf, size_t len)
{

char *c = (char *) buf;
int i;
for (i=0;i < len;i+=2)
{
char t = c[0];
c[0] = c[1];
c[1] = t;

}
}

S–2479–20 61

Cray XMT™ Programming Environment User’s Guide

#define NetworkToHost(b,l) ByteSwap((b),(l))
#define HostToNetwork(b,l) ByteSwap((b),(l))

#endif

// The LUC client runs on the XMT login node, and acts as
// the application user interface.
// Return value is 0 for success, 1 for error.
int client(luc_endpoint_id_t serverID)
{

double input[NREDUCE]; // input data
double output; // result
size_t in_size = sizeof(double) * NREDUCE; // input size in bytes
size_t out_size = sizeof(double); // output size in bytes
luc_error_t err; // result code from LUC calls

// Initialize the input data.
for (int i=0;i < NREDUCE;i++) input[i] = i;

// Create the LUC client endpoint.
LucEndpoint *clientEndpoint = luc_allocate_endpoint(LUC_CLIENT_ONLY);

// Initialize the endpoint (connect to the server).
err = clientEndpoint->startService();
if (err != LUC_ERR_OK)
{
fprintf(stderr,"client: LUC startService error %d\n",err);
delete clientEndpoint; // free memory
return 1; // error

}

HostToNetwork(input,in_size); // convert data to network byte order

// Send the request to the server and wait for a response.
// In this example, the array of values to be summed is sent,
// and the sum is returned as the result.
err = clientEndpoint->remoteCallSync(serverID, svc_type, reduce_func_idx,

input, in_size, &output, &out_size);

if (err != LUC_ERR_OK)
{
// err contains a LUC error code.
fprintf(stderr,"client: LUC remoteCallSync error %d\n",err);

}
else

{
// out_size contains the size of data returned in outbuf
NetworkToHost(&output,out_size); // convert data to host byte order
printf("The sum of the %d values is %lf\n",NREDUCE,output);

}

clientEndpoint->stopService(); // disconnect from the server
delete clientEndpoint; // free memory

return (err != LUC_ERR_OK) ? 1 : 0;
}

62 S–2479–20

Developing LUC Applications [5]

// Reduction service.
// This routine is called by the LUC server library
// when a client request of type
// (svc_type,reduce_func_idx) is received.
luc_error_t reduce(void *inPtr, u_int64_t inDataLen,

void **outPtr, u_int64_t *outDataLen,
void **completionArg, LUC_Mem_Avail_Completion *completionFctn,
luc_endpoint_id_t callerEndpoint)

{
double *input = (double *) inPtr; // input data
double *output = NULL;
int n = inDataLen / sizeof(double); // number of values to sum

// Default (error) return will be no output data
*outPtr = NULL;
*completionArg = NULL;
*completionFctn = NULL;

// Allocate space for the return data
output = (double *)malloc(sizeof(double));
if (NULL == output)
{
return LUC_ERR_RESOURCE_FAILURE; // or use a custom code

}

NetworkToHost(input,inDataLen); // convert data to host byte order

// Perform the reduction.
double sum = 0;
for (int i=0;i < n;i++) sum += input[i];

*output = sum; // set result value
HostToNetwork(output,sizeof(double)); // convert result to network byte order
*outDataLen = sizeof(double); // set result size
*outPtr = (void *)output; // set result / output pointer

// Tell LUC to call 'free' when it is done without the output data.
// Pass the 'output' pointer to free()
*completionArg = output;
*completionFctn = free;

return LUC_ERR_OK;

}

// The LUC server can run on the XMT login node or in the compute partition.
// Return value is 0 for success, 1 for error.

int server(int threadCount)
{

luc_error_t err; // result code from LUC calls

// Create the LUC server endpoint.
LucEndpoint *svrEndpoint = luc_allocate_endpoint(LUC_SERVER_ONLY);

// Register routines which implement the services.

S–2479–20 63

Cray XMT™ Programming Environment User’s Guide

err = svrEndpoint->registerRemoteCall(svc_type, reduce_func_idx, reduce);
if (err != LUC_ERR_OK)
{
fprintf(stderr,"client: LUC registerRemoteCall error %d\n",err);
delete svrEndpoint;
return 1; // error

}

// Begin offering services (begin listening for requests).
err = svrEndpoint->startService(threadCount);
if (err != LUC_ERR_OK)
{
fprintf(stderr,"client: LUC startService error %d\n",err);
delete svrEndpoint;
return 1; // error

}

// Print out the endpoint id for the server. This value is a required
// input for the client.
fprintf(stderr,"server: Server ready.

My endpoint id is %ld\n",svrEndpoint->getMyEndpointId());

// At this point, the main server thread waits while requests
// to the server are handled by other threads.
// A "terminate server" client request can be defined by the
// application to handle server shutdown, or else the server can
// simply be killed when the server is no longer needed.
// For this example, the server waits until it is killed.
getc(stdin);

// The server has been requested to shut down.
svrEndpoint->stopService(); // stop listening for requests
delete svrEndpoint; // free memory
return 0;

}

// The main program either calls the server routine or the client
// routine. The server (-s) should be started first, then the
// client (-c id) can be run multiple times.
// Shut down by killing the server process.
int main(int argc, char **argv)
{

luc_endpoint_id_t id;
int i;

while ((i = getopt(argc,argv,"c:s")) != EOF)
{
switch (i)
{

case 'c':
id = strtoul(optarg, NULL, 0);
return client(id); // make a request to server with this endpoint id

case 's':
return server(1); // start server with 1 request-processing thread

}
}

64 S–2479–20

Developing LUC Applications [5]

// If no valid options were given, print the program usage message.
fprintf(stderr,"Usage: exluc -c id | -s\n");
fprintf(stderr,"-c id Run as a client with the given endpoint id.\n");
fprintf(stderr,"-s Run as a server, printing the endpoint id.\n");
return 1;

}

5.6 Fast I/O Memory Usage
The MTK Fast I/O Library performs all data transfer operations through nearby
memory. Nearby memory is memory on the same node as the Threadstorm processor
where the LUC endpoint was started. The library transfers user data into and out of
nearby memory buffers automatically. Use configuration variables to control the
amount of nearby memory used by the library.

The MTK Fast I/O Library uses one or two regions of nearby memory for each local
endpoint as I/O buffers. The library requires one region for all small allocations and
allows for an optional region for large allocations. The small region is used for core
RPC data structures that are sent over the high speed network. Small data transfer
buffers may use the small region as well. The optional large memory region is used
for large transfer requests and many concurrent smaller requests. The large region
may be sized to support one very large RPC request or several smaller requests.

To control the size of the small memory region use the configuration variable
LUC_CONFIG_MAX_SMALL_NEARMEM_SIZE. Legal values range from 1 MB
(1,048,576) to 256 MB (268,435,456), inclusive, in power-of-two increments. The
size of the largest allowable request on this memory region may be specified with the
LUC_CONFIG_MAX_SMALL_MEM_REQUEST variable. Legal values range from
64 KB (65,536) to one half of the current small memory region size, inclusive, in
power-of-two increments.

To control the size of the large memory region use the configuration variable
LUC_CONFIG_MAX_LARGE_NEARMEM_SIZE. Legal values range from 1 MB
(1,048,576) to 2 GB (2,147,483,648), inclusive, in power-of-two increments. While
the library allows for a very large nearby memory region, the system may not be
configured with enough nearby memory to support a maximum size nearby memory
region. The size of the largest allowable request on this memory region may be
specified with the LUC_CONFIG_MAX_LARGE_MEM_REQUEST variable. Legal
values range from 1 MB (1,048,576) to the current large memory region size or 256
MB, whichever is less. The maximum request size must be an integral power-of-two.

To disable the large memory region specify a requested size of zero.

S–2479–20 65

Cray XMT™ Programming Environment User’s Guide

Initialize the memory region variables from the global variables when creating
the LUC Endpoint object. Changes to the global variables are propagated to new
endpoint objects, not objects that already exist. An endpoint's memory configuration
variables may be changed by using the LucEndpoint::setConfigValue()
method until the endpoint is started. Once the endpoint starts, the size of the
nearby memory regions and the maximum transfer sizes are locked in and
may not be modified until you stop the endpoint. Attempts to change these
configuration variables by using LucEndpoint::setConfigValue() fail
with LUC_ERR_INVALID_STATE. If you try to change the global configuration
variables, the changes do not propagate to started endpoints. Attempts to set invalid
memory sizes or maximum request sizes fail with LUC_ERR_BAD_PARAMETER.

66 S–2479–20

Managing Lustre I/O with the Snapshot
Library [6]

6.1 About the Snapshot Library
The Cray XMT snapshot library provides a high speed bulk data transfer facility that
moves data between memory regions within an MTK application and files hosted on
the XMT Linux service partition. The primary use of the snapshot library is to load
and save large data sets that are being stored on a Lustre file system. For example,
an application might use the snapshot library to load a large data set at the beginning
of a run, process the data, then use the snapshot library to save the processed data in
a file at the end of a run. An application might also use the snapshot library to save
intermediate copies of the processed data during the course of a run.

The snapshot library uses the Fast IO (FIO) mechanism on the compute partition to
transfer data, in parallel, to and from files on the service partition using instances
of a helper program called fsworker that provide file system access on login
nodes. Multiple instances of fsworker can be used in parallel to provide higher
throughput. This figure shows the most common data communication paths between
an application using the snapshot library and a file on the compute partition. The data
moves, in four distinct stages, between a global memory buffer in the application and
a file on a Lustre file system hosted by the service partition.

Figure 1. Snapshot Library Data Paths

 Global
Memory

Linux Service Partition Threadstorm Compute Nodes

Snapshot Client

 Compute
 Node

FIO

Lustre
File System

FC Portals

OSS

OSS

OSS

FSW

FSW

FSW

Application
Data Buffer

 Compute
 Node

 Compute
 Node

S–2479–20 67

Cray XMT™ Programming Environment User’s Guide

The easiest way to understand this is to imagine data going to a file from the
application. In this case, the data is copied by each compute node into the FIO
transport and sent to its corresponding fsworker on a login node in the Linux
service partition. Each fsworker then uses Linux system calls to write data into
the Lustre file, which results in the data moving across the Portals transport from the
login node to one or more Lustre OSS nodes. From there, the data moves through
Fibre Channel (FC) to the actual storage device.

Moving data from a file to the application simply reverses the order of the stages and
the direction of the data flow through each stage, ultimately resulting in data being
copied from compute nodes into the application's global memory buffer.

6.2 The Snapshot Library Interface
Note: Effective with Cray XMT version 2.0 the snap_* functions are replaced by
dslr_* equivalents. The snap_* functions are deprecated and will be removed
in a future release.

The snapshot library interface consists of these functions:

dslr_snapshot

Copies data in parallel from a buffer in the application to a file on
the service partition.

dslr_restore

Copies data in parallel from a file on the service partition to a buffer
in the application.

dslr_pread Allows the application to specify an offset into a file from which to
read data. Does not move data in parallel.

dslr_pwrite

Allows the application to specify an offset into a file at which to
write data. Does not move data in parallel.

dslr_stat Allows the application to obtain file status from a file, similar to the
stat function.

dslr_truncate

Truncates a file to a specified length.

For more information on any of these functions, see the associated man page.

68 S–2479–20

Managing Lustre I/O with the Snapshot Library [6]

For large data transfers starting at the beginning of a file, the best functions to use
are dslr_snapshot and dslr_restore, because they are able to transfer
data in parallel to achieve high throughput. To store data, the application calls
dslr_snapshot, specifying the buffer to be copied, the length of the data, and the
name of the file receiving the data. To read back (restore) data from the file into
application memory, the application calls dslr_restore, specifying the buffer
receiving the data, the length of the data to read, and the name of the file providing
the data. Because this name will be used by all instances of fsworker to open and
read or write the file the file name should be an absolute path name to the location
of the file on the service partition. A relative path name could be ambiguous or
meaningless to a particular fsworker.

A typical application might use dslr_restore and dslr_snapshot in the
following manner:

1. Start up and allocate a large buffer to hold a data set.

2. Call dslr_restore specifying the name of the file providing the data, the
buffer allocated in step 1, and the length of that buffer.

3. Process and change the data set.

4. Call dslr_snapshot to store the data set back to the file (or to a new modified
data file).

5. If necessary repeat 3 and 4, using the snapshots as a way to preserve forward
progress.

The dslr_pwrite and dslr_pread functions are provided for transferring
smaller amounts of data between a buffer and arbitrary locations in a file. To write
data to a file, the application calls dslr_pwrite specifying the endpoint-ID of a
single fsworker, the name of the file, the offset of the data in the file, a pointer to a
buffer from which to take the data, and the length of the data to be written. To read
data from a file, the application calls dslr_pread specifying the endpoint-ID of
a single fsworker, the name of the file, the offset of the data in the file, a pointer
to a buffer into which to put the data, and the length of the data to be read. Again,
absolute path names for files are strongly recommended.

S–2479–20 69

Cray XMT™ Programming Environment User’s Guide

A typical application might use dslr_pread and dslr_pwrite in the following
manner:

1. Start up and allocate a small buffer to be initialized from a file.

2. Call dslr_pread specifying the name of the file providing the data, the offset
of the data in the file, a pointer to the buffer allocated in 1, and the length of the
data.

3. Process and change the data.

4. Call dslr_pwrite to store the data back to the file (or to a new modified data
file).

5. Repeat 3 and 4 as often needed, using snapshots as a way to preserve forward
progress in case of failure or for the sake of sharing the system.

It is possible to mix uses of dslr_snapshot/dslr_restore and uses of
dslr_pwrite/dslr_pread as needed in an application.

!
Caution: The snapshot library functions can only be used one at a time; they
cannot be used in parallel. Any attempt to use snapshot library functions in parallel
will eventually result in corruption of the snapshot data and possible uncontrolled
failure of the snapshot library or of one or more instances of fsworker.

6.3 Maintaining File System and I/O Parallelism
The snapshot library is intended primarily for saving and retrieving large data sets on
platforms with a Lustre file system. Lustre supports parallel access and is highly
tunable, allowing users and administrators to set many options, including file stripe
widths and block sizes. With proper provisioning and tuning, Lustre can sustain many
gigabytes per second of throughput. Because the performance of the underlying
Lustre configuration bounds the throughput of most snapshot library operations,
careful Lustre tuning is essential for optimal snapshot performance.

A detailed discussion of Lustre provisioning, configuration and tuning are beyond
the scope of this document. One rule of thumb, however, makes a good starting
point when using dslr_snapshot and dslr_restore in single-file mode with
multiple fsworkers. Setting the block size to 32 megabytes and a file stripe width
of all object storage server (OSS) nodes (-1) generally yields good results. Typically,
for multi-file mode the directory is striped to a single object storage target (OST).
The lfs command allows a user to set these parameters on a per-directory basis.
See the setstripe/getstripe documentation in the lfs man page for more
information. Contact your system administrator for more detailed information on
tuning Lustre to the requirements of a particular application.

70 S–2479–20

Managing Lustre I/O with the Snapshot Library [6]

If the underlying file system is naturally serial (NFS, for example) its performance
is constrained by the serial performance of the file system and any contention
introduced by trying to use the file system in parallel. Again, the throughput of
the snapshot library is bounded by the file system performance, so when using a
serial file system a single fsworker provides the best throughput for the snapshot
library. Note that fsworkers are not resilient. If a transaction fails, all involved
fsworkers must be terminated and restarted. If the file system is full a snapshot
function may return success even though the file was not written, or was only
partially written.

6.4 Examples
Example 14. Using dslr_snapshot and dslr_restore to save and restore
data in a file.

Note that this example waits for the call to dslr_snapshot to complete before
calling dslr_restore. While this is logical in this example, it is also crucial for
correct operation. (See the caution about using snapshot library functions in parallel
above.)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <snapshot/client.h>
const size_t DEFAULT_BUFFER_SIZE = 1024 * 1024 * 1024;
const char DEFAULT_FILENAME[] = "/mnt/lustre/myusername/snapshot.data";
int main(int argc, char *argv[])
{

void *testBuffer = NULL;
int64_t err;
int64_t snapError = 0;

// Allocate a large buffer to be transferred.
if (NULL == (testBuffer = malloc(DEFAULT_BUFFER_SIZE)))
{
fprintf(stderr,"Failed to malloc %d byte snapshot buffer.\n",
DEFAULT_BUFFER_SIZE);
return -1;

}
memset(testBuffer, 'a', DEFAULT_BUFFER_SIZE);
// Snapshot the testBuffer to disk
// All file system workers must be able to access the specified path.
err = dslr_snapshot ((char *)DEFAULT_FILENAME, testBuffer,
DEFAULT_BUFFER_SIZE, &snapError);
if (dslr_ERR_OK != err)
{
fprintf(stderr,"Failed to snapshot the dataset. Error %d.\n",err);free(testBuffer);
return -1;
}

S–2479–20 71

Cray XMT™ Programming Environment User’s Guide

memset(testBuffer, 0, DEFAULT_BUFFER_SIZE);
// Restore a snapshot dataset from disk back into memory.
err = dslr_restore ((char *)DEFAULT_FILENAME, testBuffer,
DEFAULT_BUFFER_SIZE, &snapError);
if (dslr_ERR_OK != err)
{
fprintf(stderr,"Failed to restore the dataset. Error %d.\n",err);
free(testBuffer);
return -1;
}

// At this point, the testBuffer should be full of 'a'
free(testBuffer);
return 0;

}

Example 15. Using dslr_pwrite to write data to a file and dslr_pread to read
back the data

Note that the calls to dslr_pwrite and dslr_pread accept the value
dslr_ANY_SW to specify the endpoint ID of the fsworker, allowing libsnapshot
to use any registered endpoint. Therefore, the fsworkerID is automatically set to
dslr_ANY_SW rather than requiring the user to enter the endpoint either manually
or by the environment.

Also note that, while the function call interface appears to invite parallel use of
dslr_pwrite and dslr_pread, the functions cannot be used in parallel.
Concurrent calls to these or any other snapshot library functions results in the
problems described in the caution statement above. Regardless of how the endpoint is
set, only one thread of one instance of fsworker will be applied to any given call
to dslr_pwrite and dslr_pread.

72 S–2479–20

Managing Lustre I/O with the Snapshot Library [6]

While these functions are useful for transferring small quantities of data to or from
arbitrary locations in files but, because they are unable to benefit from parallelism,
they are not useful for bulk data transfer. You should not expect throughput greater
than 100MB/second when using dslr_pwrite or dslr_pread.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <snapshot/client.h>
const size_t DEFAULT_BUFFER_SIZE = 1024 * 1024; // Relatively short buffer
const char DEFAULT_FILENAME[] = "/mnt/lustre/myusername/snapshot.data";
int main(int argc, char *argv[])

{
void *testBuffer = NULL;]
int64_t err;
int64_t snapError = 0;
uint64_t fsworkerID = dslr_ANY_SW;
off_t fileOffset = 0;
int rc = 0;
// Allocate a small buffer to be transferred.
if (NULL == (testBuffer = malloc(DEFAULT_BUFFER_SIZE)))
{
fprintf(stderr,"Failed to malloc %d byte snapshot buffer.\n",
DEFAULT_BUFFER_SIZE);
return -1;
}

memset(testBuffer, 'a', DEFAULT_BUFFER_SIZE);
// pwrite the testBuffer to disk
fileOffset = 0;
err = dslr_pwrite((char *)DEFAULT_FILENAME,

fsworkerID,
testBuffer, DEFAULT_BUFFER_SIZE,
fileOffset,&snapError);

if (dslr_ERR_OK != err)
{
fprintf(stderr,"Failed to pwrite the dataset. Error %d.\n",err);
free(testBuffer);
return -1;
}

memset(testBuffer, 0, DEFAULT_BUFFER_SIZE);
// pread the testBuffer from disk.
err = dslr_pread ((char *)DEFAULT_FILENAME,

fsworkerID,
testBuffer, DEFAULT_BUFFER_SIZE,
fileOffset, &snapError);

if (dslr_ERR_OK != err)
{
fprintf(stderr,"Failed to pread the dataset. Error %d.\n",err);
free(testBuffer);
return -1;
}

// At this point, the testBuffer should be full of 'a'
free(testBuffer);
return 0;

}

S–2479–20 73

Cray XMT™ Programming Environment User’s Guide

6.5 Managing File I/O on File Systems Other Than Lustre
Using the snapshot library to read and write files on a file system, such as NFS
that does not support high performance parallel I/O can result in overloading the
underlying file system with data requests and transfers. Cray does not support this use
of the snapshot library on any system with more than a single login node, as even file
transfers of a few hundred MB can cause unacceptable network congestions.

The standard operating system I/O functions OPEN(2), close(2), read(2) and
write(2) are available for reading and writing files on NFS file systems that are
cross-mounted to the compute partition. Files larger than 1 GB should always be read
or written using the dslr* functions to a high performance parallel file system,
such as Lustre.

74 S–2479–20

Compiler Overview [7]

This chapter provides an overview of the Cray XMT compilers. You need to
understand these concepts before you compile your program.

The Cray XMT platform includes Cray XMT compilers for C and C++ applications.
These compilers optimize programs to improve performance. These features include:

Debugging support

The Cray XMT compilers support multiple levels of debugging.
Each level receives some degree of optimization, but the level of
optimization decreases as the level of debugging support increases.
For example, the compilation process suppresses parallelization of
loops at the highest debugging level.

Optimization

The Cray XMT compilers optimize parallelization, loop
restructuring, and software pipelining, in addition to the classical
scalar optimizations.

Inlining The Cray XMT compilers support automatic and
programmer-directed inlining within source files and
among multiple source files. In addition, the compilers support
inlining from separately compiled libraries. For a discussion of
inlining, see Inlining Functions on page 84.

Incremental recompiling and relinking

The Cray XMT compiler detects unmodified functions and avoids
recompiling them, even when other functions in the same file have
been changed. The Cray XMT compiler uses incremental linking
to avoid relinking an entire executable when some, but not all, of
the functions have been modified.

Each compiler is organized as a language-dependent front end. Both compilers use a
common set of backend subprograms for translating, optimizing, and linking. The
Cray XMT C compiler supports ANSI X3.159-1989 standard C. The Cray XMT
C++ compiler supports the draft ISO/IEC 14882 C++ standard. Because of the
commonality between the Cray XMT C and C++ compilers, they are referred to
collectively as the compiler in the remainder of this chapter.

S–2479–20 75

Cray XMT™ Programming Environment User’s Guide

7.1 The Compilation Process
There are two major phases of building a program executable from a number of
source files.

Compilation

The compiler creates object files by invoking subprograms that
translate the source files and optimize functions in the program.
The compiler starts by invoking the front end. When the front end
finishes, the compiler invokes the translator, which is the subprogram
that optimizes and parallelizes code, and generates object files.

Linking The compiler creates an executable program by invoking
subprograms that create links between object files created during
the compilation process and any associated libraries. Links can
be created between two or more object files, in any combination,
including the startup file, any specified object files or compile
results, and user-created or standard libraries.

For a traditional UNIX compiler, you use the cc -c file1.c command to
translate the source file file1.c into an object file, which, by default, is called
file1.o. You then link a set of object files using the cc file1.o file2.o
command. This creates an executable called a.out. Unfortunately, this approach
to compilation decreases the efficiency of the resultant executable program because
each file of functions is first compiled independently and then linked together in a
separate process. Using this approach, information that the compiler uses to optimize
functions during the first compilation is not available during the linking phase
when the object files are combined to form an executable. As a result, the compiler
cannot perform some optimizations between object files that might seem simple to a
programmer.

In response to this problem, the Cray XMT compiler supports a compilation mode
that enables information to be captured from individual modules and used when
compiling multi-module programs. In this mode, each function is compiled in the
context of a complete program, and the compiler may use facts about that context to
optimize the translation of the function. The compiler retains this information so that
when you modify your program's functions in the future, the compiler only needs to
recompile the modified functions, resulting in a shorter recompile time. This mode is
called whole-program compilation. The Cray XMT compiler also supports a mode
for the traditional UNIX style of compiling called separate-module compilation.

76 S–2479–20

Compiler Overview [7]

The compilation processes for these modes differ in the following ways:

Whole-program compilation

This is the preferred method for compiling applications. In
whole-program compilation, the compilation phase is made up of
several sub-phases. The compiler first parses (partially compiles)
each source file. During this phase, the compiler gathers information
about every module in the program and saves it to the program
library. The next phase is the translation phase. During this phase,
the program is translated and optimized. The compiler optimizes
each function in the program using information from within that
function's module or other modules, including linked libraries,
that the compiler gathered earlier. Finally, in the linking phase,
the compiler links separate modules into a program executable.
Information about all modules is stored, and passed between phases,
in the program library.

Separate-module compilation

The compiler creates a separate object file for each source file and
optimizes the functions within each source file using information
about functions within that file. Then, the separate modules are
linked to create a program executable.

Whole-program compilation generally produces more highly optimized code than
separate-module compilation. You can compile a program using one mode or the
other, or a combination of the two.

The following diagram shows the object files that the compiler creates when
compiling the same arnoldi.cc and blas.cc files in different modes.

S–2479–20 77

Cray XMT™ Programming Environment User’s Guide

Figure 2. Comparison of Whole-program and Separate-module Modes

Whole-program Compilation
skinny .o Files

Parsed source code
Call graph
Object code
Debugger information

arnoldi.o

blas.o

test

Executable
code

Separate-module Compilation
fat .o Files

Parsed source code
Partial call graph
Object code
Debugger information

blas.o

test.pl

test

Parsed source code
Partial call graph
Object code
Debugger information

Debugger information

Executable
code

test.pl arnoldi.o

In whole-program mode, all the traditional object information for a program is
contained in a single program library file. The program library has a .pl filename
extension. The compilation process also produces an object file with a .o extension
for each source file. This file is used as a time stamp to drive build processes.
Each .o file corresponds to a module contained in the program library. The object
information, or modules, for a program's source files are packaged together. This
enables the compiler to optimize each function within the context of the entire
program.

78 S–2479–20

Compiler Overview [7]

In separate-module mode, the .o files are true object files. The compiler optimizes
each object file, or module, separate from the others. The link step produces a
program library, although this program library primarily contains information that
directs the debugger to various object files.

Because of the relative sizes of the .o files in the two compilation modes, the
qualifier skinny refers to whole-program mode and its products (such as the .o files)
and the qualifier fat refers to separate-module mode and its products.

During the compilation process, the compiler creates the following files:

a.out The executable file.

a.out.pl The program library.

LOCK.a.out.pl

The temporary lock file. The lock file prevents other compilers from
accessing a program library when it is already in use. The compiler
removes this file after use, unless the compiler terminates before
completion.

*.o Relocatable object files.

7.1.1 File Types Accepted by the Compiler

The compiler accepts files that use the following extensions:

.c C file when invoked with cc, C++ file when invoked with c++.

.cc, .cpp C++ file.

.o In whole-program compilation, time stamp file that does not need
to be compiled but participates in any link step. Also referred to as
a skinny .o file. In separate-module compilation, a true object file.
Also referred to as a fat .o file.

.pl Program library. Used to support incremental recompiling and
debugging. In whole-program compilation, used to support
inter-module analysis.

.a Archive or library file.

File prefixes used in the compilation process include the following:

LOCK Temporary lock file used to prevent concurrent updates to the
associated program library.

S–2479–20 79

Cray XMT™ Programming Environment User’s Guide

7.2 Invoking the Compiler
You can only use the Cray XMT compiler when the Cray XMT Programming
Environment (mta-pe) module is loaded. The commands to use to invoke the
compiler are cc for a C program and c++ for a C++ program.

You can control the operation of the compiler by setting various options when
running the compiler command. The compiler uses driver options, language options,
parallelization options, and debugging options.

The driver options control how the compiler invokes subprograms. The compiler
mode is set using driver options. The driver options that you use most often are the
following:

-c filename

Compiles a specified source file.

-o filename

Links files and creates an executable.

-pl filename

Places object code and other data generated by the compiler into
a program library file. This option is used for whole-program
compilation.

For example, if you specify both the -c and -pl driver options, the compiler
compiles the program in whole program mode, but it does not link the files into an
executable. For more information, see Setting the Compiler Mode on page 80.

The language options control how the front end processes information. For example,
the -E option indicates that the compiler should preprocess source files but not
compile them. The -no_float_opt option prevents floating-point optimization.

The parallelization options control parallelism in the program. For example, the
-par1 option compiles a program so that it runs in parallel on a single processor.
For more information, see Optimizing Parallelization on page 85.

The debugging options control how the debugger works. For more information, see
Setting Debugger Options during Compilation on page 88.

Each compiler uses the same set of command-line options. For a complete list of
command-line options, see the cc(1) or c++(1) man pages.

7.3 Setting the Compiler Mode
To set the compiler mode to whole-program mode, run the cc or c++ command with
the -pl option. This option builds a program library.

80 S–2479–20

Compiler Overview [7]

The following examples show how to use the compiler options for various compiler
tasks using the whole-program and separate-module modes.

Whole-program:

c++ -c a.cc -pl prog.pl (parses a.cc)
c++ -c b.cc -pl prog.pl (parses b.cc)
c++ -pl prog.pl -o prog a.o b.o (translates a.o, b.o; links prog)

Or, as a shortcut:

c++ a.cc b.cc -o prog (compiles a.cc, b.cc; links prog, and creates prog.pl)

Separate-module:

c++ -c a.cc (parses and translates a.cc)
c++ -c b.cc (parses and translates b.cc)
c++ -o prog a.o b.o (links prog)

7.3.1 Whole-program Mode

With whole-program compilation, the compiler has access to information about all
functions in the program while optimizing each function. This information provides
the compiler with the context for how the larger program uses each function. For
example, when you use the c++ command to link the files jacobian.cc and
blas.cc, the compiler has access to the entire program during all but the initial
compilation phases, and compiles the program in whole-program mode. To do this,
use the following command:

c++ jacobian.cc blas.cc

The previous command produces the skinny .o files jacobian.o and blas.o,
the executable a.out, and the program library a.out.pl.

Whole-program compilation enables inlining among files. The compiler can inline
functions in blas into call sites in jacobian, and vice versa. The compiler can
also inline functions into jacobian and blas from user-defined libraries linked
with the program. See Creating New Libraries on page 87.

The compiler builds the program library a.out.pl during the compilation phase.

The whole-program compilation mode can be specified while retaining the flexibility
of multiple compilation steps that you typically use for separate-module compilation.
To do this, use the following sequence of commands:

c++ -pl test.pl -c ddot.cc
c++ -pl test.pl -c svd.cc
c++ -pl test.pl -o test svd.o ddot.o

The first two commands perform the initial compilation phase of ddot.cc and
svd.cc using the program library test.pl. The last command specifies the
construction of the test executable using the test.pl program library and the
svd and ddot modules.

S–2479–20 81

Cray XMT™ Programming Environment User’s Guide

When you use the -pl and -c options to compile a source file, the compiler
performs the following tasks during the compilation phase:

• Checks the source for syntax errors

• Creates an internal representation of each function in the program library

• Produces a skinny .o file

During the linking phase, the compiler performs the following tasks to create an
executable:

• Performs optimizations using information about the complete program

• Builds objects for each module

• Links the modules together to produce an executable

• Stores objects in the program library to support incremental recompilation

As in traditional UNIX compilation, the -o flag specifies the executable name
explicitly. To do this, use the following command:

c++ -pl test.pl -o test svd.o ddot.o

The previous command links the svd and ddot modules that reside in test.pl
and creates the executable in a file called test.

You can also specify multistep command sequences that use a mix of source and
object files when using whole-program mode. To do this, use the following sequence
of commands:

c++ -pl a.out.pl -c ddot.cc
c++ -pl a.out.pl arnoldi.cc ddot.o

The first command partially compiles ddot.cc. The second command partially
compiles arnoldi.cc; completes compilation and optimization of the modules
ddot and arnoldi; links arnoldi, ddot, and any required libraries; and places
the resulting executable in a.out. The compiler optimizes each function using
information about the ddot and arnoldi modules.

7.3.2 Separate-module Mode

-pl flag to compilation and link lines. Separate-module mode also prevents the
propagation of changes made in one module to other modules. This greatly reduces
the level of optimization that occurs when using separate-module mode compared to
that of whole-program mode.

To compile a single source file into its corresponding object file, use the following
command.

c++ -c ddot.cc

82 S–2479–20

Compiler Overview [7]

This produces (barring errors in the source file) a traditional, or fat, object file
ddot.o. To produce the two fat object files ddot.o and daxpy.o, each of the two
source files can be compiled separately. To do this, use the following command.

c++ -c ddot.cc daxpy.cc

Using the previous command is the same as using the following sequence of
commands.

c++ -c ddot.cc
c++ -c daxpy.cc

When compiling a file in separate-module mode, the compiler performs inter-function
optimizations within individual files. As in whole-program mode, when the compiler
constructs an executable, it also produces a program library. In separate-module
mode, however, the program library is much smaller because it contains only
information the debugger uses to locate more detailed debugging information in the
separate fat object files.

7.3.3 Mixed Mode

Whole-program and separate-module mode may be used in combination to build a
particular program. You can use mixed-mode to isolate code in fat modules from
changes made in other skinny or fat modules. You can also use it to share the same
piece of precompiled object code among several programs, while still allowing the
programs to take advantage of whole-program optimizations performed on unshared
code.

The following sequence of commands shows how to use mixed mode.

c++ -c arnoldi.cc
c++ -pl test.pl -c jacobian.cc blas.cc
c++ -pl test.pl -o test arnoldi.o jacobian.o blas.o

The first command compiles arnoldi.cc in separate-module mode, and produces
the fat object file arnold.o . In this step, the compiler optimizes functions in
arnoldi.cc without using information from the jacobian or blas functions.

The second command partially compiles jacobian.cc and blas.cc in
whole-program mode, places the results in test.pl, and produces the skinny .o
files jacobian.o and blas.o .

The third command performs final compilation and optimizations of functions from
jacobian.cc and blas.cc, then links the functions to form the executable
test. In this step, the compiler has knowledge of functions in arnoldi.cc,
jacobian.cc, and blas.cc.

S–2479–20 83

Cray XMT™ Programming Environment User’s Guide

7.4 Inlining Functions
Inline expansion, commonly known as inlining, occurs when the compiler replaces a
function reference with the body of the function. The advantages to using inlining
include a reduction in memory usage due to the removal of function calls and returns,
and the possibility of optimizing code near the function call with the function body.
The disadvantages include an increase in the size of the executable and an increase
in the level of complexity required during debugging.

When compiling in separate-module mode, the compiler inlines functions that
are defined in the same file where they are referenced. When compiling in
whole-program mode, the compiler can inline any function in the program or
associated libraries. To view functions that are inlined, use the canal or Apprentice2
performance tools. See Cray XMT Performance Tools User's Guide.

You can use either command-line switches or compiler directives to control how
the compiler inlines functions.

To set inlining from the command line, you can use either the -inline fcn to force
the compiler to inline a specified function or -no_inline fcn to suppress inlining
for the specified function. The option -no_inline_all suppresses inlining for all
functions in a program.

For C++, the function name fcn must use the mangled-name format. Mangled names
are internal compiler names with complete type signatures. To do this, use the
following command format.

-inline mangledfunctionname

To obtain the character string for the mangled name, use the nm -f command.

To set inlining using a directive in your C or C++ program, you can add pragma
statements that require or prohibit inlining of individual functions. To do this, use
one of the following directives.

#pragma mta inline
#pragma mta no inline

You must place one of the previous directives immediately before the function's
definition in your program.

The C++ keyword inline also inlines a function, but it makes the function local
to the file. In this case, if you also add the function's definition to the header file,
multiple inclusions would result in many copies of this function being added to the
program library. Therefore, the use of the pragma directive is usually preferable to
the C++ keyword.

84 S–2479–20

Compiler Overview [7]

7.5 Optimizing Parallelization
You can control how the compiler makes your program parallel in two ways:

• You can add parallelization directives to your program.

• You can specify a compiler option from the command line that controls
parallelization.

Parallelization directives and options tell the compiler how to parallelize various
sections of a program. The following types of parallelization are allowed.

Single-processor parallelism

This form of parallelism has low overhead, but does not allow
the program to scale beyond a single processor. This type of
parallelization takes advantage of only the streams on the processor
on which the code is running.

Multiprocessor parallelism

This form of parallelism uses more memory and has a higher startup
time than single-processor parallelism. However, the number of
streams available is much larger, being bounded by the number of
processors on the entire machine rather than the size of a single
processor.

Loop future parallelism

Loop future parallelism runs on multiple processors. It is the highest
overhead form of parallelism, but is also the only form of parallelism
with the ability to dynamically increase thread and processor counts
as needed while the parallel region is executing. It provides good
load balancing, especially with recursive loops.

When using a directive, the parallelization type is set using the #pragma mta
parallel directive. See Parallelization Directives on page 124.

When the parallelism type is set using a compiler option, the following options are
available.

par Compiles a program to run in parallel on multiple processors.

par1 Compiles a program to run in parallel on a single processor.

parfuture

Compiles a program to run on multiple processors using loop future
parallelism.

serial Compiles a program to run without automatic parallelization.

S–2479–20 85

Cray XMT™ Programming Environment User’s Guide

Parallelism that you specify with future statements in your program is always
enabled. Compiler options have no effect on future statements. If you do not
specify a compiler option, the default is to run using the par option.

There are also parallelization directives and compiler options available that you
can use to enable or disable loop restructuring. Loop restructuring includes loop
transformations, loop fusion, loop unrolling, loop distribution, and loop interchange.
By default, loop restructuring is enabled when parallelization is enabled, and
disabled otherwise. To enable or disable loop restructuring using a directive, use the
#pragma mta restructure directive. Disabling loop restructuring may inhibit
parallelization of some loops.

The previous directive restructures loops from the point where it appears in the file
to the end of the file. It can be disabled during the compilation process when you
specify the -nopar compiler option from the command line.

You can enable loop restructuring from the command line using the -restructure
compiler option. You can disable loop restructuring using the -no_restructure
option. You may need to use this if you are also using the -par, -par1, or
-parfuture option, because these options automatically enable loop restructuring.

You can also control whether the compiler automatically parallelizes recurrences and
reductions. Recurrence is enabled, by default, but you may want to disable it for a
section in the program. To do this, use the #pragma mta recurrence off
command.

For information about the parallelization options, see the cc(1) or c++(1) man page.
For a complete list and explanation of the parallel directives and assertions, see
Appendix C, Compiler Directives and Assertions on page 109.

7.6 Incremental Recompilation and Relinking
When a previously built program library and executable are present, the compiler
performs incremental recompilation and relinking, regardless of the compilation
mode. An incremental recompilation saves time during the compilation process.

The compiler performs incremental recompilation on a function-by-function basis
within each source file. If you repeatedly edit and compile several functions in
the blas.cc file, the compiler detects which functions require recompilation
after editing. For example, if you edit a particular function f, the compiler only
recompiles f and any function that inlined f. But if you change a globally-visible
type declaration, the compiler recompiles all functions that use that type.

In whole-program mode, separate-module mode, or mixed mode, the compiler
builds a program library for the executable. The compiler uses the program library
during the incremental compilation. If you delete the .pl file between compilations,
the compiler cannot execute an incremental recompilation. Similarly, deleting the
executable file prevents incremental linking.

86 S–2479–20

Compiler Overview [7]

7.7 Creating New Libraries
You can create a user-defined library in the same way that you build a program in
whole-program mode. To do this, use the -R option to suppress the creation of an
executable.

For example, to build the library tinyblas.a from functions in the files ddot.cc
and dgemv.cc, use the following sequence of commands.

c++ -pl tinyblas.a -c ddot.cc dgemv.cc
c++ -pl tinyblas.a -R ddot.o dgemv.o

In the previous example, the first command creates the initial program library, checks
the two source files for syntax errors, and copies them into the program library. The
second command finishes compilation of the functions in ddot and dgemv with
inlining enabled between files and from the standard libraries. The -R flag directs
the compiler to place the generated relocatable object code in the program library and
suppresses the build of an executable.

The following sequence of commands provides the same results:

c++ -pl tinyblas.a -c ddot.cc
c++ -pl tinyblas.a -c dgemv.cc
c++ -pl tinyblas.a -R ddot.o dgemv.o

Or, you can use the following single command:

c++ -pl tinyblas.a -R ddot.cc dgemv.cc

You can update a library with an incremental compilation. To do this, use the
following sequence of commands.

c++ -pl tinyblas.a -R ddot.cc dgemv.cc
edit dgemv.cc
c++ -pl tinyblas.a -R ddot.cc dgemv.cc

In the previous example, the first compile creates the library as usual. The second
compile examines ddot.cc (and ignores it because it remains unchanged) and
then focuses on dgemv.cc , which has presumably been changed by the edit. The
compiler recompiles any modified function in dgemv.cc and any function that
depends on a changed function (perhaps because of inlining). The rest of the library
remains the same.

There is no requirement that a library end with an .a suffix. The inclusion of the -R
flag in a separate-module compilation line enables inlining from the standard libraries
into the newly created library. The library looks like a traditional (fat) object file.

S–2479–20 87

Cray XMT™ Programming Environment User’s Guide

7.8 Compiler Messages
There are three categories for compiler messages: errors, warnings, and remarks.
Errors are the most severe and indicate problems that cause the compiler to halt after
parsing without generating object code. Warnings are less severe — the compiler
runs to completion and generates object code. Remarks tend to highlight conditions
that prevent the code from being portable, but the resulting object code almost always
behaves as expected.

7.9 Setting Debugger Options during Compilation
Rather than providing many levels of optimization, the compiler provides the -g1
and -g2 options to support progressing levels of debugging. The debugger options
include the following:

-g, -g1 At this level, the debugger displays the values of variables (including
global variables and array elements) anywhere in their scope.
However, this level causes some loss of optimization. Specifically,
the compiler no longer restructures loops, although basic loop
parallelization is still possible. The -g flag is identical to -g1.

-g2 This is the highest level of debugging support. This level lets you
view and modify variables anywhere in their scope. However, this
level significantly inhibits optimization. Specifically, the compiler no
longer parallelizes loops.

If you do not specify either option, the compiler runs with all optimizations enabled.
Although debugging is not set, you can still perform some debugging operations. For
example, you can control trace control flow using breakpoints together with the step
and next commands. You can also view the value of global variables, although these
can sometimes be out-of-date.

The compiler also has options that perform tracing. Tracing creates a trace file,
trace.out, that you use for performance tuning. You use the -trace option to
turn on tracing and -trace_level n to trace functions larger than n source lines.
You can also trace stack allocation by using the -trace_stack_alloc compiler
option. For more information about the trace option, see the cc(1) or c++(1) man
pages. For information about performance tuning, see Cray XMT Performance Tools
User's Guide.

If you compile an executable using modules that have been compiled at different
debugging levels, the level of debugging support changes between one module and
another, whether inlined or not. For more information about using the Cray XMT
debugger, see Cray XMT Debugger Reference Guide.

88 S–2479–20

Compiler Overview [7]

7.10 Using Compiler Directives and Assertions
Directives are metalanguage constructs that you can add to a program to influence
how the compiler performs a translation. In C and C++, you prefix directives with
#pragma mta. Macros are allowed after the word mta in a pragma, as shown in
this example:

#define NUMSTREAMS 40 ...
#pragma mta use NUMSTREAMS streams

The preceding pragma is equivalent to #pragma mta use 40 streams.

You can also write compiler directives in C and C++ code using _Pragma rather
than #pragma mta. In this case, the directive appears syntactically as if it were a
single string argument to a function call, as shown in the following command.

_Pragma("mta assert parallel")

The advantage to using the command form of this directive is that you can use it in
macros or similar locations. The disadvantage of this form is that most C and C++
compilers treat it as an actual function, which makes the code less portable.

Directives are grouped into five general categories: compilation directives,
parallelization directives, semantic assertions, implementation hints, and
language-extension directives. A compilation directive is a command to compile
a program in a particular way. Parallelization directives tell the compiler how to
parallelize various sections of a program. Semantic assertions provide information to
the compiler that could be proved true about the program even though that proof is
beyond the capabilities of the compiler. Implementation hints tell the compiler about
the expected behavior of the program. Language-extension directives allow you to
place Cray XMT specific language features into a program without interfering with
the portability of code to other systems.

For more information, see Appendix C, Compiler Directives and Assertions on
page 109.

S–2479–20 89

Cray XMT™ Programming Environment User’s Guide

90 S–2479–20

Running an Application [8]

This chapter contains procedures for launching your application on the Cray XMT.

8.1 Launching the Application
You use the mtarun command to launch and run a program. The mtarun command
connects to the mtarund daemon that runs on the compute node on the backend.
The daemon creates a copy of your environment and runs it on the compute nodes.
Your file directories from the login node appear on the compute nodes with the same
paths.

From the login node, you use the mtarun command to launch a program, as shown
in the following example.

mtarun MyProgram.out

The most common options to use with the mtarun command are -m max_procs
and -t min_procs.

The -m max_procs option sets the maximum number of processors for the
program. This option is the same as setting the MTA_PARAMS environment variable
to NUM_PROCS.

The -t min_procs option sets the number of processors to use when the program
starts running. By default, a program starts with one processor and adds processors,
as needed.

After launching the program, mtarun acts as the frontend of the program. mtarun
provides the following services to the program:

• Standard I/O forwarding. Provided by mtarun stdin, mtarun stdout
and mtarun stderr.

• Signal forwarding. mtarun forwards all catchable signals.

• Termination management. If the program exits normally, mtarun exits with the
same exit status. If the remote process is killed by a signal, mtarun terminates
with the matching exit status and sends a message to stderr with information
about the signal that caused the program to exit. If mtarun terminates
prematurely, the mtarun daemon uses SIGKILL to kill the program.

S–2479–20 91

Cray XMT™ Programming Environment User’s Guide

The mtarun command uses a default configuration file, .mtarunrc, which exists
in your home directory. You can modify this file to include any mtarun options,
separated by spaces. The configurations in this file are overridden by options that
you use from the command line.

To monitor process or CPU usage by your program, you use mtatop. For more
information about using mtarun to run the program or mtatop to monitor the
program, see Cray XMT System Management.

Note: When an application that was built for tracing is running, an intermediate
process runs to flush trace data back to the service partition as the tracing buffers
fill. To ensure that all tracing data is captured, the mtarun that launched the
application will not exit until this tracing process completes. Depending on the
amount of data that needs to be flushed, and the speed of the underlying file
system, mtarun may not exit for some time after the application has completed. If
you kill the mtarun process, in the belief that it is hung, you may get incomplete
tracing data. For more information on partial tracing data see Partial Tracing in the
Cray XMT Performance Tools User's Guide.

8.2 User Runtime Environment Variables
There are a number of environment variables that you can use with the user runtime
known as MTA_PARAMS. You can use these environment variables for debugging,
dumping registers, setting the number of streams, setting maximums for processors
and ready pools, and so on.

For csh, use the following command:

% setenv MTA_PARAMS "param1 param2"

For example, to set the maximum number of processors and to prevent streams from
being reserved for the debugger, set MTA_PARAMS by using the following command:

% setenv MTA_PARAMS "num_procs 100 no_prereserve"

For a bash shell, use the following command:

% export MTA_PARAMS="param1 param2"

For example, to set the maximum number of processors to two and indicate that the
program must wait for a debugger to attach in the event of a poison, you use the
following command on a bash shell:

% export MTA_PARAMS="num_procs 2 debug_data_prot"

For a list of environment variables that you can set, see Appendix G, MTA_PARAMS
on page 143.

92 S–2479–20

Running an Application [8]

8.3 Improving Performance
For information about improving performance on your program, see Cray XMT
Performance Tools User's Guide.

S–2479–20 93

Cray XMT™ Programming Environment User’s Guide

94 S–2479–20

Optional Optimizations [9]

9.1 Scalar Replacement of Aggregates
Effective with version 2.0 of the Cray XMT software, the XMT compiler provides
an optional optimization pass that performs a code transformation called scalar
replacement of aggregates. This transformation replaces C++ class objects and C
structures (aggregate data types) with collections of temporary scalar variables.
Values are copied from the aggregate to the temporary variables and back again as
needed. These scalar variables allow the compiler to perform more precise analysis in
later phases, and may enable additional optimizations and parallelization of loops.

For example, consider the following code:

class myTwoInts {
public:

int i;
int j;

};

myTwoInts foobar2(myTwoInts t, int n, int * restrict foo) {
for (int i = 0; i < n; i++) {
t.i += foo[i];

} return t;
}

Without scalar replacement the compiler cannot determine whether the references to
fields of the object t form a loop-carried dependence, thus it is unable to parallelize
this loop. By viewing the canal report you can see that the loop is not parallelized:

| myTwoInts foobar2(myTwoInts t, int n, int * restrict foo) {
| for (int i = 0; i < n; i++){

8S | t.i += foo[i];
| }
| return t;
| }

S–2479–20 95

Cray XMT™ Programming Environment User’s Guide

After recompiling this code with automatic scalar replacement enabled, the compiler
is able to transform the foobar2 routine into something that resembles the
following:

myTwoInts foobar2(myTwoInts t, int n, int * restrict foo) {
__tmp_t_i = t.i;
for (int i = 0; i < n; i++) {

__tmp_t_i += foo[i];
}
t.i = __tmp_t_i;
return t;

}

Note that the compiler does not bother creating a temporary variable for the unused
field j.

After this transformation, the compiler is better able to analyze the dependencies in
the loop and to determine that the loop can be safely parallelized as a reduction. This
can be seen in the canal report of the recompiled code:

| myTwoInts foobar2(myTwoInts t, int n, int * restrict foo) {
** scalar replacing t

| for (int i = 0; i < n; i++) { 18 P:$
18 P:$ | t.i += foo[i];
** reduction moved out of 1 loop

| }
| return t;
| }

Scalar replacement of aggregates can enable parallelization of many additional loops.
However, it can also add additional memory references which can adversely affect
performance. For this reason, the compiler performs scalar replacement only when
requested by the programmer. Automatic scalar replacement of aggregates can be
enabled either by using a command-line flag at compile time, or by using pragmas
in your code. If you compile a file with the -scalar_replacement flag, the
compiler will automatically attempt to perform scalar replacement on any aggregates
that it can prove are safely replaceable unless those aggregates have been marked with
an mta no replace pragma. (See Semantic Assertions on page 125.) You can
use the noalias pragmas and restrict type qualifiers as needed to indicate to
the compiler that certain aggregates, or pointers to aggregates, are safe to replace.

96 S–2479–20

Optional Optimizations [9]

Alternatively, you can enable scalar replacement for individual aggregates by using
the mta assert can replace pragma. This pragma, which takes a list of
aggregates and/or aggregate pointers, serves two purposes. First, it tells the compiler
that it is safe to perform scalar replacement on the aggregates or pointers listed. The
compiler follows this assertion even if it was unable to prove that the replacement
was safe. Second, it is a request to replace the listed aggregates even if the code
was not compiled with the -scalar_replacement flag. This pragma is useful
in situations where the compiler would not be able to verify that a key aggregate is
replaceable. You can also use this pragma in situations where, because of the extra
memory references, you do not want to enable scalar replacement for an entire source
file, but where you need a particular aggregate to be replaced in order to achieve
automatic loop parallelization.

For example, consider the loop in the method doit below:

class foo {
int * restrict b;
int n;

public:

#pragma mta no inline
void doit(int *c) {
int i;

#pragma mta assert noalias *this
for (i = 1; i < n; ++i) {

b[i] = b[i-1] + c[i-1];
}
};

};

Without scalar replacement, this parallel recurrence loop will not parallelize, because
the accesses to the b array, which are accesses into a field of the aggregate *this,
defy alias analysis. By adding an mta assert can replace pragma, however,
the loop will parallelize as can be seen in the canal report:

| #pragma mta no inline
| void doit(int *c) {

** scalar replacing *this
| int i;
|
| #pragma mta assert noalias *this
| #pragma mta assert can replace *this
| for (i = 1; i < n; ++i) {

5 L | b[i] = b[i-1] + c[i-1];
| }
| };
| };

The can replace assertion also has a loop- specific variant, mta assert
loop can replace, which requests scalar replacement for a specific loop instead
of an entire function. In this case we copy into the temporaries immediately before
the loop, and copy back into the aggregate immediately after the loop. Any accesses

S–2479–20 97

Cray XMT™ Programming Environment User’s Guide

to fields of the aggregate inside the loop will be replaced with the temporaries. This
can be useful if scalar replacement is unsafe or undesirable for portions of a routine,
but needed to achieve good performance in specific loops. The loop variant can also
be used to achieve parallelization of the loop in the previous example:

| #pragma mta no inline
| void doit(int *c) {
| int i;
|
| #pragma mta assert noalias *this
| #pragma mta assert loop can replace *this
| for (i = 1; i < n; ++i) {

5 L | b[i] = b[i-1] + c[i-1];
** scalar replacing *this

| }
| };
| };

The exact syntax of these pragmas is described in Appendix C.3 of Cray XMT
Programming Environment User's Guide.

9.2 Optimizing Calls to memcpy and memset

The compiler option -enable_memcmd_opt enables a compiler optimization that
replaces calls to memcpy/memset with versions of the functions that were built for
the current parallel mode, which the compiler can inline. This allows the compiler
to potentially merge the parallel region in the memory routine with any surrounding
parallel region, which can reduce the cost of having to tear down and restart parallel
regions in order to call memcpy or memset. However, when this optimization is
enabled and these functions are called from within a parallel loop, this creates nested
parallel regions. The result is a potentially significant performance degradation.

A new compiler flag, -disable_memcmd_opt was added to disable this
optimization in case there were performance problems, such as the case mentioned
above. However, because the functions may be getting called indirectly, it may
not always be easy to determine that a call to memcpy or memset is causing a
performance problem. For example, this can happen is if a program calls a function in
the C++ STL that calls memcpy. For this reason, the default behavior of the compiler
is to have this optimization disabled and allow users to enable it with the option
-enable_memcmd_opt. Use this option only when you know there is no risk of
memcpy or memset being called from within a parallel loop.

For additional control over the parallelism used by memcpy or memset, you can call
directly versions of of these commands that use a single stream, single processor
parallelism and multiprocessor parallelism. The memcpy functions are called
memcpy_ss, memcpy_sp and memcpy_mp, respectively. The corresponding
memset functions are called memset_ss, memset_sp and memset_mp,
respectively. These functions are declared in string.h and are documented in the
memcpy(3) and memset(3) man pages.

98 S–2479–20

Error Messages [A]

Execution-time errors are directly related to exceptions. An exception is an
unexpected condition raised by an event in your program, the operating system, or
the hardware. Exceptions can trigger a trap when the stream that issued the exception
is ready for execution, unless the trap is disabled. In cases where several exceptions
occur simultaneously, the trap handler decides the order in which to process the
exceptions.

Use the list that follows to identify and troubleshoot common exceptions.

create For example, this error will occur when you attempt to create more
streams than were reserved. To prevent this error, you can use the
STREAM_RESERVE operation to reserve the necessary number of
streams before running the STREAM_CREATE operation again.

data_alignment

A data-alignment error has occurred. This error can occur when
you access data that the compiler assumes is on an 8-byte boundary
when it is not.

data_hw_error

A data-memory or network-hardware error has occurred. This occurs
when the memory system detects an uncorrectable error while
loading data from memory.

data_prot A data protection level error has occurred. This error is equivalent
to a segmentation error. Possible causes include attempting to
access protected data, operating-system data, or data outside your
addressable memory space.

domain_signal

A domain signal error has occurred. This message indicates the
program is not allowing the operating system to interrupt it. This
typically indicates a problem in the runtime system.

float_extension

An error using a floating-point number has occurred. A
floating-point number is using the wrong extension.

S–2479–20 99

Cray XMT™ Programming Environment User’s Guide

float_inexact

An error using a floating-point number has occurred. An operation
is attempting to use an inexact floating-point number. This type of
error indicates an error in the source registers, the operation, or the
value written to the destination.

float_invalid

An error using a floating-point number has occurred. An operation is
attempting to use an invalid floating-point number.

float_zero_divide

An error using a floating-point number has occurred. An operation is
attempting to divide a floating-point number by 0.

float_overflow

An error using a floating-point number has occurred. An operation
using a floating-point number has caused an overflow to occur. This
type of error indicates an error in the source registers, the operation,
or the value written to the destination.

float_underflow

An error using a floating-point number has occurred. An operation
using a floating-point number has caused an underflow to occur. This
type of error indicates an error in the source registers, the operation,
or the value written to the destination.

poison Use of a poisoned register has occurred. A register is poisoned if
it contains an uninitialized value. The exception occurs when you
attempt to access the value in this register.

Use of a poisoned register can sometimes occur when the compiler
uses speculative loading. For example, the compiler may optimize a
loop for n iterations and load n+1 values. Under normal conditions,
the compiler does not use the n+1 value because the program
correctly stops consuming prefetched data after n iterations.
However, if the program accesses the n+1 value, it raises the poison
exception.

privileged A privilege error has occurred. This exception indicates that your
program does not have the necessary privilege level to perform an
operation.

prog_hw_error

A program-memory error has occurred. This indicates that while
the processor was loading an instruction, there was a temporary or
permanent problem with the physical memory.

100 S–2479–20

Error Messages [A]

prog_prot A program-protection error has occurred. This error occurs when
the processor attempts to execute an instruction from a PC that is
not a valid PC.

unknown_trap

A error has occurred that does not fit into any other category on this
list.

S–2479–20 101

Cray XMT™ Programming Environment User’s Guide

102 S–2479–20

User Runtime Functions [B]

Functions in the runtime library support implicit and explicit parallelism, event
logging, and trap handling. The compiler inserts calls to the runtime library into
your code to handle programming constructs, such as the future statement, or
command-line options, such as the -trace flag. In addition, some functions in the
runtime library can be called directly by the user. This appendix contains a list of the
runtime functions that you can call from your program.

This list provides only a short description of the runtime functions. A more complete
description of the functions and the syntax required to use them can be found on the
referenced man pages.

mta_create_team

Adds teams. See the mta_create_team(3) man page.

mta_create_thread_on_team
mta_create_thread_all_teams
mta_create_stream

Creates a new thread on an existing team. See the
mta_create_thread_all_teams(3) man page.

mta_disable_auto_growth
mta_enable_auto_growth
mta_assess_growth

Controls the automatic growth of processors. See the
mta_disable_auto_growth(3) man page.

mta_get_all_rt_teamids

Returns the team identifiers for all runtime teams. See the
mta_get_all_rt_teamids(3) man page.

mta_get_clock

Provides the number of clock ticks that have passed since the
program began. See the mta_get_clock(3) man page.

mta_get_max_teams

Determines the maximum number of teams available to the program.
See the mta_get_max_teams(3) man page.

S–2479–20 103

Cray XMT™ Programming Environment User’s Guide

mta_get_num_teams

Returns the number of currently executing teams. See the
mta_get_num_teams(3) man page.

mta_get_rt_teamid

Returns the runtime identifier of the caller's team. See the
mta_get_rt_teamid(3) man page.

mta_get_team_index

Returns a user runtime index for a team. See the
mta_get_team_index(3) man page.

mta_get_thread_name
mta_set_thread_name
mta_remove_thread_name

Retrieves, sets, and removes user-defined thread names. See the
mta_get_thread_name(3) man page.

mta_get_threadid
mta_get_parent_threadid

Returns the runtime identifier of the calling thread or its parent
thread. See the mta_get_threadid(3) man page.

mta_lock_thread
mta_unlock_thread

Controls thread behavior when a synchronized data fault occurs. See
the mta_lock_thread(3) man page.

mta_log_event
mta_log_short_event
mta_log_long_event
mta_log_event_record
mta_log_short_event_record
mta_log_long_event_record

Sets user-defined event logging. See the mta_log_event(3) man
page.

104 S–2479–20

User Runtime Functions [B]

mta_new_trap1_continuation
mta_new_trap1_continuation_block
mta_delete_trap1_continuation
mta_register_trap1_continuation
mta_unregister_trap1_continuation
mta_update_trap1_value

Creates, deletes, binds, or updates trap 1 continuation. See the
mta_new_trap1_continuation(3) man page.

mta_print_backtrace

Prints the thread's call stack. See the mta_print_backtrace(3)
man page.

mta_probe_location

Probes a memory location to determine whether it can be read or
written. See the mta_probe_location(3) man page.

mta_register_event_filter

Installs a filter function for user-defined event logging. See the
mta_register_event_filter(3) man page.

mta_register_fatal_error_handler

Binds a new fatal error handler. See the
mta_register_fatal_error_handler(3) man page.

mta_register_task_data

Stores thread-specific data used to implement a common task. See
the mta_register_task_data(3) man page.

mta_register_team_exit_fn
mta_unregister_team_exit_fn

Binds or unbinds a team exit function. See the
mta_register_team_exit_fn(3) man page.

mta_register_tertiary_handler
mta_get_tertiary_handler

Binds a new tertiary trap handler or return the current tertiary trap
handler. See the mta_register_tertiary_handler(3) man
page.

mta_report_trap_counters

Sets reporting for trap counter statistics. See the
mta_report_trap_counters(3) man page.

S–2479–20 105

Cray XMT™ Programming Environment User’s Guide

mta_reserve_task_event_counter
mta_get_task_counter
mta_get_team_counter

Reserves or queries hardware counters. See the
mta_reserve_task_event_counter(3) man page.

mta_set_crew_limit

Sets the maximum number of crews that can be simultaneously
active. The term crew is applied to the group of processors
that are used when parallelizing the iterations of a loop across
multiple processors. Applications use this type of parallelization
when they are compiled using the multiprocessor mode. See the
mta_set_crew_limit(3) man page.

mta_set_domain_signal_mask

Enables or disables domain signals in the calling thread. See the
mta_set_domain_signal_mask(3) man page.

mta_set_implicit_processors
mta_get_implicit_processors
mta_set_implicit_streams
mta_get_implicit_streams

Stores or retrieves the value for the number of implicit processors
or implicit streams that are used for a calling thread for an
implicitly parallelized region of code in a program. See the
mta_set_implicit_processors(3) man page.

mta_set_private_data
mta_get_private_data

Stores or retrieves private data for a thread. See the
mta_set_private_data(3) man page.

mta_set_rt_error_file

Redirects runtime library messages to a file. See the
mta_set_rt_error_file(3) man page.

mta_set_trace_limit

Modifies the number of times an individual trace event is recorded.
See the mta_set_trace_limit(3) man page.

mta_sleep

Suspends a thread. See the mta_sleep(3) man page.

106 S–2479–20

User Runtime Functions [B]

mta_start_event_logging
mta_suspend_event_logging
mta_resume_event_logging
mta_is_event_logging_on
mta_set_event_flush

Traces buffer controls for user-defined event logging. See the
mta_start_event_logging(3) man page.

mta_yield

Yields an active stream to any other thread that needs the stream. See
the mta_yield(3) man page.

S–2479–20 107

Cray XMT™ Programming Environment User’s Guide

108 S–2479–20

Compiler Directives and Assertions [C]

This appendix provides a complete list of compiler directives specific to the
Cray XMT and accepted by the Cray XMT compiler.

C.1 Compilation Directives
A compilation directive is a command to compile a program in a particular way.

#pragma mta autotouch [on|off|default]

This directive automatically applies the touch generic whenever
a future variable is referenced. The on option enables automatic
touching, the off option disables automatic touching, and the
default option reverts from autotouch to the default mode for that
source module, as determined by the compile-line flags.

#pragma mta adjust constructor priority adj

This directive modifies the priority assigned to static constructors in a
file. The adjusted priority is the priority just before the directive plus
adj. The adjustment variable adj must be an integer in the range of
-255 to 255, and the new priority must be in the range of 0 to 255.
This directive remains in effect from the point at which it occurs
until the end of the file or until another directive of the same kind
is encountered.

#pragma mta complex limited range [on|off|default]

This directive specifies whether complex multiplication and
division may be performed using the usual mathematical formulas
for complex arithmetic or safer but slower arithmetic. The usual
mathematical formulas for complex arithmetic use the following
format:

(a,b)*(c,d) = (ac-bd,ad+bc)
(a,b)/(c,d) = ((ac+bd)/(cc+dd), (bc-ad)/(cc+dd))

The previous formulas, however, may cause spurious Not a Number
(NaN) results or infinities if the norm of either complex number is
larger than the maximum expressible real number or if the norm of
the denominator of a division is smaller than the smallest expressible
real number. Additionally, these formulas may not be as accurate as

S–2479–20 109

Cray XMT™ Programming Environment User’s Guide

the safer complex arithmetic performed when complex limited range
is off. This is especially true when the difference between two
intermediate computations is very small, such as ac-bd, in the case
of multiplication, and bc-ad, in the case of division.

This directive applies to whatever follows it textually in the current
file. The directive stays in effect until the end of the file or until
another directive of the same kind is encountered. When the on
or off options are used, the directive takes precedence over the
-cxlimited and -no_cxlimited command-line options.
When the default option is used, the directive enables the faster
arithmetic if -cxlimited is specified on the command line.
Otherwise, it disables the faster arithmetic.

#pragma mta constructor priority pri

This directive assigns a priority level of pri to the static constructors
within the file, where pri is an integer in the range 0 to 255. This
priority determines the treatment of constructors using the following
rules:

• Static constructors with priority j are executed before those
of priority i, for i < j. No order is promised between modules
compiled with the same constructor priority.

• Static constructors with priority less than 200 are executed after
the user runtime has been initialized. In particular, futures and
system calls may be performed reliably by static constructors
with priority less than 200.

• Static constructors with priority less than 100 are executed
after the system libraries have been initialized. For example,
input/output operations may be reliably performed by static
constructors with priority less than 100.

The constructor priority directive overrides any
-constructor_priority n compiler flag used on the
command line. If neither the directive nor the compiler flag is
used, the constructor priority defaults to 0. The constructor
priority directive may occur at any point in a source code
file provided no constructor priority or adjust
constructor priority directives occur at an earlier point
in the same file. The directive remains in effect from the point
at which it occurs until the end of the file or until an adjust
constructor priority directive is encountered.

110 S–2479–20

Compiler Directives and Assertions [C]

#pragma mta debug level [0|1|2|default|none]

Set the debug level to the integer constant 0, 1, or 2, or to no
debugging by specifying none. Or, set the debug level back to the
level provided on the command line by specifying default. This
directive overrides the -g , -g1 , and -g2 compiler flags. However,
this directive does not affect any function that contains a call to
setjmp or sigsetjmp, which is always compiled as if the -g2
option was specified. This directive has function-level granularity
and affects any functions whose beginning follows the directive. This
directive applies to whatever follows it textually in the current file.
It stays in effect until the end of the file or until another directive
of the same kind is encountered.

#pragma mta fence

This directive specifies a boundary in the source code across which
the compiler is not allowed to move loads or stores of any aggregate
or heap allocated variables. The effect of this directive is to limit the
compiler's ability to move statements that have been marked with a
fence directive. This directive is often used to prevent the compiler
from moving calls to timing functions with respect to the code being
timed, as in the following example.

#pragma mta fence
t0 = mta_get_clock(0);
/* interval of interest */
......
#pragma mta fence
t1 = mta_get_clock(t0);

This directive may prevent some compiler optimizations from being
performed.

S–2479–20 111

Cray XMT™ Programming Environment User’s Guide

#pragma mta fenv_access [on|off|default]

This directive specifies whether the full floating-point environment
is available. When fenv_access is on, strict rules against the
optimization of floating-point operations are enforced. If it is off,
extra optimizations are performed, but floating-point exceptions may
be lost in certain cases. The compiler is allowed to attempt either one
or both of two optimization techniques when fenv_access is off.
The first technique is to evaluate floating-point operations at compile
time. The second is to move floating-point operations to locations
where they are executed with less frequency, such as outside a loop.
In the following example, the addition in the statement that assigns a
value to G can be performed at compile-time, but the addition in the
statement that assigns a value to F cannot.

void sub(void) {
float F;
float G;

#pragma mta fenv_access off
G = 2.5 + 3.1;

#pragma mta fenv_access on
F = 2.5 + 3.1;

}

This directive applies to whatever follows it textually in the current
file. The directive stays in effect until the end of the file or until
another directive of the same kind is encountered. The off and on
options to the fenv_access directive takes precedence over the
-no_float_opt command-line option. The default option
to the directive enables floating-point environment access (disables
floating-point optimization) if the -no_float_opt command-line
option was used. Default disables floating-point environment
access (enables optimization) if the command-line option was
not used. The directive may also be specified in C as #pragma
fenv_access [on|off|default].

#pragma mta for all streams

This directive starts up a parallel region (if the code is not already in
a parallel region) and cause the next statement or block of statements
to be executed exactly once on every stream allocated to the region.
If the pragmas appear in code that would otherwise not be parallel,
they cause it to go parallel.

112 S–2479–20

Compiler Directives and Assertions [C]

You can use this pragma in conjunction with the use n streams
to ask the compiler to allocate a certain number of streams per
processor to the job.

#pragma mta use 100 streams
#pragma mta for all streams
{ // do something
}

However, there is no guarantee that the runtime will grant the
requested number of streams if, for example, they are not available
due to other jobs, the OS, or other simultaneous parallel regions in
the current job.

#pragma mta for all streams i of n

This directive is similar to the for all streams pragma except
that it also sets the variable n to the total number of streams executing
the region, and the variable i to a unique per-stream identifier
between 0 and n-1. For example:

int i, n;
int check_in_array[MAX_PROCESSORS * MAX_STREAMS_PER_PROCESSOR];
for (int i = 0; i < MAX_PROCESSORS * MAX_STREAMS_PER_PROCESSOR; i++)

check_in_array[i] = 0;

#pragma mta for all streams i of n
{

check_in_array[i] = 1;
printf("Stream %d of %d checked in.\n", i, n);

}

Note that the integer variables i and n are declared separately from
the pragma. For more information on the for all streams
pragmas see Using the Cray XMT for all streams Pragmas in the
CrayDoc Knowledge Base at http://docs.cray.com/kbase.

S–2479–20 113

http://docs.cray.com/kbase

Cray XMT™ Programming Environment User’s Guide

#pragma mta fused muladd [on|off|default]

This directive specifies whether the compiler is allowed to combine
floating-point operations into a fused multiply-add operation. Default
behavior is to allow fused multiply-add operations to be performed
only when float optimization is turned on. When this option is turned
on, the compiler is allowed to, but not required to, fuse multiply-add
operations into one instruction. This directive applies to whatever
follows it textually in the current file. The directive stays in effect
until the end of the file or until another directive of the same kind
is encountered. When the on or off option is used, the directive
takes precedence over the -no_mul_add command-line option.
When the default option is used, the directive disables the
fused multiply-add operation if the -no_mul_add command-line
option was used; it enables the fused multiply-add operation if no
command-line option was used. The single round required
directive overrides the fused muladd off directive.

#ident "<string-constant>"

This directive inserts string-constant into the executable file
generated from this code. Strings that have been incorporated into the
executable in this manner can be retrieved from the executable using
commands such as strings or in some cases what. One possible
use of this directive would be to incorporate a version string such as
the following into the executable.

#ident "compiling.texinfo,v 1.15 2007/02/10 23:20:09"

This directive can be placed anywhere in a C file and is the
equivalent to declaring a static string constant.

#pragma mta [no] inline

When this directive is inserted immediately before a function
declaration, the compiler inlines that function wherever possible
throughout the user source program. If used with the no option,
inlining of the specified function is prevented. When the [no]
inline directive is not used, the compiler uses a standard, internal
heuristic to decide whether a function should be inlined. When
there is a conflict between the no inline directive and the
command-line options -no_inline_all, -inline_all,
-inline <name> or -no_inline <name>, no inline
takes precedence, regardless of whether it was specified on
the command line or in a directive. The command-line option
-no_inline_directed disables the inline directive but does
not affect the no inline directive.

114 S–2479–20

Compiler Directives and Assertions [C]

#pragma mta instantiate [none|all|used|local|default]

When used inside a template declaration, the effect of this directive
is limited to the uses of that template. When used outside a template
declaration, this directive sets the template instantiation mode for the
text following the directive and stays in effect until the end of the
file or until another directive of the same kind is encountered. This
directive takes one of the following options:

none No instantiations are created for any template
entities.

used All template entities that were used in the
compilation, including all static data members for
which there are template definitions, are instantiated.

all All template entities that are declared or referenced
in the compilation unit are instantiated. For each
fully instantiated template class, all of its member
functions and static data members are instantiated,
whether used or not. Nonmember template functions
are instantiated even if the reference was only a
declaration.

local Those template entities that were used in the
compilation are instantiated. This option is similar
to the used option, except that in this case, the
functions are given internal linkages. That is, the
compiler instantiates the functions and static data
members used in the compilation as local static
functions and local static variables.

default The instantiate mode switches back to either the
mode specified by the -instantiate switch on
the compiler command line, or, if no command line
switch was present, to the none option, which is the
default behavior when no mode is specified.

Where the mode specified with the instantiate pragma differs
from that specified with the -instantiate switch on the compiler
command line, the instantiate pragma takes precedence.

#pragma mta max concurrency c

The max concurrency c directive indicates that the next loop
should limit the concurrency to c. This directive can be used on any
parallel loop. For single processor parallel loops, the directive limits
the number of streams used by the parallel loop to no more than c.
For multiprocessor parallel loops, the directive estimates the number
of processors to use for the loop to max(1,c/num_streams), where

S–2479–20 115

Cray XMT™ Programming Environment User’s Guide

num_streams is the number of streams the compiler requests for each
processor. For loop future parallel loops, the directive limits to c the
number of futures created. The directive is ignored for explicityly
serial loops and cannot be used on a loop that also uses the use n
streams directive. This directive is useful for managing nested
parallelism in application that have multiple parallel loops running
concurrently, and to reduce or prevent contention for resources.
For more information on using this pragma see Limiting Loop
Parallelism in Cray XMT Applications in the CrayDoc Knowledge
Base at http://docs.cray.com/kbase.

#pragma mta max n processors

The max n processors pragma limits the number of processors
used by a multiprocessor parallel loop. This is useful for load
balancing in applications that have multiple parallel loops running
concurrently. For more information on using this pragma see
Limiting Loop Parallelism in Cray XMT Applications in the CrayDoc
Knowledge Base at http://docs.cray.com/kbase.

#pragma mta max n streams per processor [may merge]

This directive sets a limit of n on the number of streams per
processor that will execute a parallel loop. This limit applies to
an entire parallel region. Thus, by default, the compiler will not
combine loops with different maximum stream specifications into
the same region. This includes cases where one loop has a specified
maximum and the other loop does not. However, if you add the
optional may merge parameter, the compiler will ignore maximum
stream specifications when deciding how to construct parallel regions
(i.e., loops that would have been placed in the same region with no
max streams pragma will still be placed in the same region if max
streams pragmas with may merge are added). You can view how
parallel regions are constructed in the canal report (see the Cray
XMT Performance Tools User's Guide). For example, consider the
following two loops:

for (int i = 0; i < size_foobar; i++) {
bar[i] = size_foobar - i;

}

for (int i = 0; i < size_foobar; i++) {
foo[i] += bar[i]/2;

}

116 S–2479–20

http://docs.cray.com/kbase
http://docs.cray.com/kbase

Compiler Directives and Assertions [C]

The output from canal shows that they are both placed into parallel
region 1:

| for (int i = 0; i < size_foobar; i++) {
3 P | bar[i] = size_foobar - i;

| }
|
| for (int i = 0; i < size_foobar; i++) {

5 P | foo[i] += bar[i+c]/2;
| }

...
Parallel region 1 in main
...
Loop 2 in main in region 1
...
Loop 3 in main at line 4 in loop 2
...
Loop 4 in main in region 1
...
Loop 5 in main at line 8 in loop 4

If you add a max streams pragma to one of the loops, they are no
longer placed in the same region:

| for (int i = 0; i < size_foobar; i++) {
3 P | bar[i] = size_foobar - i;

| }
|
| #pragma mta max 50 streams per processor
| for (int i = 0; i < size_foobar; i++) {

6 P | foo[i] += bar[i+c]/2;
| }

...
Parallel region 1 in main
...
Loop 2 in main in region 1
...
Loop 3 in main at line 4 in loop 2
...
Parallel region 4 in main

Using max 50 streams per processor
...
Loop 5 in main in region 4
...
Loop 6 in main at line 9 in loop 5

Notice that canal also tells us that the requested maximum was
applied to region 4, which is the region that contains the loop with
the max streams pragma.

S–2479–20 117

Cray XMT™ Programming Environment User’s Guide

However, when you add the may merge option these two loops
remain in the same region:

| for (int i = 0; i < size_foobar; i++) {
3 P | bar[i] = size_foobar - i;

| }
|
| #pragma mta max 50 streams per processor may merge
| for (int i = 0; i < size_foobar; i++) {

5 P | foo[i] += bar[i+c]/2;
| }

...
Parallel region 1 in main

Using max 50 streams per processor
...
Loop 2 in main in region 1
...
Loop 3 in main at line 4 in loop 2
...
Loop 4 in main in region 1
...
Loop 5 in main at line 9 in loop 4

Note that the compiler has placed both loops into the same region
and that the stream limit was applied to the entire region. If multiple
limits are specified for the same region the compiler uses the smallest
limit.

Two restrictions apply to the use of this pragma:

• You cannot use this pragma with loop future loops.

• If this pragma is used within the same region as a use n
streams pragma with a conflicting value (for example a use
value that is higher than the max value) the max n streams
per processor pragma will take precedence over the use n
streams pragma.

118 S–2479–20

Compiler Directives and Assertions [C]

#pragma no mem init

This directive affects only the declaration statement immediately
following the directive and tells the compiler not to specially
initialize the full/empty bit (or bits) of any sync- or future-qualified
variables defined in that declaration statement. The directive affects
only the definition of variables, including class instance variables; it
may not be used on field declarations inside classes. For example:

struct C
{/* note that a '#pragma mta no mem init'would be ineffective here */

sync int k;
};
main() {

#pragma mta no mem init
static C c;

/* use the pragma on the instance of the class rather
than on the class definition */
}

When the no mem init directive is not used, the compiler
initializes the full/empty bit of a sync-qualified variable to full if the
variable itself is initialized or to empty if the variable itself is not
initialized. When the no mem init directive is used immediately
before a declaration statement, the full/empty bits for any variables
defined in that declaration are initialized to full if the variable itself is
initialized. If the variable itself is not initialized, the initial state of
the full/empty bit is undefined (although, in practice, uninitialized
variables stored as static or global variables end up with their
full/empty bit initialized to full.) For example:

/* full-empty bit is set to full for a[0] and empty for a[1].*/
sync int a[2]={0};
#pragma mta no mem init
/*full-empty bit is set to full for b[0] and is undefined for b[1].*/
sync int b[2]={0};
main(){}

S–2479–20 119

Cray XMT™ Programming Environment User’s Guide

#pragma mta no scalar expansion

This directive instructs the compiler not to expand scalar variables to
vector temporaries in the next loop. Such expansion allows you to
distribute the loop to enhance available parallelism or make effective
use of registers. However, if the loop iterates only a few times,
the increase in memory usage for the expansion may outweigh the
benefits. In this case, you can use the no scalar expansion
pragma to prevent expansion. For example, in the following code, the
use of no scalar expansion ensures that the definition of T
and its use remain in the same loop.

void no_scalar_example(double X[], const int N)
{

extern double Y[], Z[];
#pragma mta no scalar expansion

for (int i = 0; i < N; i++) {
const double T = Y[i*2];
X[i] = T + Z[i*3];

}
}

#pragma mta once

This directive, when placed inside an included file, instructs the C
preprocessor to include this file only once in any single compilation
unit regardless of the number of #include directives encountered.
In the following example, the file foo.h is included in the file
foo.c one time only.

file foo.h:
#pragma mta once
int i;

file foo.c:
#include "foo.h"
#include "foo.h"
#include "foo.h"

main() {

}

This directive may also be specified as #pragma once. The
directive may occur at any point in the file to be included.

#pragma mta single round required

This directive specifies that the compiler generate a fused
multiply-add instruction for every expression (or subexpression)
of the form X + Y*Z, X - Y*Z, or Y*Z - X. This selection can be
ambiguous, as shown in the following:

A = B*C + D*E

120 S–2479–20

Compiler Directives and Assertions [C]

In this case, the compiler is forced to choose one of two possible
implementations. To avoid ambiguity when control of rounding is
important, you should use a sequence of simpler assignments to make
the meaning clear. The scope of this directive is the entire source file.
The use of this directive overrides the -no_mul_add compiler flag
and the #pragma mta fused muladd off directive.

#pragma mta trace [on|off|default]

Enables or disables tracing of functions or returns to the default
heuristic if trace default is used. In order to actually use the
tracing information, however, a compiler flag must be set. By default,
a heuristic is used to decide whether to trace a function based upon
its size. This directive remains in effect until end-of-file or until
overridden by another directive of the same type. This directive
affects any function whose beginning follows the directive textually
in the current file.

#pragma mta trace level [int-const]

This directive enables the tracing of functions that contain at least
int-const lines, and disables the tracing of functions that contain
fewer lines. This directive is disabled unless either the -trace or
-trace_level option was specified on the command line. But
after it is enabled, this directive takes precedence over the -trace
and -trace_level command-line options. This directive remains
in effect until end-of-file or until overridden by another directive of
the same type. This directive affects any function whose beginning
follows the directive textually in the current file.

#pragma mta trace "<string-name>"

This directive generates a user-defined tracepoint in the executable
code. The tracepoint generated is named the value passed in
string-name. Using the -notrace option on the compiler command
line causes this directive to be ignored. For more information, see
Cray XMT Performance Tools User's Guide.

#pragma mta update

This directive tells the compiler that the next statement is an update
to a variable, and that the update should be done atomically. By
default, the compiler does not necessarily make updates atomic.
Using this directive does not place any restrictions on code
movement around this update statement such as would occur if the
variable were declared to be a sync-qualified variable. The variable
to be updated may be of any simple arithmetic or logical type. The

S–2479–20 121

Cray XMT™ Programming Environment User’s Guide

variable to be updated must occur as the target on the left side of the
statement and must occur exactly once as a subexpression on the
right side of the statement. For example,

void update_example(double A[], int i, int j){
extern double V;
extern double X;

// This is allowed
#pragma mta update

V = 1.0 + X + 3.0*V;

// This is allowed
#pragma mta update

A[i] = A[i] + A[j];

// But this is not allowed
#pragma mta update

A[i] = A[i] + A[i]; // compiler reports an error
}

This directive applies to the next statement only.

The following four directives control how the compiler parallelizes the loop that
immediately follows.

#pragma mta block schedule

When this directive appears before a loop that the compiler
parallelizes, each thread assigned to the execution of the loop
performs a contiguous subset of the total iterations. Each thread
executes the same number of iterations, within 1. For example, if
100 iterations are performed by 20 threads, the first thread executes
the first 5 iterations of the loop, the second thread executes the next
5 iterations, and so forth.

#pragma mta block dynamic schedule

This scheduling method combines aspects of both block and dynamic
scheduling. At execution time, threads are assigned one block
of iterations at a time through the use of a shared counter. After
completing an assigned block, each thread receives its next block
by accessing the counter. The number of blocks executed by each
thread depends on the execution time of the particular iterations in
the blocks assigned to the thread.

#pragma mta interleave schedule

When this directive appears before a loop that the compiler
parallelizes, each thread assigned to the execution of the loop
performs a subsequence of the total iterations, where the members
of the subsequence are regularly spaced. Each thread executes the
same number of iterations, within 1. For example, if 100 iterations

122 S–2479–20

Compiler Directives and Assertions [C]

are performed by 20 threads, the first thread executes iteration 1,
iteration 21, iteration 41, and so forth. This scheduling leads to better
load balancing for triangular loops. For example:

void interleave_example(const double X[100][100],
const double Y[100], double Z[100], const int N)

{
#pragma mta interleave schedule

for (int i = 0; i < N; i++) {
double sum = 0.0;
for (int j = 0; j < i; j++) {

sum += X[i][j] * Y[j];
}
Z[i] = sum;

}
}

Here, a block schedule results in poor load balancing with the
first threads finishing before the last threads. With an interleaved
schedule, the work is much better balanced.

#pragma mta dynamic schedule

At execution time, threads are assigned one iteration at a time
through the use of a shared counter. After completing an assigned
iteration, each thread receives its next iteration by accessing the
counter. The number of iterations executed by each thread depends
on the execution time of the particular iterations assigned to the
thread. One thread may happen to receive all the long-running
iterations, and thus might execute fewer iterations than any other
thread. This method is preferred when the execution time for
individual iterations may vary greatly, although its overhead makes
it less desirable for general use.

#pragma mta use n streams

This directive indicates that the compiler should request at least n
threads per processor for the next loop. When multiple loops are
contained in the same parallel region, the largest n is used. In the
absence of a directive, the compiler determines the number of threads
needed to saturate the processor. This directive affects the next loop
only.

S–2479–20 123

Cray XMT™ Programming Environment User’s Guide

C.2 Parallelization Directives
The compiler recognizes the following parallelization directives.

#pragma mta parallel [on|off|default|
single processor|multiprocessor|future]

This directive enables or disables automatic generation of
parallel code for a section of the program as well as choosing
the form of parallelism to use. The single processor,
multiprocessor, and future flags indicate the type of
parallelism to use. The off flag turns off parallelism until it is
turned back on or reaches the end of the file. The on flag turns on
parallel-code generation using the last specified form of parallelism.
The default flag uses the command-line option or the default form
of parallelism. By default, automatic generation of multiprocessor
parallel code is enabled. This directive applies to whatever follows
it textually in the current file. It stays in effect until the end of the
file or until another directive of the same kind is encountered. The
directive is ignored if the -nopar flag is used on the command line.

#pragma mta recurrence [on|off|default]

This directive enables/disables automatic parallelization of
recurrences and reductions. By default, recurrence-relation
parallelization is enabled. Recurrence relations are parallelized,
however, only in areas in which parallelization is otherwise allowed.
This directive applies to whatever follows it textually in the current
file. It stays in effect until the end of the file or until another directive
of the same kind is encountered. The directive is ignored if the
-nopar flag is used on the command line.

#pragma mta restructure [on|off|default]

This directive enables/disables loop restructuring and loop
transformations. By default, loop restructuring is allowed in areas in
which parallelization is allowed and it is turned off in areas in which
parallelization is not allowed. This directive applies to whatever
follows it textually in the current file. It stays in effect until the end

124 S–2479–20

Compiler Directives and Assertions [C]

of the file or until another directive of the same kind is encountered.
The directive is ignored if the -nopar flag is used on the command
line.

#pragma mta loop loop_mod[, loop_mod, ...]

This directive takes a comma-separated list of parallelization modes,
loop_mod, consisting of no more than one selection from each of
the following sets of possible loop modes:

restructure, norestructure

Enables/disables loop restructuring.

recurrence, norecurrence

Allows/disallows automatic parallel processing of
recurrences.

single processor, multiprocessor, future,
serial

Enables either a single or multiple processor or a
future form of parallelism or disables parallelism.

This directive enables the appropriate parallelization mode (or
modes) for the next loop only. It is ignored if the -nopar flag is
used on the command line.

#pragma mta serial

This directive disables parallelization for a section of the program. It
is equivalent to the parallel off directive. It is ignored if the
-nopar flag is used on the command line.

C.3 Semantic Assertions
Semantic assertions provide information to the compiler that could be proved true
about the program even though that proof is beyond the capabilities of the compiler.
Asserting this information often yields more effective compilation.

In the following list, the term variable-list refers to a comma-separated list of variable
names.

S–2479–20 125

Cray XMT™ Programming Environment User’s Guide

The compiler recognizes the following semantic assertions:

#pragma mta assert can replace variable-list

This directive asserts that it is safe to use scalar replacement of the
aggregates (objects or structs) in variable-list and the aggregates
pointed to by pointers in variable-list. This pragma is also a request
for scalar replacement of those aggregates even if the code was not
compilied with the -scalar_replacement option.

Items in variable-list must be aggregates or pointers to aggregates.
Any pointers must either be marked with a noalias pragma or
qualified with the restrict type qualifier. In addition, pointers
must point only to a single aggregate during a given invocation of
the routine in which the pragma appears. See Scalar Replacement
Section of Optimization Guide for more information.

#pragma mta assert loop can replace variable-list

This directive asserts that it is safe to use scalar replacement of the
aggregates (objects or structs) in variable-list and the aggregates
pointed to by pointers in variable-list for the loop that immediately
follows the pragma. This pragma is also a request for scalar
replacement of those aggregates even if the code was not compilied
with the -scalar_replacement option.

Items in variable-list must be aggregates or pointers to aggregates.
Any pointers must either be marked with a noalias pragma or
qualified with the restrict type qualifier. In addition, pointers
must point only to a single aggregate within the loop. See Scalar
Replacement Section of Optimization Guide for more information.

#pragma mta assert no replace variable-list

This directive tells the compiler not to use scalar replacement of the
aggregates (objects or structs) in variable-list and any aggregates
pointed to by pointers in variable-list. This is useful for fine-tuning
files that are compilied with the -scalar_replacement option.
See Scalar Replacement Section of Optimization Guide for more
information.

126 S–2479–20

Compiler Directives and Assertions [C]

#pragma mta assert parallel

This directive can appear before a loop construct and asserts that the
separate iterations of the loop may execute concurrently without
synchronization. It does not guarantee that the compiler parallelizes
the loop, but it is a strong suggestion to the compiler. This directive
affects the next loop only. The directive is ignored if the -nopar
flag is used on the command line.

#pragma mta assert local variable-list

This directive can appear inside a loop or inside the body of a
function, or at the top of the loop or function. For a loop, it asserts
that at the beginning of each iteration, the compiler can treat the
listed variables as undefined, and that their values are not referenced
after the completion of that iteration. For a function, it asserts that the
variables are undefined on entry to the function, and that their values
are not referenced after exiting the function. The behavior of this
directive is the same regardless of whether the loop or function to
which it is attached executes in a parallel or serial context.

void assert_local_example(double B[], const int N)
{

double A[2];
for (int i = 0; i < N; i++) {

#pragma mta assert local A
A[0] = i;
A[1] = 2*i;
B[i] = A[0]*A[1];

}
}

In the previous example, the directive asserts that A is used as a
scratch array in the loop. This directive must be inside the loop in
order to affect the loop.

S–2479–20 127

Cray XMT™ Programming Environment User’s Guide

#pragma mta assert no dependence variable-list
#pragma mta assert nodep variable-list

This directive can appear before a loop construct and asserts that if
a word of memory is accessed during execution of the loop through
any load or store derived from a variable in variable-list, the word is
accessed from exactly one iteration of the loop. You can also use the
word nodep in place of no dependence. For example:

void nodep_example(const int INDEX[], double IA[100][100],
const int N)

{
// You know that index[I] is never 1.

#pragma mta assert noalias *IA
#pragma mta assert no dependence *IA

for (int i = 0; i < N; i++) {
IA[i][1] = IA[i][INDEX[i]];

}
}

#pragma mta assert may reorder variable-list
#pragma mta may reorder variable-list

This directive allows the compiler to reorder accesses of the variables
in variable-list with respect to other volatile and global references in
the code. This directive is used to remove unnecessary restrictions
that may be placed on the order of execution. For example, in the
following code, if SYNCARRAY$ is a sync-qualified array, the order
of accesses to the various elements of the array are serialized, and
the loop is not parallelized:

void may_reorder_example(sync int SYNCARRAY$[10000])
{

for (int i = 0; i < 10000; i++) {
SYNCARRAY$[i] = 0;

}
}

128 S–2479–20

Compiler Directives and Assertions [C]

However, if we add a #pragma mta may reorder
SYNCARRAY$ directive before the loop, each reference to
SYNCARRAY$ may occur before or after any of the other references.
Explicit serialization is not imposed, and the loop is parallelizable.

void may_reorder_example(sync int SYNCARRAY$[10000])
{
#pragma mta may reorder SYNCARRAY$

for (int i = 0; i < 10000; i++) {
SYNCARRAY$[i] = 0;

}
}

#pragma mta assert may not reorder variable-list
#pragma mta may not reorder variable-list

This directive is used to deactivate the preceding may reorder
directive. The following example tells the compiler that accesses to
SYNCARRAY$ can be reordered only in the loop shown.

void maynot_reorder_example(sync int SYNCARRAY$[10000])
{

int i;
for (i = 0; i < 10000; i++) {

#pragma mta may reorder SYNCARRAY$
SYNCARRAY$[i] = 0;

#pragma mta may not reorder SYNCARRAY$
}

}

#pragma mta assert noalias variable-list
#pragma mta noalias variable-list

This directive tells the compiler that the variables in variable-list are
not used as aliases for any other variables. This information allows
the compiler to perform a more accurate dependence analysis of
loops involving these variables and to more aggressively parallelize
the code. This directive must follow the declaration of the variables
in variable-list and must lie within the scope in which these variables
are defined. The directive may also take the form #pragma
noalias variable-list.

#pragma mta assert par_newdelete

This directive is placed before the definition of a new array to
indicate that when the elements of the array are constructed, the
constructors should be invoked in parallel. To do this, use the
following syntax for automatic or external definitions.

#pragma mta assert par_newdelete
aclass foo[100];

In this case, the destructors are not fired in parallel; there is no way to
cause destructors to be fired in parallel for these kinds of definitions.

S–2479–20 129

Cray XMT™ Programming Environment User’s Guide

Alternatively, you can use the following syntax for dynamically
allocated arrays.

#pragma mta assert par_newdelete
foo = new aclass[100];

This directive is placed before the deletion of a dynamically allocated
array to indicate that when the elements of the array are destructed,
the destructors should be invoked in parallel. To do this, use the
following syntax:

#pragma mta assert par_newdelete
delete [] foo;
foo = 0;

C.4 Implementation Hints
The following directives provide implementation hints to the compiler about the
expected behavior of the program. The intent is to provide guidance for effective
optimization.

#pragma mta expect count integer-expression

This directive can appear before a loop construct. The
integer-expression is a constant expression and serves as an estimate
of the number of times the loop will iterate. The compiler optimizes
the implementation of the loop based on this value. A constant
integer-expression is one that can be evaluated completely by the
front end of the compiler. It may not use the following:

• An expression that syntactically looks like a function call (such as
sizeof or C++ style-type conversions)

• Floating-point literals

• GNU extensions

It may refer to members of enumerations.

#pragma mta expect [true|false]

This directive can appear before a logical if and specifies the
expected value of the associated predicate. You can use this directive
for branch prediction and choosing the best parallel implementation
of a containing loop depending on sparse versus dense branching.

#pragma mta expect case n

This directive is similar to the expect [true|false] directive
except that n is an integer. This directive must only appear before a
switch statement. It tells the compiler that case arm n is expected.

130 S–2479–20

Compiler Directives and Assertions [C]

The compiler tests for case n first, and all other cases after that. n
must be an integer constant, in any radix. It may not be an integer
expression, nor may it be a member of an enumeration.

#pragma mta expect (predicate)

This directive can appear before any executable statement and
suggests that the compiler should optimize code near that point. This
suggestion is based on the assumption that the predicate typically
evaluates to true. This directive is deprecated and should not be used.

#pragma mta expect parallel

Deprecated form of expect parallel context directive that
follows.

#pragma mta expect parallel context

This directive is inserted immediately before a function declaration.
It tells the compiler that the following function is expected to
be called in a highly parallel context. In this case, the compiler
reduces the total number of instructions issued by the function rather
than the serial execution time. By default, the compiler assumes
that a function is called in a serial context unless the function is
marked with the expect parallel context directive or the
-parcontext flag was used on the compiler command line. This
directive affects the next function only.

#pragma mta expect serial context

This directive is inserted immediately before a function declaration.
It tells the compiler that the following function is expected to be
called in a serial context. In this case, the compiler reduces the serial
execution time for the function. By default, the compiler assumes
that a function is in a serial context unless the -parcontext
flag was used on the compiler command line or the function is
marked with the expect parallel context directive in
the code. The expect serial context directive overrides
the -parcontext compiler flag for the function immediately
following the directive. This directive affects the next function only.

S–2479–20 131

Cray XMT™ Programming Environment User’s Guide

132 S–2479–20

Condition Codes [D]

You can test the condition codes generated by an expression by using the
MTA_TEST_CC intrinsic. The eight possible condition code values and their default
meanings are shown in the following table. The Examples column show the
operations that meet the criteria for the condition code, where 0, p, and n stand for
zero, a positive integer, and a negative integer, respectively. For more information,
see Testing Expressions Using Condition Codes on page 34 and Chapter 4 of the
Cray XMT Principles of Operation.

Table 2. Condition Codes

Name Meaning Examples

COND_ZERO_NC Zero, no carry 0 = 0+0

COND_NEG_NC Negative, no carry n = p+n, n = p-p

COND_POS_NC Positive, no carry p = p+p, p = p-n

COND_OVFNAN_NC Overflow/NaN, no carry n = p+p, n = p-p

COND_ZERO_C Zero, carry 0 = n+p, 0 = n-n

COND_NEG_C Negative, carry n = n+n, n = n-p

COND_POS_C Positive, carry p = n+p, p = n-n

COND_OVFNAN_C Overflow/NaN, carry p = n+n, p = n-p

Most of the important condition masks have one or more names. The named
condition masks are shown in Table 3. For more information, see Cray XMT
Programming Model.

Table 3. Condition Masks

Name Description

Condition Mask: Manifest

IF_ALWAYS Always

IF_NEVER Never

Condition Mask: Equality

IF_EQ y = z (integer, unsigned, float)

S–2479–20 133

Cray XMT™ Programming Environment User’s Guide

Name Description

IF_ZE x = 0 (integer, unsigned, float)

IF_F x = 0 (logical)

IF_NE y != z (integer, unsigned, float)

IF_NZ x != 0 (integer, unsigned, float)

IF_T x != 0 (logical)

Condition Mask: Integer Comparison

IF_ILT y < z (integer)

IF_IGE y >= z (integer)

IF_IGT y > z (integer)

IF_ILE y <= z (integer)

IF_IMI x < 0 (integer)

IF_IPZ x >= 0 (integer)

IF_IPL x > 0 (integer)

IF_IMZ x <= 0 (integer)

Condition Mask: Unsigned Comparison

IF_ULT y < z (unsigned)

IF_UGE y >= z (unsigned)

IF_UGT y > z (unsigned)

IF_ULE y <= z (unsigned)

Condition Mask: Float Comparison

IF_FLT y < z (float)

IF_FGE y >= z (float)

IF_FGT y > z (float)

IF_FLE y <= z (float)

Condition Mask: Other Tests

IF_IOV x overflowed (integer)

IF_FUN y and z are unordered (float)

IF_CY Carry

IF_NC No carry

Condition Mask: Specific Conditions

IF_0 Zero, no carry

IF_1 Negative, no carry

IF_2 Positive, no carry

134 S–2479–20

Condition Codes [D]

Name Description

IF_3 Overflow/NaN, no carry

IF_4 Zero, carry

IF_5 Negative, carry

IF_6 Positive, carry

IF_7 Overflow/NaN, carry

IF_N0 Not Zero, no carry

IF_N1 Not Negative, no carry

IF_N2 Not Positive, no carry

IF_N3 Not Overflow/NaN, no carry

IF_N4 Not Zero, carry

IF_N5 Not Negative, carry

IF_N6 Not Positive, carry

IF_N7 Not Overflow/NaN, carry

S–2479–20 135

Cray XMT™ Programming Environment User’s Guide

136 S–2479–20

Data Types [E]

This chapter provides information about the C and C++ language data types that
you can use with Cray XMT compilers.

The floating-point types are float, double, and long double. Their sizes are
4, 8, and 16 bytes, respectively.

The integer types short and unsigned short are each 4 bytes long. The data
types int, long, long long, and their unsigned equivalents are each 8 bytes
long. The compiler flag -short16 converts all short and unsigned short
integers to 2 bytes. The compiler flag -i4 converts all short and unsigned
short integers to 2 bytes and all int and unsigned int to 4 bytes.

The two character types char and unsigned char are each 1 byte long.
Additionally, the C++ compiler supports a 1-byte boolean type, bool, and the
boolean constants true and false. The compiler flag -no_bool turns off
recognition of these three keywords.

S–2479–20 137

Cray XMT™ Programming Environment User’s Guide

The Cray XMT C and C++ compilers also support the ten nonstandard integer types
in the following list. The -short16 and -i4 compiler flags do not affect the size of
these types, so it is preferable that you use these in exported include files.

__short16 A 2-byte (16-bit) value.

unsigned __short16

A 2-byte (16-bit) value.

__short32 A 4-byte (32-bit) value.

unsigned __short32

A 4-byte (32-bit) value.

__int16 A 2-byte (16-bit) value.

unsigned __int16

A 2-byte (16-bit) value.

__int32 A 4-byte (32-bit) value.

unsigned __int32

A 4-byte (32-bit) value.

__int 64 An 8-byte (64-bit) value.

unsigned __int64

An 8-byte (64-bit) value.

138 S–2479–20

Keywords [F]

The C and C++ languages reserve certain words for use as keywords. You cannot use
these words for any other purpose. For example, you cannot use them as identifiers
such as variable names. Some of these reserved words are required by the standards
for the C and C++ languages; others support programming on the Cray XMT.

Table 4. C/C++ Keywords Recognized by the Cray XMT Compiler

auto default float return switch while

break do for short typedef

case double goto signed union

char else int sizeof unsigned

const enum long static void

continue extern register struct volatile

When you use the -traditional compiler switch on the C command line, it
disables the keywords const, signed and volatile.

Table 5. Standard C++ Keywords Recognized by the Cray XMT Compiler

and const_cast namespace protected try

and_eq delete new public typeid

bitand dynamic_cast not reinterpret_cast typename

bitor explicit not_eq static_cast using

bool false operator template virtual

catch friend or this wchar_t

class inline or_eq throw xor

compl mutable private true xor_eq

S–2479–20 139

Cray XMT™ Programming Environment User’s Guide

The -no_bool compiler switch disables the bool, false and true keywords.
The -no_wchar compiler switch disables the wchar_t keyword. The -cfront
compiler switch disables the bool, explicit, false, true and typename
keywords. The -no_alternative_tokens compiler switch disables the
alternate operator keywords and, and_eq, bitand, bitor, compl, not,
not_eq, or, or_eq, xor, and xor_eq.

In addition to the keywords required by the language standards, the Cray XMT
platform uses several additional reserved words. Most of the additional keywords
reserved by Cray for use on the Cray XMT have two forms: one beginning with an
alphabetic character and one beginning with a double underscore (__). Use the
-no_mta_ext compiler switch to disable Cray XMT keywords beginning with
a letter of the alphabet. However, Cray XMT keywords beginning with a double
underscore are not affected by the -no_mta_ext compiler switch. In addition, the
keywords __int16, __int32, __int64, __short16 and __short32 are
not affected by the -i4 and -short16 compiler switches. For this reason, you
sometimes see the double underscore format in header files to preserve the meaning
of the keywords.

When using the type qualifier keywords to qualify a pointer type, follow the same
rules as for the standard C and C++ type qualifiers. For example, in the following
declaration:

int * sync f;

f is a sync variable of type pointer to int, but in the following declaration:

sync int * f;

f is a pointer to a sync variable of type int.

140 S–2479–20

Keywords [F]

The following reserved words have been added by Cray to both the C and C++
languages for use on the Cray XMT platform.

future
__future Both a type qualifier and a statement. Future variables are initially

set to a full state. A future variable is set to an empty state when the
future statement executes and set to a full state when the return
statement of the future executes. A read or write operation runs
successfully when a future variable is set to a full state and leaves
the variable set to a full state. For an example that shows the use
of the future variable and future statement, see Cray XMT
Programming Model.

__int16 Integer type. A 2-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

__int32 Integer type. A 4-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

__int64 Integer type. An 8-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

restrict

Type qualifier. Similar in function to the noalias compiler
directive. See Semantic Assertions on page 125. When you declare a
pointer with the restrict type, it indicates that the code does not
use aliases for that pointer and the compiler can perform additional
optimizations, such as the implicit parallelization of loops.

__short16 Integer type. A 2-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

__short32 Integer type. A 4-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

sync
__sync Type qualifier. The system atomically reads sync variables when in a

full state and then sets them to an empty state. The system atomically
writes sync variables when in an empty state and then sets them to a
full state. The system automatically sets uninitialized sync variables
to an empty state unless you use the -no_purge compiler switch;
the system sets initialized sync variables to a full state.

task
__task Reserved for future use.

S–2479–20 141

Cray XMT™ Programming Environment User’s Guide

The following reserved words have been added by Cray to the C language for use on
the Cray XMT platform. Keywords beginning with an underscore have also been
added by Cray to the C++ language. The keywords new, delete, and protected
are required by the C++ standard and did not need to be added to that language.

new
__new Unary operator; has the same format as the new operator in the

C++ language. Allocates space for an object of the specified type,
initializes the full-empty bit of any sync or future variables that the
new object contains, and returns the address of the new object. The
system initializes the sync variable to an empty state and the future
variable to a full state. The actual contents of these variables, as for
any variables contained by the new object, is undefined.

delete
__delete Unary operator; has the same format as the delete operator in

the C++ language. Deallocates space that was previously allocated
using the new operator.

protected
__protected

Reserved for future use.

142 S–2479–20

MTA_PARAMS [G]

The environment variable MTA_PARAMS is used by the Cray XMT user runtime. The
following list contains the values that you can set for MTA_PARAMS.

debug_data_prot

Waits for the debugger to attach rather than exiting when a data
protection or poison error occurs. This parameter is useful while
troubleshooting a specific problem. However, Cray does not
recommend that you use this parameter during normal operations
because any error that occurs causes the runtime to wait for the
debugger to attach. This results in the runtime holding on to
resources previously used by the program.

do_backtrace

Dumps registers of all active streams when a trap occurs. This
parameter may be useful during troubleshooting, although it
generates a lot of information. If the runtime system has become
corrupted, the registers may fail to dump.

echo Prints a list of parameters to the screen. This parameter toggles on
and off.

exit_on_trace_fail

Sets the default behavior to kill the program execution when tracing
fails to initialize.

ft_traps options

Enables various floating-point traps depending upon which options
you set. See the section of Programming Considerations for
Floating-point Operations in Cray XMT Programming Model. You
can select from the following list of options:

i Invalid. Traps invalid floating-point numbers.

z Zero-divide. Traps operations that are attempting to
divide a floating-point number by 0.0. This type of
operation would create a NaN.

o Overflow. Traps overflows that occur.

S–2479–20 143

Cray XMT™ Programming Environment User’s Guide

u Underflow. Traps underflows that occur. Underflows
produce a rounded result smaller in magnitude
than 0x0010000000000000, or about
2.225e-308.

x Inexact. Traps subnormal numbers.

max_readypool_retries n

Sets the maximum number n of retries that an idle thread can take
when checking random ready pools for new work.

mmap_buffer_size n

Sets the variable size of the persistent mmap buffers, where n is
the size in words. The maximum value, which is also the default,
is 16,777,216 words (16 GB). The size of the persistent buffers
determines how much tracing data can be gathered before requiring a
dump of the gathered data to the trace.out file.

must_dump_size n

Specifies the minimum number of words that must be present in a
trace buffer before allowing the trace buffer to dump to the mmap
buffer. The default value is 512 words. If an application terminates
prematurely and the trace.out file is missing information, reduce the
size of this buffer to force more frequent dumping.

num_procs n

Sets the maximum number of processors to use. This parameter is the
same as using the command mtarun -m n.

num_readypools n

Sets the maximum number n of ready pools available for the entire
task. Ready pools are used to schedule futures.

no_prereserve

Prevents the runtime from reserving 3 streams to use for attaching
the debugger.

144 S–2479–20

MTA_PARAMS [G]

pc_hash n, m, l

Specifies the hash size n, age threshold m, and dump threshold l of an
event. The has size determines the number of event types that can be
hashed at one time. The age threshold determines the age at which
an event is considered stale, in which case it will be discarded rather
than reported. The age threshold also determines the frequency with
which events are captured in event records. The dump threshold
is the minimum number of events that must have been hashed to a
particular location before that location is captured as an event record
when the next age threshold sample is taken.

stream_limit n

Sets the maximum number of streams to use on each processor. The
system imposed limit is 100 streams. However, while debugging a
program, it may be easier to perform debugging if this parameter is
set to a smaller number. The minimum value is 5.

S–2479–20 145

Cray XMT™ Programming Environment User’s Guide

146 S–2479–20

LUC API Reference [H]

The XMT-PE contains two user-level libraries for LUC, libluc.a, that use a C++
interface. One version of libluc.a is built for Linux applications and one is built
for MTK applications. Both versions present the same interface to LUC applications.

For LUC applications, you use the <luc/luc_exported.h> header file.

H.1 LucEndpoint Class
The LucEndpoint class defines a LucEndpoint object.

S–2479–20 147

Cray XMT™ Programming Environment User’s Guide

The LucEndpoint class provides the interface methods that the application uses to
call functions on a remote server.

class LucEndpoint {
public:

/***
* Shared functions
***/

// initialize the service and start the client or server thread
virtual luc_error_t startService(uint_t threadCount=1,

uint_t myRequestedPid=PTL_PID_ANY);

// stop the client or server thread and shutdown the service
virtual luc_error_t stopService(void);

// returns the endpoint ID
virtual luc_endpoint_id_t getMyEndpointId(void);

// set per-endpoint configuration values
virtual luc_error_t setConfigValue(luc_config_key_t key, uint64_t value);

// read per-endpoint configuration values
virtual luc_error_t getConfigValue(luc_config_key_t key, uint64_t *value);

/***
* Client functions
***/

// client asynchronous RPC
virtual luc_error_t remoteCall(luc_endpoint_id_t serverEndpoint,

luc_service_type_t serviceType,
int serviceFunctionIndex,
void *userData,
size_t userDataLen,
void * userHandle,
LUC_Completion_Handler userCompletionHandler);

// client synchronous RPC
virtual luc_error_t remoteCallSync(luc_endpoint_id_t serverEndpoint,

luc_service_type_t serviceType,
int serviceFunctionIndex,
void *inputData,
size_t inputDataLen,
void *outputData,
size_t *outputDataLen);

/***
* Server functions
***/

virtual luc_error_t registerRemoteCall(luc_service_type_t serviceType,
int serviceFunctionIndex,
LUC_RPC_Function_InOut theFunction);

};

148 S–2479–20

LUC API Reference [H]

H.2 luc_allocate_endpoint Function
Use luc_allocate_endpoint to construct LucEndpoint objects. The
default value for LucServiceType is LUC_CLIENT_SERVER. See LUC Type
Definitions on page 159.

LucEndpoint *luc_allocate_endpoint(LucServiceType_t etype);

H.3 LUC Methods
The LucEndpoint class uses the following methods:

• startService

• stopService

• getMyEndpointID

• remoteCall

• remoteCallSync

• registerRemoteCall

• setConfigValue

• getConfigValue

H.3.1 startService Method

Initializes the LucEndpoint object.

Syntax

luc_error_t startService(uint_t threadCount=1,
ptl_pid_t requestedPid = PTL_PID_ANY);

This method puts the object into a state where it can initiate and respond to RPC
requests. It initializes internal network components and creates the required number
of threads. The MTK version of the library allocates I/O buffers for the endpoint as
part of this initialization.

For client only objects, the threadCount parameter is ignored.

The MTK version of the library ignores both parameters.

S–2479–20 149

Cray XMT™ Programming Environment User’s Guide

Parameters

threadCount

Specifies the number of server threads that are assigned to an object.

Note: The MTK LUC library ignores the threadCount
parameter.

requestedPid

Specifies a Portals process ID to use when setting up the endpoint.
By default, the LUC library chooses a Portals process ID to use.

Note: MTK ignores the requestedPid parameter.

Return Codes

LUC_ERR_OK The service was stopped.

LUC_ERR_ALREADY_STARTED

User attempted to startService on a previously started
LucEndpoint object

H.3.2 stopService Method

Stops the LucEndpoint object.

Syntax

luc_error_t stopService(void);

Undoes the work of startService. stopService waits for running threads
to finish, then terminates them. It frees up any memory and network resources
associated with the endpoint that were allocated in a previous startService call.

Return Codes

LUC_ERR_OK The service was stopped.

LUC_ERR_NOT_STARTED

The service has not yet been started. To start the service, use the
startService method.

H.3.3 getMyEndpointID Method

Returns the ID of the LucEndpoint object.

Syntax

luc_endpoint_id_t GetMyEndpointId(void);

150 S–2479–20

LUC API Reference [H]

Gets the ID of the endpoint. This method is valid only after startService has
returned.

Return Codes

This method returns the endpoint's identifier on successful completion.

LUC_ENDPOINT_INVALID

The endpoint is invalid because the service has not yet been started.
To start the service, use the startService method.

H.3.4 remoteCall Method

Makes an asynchronous remote procedure call.

Syntax

luc_error_t remoteCall(luc_endpoint_id_t serverEndpoint,
luc_service_type_t serviceType,
int serviceFunctionIndex,
void *userData,
size_t userDataLen,
void * userHandle,
LUC_Completion_Handler userCompletionHandler);

The asynchronous RPC mechanism is useful in cases where the caller does not need
assurance that the remote call actually happened. Locally detected errors may be
returned but remote errors are not returned directly. Remote-side success or failure
are returned if the caller provides a completion handler. The completion handler is
guaranteed to execute once and only once—when the remote call is known to have
executed or has been abandoned.

This method call is valid only on started objects. Multiple concurrent callers of this
method and the synchronous version are supported.

S–2479–20 151

Cray XMT™ Programming Environment User’s Guide

Parameters

serverEndpoint

Specifies the endpoint identifier for the desired server of this RPC.

serviceType
serviceFunctionIndex

These parameters specify the particular remote function to
invoke on a server. The server uses the same values in its
registerRemoteCall method.

userData
userDataLen

Specifies an optional pointer to input data and the length of the data.

userHandle Contains the value passed to the specified
userCompletionHandler when it is invoked.

userCompletionHandler

Contains a function pointer for a function to be called when the
remote procedure call completes.

Return Codes

LUC_ERR_OK The remote procedure call was launched.

LUC_ERR_IO_ERROR

An underlying transport error occurred. The remote procedure call
may or may not have launched.

LUC_ERR_TOO_LARGE

The remote procedure is trying to return more data than the client can
accept. This return code is generated when servers return data to an
asynchronous caller.

LUC_ERR_NOT_STARTED

The service has not yet been started. To start the service, use the
startService method.

LUC_ERR_BAD_ADDRESS

Indicates an attempt to use a NULL input or output buffer while
specifying a non-zero size for the corresponding buffer. This error is
returned by the remoteCall and remoteCallSync methods.

152 S–2479–20

LUC API Reference [H]

H.3.5 remoteCallSync Method

Makes a synchronous remote procedure call.

Syntax

luc_error_t remoteCallSync(luc_endpoint_id_t serverEndpoint,
luc_service_type_t serviceType,
int serviceFunctionIndex,
void *inputData,
size_t inputDataLen,
void *outputData,
size_t *outputDataLen);

The synchronous procedure call is used in synchronous programming models or in
cases where the caller expects the remote function to return data.

This method is valid only on started objects. Multiple concurrent callers of this
method and the asynchronous version are supported.

Parameters

serverEndpoint

Specifies the endpoint identifier for the desired server of this RPC.

serviceType
serviceFunctionIndex

Specifies the particular remote function to invoke on a server
and its service type. The server uses the same values in its
registerRemoteCall method.

inputData
inputDataLen

Specify an optional pointer to input data and the length of the data.

outputData (input parameter)

Specifies an optional buffer for return data from the RPC.

outputDataLen (input/output parameter)

As an input parameter, specifies the maximum amount of data that
the application will accept from the RPC (the allocated size of
outputData). When remoteCallSync returns, this value will
be changed to the actual amount of returned data.

S–2479–20 153

Cray XMT™ Programming Environment User’s Guide

Return Codes

LUC_ERR_OK The remote procedure call was completed. Data may have been
returned.

LUC_ERR_NOT_STARTED

The service has not yet been started. This error is returned by the
stopService, To start the service, use the startService
method.

LUC_ERR_BAD_ADDRESS

Indicates an attempt to use a NULL input or output buffer while
specifying a non-zero size for the corresponding buffer.

asynchronous return codes

Any of the asynchronous calls return codes and completion handler
codes may be returned to indicate failures. Refer to the return codes
section in remoteCall Method on page 151.

application defined return codes

Any return codes defined by the application.

H.3.6 registerRemoteCall Method

Registers a remote application function with the server.

Syntax

luc_error_t registerRemoteCall(luc_service_type_t serviceType,
int serviceFunctionIndex,
LUC_RPC_Function_InOut theFunction);

This method registers the specified function to be executed whenever an incoming
request matches the specified service type and function index to be associated with
the application function.

This method operates independent of startService and stopService. It may
be called for an object in any state. (Remote procedure calls are unregistered only
when the object is destroyed).

154 S–2479–20

LUC API Reference [H]

Parameters

serviceType

Specifies the service type of the service being provided.

serviceFunctionIndex

Specifies the specific function (by index) being provided by
theFunction.

theFunction

Specifies the application defined function to be called by LUC when
RPC requests arrive at the endpoint with a matching serviceType
and serviceFunctionIndex.

Return Codes

LUC_ERR_OK The function was registered successfully.

LUC_ERR_BAD_PARAMETER

The specified service type or function index is out-of-range.

LUC_ERR_ALREADY_REGISTERED

The specified service type or function index is already occupied.

LUC_ERR_OTHER

The prototype can handle only a fixed number of function
registrations for each server object.

H.3.7 setConfigValue Method

Sets configuration values for LUC.

Syntax

luc_error_t setConfigValue(
luc_config_key_t key,
uint64_t value);

Parameters

key Identifies the configuration option to set. The following options can
be set:

LUC_CONFIG_LOG_LEVEL

This configuration key alters the amount of LUC
internal debugging information that is printed to
standard error.

S–2479–20 155

Cray XMT™ Programming Environment User’s Guide

Values to use for this option:

LUC_DBG_NONE — The library logs assertions
that are fatal to the application.

LUC_DBG_LOW — The library logs fatal assertions
and errors.

LUC_DBG_MEDIUM — The library logs errors and
warnings.

LUC_DBG_HIGH — The library logs errors,
warnings, and verbose information about RPCs and
the endpoints.

LUC_CONFIG_SERVER_RPC_COUNT

This configuration key sets the number of RPCs that
a server endpoint should be able to handle at once.

Values to use for this option: 1 to 13106, inclusive.

LUC_CONFIG_CLIENT_RPC_TIMEOUT

The number of seconds that a server endpoint will
wait for an expected message from a client before
failing the RPC.

Values to use for this option: Any number greater
than zero.

LUC_CONFIG_SERVER_RPC_TIMEOUT

The number of seconds that a server endpoint will
wait for an expected message from a client before
failing the RPC.

Values to use for this option: Any number greater
than zero.

LUC_CONFIG_MAX_NEARMEM_SIZE

This configuration key adjusts the amount of nearby
memory allocated for the endpoint's small I/O buffer
region. This buffer region may not be disabled.

This key is not valid for Linux endpoints.

156 S–2479–20

LUC API Reference [H]

Values to use for this option: powers-of-two from 1
MB to 256 MBs, inclusive.

LUC_CONFIG_SWAP_CLIENT_INBOUND
LUC_CONFIG_SWAP_CLIENT_OUTBOUND
LUC_CONFIG_SWAP_SERVER_INBOUND
LUC_CONFIG_SWAP_SERVER_OUTBOUND

This configuration key uses boolean flags to enable
byte swapping on messages sent to a LUC client,
from a LUC client, to a LUC server, and from a LUC
server, respectively.

These are not valid for Linux endpoints.

Values to use for this option: 0 and 1.

LUC_CONFIG_CLIENT_RPC_COUNT

This configuration key sets the maximum number of
concurrent client RPCs on a single endpoint.

Values to use for this option: 1 to 13106, inclusive.

LUC_CONFIG_MAX_LOCAL_ENDPOINTS

This configuration key sets the maximum number
of started LUC endpoints that may exist in a single
Linux process.

This key is not valid for MTK endpoints.

Values to use for this option: 1 to 512, inclusive.

LUC_CONFIG_MAX_LARGE_NEARMEM_SIZE

This configuration key adjusts the amount of nearby
memory allocated for the endpoint's large I/O buffer
region.

This key is not valid for Linux endpoints.

Values to use for this option: powers of two from 1
MB to 2 GB, inclusive. A special value of zero (0)
may be used to disable this memory region and force
all I/O memory requests to be handled by the small
memory buffer.

LUC_CONFIG_MAX_LARGE_MEM_REQUEST

This configuration key sets the largest internal
memory request that will be handled by the
endpoint's large I/O buffer region.

S–2479–20 157

Cray XMT™ Programming Environment User’s Guide

This key is not valid for Linux endpoints.

Values to use for this option: powers of two from 1
MB to 256 MBs, inclusive.

LUC_CONFIG_SMALL_NEARMEM_SIZE

This configuration key adjusts the amount of nearby
memory allocated for the endpoint's small I/O buffer
region.

This key is not valid for Linux endpoints.

Values to use for this option: powers of two from 1
MB to 256 MBs, inclusive. This buffer region may
not be disabled.

LUC_CONFIG_MAX_SMALL_MEM_REQUEST

This configuration key sets the largest internal
memory request that will be handled by the
endpoint's small I/O buffer region.

This key is not valid for Linux endpoints.

Values to use for this option: powers of two from 64
KBs to 256 MBs, inclusive.

value Identifies the value to set for the corresponding configuration key.

Return Codes

LUC_ERR_OK The operation was successful.

LUC_ERR_INVALID_KEY

The key parameter is not one of the predefined LUC configuration
keys (LUC_CONFIG_*).

LUC_ERR_INVALID_STATE

The setConfigValue method cannot change the key value
because of the endpoint's current state. The endpoint must be stopped
to set the nearby memory region configuration values.

H.3.8 getConfigValue Method

Returns the value for a specified configuration option for LUC.

Syntax

luc_error_t getConfigValue(
luc_config_key_t key,
uint64_t *value);

158 S–2479–20

LUC API Reference [H]

Parameters

key Identifies the configuration option to get. For a list of configuration
options, see setConfigValue Method on page 155.

value Returns a pointer to the value for the corresponding configuration
key.

Return Codes

LUC_ERR_OK The operation was successful.

LUC_ERR_INVALID_KEY

The key parameter is not one of the predefined LUC configuration
keys (LUC_CONFIG_*).

H.4 LUC Type Definitions
LucServiceType defines the type of the LucEndpoint object.

typedef enum {
LUC_SERVER_ONLY = 1,
LUC_CLIENT_ONLY,
LUC_CLIENT_SERVER

} LucServiceType_t;

Endpoints may be constructed to behave as a client and a server or they can be
specialized to be one or the other. The LucServiceType typedef describes
what type of LucEndpoint object is being created.

LUC remote procedure calls can be grouped by their intended service type. The
following service types are predefined. The programmer can specify other application
specific values or use the predefined values.

typedef u_int32_t luc_service_type_t;

#define LUC_ST_QueryManager 0
#define LUC_ST_QueryEngine 1
#define LUC_ST_Coordinator 2
#define LUC_ST_Restore 3
#define LUC_ST_Snapshot 4
#define LUC_ST_UpdateManager 5
#define LUC_ST_UpdateEngine 6
#define LUC_ST_OutputLog 7
#define LUC_ST_Any 8
#define LUC_ST_ErrorLog 9

Error return codes are described with the methods that return them. The programmer
can specify other application specific error return codes or use the predefined values.

typedef int32_t luc_error_t;

S–2479–20 159

Cray XMT™ Programming Environment User’s Guide

H.5 LUC Callback Functions
The LucEndpoint class uses the following callback functions:

• LUC_RPC_Function_InOut

• LUC_Mem_Avail_Completion

• LUC_Completion_Handler

H.5.1 LUC_RPC_Function_InOut

The LUC runtime calls LUC_RPC_Function_InOut callback when a remote
client makes a request.

The application must call the registerRemoteCall method to register
LUC_RPC_Function_InOut callback functions.

The application should return LUC_ERR_OK when successful. The application
should not return or redefine any other predefined return codes.

Syntax

typedef luc_error_t (*LUC_RPC_Function_InOut)(void *inData,
uint64_t inDataLen,
void ** outData,
uint64_t *outDataLen,
void ** completionArg,
LUC_Mem_Avail_Completion *completionFctn,
luc_endpoint_id_t callerEndpoint);

160 S–2479–20

LUC API Reference [H]

Parameters

inData (input parameter)

Specifies a pointer to a buffer containing input data to the remote
function. NULL if there is no input data.

inDataLen (input parameter)

Specifies the length of the inData buffer.

outData (output parameter)

Specifies a pointer to the output data returned by the application.
NULL if there is no output data.

outDataLen (output parameter)

Specifies the length of the data returned by the application if there is
returning data.

completionArg (output parameter)

Specifies the value to pass to completionFctn.

completionFctn (output parameter)

Specifies a pointer to a LUC_Mem_Avail_Completion
callback function called when the buffer is available. Used when
LUC_RPC_Function_InOut returns data to the LUC runtime
and needs to be notified that the buffer is available for use.

callerEndpoint (input parameter)

Specifies the input endpoint identifier of the client's LucEndpoint
object passed to the remote function.

H.5.2 LUC_Mem_Avail_Completion

The LUC_Mem_Avail_Completion callback function notifies
LUC_RPC_Function_InOut that its buffer is available for use.

Syntax

typedef void (*LUC_Mem_Avail_Completion)(void * userHandle);

Parameters

userHandle LUC passes in the completionArg value returned by the initiating
LUC_RPC_Function_InOut function.

S–2479–20 161

Cray XMT™ Programming Environment User’s Guide

H.5.3 LUC_Completion_Handler

The LUC_Completion_Handler callback function is used by a client for
asynchronous remote procedure calls.

LUC_Mem_Avail_Completion

Syntax

typedef void (*LUC_Completion_Handler)
(luc_endpoint_id_t originalDestAddr,
luc_service_type_t originalServiceType,
int originalFunctionIndex,
void * userHandle,
luc_error_t remoteError);

The LUC runtime will call the function specified in the remoteCall method that
follows this signature when the remote call has completed.

Parameters

originalDestAddr
originalServiceType
originalFunctionIndex

Specifies the destination address, service type, and function index.
LUC passes in the values used by the remoteCall method that
initiated this RPC being completed.

userHandle LUC passes in the value specified by the remoteCall method that
initiated this RPC being completed.

remoteError

The ultimate error code for the RPC from either the LUC library or
the server application's registered function. All of the values returned
by remoteCallSync (including application defined return codes)
may be specified here.

H.6 LUC Return Codes
The meaning of some predefined return codes are dependent on the method that
returns the code. Applications may define application specific codes.

LUC_ENDPOINT_INVALID

Indicates that the object has not been started and does not have a
valid endpoint identifier.

162 S–2479–20

LUC API Reference [H]

LUC_ERR_OK • The function was registered successfully.

• This object is ready to accept remote requests.

• The remote procedure call was launched.

• The remote procedure call was completed.

• The endpoint has been stopped successfully.

• The function was prepared for transmission. The application's
completion handler is guaranteed to fire with a real status at
some later point.

LUC_ERR_MAX

Special value set to be the highest numerical error code generated
by the library. Applications may specify their own error codes to
be greater than this value.

LUC_ERR_BAD_ADDRESS

Indicates an attempt to use a NULL input or output buffer while
specifying a non-zero size for the corresponding buffer. This error is
returned by the remoteCall and remoteCallSync methods.

LUC_ERR_NOT_REGISTERED

The caller tried to make an RPC call to an unregistered
service type/function index pair that was not registered with
registerRemoteCall.

LUC_ERR_OTHER

• The library can handle only a fixed number of function
registrations for each server object. The library supports the
registration of 64 functions for each endpoint.

• Failed to create the desired threads.

LUC_ERR_ALREADY_REGISTERED

The specified service type or function index is already occupied.

S–2479–20 163

Cray XMT™ Programming Environment User’s Guide

LUC_ERR_BAD_PARAMETER

• The specified service type or function index is out of range.

• The specified configuration value is out of range.

LUC_ERR_RESOURCE_FAILURE

A transient resource allocation failure has occurred. The caller
should retry the operation at a later time.

LUC_ERR_TOO_LARGE

The remote procedure is trying to return more data than the client is
able to accept. This return code will be generated whenever servers
try to return data to an asynchronous caller.

LUC_ERR_LIBRARY

The (Linux) LUC Library received an unexpected error from the
Portals Library.

LUC_ERR_ALREADY_STARTED

User attempted to startService on a previously started
LucEndpoint object

LUC_ERR_TIMEOUT

Client failed to get a response from the server in a timely manner.
The server is busy or a message was lost in transit.

LUC_ERR_NOT_IMPLEMENTED

Method not implemented. Returned by remoteCall
and remoteCallSync for objects that were created as
LUC_SERVER_ONLY. Returned by registerRemoteCall for
objects that were created as LUC_CLIENT_ONLY.

164 S–2479–20

LUC API Reference [H]

LUC_ERR_FIO

The (MTK) LUC Library received an unexpected error from the Fast
I/O System Call Library.

LUC_ERR_INVALID_ENDPOINT

The endpoint parameter to the method was invalid.

LUC_ERR_ALREADY_STOPPED

User attempted to stopService on a previously stopped, or never
started, LucEndpoint object.

LUC_ERR_IO_ERROR

An underlying transport error occurred. The remote procedure call
may or may not have fired.

LUC_ERR_NOT_STARTED

The service has not yet been started. This error is returned by the
stopService, remoteCall, and remoteCallSync methods.
To start the service, use the startService method.

LUC_ERR_CANCELLED

Endpoint was stopped while this RPC was in progress.

LUC_ERR_INVALID_KEY

The key parameter for the setConfigValue or
getConfigValue methods is not one of the predefined
LUC configuration keys (LUC_CONFIG_*). LUC configuration
keys are defined in getConfigValue Method on page 158.

LUC_ERR_INVALID_STATE

The setConfigValue method cannot change the key value
because of the endpoint's current state. The endpoint must be stopped
to set the nearby memory region configuration values.

S–2479–20 165

Cray XMT™ Programming Environment User’s Guide

166 S–2479–20

Glossary

barrier

In code, a barrier is used after a phase. The barrier delays the streams that were
executing parallel operations in the phase until all the streams from the phase reach
the barrier. Once all the streams reach the barrier, the streams begin work on the
next phase.

block scheduling

A method of loop scheduling used by the compiler where contiguous blocks of
loop iterations are divided equally and assigned to available streams. For example,
if there are 100 loop iterations and 10 streams, the compiler assigns 10 contiguous
iterations to each stream. The advantages to this method are that data in registers can
be reused across adjacent iterations, and that there is no overhead due to accessing a
shared iteration counter

dependence analysis

A technique used by the compiler to determine if any iteration of a loop depends on
any other iteration (this is known as a loop-carried dependency).

dynamic scheduling

In a dynamic schedule, the compiler does not bind iterations to streams at loop
startup. Instead, streams compete for each iteration using a shared counter.

fork

Occurs when processors allocate additional streams to a thread at the point where it is
creating new threads for a parallel loop operation.

full-empty state

Indicates whether a variable contains a value (full) or not (empty). Generic read and
write operations use this state to determine whether they can perform an operation on
the variable. For example, a writeef operation can only write a value to a variable if
the state is empty. After the write operation, it sets the state to full.

S–2479–20 167

Cray XMT™ Programming Environment User’s Guide

future

Implements user-specified or explicit parallelism by creating a continuation that
points to a sequence of statements that may be executed by another idle thread.
Futures also optionally contain a return value. Execution of code that uses the return
value is delayed until the future completes. The thread that spawns the future uses
parameters to pass data to the thread that executes the future. In a program, the term
future is used as a type qualifier for a synchronization variable used to return the
value of a future or as a keyword for a future statement.

induction variable

A variable that is increased or decreased by a fixed amount on each iteration of a
loop.

inductive loop

A loop that contains no loop-carried dependencies and has the following
characteristics: a single entrance at the top of the loop; controlled by an induction
variable; and has a single exit that is controlled by comparing the induction variable
against an invariant.

interleaved scheduling

A method of executing loop iterations used by the compiler where contiguous
iterations are assigned to distinct streams. For example, for a loop with 100 iterations
and 10 streams, one stream performs iterations 1, 11, 21,... while another stream
performs iterations 2, 12, 22, ..., and so on. This method is typically used for
triangular loops because it reduces imbalances. One disadvantage to using this
method is that there is loss of data reuse between loop iterations because adjacent
iterations are not executed by the same stream.

join

Occurs when threads that are forked for a parallel operation finish the operation.
As threads finish and drop the streams they are running on, the streams join back
together until there is a single stream running the thread.

linear recurrence

A special type of recurrence that can be parallelized.

loop-carried dependences

The value from one iteration of a loop is used during a subsequent iteration of the
loop. This type of loop cannot be parallelized by the compiler.

168 S–2479–20

Glossary

recurrence

Occurs when a loop uses values computed in one iteration in subsequent iterations.
These subsequent uses of the value imply loop-carried dependences and thus usually
prevent parallelization. To increase parallelization, use linear recurrences.

reduction

A simple form of recurrence that reduces a large amount of data to a single value. It is
commonly used to find the minimum and maximum elements of a vector. Although
similar to a recurrence, it is easier to parallelize and uses less memory.

region

An area in code where threads are forked in order to perform a parallel operation.
The region ends at the point where the threads join back together at the end of the
parallel operation.

S–2479–20 169

	Cray XMT Programming Environment User's Guide
	Changes to this Document
	Introduction [1]
	1.1 The Cray XMT Programming Environment

	Setting Up the User Environment [2]
	2.1 Setting Up a Secure Shell
	2.1.1 RSA Authentication
	2.1.2 Additional Information

	2.2 Using Modules
	2.2.1 Modifying the PATH Variable
	2.2.2 Software Locations
	2.2.3 Module Commands

	Developing an Application [3]
	3.1 The Cray XMT Programming Environment
	3.2 Overview of Cray XMT Generic and Intrinsic Functions
	3.2.1 Generic Functions
	3.2.1.1 Generic Write Functions
	3.2.1.2 Generic Read Functions

	3.2.2 Intrinsic Functions

	3.3 Adding Synchronization to an Application
	3.3.1 Synchronizing Data Using int_fetch_add
	3.3.2 Avoiding Deadlock

	3.4 Programming Considerations for Floating-point Operations
	3.4.1 Differences from IEEE Floating-point Arithmetic
	3.4.2 Differences from Cray Floating-point Arithmetic
	3.4.332 -bit and 64-bit Implementation of Floating-point Arithmet
	3.4.4 Rounding Results of Floating-point Operations

	3.5 Using Futures in an Application
	3.5.1 Improving Performance of Future Statements
	3.5.2 Anonymous futures

	3.6 Testing Expressions Using Condition Codes
	3.7 File I/O
	3.7.1 Language-level I/O
	3.7.2 System-level I/O

	3.8 Porting Programs to the Cray XMT
	3.9 Debugging the Program

	Shared Memory Between Processes [4]
	4.1 Mapping a Memory Region for Data Sharing
	4.2 Persisting Shared Memory

	Developing LUC Applications [5]
	5.1 Programming Considerations for LUC Applications
	5.2 Creating and Using a LUC Client
	5.3 Creating and Using a LUC Server
	5.4 Communication Between LUC Objects
	5.5 LUC Client/Server Example
	5.6 Fast I/O Memory Usage

	Managing Lustre I/O with the Snapshot Library [6]
	6.1 About the Snapshot Library
	6.2 The Snapshot Library Interface
	6.3 Maintaining File System and I/O Parallelism
	6.4 Examples
	6.5 Managing File I/O on File Systems Other Than Lustre

	Compiler Overview [7]
	7.1 The Compilation Process
	7.1.1 File Types Accepted by the Compiler

	7.2 Invoking the Compiler
	7.3 Setting the Compiler Mode
	7.3.1 Whole-program Mode
	7.3.2 Separate-module Mode
	7.3.3 Mixed Mode

	7.4 Inlining Functions
	7.5 Optimizing Parallelization
	7.6 Incremental Recompilation and Relinking
	7.7 Creating New Libraries
	7.8 Compiler Messages
	7.9 Setting Debugger Options during Compilation
	7.10 Using Compiler Directives and Assertions

	Running an Application [8]
	8.1 Launching the Application
	8.2 User Runtime Environment Variables
	8.3 Improving Performance

	Optional Optimizations [9]
	9.1 Scalar Replacement of Aggregates
	9.2 Optimizing Calls to memcpy and memset

	Error Messages [A]
	User Runtime Functions [B]
	Compiler Directives and Assertions [C]
	C.1 Compilation Directives
	C.2 Parallelization Directives
	C.3 Semantic Assertions
	C.4 Implementation Hints

	Condition Codes [D]
	Data Types [E]
	Keywords [F]
	MTA_PARAMS [G]
	LUC API Reference [H]
	H.1 LucEndpoint Class
	H.2 luc_allocate_endpoint Function
	H.3 LUC Methods
	H.3.1 startService Method
	H.3.2 stopService Method
	H.3.3 getMyEndpointID Method
	H.3.4 remoteCall Method
	H.3.5 remoteCallSync Method
	H.3.6 registerRemoteCall Method
	H.3.7 setConfigValue Method
	H.3.8 getConfigValue Method

	H.4 LUC Type Definitions
	H.5 LUC Callback Functions
	H.5.1 LUC_RPC_Function_InOut
	H.5.2 LUC_Mem_Avail_Completion
	H.5.3 LUC_Completion_Handler

	H.6 LUC Return Codes

	Glossary
	List of Procedures
	Procedure 1. Setting up RSA authentication with a passphrase
	Procedure 2. Using RSA authentication without a passphrase
	Procedure 3. Creating and using a LUC client object
	Procedure 4. Creating and using a LUC server object

	List of Examples
	Example 1. Testing a shift-left operation for a carried number
	Example 2. Retrieving a condition code and result of a previous
	Example 3. Retrieving a condition code set by a previous operati
	Example 4. Calling standard I/O functions from parallel code
	Example 5. Calling record-oriented I/O functions from parallel c
	Example 6. Preventing racing when calling I/O functions
	Example 7. Calling UNIX I/O functions from parallel code
	Example 8. Using synchronization with UNIX I/O functions
	Example 9. Using synchronization with UNIX record-oriented I/O f
	Example 10. Mapping memory to share among multiple processes
	Example 11. LUC client code example
	Example 12. LUC Server code example
	Example 13. Allocating and using LucEndpoint objects to communic
	Example 14. Using dslr_snapshot and dslr_restore to save and res
	Example 15. Using dslr_pwrite to write data to a file and dslr_p

	List of Figures
	Figure 1. Snapshot Library Data Paths
	Figure 2. Comparison of Whole-program and Separate-module Modes

	List of Tables
	Table 1. mta-pe Utilities
	Table 2. Condition Codes
	Table 3. Condition Masks
	Table 4. C/C++ Keywords Recognized by the Cray XMT Compiler
	Table 5. Standard C++ Keywords Recognized by the Cray XMT Compil

