CRANY

Cray XMT™ Programming Environment User's Guide

S-2479-20

© 2007-2011 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form
unless permitted by contract or by written permission of Cray Inc.

Copyright (c) 2008, 2010, 2011 Cray Inc. All rights reserved. Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the following conditions are met: * Redistributions

of source code must retain the above copyright notice, this list of conditions and the following disclaimer. *
Redistributions in binary form must reproduce the above copyright notice, thislist of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name Cray Inc.
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS"ASIS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN

IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Your use of this Cray XMT release constitutes your
acceptance of the License terms and conditions.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE

The Computer Software is delivered as "Commercial Computer Software” as defined in DFARS 48 CFR
252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided
with Restricted Rights. Use, duplication or disclosure by the U.S. Government is subject to the restrictions described
in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or
disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48
CFR 252.227-7013, as applicable.

Cray, LibSci, and PathScale are federally registered trademarks and Active Manager, Cray Apprentice2,

Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray CX, Cray CX1, Cray CX1-iWS, Cray CX1-LC,
Cray CX1000, Cray CX1000-C, Cray CX1000-G, Cray CX1000-S, Cray CX1000-SC, Cray CX1000-SM,

Cray CX1000-HN, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray X1, Cray X1E, Cray X2,
Cray XD1, Cray XE, Cray XEm, Cray XE5, Cray XE5m, Cray XE6, Cray XE6m, Cray XMT, Cray XR1, Cray XT,
Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5,, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort,
CRInform, ECOphlex, Gemini, Libsci, NodeKARE, RapidArray, SeaStar, SeaStar2, SeaStar2+, The Way to Better
Science, Threadstorm, and UNICOS/Ic are trademarks of Cray Inc.

GNU is atrademark of The Free Software Foundation. 1SO is atrademark of International Organization for
Standardization (Organisation Internationale de Normalisation). Linux is atrademark of Linus Torvalds. Lustre
and NFS are trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners. Opteron is atrademark of Advanced Micro Devices, Inc. Platform is atrademark of Platform Computing
Corporation. RSA isatrademark of RSA Security Inc. UNIX, the “X device” X Window System, and X/Open are
trademarks of The Open Group in the United States and other countries. All other trademarks are the property of
their respective owners.

RECORD OF REVISION

S-2479-20 Published May 2011 Supports release 2.0 GA running on Cray XMT compute nodes and on Cray XT
3.1UP02 service nodes. This release uses the System Management Workstation (SMW) version 5.1UP03.

1.5 Published December 2010 Supports release 1.5 running on Cray XMT compute nodes and Cray Linux
Environment (CLE) release 2.241A on Cray XT service nodes. This release requires the System Management
Workstation (SMW) version 4.0.UP02, which is based on the SLES10 SP3 base operating system.

1.4 Published December 2009 Supports release 1.4 running on Cray XMT compute nodes and Cray Linux
Environment (CLE) release 2.241A on Cray XT service nodes. This release requires the System Management
Workstation (SMW) version 4.0.UP02, which is based on the SLES10 SP3 base operating system.

1.3 Published March 2009 Supports release 1.3 running on Cray XM T compute nodes and on Cray XT 2.1.50HD
service nodes. This release requires the System Management Workstation (SMW) version 3.1.09 that is based on
the SLES10 SP1 base operating system.

1.2 Published August 2008 Supports general availability (GA) release 1.2 running on Cray XMT compute nodes and
on Cray XT 2.0.49 service nodes. This release uses the System Management Workstation (SMW) version 3.1.04
that is based on the SLES9 SP2 base operating system.

1.1 LA Published March 2008 Supports limited availability (LA) release 1.1.01 running on Cray XMT compute
nodes and on Cray XT 2.0 service nodes.

1.0 LA Published August 2007 Draft documentation to support Cray XMT limited-availability (LA) systems.

Changes to this Document

Cray XMT™ Programming Environment User's Guide S-2479-20

This rewrite of Cray XMT Programming Environment User's Guide supports the 2.0 release of the Cray XMT
operating system and programming environment. For more information see the rel ease announcement that
accompanies this release.

Added information

e Two new pragmas. #pragna nta nmax n processors and #pragma nta max
concurrency c. See Compilation Directives on page 109.

e Additiona programming examples.
Revised information

* The snapshot documentation has been revised extensively. See Chapter 6, Managing Lustre I/O with the
Snapshot Library on page 67.

* Technica and editoria corrections.

The conceptua content that made up the first chapters of previous versions of this guide have been moved to a
new document, Cray XMT Programming Model.

Contents

Introduction [1]
1.1 The Cray XMT Programming Environment

Setting Up the User Environment [2]
2.1 Setting Up a Secure Shell

2.1.1 RSA Authentication

2.1.2 Additional Information
2.2 Using Modules e

2.2.1 Modifying the PATH Variable

2.2.2 Software L ocations

2.2.3 Module Commands

Developing an Application [3]
3.1 The Cray XMT Programming Environment
3.2 Overview of Cray XMT Generic and Intrinsic Functions
3.2.1 Generic Functions
3.2.1.1 Generic Write Functions
3.2.1.2 Generic Read Functions
3.2.2 Intrinsic Functions
3.3 Adding Synchronization to an Application
3.3.1 Synchronizing DataUsingi nt _fetch_add
3.3.2 Avoiding Deadlock
3.4 Programming Considerations for Floating-point Operations
3.4.1 Differences from |EEE Floating-point Arithmetic
3.4.2 Differences from Cray Floating-point Arithmetic
3.4.3 32-hit and 64-bit Implementation of Floating-point Arithmetic
3.4.4 Rounding Results of Floating-point Operations
3.5 Using Futuresin an Application
3.5.1 Improving Performance of Future Statements

3.5.2 Anonymous futures

S-2479-20

Page

13
13

15
15
15
16
17
17
17
18

19
19
20
20
21
22
24
24
25
25
26
28
29
30
30
31
32
34

Cray XMT™ Programming Environment User’'s Guide

3.6 Testing Expressions Using Condition Codes
3.7Filel/O
3.7.1 Language-level 1/0
3.7.2 System-level 1/0
3.8 Porting Programs to the Cray XM T
3.9 Debugging the Program

Shared Memory Between Processes [4]
4.1 Mapping a Memory Region for Data Sharing
4.2 Persisting Shared Memory

Developing LUC Applications [5]

5.1 Programming Considerations for LUC Applications
5.2 Creating and Using a LUC Client

5.3 Creating and Using a LUC Server

5.4 Communication Between LUC Objects

5.5 LUC Client/Server Example

5.6 Fast I/0 Memory Usage

Managing Lustre I/O with the Snapshot Library [6]
6.1 About the Snapshot Library

6.2 The Snapshot Library Interface

6.3 Maintaining File System and 1/O Parallelism

6.4 Examples

6.5 Managing File I/O on File Systems Other Than Lustre

Compiler Overview [7]
7.1 The Compilation Process
7.1.1 File Types Accepted by the Compiler
7.2 Invoking the Compiler
7.3 Setting the Compiler Mode
7.3.1 Whole-program Mode
7.3.2 Separate-module Mode
7.3.3 Mixed Mode
7.4 Inlining Functions
7.5 Optimizing Parallelization
7.6 Incremental Recompilation and Relinking
7.7 Creating New Libraries
7.8 Compiler Messages

Page

36
36
39

45

47
47
49

53
53
53
56
57
60
65

67
67
68
70
71
74

75
76
79
80
80
81
82
83

85
86
87
88

S-2479-20

Contents

7.9 Setting Debugger Options during Compilation
7.10 Using Compiler Directives and Assertions

Running an Application [8]
8.1 Launching the Application
8.2 User Runtime Environment Variables

8.3 Improving Performance

Optional Optimizations [9]
9.1 Scalar Replacement of Aggregates
9.2 Optimizing Callsto mentpy and nenset

Appendix A Error Messages

Appendix B User Runtime Functions

Appendix C Compiler Directives and Assertions

C.1 Compilation Directives
C.2 Parallelization Directives
C.3 Semantic Assertions

C.4 Implementation Hints

Appendix D Condition Codes
Appendix E Data Types
Appendix F Keywords
Appendix G MIA_PARANS

Appendix H LUC API Reference
H.1 LucEndpoi nt Class
H.2l uc_al | ocat e_endpoi nt Function
H.3 LUC Methods .o
H.3.1st art Servi ce Method
H.3.2st opSer vi ce Method
H.3.3get MyEndpoi nt | DMethod
H.3.4r enot eCal | Method
H.3.5r enot eCal | Sync Method
H.3.6r egi st er Renot eCal | Method
H.3.7set Conf i gVal ue Method
H.3.8get Conf i gVal ue Method

S-2479-20

Page

88
89

91
91
92
93

95
95
98

99

103

109
109
124
125
130

133

137

139

143

147
147
149
149
149
150
150
151
153
154
155
158

Cray XMT™ Programming Environment User’'s Guide

H.4 LUC Type Definitions

H.5 LUC Callback Functions .o
H.5.1LUC RPC Functi on_I nCut
H.52LUC_Mem Avai |l _Conpl eti on
H.5.3LUC_Conpl eti on_Handl er

H.6 LUC Return Codes

Glossary

Procedures

Procedure 1. Setting up RSA authentication with a passphrase

Procedure 2. Using RSA authentication without a passphrase

Procedure 3. Creating and using a LUC client object

Procedure4. Creating and using a LUC server object

Examples

Examplel. Testing a shift-left operation for a carried number

Example2. Retrieving a condition code and result of a previous operation
Example 3. Retrieving a condition code set by a previous operation
Example4. Calling standard 1/0O functions from parallel code

Example5. Calling record-oriented I/O functions from parallel code
Example 6. Preventing racing when calling 1/O functions

Example 7. Calling UNIX I/O functions from parallel code

Example 8. Using synchronization with UNIX I/O functions

Example 9. Using synchronization with UNIX record-oriented I/O functions
Example 10. Mapping memory to share among multiple processes

Example 11. LUC client code example

Example 12. LUC Server code example .

Example 13. Allocating and using Luc Endpoi nt objects to communicate
Example 14. Usingdsl r _snapshot anddsl r _r est or e to save and restore datain afile.
Example15. Usingdsl r_pwrit e towritedatato afileand dsl r _pr ead to read back the data
Tables

Tablel. nt a- pe Utilities

Table2. Condition Codes

Table3. Condition Masks

Table4. C/C++ Keywords Recognized by the Cray XMT Compiler
Table5. Standard C++ Keywords Recognized by the Cray XMT Compiler

10

Page

159
160
160
161
162
162

167

15
16

56

35
35
37
37
38
40
41
41
47
55
57
57
71
72

19
133
133
139
139

S-2479-20

Contents

Page
Figures
Figure 1. Snapshot Library Data Paths C e e 67
Figure2. Comparison of Whole-program and Separate-moduleModes 78

S-2479-20 11

Introduction [1]

This guide describes the Cray XMT Programming Environment. It includes
procedures and examples that show you how to set up your user environment

and build and run optimized applications. The intended audience is application
programmers and users of the Cray XMT system. For information about debugging
your application, see Cray XMT Debugger Reference Guide. For information about
performance analysis tools that you can use to tune your application, see Cray XMT
Performance Tools User's Guide.

This chapter presents a general overview of the Cray XMT. Subsequent chapters of
this manual cover the details for how to write programs for the Cray XMT.

1.1 The Cray XMT Programming Environment

S-2479-20

The Cray XMT Programming Environment (XM T-PE) includes the following:
e Cray XMT compilersfor C and C++

« Cray mdb debugger, which is an adaptation of the Free Software Foundation's
gdb debugger

» Apprentice2 performance analysis tool

The XMT-PE runs on a Linux operating system on a service node. You write and
compile your program on the service partition and launch it from the service partition
onto the compute partition.

13

Cray XMT™ Programming Environment User’'s Guide

14 S-2479-20

Setting Up the User Environment [2]

Configuring your user environment on a Cray XMT system is similar to configuring a
typical Linux workstation.

2.1 Setting Up a Secure Shell

Cray XMT systems use ssh and ssh- enabled applications such asscp for secure,
password-free remote access to the login nodes.

Before you can use the ssh commands, you must generate an RSA authentication
key. The process for generating the key depends on the authentication method

you use. There are two methods of passwordless authentication: with or without

a passphrase. Although both methods are described here, you must use the latter
method to access the compute nodes through a script or when using a single-system
view (SSV) command.

2.1.1 RSA Authentication
You can set up RSA authentication with or without a passphrase.
Procedure 1. Setting up RSA authentication with a passphrase
To enable ssh with a passphrase, complete the following steps.

1. Generate the RSA keys by typing the following command and follow the
prompts. The program requests you to supply a passphrase.

% ssh-keygen -t rsa

2. Create a$HOVE/ . ssh directory and set permissions so that only the file's owner
can access them by typing the following commands:

% nkdi r $HOMVE/ . ssh
% chrmod 700 $HOVE/ . ssh

3. The public key is stored in your $HOVE/ . ssh directory. Copy the key to your
home directory on the remote host (or hosts) by typing the following command:

% scp $HOME/ . ssh/ key filename. pub \
username@ystem_name: . ssh/ aut hori zed_keys

S-2479-20 15

Cray XMT™ Programming Environment User’'s Guide

4. Connect to the remote host by typing the following commands.
If you are using a C shell, type:
% eval "ssh-agent”
% ssh-add
If you are using abash shell, type:
$ eval “ssh-agent -s°
$ ssh-add
5. Enter your passphrase when prompted, followed by:
% ssh remote host_name
Procedure 2. Using RSA authentication without a passphrase
To enable ssh without a passphrase, compl ete the following steps.
1. Generate the RSA keys by typing the following command:
% ssh-keygen -t rsa -N""

2. Create a$HOVE/ . ssh directory and set permissions so that only the file's owner
can access them by typing the following command:

% nkdi r $HOMVE/ . ssh
% chrmod 700 $HOWVE/ . ssh

3. The public key is stored in your $HOVE/ . ssh directory. Copy the key to your
home directory on the remote host (or hosts) by typing the following command:

% scp $HOWE/ . ssh/ key filename. pub \
username@ystem_name: . ssh/ aut hori zed_keys

Note: This step isnot required if your home directory is shared.

4. Connect to the remote host by typing the following command:

% ssh remote host_name

2.1.2 Additional Information

For more information about setting up and using a secure shell, seethe ssh(1),
ssh- keygen(1), ssh- agent (1), ssh- add(1), and scp(1) man pages.

16 S-2479-20

Setting Up the User Environment [2]

2.2 Using Modules

The Cray XMT system uses modules in the user environment to support multiple
versions of software, such as compilers, and to create integrated software packages.
As new versions of the supported software and associated man pages become
available, they are added automatically to the Programming Environment, while
earlier versions are retained to support legacy applications. By specifying the module
to load, you can choose the default version of an application or ancther version.

The modules for the compilers and associated products are:
e m a- pe for the C and C++ compilers. Thisis the default environment.

Modules also provide a simple mechanism for updating certain environment
variables, such as PATH, MANPATH, and LD_LI BRARY_PATH. In general, you
should make use of the modules system rather than embedding specific directory
paths into your startup files, makefiles, and scripts.

The following subsections describe the information you need to manage your user
environment.

2.2.1 Modifying the PATH Variable

Do not reinitialize the system-defined PATH. The following example shows how to
modify it for a specific purpose (in this case to add $HOVE/ bi n to the path).

If you are using a C shell, type:
% set path = ($path $HOME bi n)
If you are using bash, type:

$ export $PATH=$PATH. $HOVE/ bi n

2.2.2 Software Locations

S-2479-20

On atypical Linux system, compilers and other software packages are located in the
/ bi nor/ usr/ bi n directories. However, on Cray XMT systemsthesefilesarein
versioned locations under the/ opt directory.

Cray software is self-contained and isinstalled as follows:

» Baseprefix: / opt / pkgname/ pkgversion/ , such as/ opt / nt a- pe/ def aul t
» Package environment variables: / opt / pkgname/ pkgversion/ var

» Package configurations. / opt / pkgname/ pkgversion/ et ¢

Note: To run a Programming Environment product, specify the command
name (and arguments) only; do not enter an explicit path to the Programming
Environment product. Likewise, job files and makefiles should not have explicit
paths to Programming Environment products embedded in them.

17

Cray XMT™ Programming Environment User’'s Guide

2.2.3 Module Commands

18

The nt a- pe modules are loaded by default.
To find out what modules have been loaded, type:

% nmodul e |i st

To switch from one Programming Environment to another, type:

% nodul e swap switch_from module switch_to_module

For example, to switch from the Cray XMT Programming Environment to the GNU
Programming Environment, type:

% nodul e swap nt a-pe PrgEnv-gnu

For further information about the module utility, see the nodul e(1) and
nodul ef i | e(4) man pages.

S-2479-20

Developing an Application [3]

This chapter provides an overview of some Cray XMT functions and describes how
to perform some common programming tasks, such as floating-point operations,
sorting, dataflow, searching, and I/O.

Before you begin developing your program, you must log in to the login node using
ssh. You develop, compile, debug, and launch your program from the login node.

Before developing your application, review the data types and keywords that are
supported by the Cray XMT compilers. For alist of datatypes, see Appendix E, Data
Types on page 137. For alist of keywords, see Appendix F, Keywords on page 139.

3.1 The Cray XMT Programming Environment

The Cray XMT Programming Environment (XMT-PE) contains the following
modules:

e nta-pe
e xnt-tools
« nta-nan

The nt a- pe module contains the C/C++ compilers and some utilities that are useful
during the development process. The following table lists the commands for nt a- pe
utilities and provides a brief description.

Table 1. nt a- pe Utilities

Utility Name Description

dis Disassembles object code.

header Displaysa Cray XMT Executable and Linking File (ELF)
header for a specified object, exec, or library file.

ndb Starts debugger for Cray XMT programs.

nm Lists symbols from object files.

The nt a- pe module also contains support for functions that are specific to the
Cray XMT environment. For more information, see Overview of Cray XMT Generic
and Intrinsic Functions on page 20.

S-2479-20 19

Cray XMT™ Programming Environment User’'s Guide

Thexnt -t ool s module contains the tools that you use to run and monitor a
program. To run a program, use the nt ar un command. For more information, see
Launching the Application on page 91 or the nt ar un(1) man page. To monitor the
program, use the nt at op or dash command. For more information, see Cray XMT
System Management or the it at op(1) man page.

The it a- man module contains the man pages for al the utilities, tools, and
functions that you find in the XM T-PE.

3.2 Overview of Cray XMT Generic and Intrinsic Functions

The Cray XMT Programming Environment (XM T-PE) supports a number of

Cray XMT functions. For alist of these functions, see the generi cs(1) and
nta_i ntrinsi cs(3) man pages. You can refer to the man page for each function
for details about how to use that function. Man pages for functions list the names of
the header files you must include in your program when using that function.

3.2.1 Generic Functions

20

The Cray XMT compiler provides a number of generic functions that operate
atomically on scalar variables (variables that hold a single value). The generic
functions performr ead andwr i t e, pur ge, t ouch,andi nt _fetch_add
operations on variables. The most common use of the generic functionsis to
manipulate sync and future variables, but you can also use al of the generic
functions, except for thet ouch function, on other types of variables.

Generic functions frequently affect, or have behavior that is dependent upon, the
full-empty state of the variable. Because of this, you must know the initial full-empty
state of the variable before you alocate it. For sync variables, this state is full if

you initialize the variable in the declaration, and empty if you do not initialize the
variable. For future variables, theinitial stateisfull. For all other variables, the initial
state is full if you initialize the variable in the declaration and undefined if you do
not initialize the variable.

You should avoid using generic functions on a variable (other than a sync or future
variable) that is less than aword in length. Each 8-byte word of memory is associated
with only one full-empty bit. If two or more variables share the same word, they share
asingle full-empty bit; using a generic function to modify the full-empty state of one
of the variables also changes the state of the other variable(s).

You must be careful when using multiword scalars. When you use ordinary language
constructs, ar ead or wr i t e operation of a sync or future multiword variable occurs
asif the multiple words are fused and have a single full-empty bit, even when there
areother r ead or wr i t e operations that use the same variable.

S-2479-20

Developing an Application [3]

When a set of generic functions access a multiword variable simultaneously, the
resulting behavior depends on the generic functions that constitute the set. If all the
generic functions in the set require the variable to be in either afull or empty state,
the functions access the variable in a serialized manner and the user-visible state

is consistent. However, if any generic function in the set does not depend on the
full-empty state (such asthe pur ge, r eadxx, andwr i t exf functions), the ability
to serialize the set is not guaranteed. If the set is not serialized, generic functions may
access words in the variable in adifferent order, resulting in inconsistenciesin one or
more of the following: the state of the value returned by one or more of the generics,
the memory holding the variable; the data value; or the full-empty bits.

Accessing an individual memory word that is part of a multiword variable (for
example, using a cast or a union) could result in inconsistent full-empty states and a
data value partially composed of both current and obsolete memory contents. It may
also cause a deadlock to occur.

3.2.1.1 Generic Write Functions

S-2479-20

The generic write functions write new values to variables, depending upon the
full-empty state of the variable. If the type for a value does not match the type for the
variable that stores the value, the value is cast to the correct type before being written.
For example, in the following:

int i;

witeff(& , 2.0);

Thevalue2. 0 (f | oat)iscastto 2 (i nt) before being writtentoi .

21

Cray XMT™ Programming Environment User’'s Guide

The Cray XMT compiler recognizes the following generic write functions.
witeef (&, value)

Writesval ue invariablev when v isin an empty state and setsv to
afull state. Thisalows one or more threads waiting for v to change
to afull state to resume execution. If v isin afull state, the write
operation is blocked until v changes to an empty state. This generic
function behaves like awrite access to a sync variable.

witeff(&, value)

Writesval ue invariablev when v isin afull state and leavesv

inafull state. If v isin an empty state, the write is blocked until v
changesto afull state. This generic function behaves like a write

access to a future variable that occurs outside the body of afuture
Statement.

writexf(&, value)

Writesval ue invariablev and setsv to afull state. Thisallows
one or more threads waiting for v to change to afull state to resume
execution. This generic function behaves like the write of a return
value that occurs at the end of the body of a future statement but is
not like awrite access to a variable declared with the future qualifier.

int _fetch_ add(&v, i)

Atomically addsinteger i tothe value at addressv, stores the sum at
v, and returns the original value from v (setting v to afull state).

Regardless of itstype, i iscast as an 8-byte integer. Neither
parameter can be a multiword object. If v islessthan the size of a
word, the compiler generates a warning diagnostic. If v isan empty
sync or future variable, the operation is blocked until v changesto
afull state.

pur ge(&v)

Writes 0, using the appropriate data type, to variable v and setsv to
an empty state.

For more information, see the gener i cs(1) man page.

3.2.1.2 Generic Read Functions

Generic read functions return the value for a variable, depending upon the full-empty
state of the variable. When you invoke these functions, the data type of the return
value is determined by the type of the first argument in the function call.

22 S-2479-20

Developing an Application [3]

The Cray XMT compiler recognizes the following generic read functions.
r eadf e(&v)

Returns the value of variable v when v isin afull state and setsv
to an empty state. This alows one or more threads waiting for v to
change to an empty state to resume execution. If v isin an empty
state, the read operation is blocked until v changesto afull state.
This generic function behaves like aread access to async variable.

readf f (&v)

Returns the value of variablev when v isin afull state and leaves v
inafull state. If v isin an empty state, the read operation is blocked
until v changes to afull state. This generic function behaves like a
read access to a future variable.

readxx(&v)

Returns the value of variable v but does not interact with the
full-empty memory state.

touch(&)

Thet ouch function returns the value of future variable v, where

v is associated with a future statement that has been spawned, but
whose body may or may not have already begun execution. If the
future body that writes v has not begun executing, the thread calling
t ouch executes the future body. If the future body associated with v
is currently being executed or has finished executing, t ouch(&v)
actslikear eadf f (&v) function.

You use the t ouch function with future variables that are filled
by the execution of code in the body of a future statement. Using
Futures in an Application on page 31 Touching a future variable
that is in an empty state but not bound to a future resultsin an
execution-time error.

For more information, see the gener i cs(1) man page.

S-2479-20 23

Cray XMT™ Programming Environment User’'s Guide

3.2.2 Intrinsic Functions

Cray providesintrinsic functions for the Cray XMT system that allow direct access to
machine operations from high-level languages. You can find alist of the C intrinsic
functions and the machine functionsinthent a_i nt ri nsi ¢s(3) man page. The
C intrinsic function names use the name of the machine operation and add a prefix

of MTA_. So, for example, the machine operation named FLOAT_ROUND becomes
the C intrinsic function named MITA_FLOAT_ROUND. When you use an intrinsic
function, it calls its associated machine operation to perform the task at the processor
level using assembly language. The result of a machine operation is passed back and
becomes the return value of the intrinsic function.

For parameters, when the assembly language version of an instruction names two
input registers and an output register, the associated intrinsic function has only two
input parameters and returns a result. For example, the machine operation that you
use to multiply bit matrices, (Bl T_MAT_OR t u V), usestheintrinsic C function
_int64 MTA BIT_MAT_OR (_int64 u, _int64 v) wherethet parameter
in the machine operation becomes the return value for MTA_BI T_MAT_OR and the
u and v parameters are the operands. Invoke this intrinsic function by using the
following command:

t = MIA_BI T_MAT_OR(u, Vv);

For the previous statement, declare t, u, and v as integer variables by using the
_i nt 64 datatype. Theintrinsic functions use the _i nt 64 datatype for 64-bit
signed integers and the _ui nt 64 datatype for 64-bit unsigned integers.

The intrinsic functions that may be most useful are the bit matrix arithmetic
functions. For example, if you want to count 1-bits or 0-bits, use the

MIA Bl T_RI GHT_ONE, MTA Bl T_LEFT_ONE, MTA BI T_RI GHT_ZERO, or
MIA BI T_LEFT_ZEROintrinsic functions. You can use the MTA Bl T_CORand
MI'A_BI T_ANDintrinsic functions to perform bitwise OR and AND operations.

Intrinsic functions support most machine operations that use signed or unsigned
integers (i nt), floating-point numbers (f | oat), or bit vectors (bi t) asvariables.

If you do not use a constant argument where required, it results in an unresolved
reference to the intrinsic function at link time. For example, the intrinsic
MI'A_TEST _CC requires a compile-time constant for its second parameter. If you
supply a variable instead, the compiler issues a warning and the invocation is
compiled as a call, resulting in a link-time failure.

3.3 Adding Synchronization to an Application

Thetasks in this section explain how to add synchronization in your application.

24 S-2479-20

Developing an Application [3]

3.3.1 Synchronizing Data Using i nt _fetch_add

Usethei nt _f et ch_add generic function to synchronize updates to data that
represents shared counters without using locks. This function has the following
signature:

int_fetch_add (&v, i)

Thei nt _f et ch_add function provides access to the underlying atomic

i nt _f et ch_add machine operation. This function atomically addsi to the value at
address v, stores the sum at v, returns the original value of v, and sets the state bit to
full. In short, it does the following, as a single atomic operation:

t = v, v = Vv+Hi;

return t;

Youcanusei nt _f et ch_add toidentify the last of a group of threads to complete
atask, to partition data into groups, or to maintain a stack or queue index.

3.3.2 Avoiding Deadlock

S-2479-20

Using sync variables can introduce deadlock into a program if, when the program
executes, threads attempt to do more reads than writes to a sync variable. When
you are trying to determine how many read operations the program performs, it is
important to remember that every reference to a sync variable results in a separate
read of that variable, even when the references occur in the same source code
statement. For example, in the following cases:

* Your program references a sync variable two or more times on the right side of an
assignment statement. For example, if x$ isasync variable:

sum = x$ + x$;

e Your program references a sync variable two or more times in a conditional test.
For example, if x$ isasync variable:

if ((x$ >= 10)&&(x$ <= 100)){}

25

Cray XMT™ Programming Environment User’'s Guide

In these two cases, each reference to x$ results in a separate read of that variable
and requires a separate write to x$. The second write to x$ must be performed by a
thread other than the one executing the code in the example. In the first case, it might
have been the intention of the programmer to add together two successive values of
x$. If o, this code presents no problems provided the program contains additional
code that executes concurrently with the code in the example and performs the second
writeto x$. In the second case, it is doubtful that the programmer's intention was to
compare two different values of x$. Also, due to the short-circuiting rulesin C and
C++, there is no guarantee that the second read will occur. Thus, you could end up
with a deadlock whether or not have two writesto x$. If you have two writes, but
the second read does not occur due to short-circuiting, your code will deadlock due
to too many writes. On the other hand, if you have one write, and the second read
does occur, your code will deadlock due to too many reads. In both of these cases, if
the intention is to read only one value for x$, atemporary variable should be used,
asin this example:

tmpx = x$;
if ((tnmpx >= 10) && (tnpx <= 100)){}

Deadlock can also occur when two or more concurrent functions access global sync
variables in a different order. For example, if a$ and b$ are global sync variables,
and the function f nc1 first loads a$ and then loads b$.

as;
b$;

tnp_a
tnp_b

In the same program, function f nc2 first loads b$ and then loads a$.

b$;
as;

tnp_b
tnmp_a

If the functions run concurrently, then there is a chance of deadlock. If f nc2 loads
b$ after f nc1 loads a$, but before f nc1 loads b$, then neither function can
continue unless a third concurrently running function eventually writes to either a$ or
b$. You can avoid this problem by always accessing a$ and $b in the same order
each time you use them in functions that may be concurrent.

3.4 Programming Considerations for Floating-point Operations

26

The base arithmetic for floating-point operations on the Cray XMT uses the IEEE
Standard 754 format double precision (64-bit). A 64-bit floating-point number,
known as aFl oat 64 onthe Cray XMT, consists of asign bit, an 11-bit exponent,
and 52 bits of fraction. Ordinary numbers (those with a biased exponent not equal to
zero or 0x 7FF) have an exponent bias of 1023 (0x3FF) and their absolute value can
be expressed using the following equation:

(1.0 + fraction) << (exponent - Ox3FF)

The value is negative if the sign bit is set, positive if it is not set.

S-2479-20

Developing an Application [3]

S-2479-20

A number with a biased exponent of 2047 (0x7FF) is a special floating-point
number, known asa Speci al Fl oat 64 onthe Cray XMT. If al the fraction bits are
zero, the value of the number is plus or minus infinity. Infinity generally occursin
calculations as aresult of an overflow or division by zero. For example, 1. 0/ 0. O is
positiveinfinity, while 1. e300* - 1. e300 is negative infinity.

Calculations such as 0. 0/ 0. O create aresult that is called not a number (NaN).
Any 64-bit floating-point number with a biased exponent of 0x 7FF and a non-zero
fraction represents NaN. After NaN enters a computation, it persists through addition,
subtraction, multiplication, and division. When a calculation produces a NaN, it
indicates an error in your program or data.

In arithmetic comparisons, NaN is not equal to any number, including itself. NaN is
neither less than nor greater than any number. In fact, such comparisons raise an
exception when one of the numbers being compared is NaN. Thisimplies that the
opposite of less than is not greater than but greater than, equal to, or unordered.

In this case, unordered allows for the possibility that one of the numbersin the
comparison is NaN. The Cray XMT hardware supports comparisons such as less
than, egqual to, or unordered, and the compilers use these comparisons as necessary
when reversing the sense of atest.

There are two representations of zero in the Cray XMT hardware. The number
0x0000000000000000 represents +0. 0 while 0x8000000000000000
represents - 0. 0. Although +0. 0 and - 0. O appear to be equal to each other, you
can distinguish between them when using them in computations. In particular,

1. 0/ 0. 0 equals positive infinity while 1. 0/ - 0. 0 equals negative infinity. These
values obey computational rules under multiplication, as shown in the following
example.

0.0*(-1.) = -0.0

(-0.0)*(-1.0) =0.0
and so on.

For any finite nonzero x$, x - x = +0. 0. Thisimpliesthatb - aisnot
equivaentto- (a - b). For computations with zero, the following rules hold:
+0.0 - (+0.0) = +0.0 - (-0.0) = (-0.0) - (-0.0) = +0.0

However...
-0.0 - (+0.0) = -0.0

Underflow in the Cray XMT hardware is gradual in accordance with the IEEE

754 standard. Computations that underflow, producing a rounded result smaller in
magnitude than 0x0010000000000000, or about 2. 225e- 308, do not all flush
to zero. If the result has an absolute value greater than or equal to ni n_denor m
such as0x0000000000000001, or about 4. 94e- 324, it isasubnormal number.
A subnormal number is one with a zero-biased exponent and a nonzero fraction such
as0x0000000000000001 or 0x800FFFFFFFFFFFFF. The absolute value for
such a subnormal number is the following:

(0.0 + fraction) >> 1022

27

Cray XMT™ Programming Environment User’'s Guide

Subnormal numbers are less precise than normalized numbers. The smallest
subnormal number, mi n_denor m has only one significant bit while the largest has
52 significant bits. However, whenever 0. 5 <= x/y <= 2.0, thedifferencex -
y isexact, even though it may have less precision than x and y. Thisis not true for
machines that flush underflow to zero.

The Cray XMT floating-point hardware handles gradual underflow transparently.
Unlike many systems, the Cray XMT is not slowed by the presence (or possibility) of
subnormal numbers and gradual underflow in a computation.

3.4.1 Differences from IEEE Floating-point Arithmetic

28

The Cray XMT processors do not have 32-bit floating-point instructions. If you

are performing an operation on 32-bit floating-point numbers, you must first use

the MTA_FLOAT _REAL intrinsic function to convert each 32-bit number in the
operation to a 64-bit number. After the operation is complete, you can use the
MI'A_REAL_FLOAT intrinsic function to round the results to 32-bit numbers. This
double rounding (first to 64 bits and then to 32 hits) is not the same as a single
rounding to 32 bits. For more information about how to use MTA_FLOAT _REAL and
MIA_REAL_FLOAT, seethent a_i nt ri nsi cs(3) man page.

The Cray XMT does not provide you with control over rounding precision for
floating-point operations. The level of rounding precision is set on the processor
during the manufacturing process.

Traps on the Cray XMT are precise, but operands can be overwritten by the results of
an operation performed on the same or a different functional unit. This can make the
implementation of post-substitution difficult.

There is no exponent wrapping when an operation enables or takes an overflow or
underflow trap. The intent of wrapping is to provide for automatic rescaling when
products or quotients are used in subsequent operations. On the Cray XMT, you
must use care when rescaling.

The hardware supports fused multiply-add operations that only require a single issue
of an instruction. This operation facilitates certain computations by making it easy to
extract the lower half of the product of two 64-bit doubles. The problem is that the
compiler can evaluate statements such as the following in severa different ways, each
of which may produce a different result:

X = a*b + c*d;

The previous statement can be evaluated as either:

temp = a*b;

X = temp + ¢c*d; // For multiply-add operation
Or

temp = c*d;

X = a*b + tenp; [// For nmultiply-add operation

S-2479-20

Developing an Application [3]

Or
templ = a*b;
temp2 = c*d;

X = tenpl + tenp2;

The only way to override the compiler instructions for a particular multiply-add
operation is to put each multiply operation on a separate line, asin the third example.
You can usethe- no_nul _add compiler flag to disable multiply-add operations.

Rather than using a multiply-add operation, the compiler may use a common
subexpression, as shown in the following example.

X
y

a*b; //For multiply
a*b + c; //Essentially y = x + ¢

In cases like this, you can use the #pr agna nta si ngl e round required
pragmain a C program to indicate to the compiler that it must use a multiply-add
operation.

The Cray XMT does not support signaling NaNs. For all datatypes, the Cray XMT
identifies uninitialized floating-point data by throwing poison errors rather than using
signaling NaNs. See Appendix A, Error Messages on page 99.

3.4.2 Differences from Cray Floating-point Arithmetic

S-2479-20

There are several versions of floating-point arithmetic on Cray systems. Newer Cray
systems, such asthe Cray XMT, use formats based on IEEE 754. Older Cray systems
used a proprietary format that differs from IEEE 754 (and from the Cray XMT
implementation of IEEE 754) in significant ways. This older format is known as
Cray floating-point arithmetic.

Cray floating-point arithmetic uses a 48-bit significand, which has |ess precision
than the 53-bit significand used by the Cray XMT. The significand is the part of

a floating-point number that contains its significant digits. Cray floating-point
arithmetic has a 15-bit exponent with exponents that contain values between -8192
and 8191. Thisisamuch larger range than the exponents for the Cray XMT that
contain values between -1022 and 1023. Cray floating-point operations lack guard
digits for subtraction and are known to have certain anomalies in computations.

In general, older Cray code that does not rely on the extra-large exponent range
runs without modification on the Cray XMT. Otherwise, some rescaling is required
for the Cray XMT. In addition, programs designed for older Cray systems may
contain work-around code to handle Cray floating-point anomalies. This codeis
not necessary on the Cray XMT.

29

Cray XMT™ Programming Environment User’'s Guide

3.4.3 32-bit and 64-bit Implementation of Floating-point Arithmetic

Thedoubl e datatypein C usesthe format for double-precision (64-bit) arithmetic
provided by |EEE Standard 754 guidelines. Cray XMT hardware does not support
|EEE Standard 754 extended precision, and all 32-bit arithmetic is done by promotion
to 64-bit formats.

Rounding mode on the Cray XMT is controlled on a per-thread basis using mode
bits in the stream status word (SSW). A newly created stream inherits the rounding
mode of its parent.

Hardware instructions that convert fromani nt or unsi gned i nt number to a
floating-point number use the same rounding mode as the SSW. You can use the
MI'A_FLOAT_UNS intrinsic function when converting large unsigned integers to

a floating-point number. You can use the current rounding mode as the basis for
converting a floating-point number to an integer by using the MTA_FLQOAT_ROUND
intrinsic function or use explicit rounding that ignores the mode bits in the SSW by
using the MTA_FLOAT_CEIl L, MTA_FLOAT_CHOP, MTA_FLOAT_FLQCR, or
MI'A_FLQOAT_NEAR intrinsic functions.

Each thread has its own set of floating-point exception flags and traps that can be
enabled in its SSW. The normal mode of operation is to run with al floating-point
traps disabled.

If you convert a 64-bit floating-point number to a decimal string with at least 17
significant decimal digits and then convert it back to 64-bit floating-point number,
the result matches the original. If you convert adecimal string with n less than 15
decimal digits to 64-bit floating-point number and then convert it back to n decimal
digits, the result matches the original string.

Add, subtract, and multiply operations each use one processor instruction on the
Cray XMT. Divide operations use eight instructions, and square root operations
require ten instructions. There isroom in the divide and square-root sequences for
other operations, particularly in the memory unit.

3.4.4 Rounding Results of Floating-point Operations

30

The standard C nmat h and C++ cat h libraries implement a set of functions that you
can use when performing basic mathematical operations such asthe | og function

for logarithms. When you use the math library functions on the Cray XMT, these
mathematical operations do not necessarily produce correctly rounded results, except
forthesqrt () function. Function results are generally accurate to within one unit in
the last place, but there are exceptions, especially for large arguments. Trigonometric
functions do infinitely precise argument reduction.

Numbers are rounded according to the IEEE Standard 754. The default rounding
method is overridden when you use the following intrinsic conversion functions:
MIA_FLOAT_CEI L, MTA_| NT_CHOP, and MTA_UNS_FLOOR.

S-2479-20

Developing an Application [3]

The current rounding mode for the math library is set to round to the nearest place
(RND_NEAR). User functions that change the rounding mode must reset it to
RND_NEAR before calling the math library functions.

Exceptions are handled silently by the math library. No messages are printed, and
err no isnot set by the library. If functions return NaN or infinity, these arguments
are propagated silently by the library. Exception flags are raised as appropriate.

3.5 Using Futures in an Application

S-2479-20

In your application, a future consists of:

A future statement that creates a continuation pointing to a series of statements
that may be executed by another thread.

An optional future-qualified variable, known as a future variable, that
synchronizes execution of other program threads upon completion of the future.
The name of the future variable is aso the name of the future.

Parameters used by the spawning thread to pass values to the thread executing
the future.

The future body, which contains the statements pointed to by the continuation that
may be executed by another thread. The body may end with areturn statement
that writes a value to the future variable.

The keyword f ut ur e isused in two ways.

As atype qudifier for a synchronization variable.

future int x$;
Upon alocation, the full-empty state of the future variable x$ is set to full.

As a statement.

future x$(i)
{

}

In the previous statement, the full-empty state for x$ is set to empty. The
argument i is passed in to the future body by value. The stream places the future
on a queue that executes the future bodies asynchronously. Any stream can now
degueue the future and execute its body. The return valueis stored to x$. Finaly,
the full-empty bit of x$ is set to full after the return valueis stored in x$.

return printf("i is %\n", i);

31

Cray XMT™ Programming Environment User’'s Guide

Future statements contain the name of a future variable and parameters, a body, and
areturn statement. The future variable's value is set by the return statement. The
future variable is optional; if no future variable is specified, the return statement of
the future body supplies no value. For example:

int x, y, z
future int i$;

future i$(x, vy, z)
{

/* Some body statenments */
return x*y*z,

}

In the previous example, when the computation completes, the return value returns
in the future variable i $. Subsequent accessesto i $ are delayed until the future
completes.

The use of future variablesislimited to scalar datatypessuchaschar,i nt,fl oat,
doubl e, pointers, and array elements. The body of a future statement may contain
any legal statement including function calls and other future statements.

For arecursive operation, you can eliminate some of the overhead of blocking a
thread by using the keyword t ouch in your program. This leaves the semantics
unchanged, but if the future body has not begun, the calling thread executes it
directly.

int search_tree(Tree *root, unsigned target) {
int sum= 0;
if (root) {
future int left$;
future left$(root, target) {
return search_tree(root->l1ink, target);
}
sum = root->data == target;
sum += search_tree(root->rlink, target);
sum += touch(& eft$);
}

return sum
}

In the previous example, thet ouch operation checks if any thread has started to
execute the future body associated with | ef t $. If so, it waits for the future body to
complete. If not, the thread calling t ouch executes the future body itself.

3.5.1 Improving Performance of Future Statements

32

When your application is compiled, future statements cause the compiler to create
continuations. Continuations are structures that contain pointers to routines that
contain the code from the body of the future statement and a list of arguments to
pass to that code.

S-2479-20

Developing an Application [3]

Continuations are normally allocated and deallocated from the heap. However, if

the associated future variable is a scalar variable that is located on the stack, the
compiler causes the continuation to be placed on the stack. This reduces the overhead
associated with allocation and deallocation operations.

The compiler does not do this when there is an array of future variables on the
stack because this requires an array of continuations. Continuations can be large
so an array of continuations might cause the stack size to become very large. You
can force the compiler to place an array of continuations on the stack by using the
stack_conti nuati ons attribute in your application. This may improve the
performance of the application.

The attribute has the following syntax:

_attribute__((stack_continuations))

You can add this attribute to any future-qualified stack-based array declaration in
your application.

voi d nyFutures()
{

future int children[10] __attribute_ ((stack_continuations));
...

}

Another way to improve performance is by employing the autotouch compilation
mode. This compilation mode automatically appliesthet ouch generic whenever a
future variable is referenced. There are three ways to use aut ot ouch:

The - aut ot ouch compiler flag enables autotouch for all source modules compiled
with the flag.

The pragmadirectivent a aut ot ouch can be applied to a single source module.
The on option enables automatic touching, the of f option disables automatic
touching, and the def aul t option reverts the autotouch mode to the default mode
for that source module, which was determined by the compile-line flags.

The gcc-style attributef uture int foo$ __attribute__ ((autotouch
(on] of f))); dlowsyou to change the autotouch mode on a per-variable

basis. For example, future int foo$ __attribute__ ((autotouch
(on))). Theon option enables aut ot ouch for all references to this variable,
regardless of the current command-line flags or pragmas. Similarly, the of f option
disables aut ot ouch for all references to the variable. This attribute generates a
warning if it is applied to a variable without the f ut ur e qualifier.

S-2479-20 33

Cray XMT™ Programming Environment User’'s Guide

3.5.2 Anonymous futures

Often, a concurrent computation does not have areturn value. An example of such

a concurrent computation is an 1/0 statement or a modification of global values.
You can express such a computation using an anonymous future. An anonymous
future has no name or return statement. If the anonymous future does not access

a synchronized variable referenced by the main computation, there will be no
dependence between the future and the main computation. If afuture does not create
a dependence, the future may not execute. An anonymous future does not need to
execute or finish for a program to terminate normally.

3.6 Testing Expressions Using Condition Codes

34

When you use arithmetic expressions in your code, you can test the expressions by
using the MTA_TEST_CC intrinsic function. This function returns condition codes
that identify problemsin the expression. It uses the following prototype:

MIA_TEST_CC(expression, condition-mask)

MI'A_TEST_CC evaluates the expression and generates a condition code. If the
resulting condition code is a member of the set of condition valuesin condition-mask,
t r ue isreturned; otherwise, f al se isreturned.

The expression can be a scalar variable, a single arithmetic operation, or a machine
intrinsic. If you use a scalar variable, you must assign avalue to it in the statement
immediately preceding the call to MTA_TEST_CC. In MTA_TEST_CC, you test the
operation on the right side of the assignment statement. The condition-mask should
evaluate to a compile-time constant. The condition codes and possible values for the
condition-mask are listed in Appendix D, Condition Codes on page 133.

Example 1. Testing a shift-left operation for a carried number

MI'A_TEST _CC alows branching based on any of the condition codes produced by
the machine intrinsics. For example, consider the problem of testing to see if one of
the upper 32 bitsin an integer is set. One approachisto usethe MTA_SHI FT_LEFT
intrinsic function, which generates a carried number if a 1 bit is shifted out. When
using MTA_SHI FT_LEFT, you can use MTA_TEST_CC with the | F_CY condition
mask to check for a carried number, as shown in the following example.

enun{| F_CY = 16+32+64+128};

i f (MIA_TEST_CC(MIA_SHI FT_LEFT(i, 32), IF_CY))

{
printf("One of the upper 32 bits was set\n");

}

In the previous example, the compiler would emit a SHI FT_LEFT_I MM_TEST
operation, followed by a conditional branch on carry.

S-2479-20

Developing an Application [3]

Example 2. Retrieving a condition code and result of a previous operation

It is also possible to test the condition code generated by some earlier operation,
allowing you to make use of both the condition code and the result of the operation.
In the following example, MTA_TEST_CCis used to test whether there was a carry
generated by MTA_BI T_LEFT_ZEROS. MTA_BI T_LEFT_ZERGS returns the
number of consecutive O bits on the left end of the word.

enun{| F_CY = 16+32+64+128};

const int j = MIA BI T_LEFT_ZEROS(i);
i f (MIA_TEST_CC(j, IF_CY))

{

}

printf("i was zero\n");
el se
{
}

Example 3. Retrieving a condition code set by a previous operation

printf("i had %l significant zeros\n", j);

The operation that sets the condition code does not need to be an intrinsic function.
The condition code is usually set by an ordinary addition or multiplication operation,
such as the following.

enun{| F_CY = 16+32+64+128};

const int k =i + j;
i f(MIA_TEST_CC(k, IF_CY))
{

}

If the expression is more complex, the condition code is only available from the last
operation. For example, the expression in the following example requires two adds
but only the second add affects the condition code. Because the compiler can evaluate
this code in three different ways, it may not yield the correct result.

printf("carry generated\n");

enun{I F_CYy = 16 + 32 + 64 + 128};
const int m=1i + | + k;

i f(MIA_TEST_CC(m | F_CY))

{

}

printf("carry generated\n");

S-2479-20 35

Cray XMT™ Programming Environment User’'s Guide

3.7 File /O

The Cray XMT performs 1/O to a RAM-based file system (RAMFS) and a network
file system (NFS). Neither the RAMFS nor the NFS are high-speed file systems,
therefore, any data over 2 gigabytes in size must to be written to a high-speed file
system, such as Lustre. You can use the NFS for small amounts of data, such as user
files.

During the system reboot, all dataislost from the RAMFS because it is not written
to disk. Any data that you need to retain across system boots must be written to the
Lustre file system prior to rebooting the system. The XMT-PE provides snapshot
functions that you can use to move data between the service nodes and the Cray XMT
compute nodes. Once the datais on the service nodes, you can use standard Cray XT
commands to move data to the Lustre file system.

The underlying details of the file system are abstracted behind UNIX library cals that
you can add to your program to perform 1/O. The Cray XMT system provides some
support for concurrent 1/0O to multiple files, but you must provide explicit access
control for concurrent 1/0 to asinglefile.

The following sections discuss standard language-supported forms of 1/0 aswell as
I/0 using the low-level UNIX 1/O functions. Each section discusses the semantics,
particularly parallelism, and performance possibilities.

3.7.1 Language-level I/O

36

In seria code, the standard 1/0 functions behave as specified in the ANSI C standard.
In parallel code, all calls to the standard 1/0O package are executed atomically. Atomic
execution means that while one call is executing, no other call can interfere with what
thefirst isdoing. Each call appearsto run from beginning to end without interruption.

#pragna nta assert parallel
for (i =0; i &t; n; i++)
{

}

The previous code asserts that the loop is parallel. In general, it is not safe for
the compiler to parallelize aloop that contains procedure calls, especially cals to
I/O functions. The assertion indicates to the compiler that, in this casg, it is safe to
paralelize the loop. The atomicity guarantee ensures that each line writtento f by
thisloop is of the form that follows:

fprintf(f,"this is iteration %\n", i);

this is iteration i

Two lines are never mixed together, so the following never occurs:

this is this is iteration j

S-2479-20

Developing an Application [3]

S-2479-20

The actual sequence of lines is random because the different iterations are al
executed in parallel. However, for a sequence of calls such as the following:

#pragna nta assert parallel
for (i =0; i <n; i++4)
{
fprintf(f,"this is ");
fprintf(f,"iteration %\n", i);
}

The output may look like the following, because only the individua calls to
fprintf areatomic:

this is iteration i
this is thisis iteration k
iteration j

Example 4. Calling standard I/O functions from parallel code

To avoid the previous problem, you can combine the two callsto f pri nt f or add
some sort of explicit synchronization. For example:

sync int flag$ = 1;

#pragna nta assert parallel

for (i =0; i <n; i++4)

{
int j =flag$;, // lock
fprintf(f,"this is ");
fprintf(f,"iteration %\n", i);
flag$ = j; /1 unl ock

}

The previous code manipulates the sync variable f | ag$ to create an atomic section
that containstwo callsto f pri nt f . The actual value loaded from and stored to
f 1 ag$ is not important because the code usesf | ag$ asalock.

Example 5. Calling record-oriented I/O functions from parallel code

For record-oriented /O, such as that which occurs when using a combination of
f seek together with f r ead or f wri t e, you can use explicit synchronization to
ensure correct behavior, such asin the following code example:

sync int flag$ = 1;

#pragna nta assert parallel
for (i =0; i <n; i+4)
{
Buf buffer;
int j =flag$; // lock
fseek(f, i*sizeof (Buf), SEEK SET);
fread(buffer, sizeof(Buf), 1, f);
flag$ = j; /1 unl ock
Il Work with buffer

37

Cray XMT™ Programming Environment User’'s Guide

38

In the previous code, f | ag$ controls accessto filef , ensuring that the combination
of f seek and f r ead are executed atomically. In this case, you use SEEK _SET
because the SEEK _CUR (positioning relative to the current position) is not useful in
aparallel context.

Example 6. Preventing racing when calling 1/0O functions

You use asimilar technique when using f er r or with another call to ensure that
any error detected by thef er r or call was not caused by aracingread orwrite
call from a different thread. For example, in the following code, callsto severa 1/0
functions are grouped together so that they are all executed atomically.

sync int flag$ = 1;

#pragna nta assert parallel

for (i =0; i <n; i+4)
{
Buf buffer;
int err;
int j =flag$;, // lock

fseek(f, i*sizeof (Buf), SEEK SET);
fread(buffer, sizeof(Buf), 1, f);
err = ferror(f);

flag$ = j; /1 unl ock

if (lerr)

{
}

/1 Work with buffer

}

In the previous code, the result of the call tof er r or issavedto avariable (er r) for
later testing.

The same considerations apply when using futures or more complex loops, perhaps
with the 1/0 hidden within a nest of procedure calls. Single calls always execute
atomically. However, when a sequence of calls pertaining to a single file must be
executed atomically, you must manage the sequence of calls explicitly.

Internally, the st di o library enforces locking for each FI LE object (FI LE isadata
type defined in st di 0. h). This causes output to a number of different files can
proceed in parallel, but output to asinglefileis serialized. Similarly, you can use
sprintf andsscanf independently of callsto other functions because these
functions do not use a FI LE object. For example, for the loop in the following
example, every iteration refersto a different FI LE object, so each call tof pri nt f
can run without interfering with files used by another iteration.

#pragna nta assert parallel

for (i =0; i <n; i++)

{
}

fprintf(f[i],"this is iteration %\n", i);

S-2479-20

Developing an Application [3]

If many parallel calls refer to the same file, locking forces a serial execution order.
For example, in the following code, it makes little sense to run the loop in parallel
becausethecallstof pri nt f are serialized by the lock on the FI LE object referred
to by g. However, the interpretation of the format string is controlled by the lock.

#pragna nta assert parallel
for (i =0; i <n; i+4)

fprintf(g,"this is iteration %\ n", i);
}

If the loop contains significant computations, such asin the following example, you
may want to parallelize the loop.

#pragna nta assert parallel

for (i =0; i <n; i+4)
{
int j = expensive_function(i);
fprintf(g,"f(%) = %\n", i, j);
}

You cannot use the st di o functions to support concurrent file access. For example,
consider the following code:

#pragna nta assert parallel

for (i =0; i <n; i++4)

{
Buf buffer;
FILE *f = fopen(file_nane, "r");
fseek(f, i*sizeof (Buf), SEEK SET);
fread(buffer, sizeof(Buf), 1, f);
fclose(f);

}

There are two problems in this example:
« If nislarge, the system cannot support so many open files.

» Thefile position (set by f seek) is shared among all open versions of thefile, so
races may Occur.

3.7.2 System-level I/O

S-2479-20

There are a number of low-level functions provided by the operating system to
support more flexible and efficient 1/0. However, you should avoid accessing a
given file using both the high-level language-dependent methods and the low-level
functions. The high-level functions use buffering that may interact with the low-level
functions in unpredictable ways.

39

Cray XMT™ Programming Environment User’'s Guide

40

Example 7. Calling UNIX I/O functions from parallel code

In serial code, the low-level UNIX functions behave as specified by the Posix
standard. In parallel code, al calls are executed atomically. In this case, you must
explicitly manage access to a particular file by a sequence of calls, to prevent races.
For example:

#pragna nta assert parallel

for (i =0; i <n; i+4)

{
char 1ine[80];
int len = sprintf(line, "this is iteration %\n", i);
wite(fd, line, len);

}

The previous code asserts that the loop is parallel. In general, it is not safe for the
compiler to parallelize aloop that contains procedure calls, especialy callsto I/O
functions. The assertion tells the compiler that, in this case, it is safe to parallelize
the loop. The atomicity guarantee ensures that each line written to f d by thisloop is
of the form that follows:

this is iteration i

Two lines are never mixed together, so the following never occurs:

this is this is iteration j

The actual sequence of lines is random because the different iterations are all
executed in parallel. However, for a sequence of calls such as the following:

char part1[80];
int lenl = sprintf(partl, "this is iteration ");

#pragna nta assert parallel
for (i =0; i <n; i++4)
{
char part?2[80];
int len2 = sprintf(part2,"%\n", i);
wite(fd, partl, lenl);
wite(fd, part2, |en2);
}

The output may look like the following, because only theindividual callstowri t e
are atomic:

this is iteration this is iteration i
k
this is iterationj

S-2479-20

Developing an Application [3]

Example 8. Using synchronization with UNIX I/O functions

To correct this praoblem, you can either rewrite the code in the style of the first
example or add some sort of explicit synchronization, as shown in the following
example.

sync int flag$ = 1;

char part1[80];
int lenl = sprintf(partl, "this is iteration ");

#pragna nta assert parallel

for (i =0; i <n; i++4)
{
char part?2[80];

int len2 = sprintf(part2, "%l\n", i);
int j =flag$; // lock
wite(fd, partl, lenl);
wite(fd, part2, |en2);
flag$ = j; /] unl ock
}

The previous code manipulates the sync variable f | ag$ to create an atomic section
that contains two callstowr i t e. The actual value loaded from and stored to f | ag$
is not important because the code uses f | ag$ asalock.

Example 9. Using synchronization with UNIX record-oriented 1/O functions

For record-oriented /O, you can use explicit synchronization to ensure the correct
behavior by using a combination of | seek together witharead orwite
operation, such as in the following code example.
sync int flag$ = 1;
#pragna nta assert parallel

for (i =0; i <n; i++)

{

Buf buffer;

int j =flag$; // lock

| seek(fd, i*sizeof(Buf), SEEK SET);
read(fd, buffer, sizeof (Buf));
flag$ =j; /'l unl ock

/1Work with buffer

}

In the previous code, f | ag$ controls accessto file f d, ensuring that the combination
of | seek and r ead are executed atomically. In this case, you use SEEK SET
because SEEK CUR s not useful in a parallel context.

The same considerations apply when using futures or more complex loops, perhaps
with the 1/0O hidden within a nest of procedure calls. Single calls always execute
atomically. However, when a sequence of calls pertaining to asingle file must be
executed atomically, you must manage the sequence explicitly.

S-2479-20 41

Cray XMT™ Programming Environment User’'s Guide

42

Internally, the UNIX library enforces locking for each file descriptor so that output
to multiple files can occur in parallel, but output to asingle file occurs serialy. For
example, in the following loop, every iteration refers to a different file descriptor, so
each call to write runs without interfering with other calls.

#pragna nta assert parallel

for (i =0; i <n; i++4)

{
char 1ine[80];
int len = sprintf(line, "this is iteration %\n", i);
wite(fd[i], line, len);

}

If many parallel calls refer to the same file, locking forces a serial execution order.
For example, in the following code, it makes little sense to run the loop in parallel
because callstowr i t e are serialized by the lock on the file descriptor f d.

#pragna nta assert parallel

for (i =0; i <n; i++4)

{
char 1ine[80];
int len = sprintf(line, "this is iteration %\n", i);
wite(fd, line, len);

}

If the loop contains a significant computation, such as in the following example, you
may want to parallelize the loop.

#pragna nta assert parallel

for (i =0; i <n; i++4)
{
char 1ine[80];
int j = expensive_function(i);
int len = sprintf(line, "f(%) = %\n"", i, j);
wite(fd, line, len);

}

You cannot use the other low-level UNIX /O functions to support concurrent access
to asinglefile.

S-2479-20

Developing an Application [3]

3.8 Porting Programs to the Cray XMT

Use the following information when you prepare to port C and C++ programs to

the Cray XMT platform.

64-bit issues

The following list describes important 64-hit issues.

Alignment On the Cray XMT, many data types are aligned
on 8-byte boundaries that other machines align on
2- or 4-byte boundaries. The Cray XMT uses the
following alignments:
e 1-byteboundaries. char, __int8
e 2-byteboundaries. __short 16, _int16
e 4-byte boundaries: short, __short 32,
float, int32
e 8-byteboundaries. i nt, | ong, doubl e, | ong
doubl e, and all pointers
Bit shift and bit mask

Be careful when using hit shift or bit mask to extract
fields of avaue. Problems can occur if the size of
the value type on the Cray XMT is different from the
size on the machine you are porting from.

Conversion of floating-point data types

Unions

Posix compliance

In C and C++ programs, floating-point data types
are converted to doubles in all expressions. This
conversion is also made on the Cray XMT, except
for | ong doubl es (16-byteslong) which are not
converted to doubl es (8 byteslong).

Unions sometimes contain assumptions about the
relative sizes of data types. For example, on some
machines, two i nt values use the same number

of bytesasal ong. However, on the Cray XMT,

i nt and | ong values use the same number of
bytes. When in doubt, use the si zeof operator to
determine the size of data types.

The following list describes issues related to |EEE Portable
Operating System Interface (Posix) compliance.

S-2479-20

43

Cray XMT™ Programming Environment User’'s Guide

errno. h

tinme.h

Executable formats

er r no isthread-specific and not a global variable.
Files that use er r no in the same way that it is
used by library calls such as per r or must include
errno. h. Thisisrequired by ANS| and Posix, but
most systems do not comply with this convention.
On the Cray XMT, each thread has its own value of
errno, so you must include er r no. h for correct
behavior.

One goal of the Cray XMT isto support a
Posix-compliant application programming interface.
As aresult, when you port non-Posix programs,
you may have to change the header files that

are included. For example, you may need to
includet i ne. h instead of, or in addition to,
sys/tinme. h.

On the Cray XMT, executable programs are in ELF format instead
of a. out format. Therefore, you should replace a. out . h in your
programs with el f 64. h. Another characteristic of the ELF format
isthat uninitialized and initialized global variables are both mixed

in memory.

Miscellaneous issues

The following list describes important miscellaneous issues.

printf and$

Different implementations of pri nt f have different
ways of interpreting $. The implementation of

pri ntf ontheCray XMT does not have a special
interpretation.

C and C++ structure passing

nap

44

Structures cannot be passed by value from C to C++.

nmrap is based on file data-block size. The
data-block size for a Cray XMT fileis different
from that on BSD 4.4 UNIX. Although you can
use mmap, the mmap_f sbl k system call provides
richer semantics.

S-2479-20

Developing an Application [3]

Cray XMT keywords

You can disable Cray XMT specific keywords (for
example, sync and f ut ur e) by using the compiler
flag - no_nt a_ext . When thisflag is not used,
the C compiler for the Cray XMT reserves al
keywords—even standard C++ keywords such as
new, try, throw, andcat ch.

Preprocessor directives

3.9 Debugging the Program

The following directives are supported on the
Cray XMT:

#defi ne

#el i f

#el se

#endi f

#error

#i dent

#if

#i f def

#i f ndef

#i ncl ude

#l i ne

#undef

#pragma
#pragma fenv_access
#pragnma noal i as

#pragna once

After completing your program, refer to the Cray XMT Debugger Reference Guide for

debugging information.

S-2479-20

45

Cray XMT™ Programming Environment User’'s Guide

46 S-2479-20

Shared Memory Between Processes [4]

You can share memory between multiple programs by creating a shared memory
region using the map system call.

4.1 Mapping a Memory Region for Data Sharing

S-2479-20

A shared memory region isidentified by afile name. Before your applications can
use shared memory, you must create an empty readable, writable file and run mrap to
map a memory region to use for shared memory. When you run ntrap, it allocates
the specified amount of physical memory and maps it into the caller's address space.
Other programs may share the same memory region by specifying the same file name.
A process may use the unmap system call to unmap the shared memory region.

Example 10. Mapping memory to share among multiple processes

The following example demonstrates how to create a file and map it to a memory
location.

#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>
#i ncl ude <stdio. h>

#i nclude <fcntl. h>

#defi ne SHARED S| ZE (256*1024*1024)

int main(int argc, char *argv[])
{
int fd = open(argv[1l], O RDWR O _CREAT);
if (fd==-1) {
perror(argv[1]);
return 1;

}

caddr _t data = mmap(0, SHARED_SI ZE, PROT_READ| PROT_WRI TE,
MAP_SHARED| MAP_ANON, fd, 0);
if (data == MAP_FAI LED) {
perror (" nmmap");
return 1;
}
unsi gned *words = (unsigned*)dat a;
/1 words now points to a shared nenory segment

47

Cray XMT™ Programming Environment User’'s Guide

48

In the previous example, a new readable and writable file is created by using the
open system call with the O_ RDWR and O_CREAT flags. The f d file descriptor

is alocated and refersto the file. Thef d is specified as an argument to the mmap
system call and identifies the memory region. SHARED_SI ZE specifies the size of
the memory region to allocate and map into the caller's address space. PROT_READ

| PROT_WRI TE specifies that the caller has both read and write permissionsto the
memory. MAP_SHARED specifies that thisis a shared memory region. MAP_ANON
specifies that the operating system should allocate physical memory that is not backed
up to afile. The ntrap system call returns a pointer to the starting virtual address at
which the memory was mapped. The datain the memory region isinitialized to zeros
and the memory state isinitialized to full.

The physical memory associated with a shared memory region is normally

freed when the last process that was sharing the memory unmaps the memory
from its address space. The memory is unmapped either by an explicit call to

the unmap system call or automatically upon termination of the process. The

per si st _renmend function causes the remember daemon to create a mapping to
the shared memory region. This preserves the shared memory region even after all
other user processes have unmapped the region. The data is preserved only until
the system reboots, at which time all data that was in the shared memory region is
lost. The per si st _r emend function will remember the file name and size of the
memory region across reboots and will automatically reallocate the shared memory
region upon reboot; the data in the shared memory region isinitialized to contain
zeros and the stateis initialized to full. For more information, see the r ermrend(8)
man page.

Additionally, programs that use synchronization must add calls to the
nta | ock threadandnta_set t hread runtime functions, as shown in the
following example.

nma_lock_thread(); //Set retry >0
nt a_set _thread_dat abl ocked_retry(MAXINT); //Sets retries = INF

Thent a_I| ock_t hr ead function locks athread to its stream so that the thread
does not block and release the stream when it takes aretry limit exception. The

nt a_set _t hr ead function sets the retry limit to the maximum value. The result
of calling these two functions is to cause a thread to spin if a sync-qualified or
future-qualified variable is not in the appropriate state for a given memory access,
until the thread gains access to the shared data. Spinning is the act of checking the
full-empty state repeatedly until the full-empty state changes to the state that the
memory operation needs to perform its operation.

This is necessary when synchronization operations are performed between multiple
separate processes. Threads that are blocked can only be unblocked by threads within
the same process because blocking and unblocking requires access to the runtime
internal data structures that are only accessible within the process to which the thread
belongs.

For more information, see the mmap(2) man page.

S-2479-20

Shared Memory Between Processes [4]

4.2 Persisting Shared Memory

S-2479-20

The remember daemon r errend retains information about shared memory so that
programs preserve shared memory throughout the life cycle of the process. Shared
memory is allocated by calling mmap with the MMAP_ANON and MVAP_SHARED
flags and a valid file descriptor.

When the r enend daemon isfirst started, it reads in all the records from its maps
file and calls map to map the specified memory into its virtual address space. The
daemon does not repopulate the memory; it only allocates it and retains a reference.
r emend does not attempt to map the same memory segment twice. Onceit is
mapped, r emend increments an internal reference count on subsequent remember
requests.

Calling r erend does not guarantee that the memory isreclaimed asfree. If another
program is retaining a reference to the memory, it remains allocated. If multiple
reguests are made to remember the same segment, r erend decrementsiits internal
counter for each forget request until the counter is 0 (zero), at which point, it calls
munnap.

By holding memory references, the r emend daemon allows the memory to outlast
one or more processes that might want to use the memory.

Programs that wish to make use of the functionality offered by r emrend are
required to link with the | i br ememlibrary. When amethod is called, a remote
procedure call is made from r emend using UNIX domain sockets. The path to
use to communicate with the daemon is specified in the configuration file found
at/ etc/remend. conf orin the path specified by the environment variable
REMENMD_CONFI G_PATH.

49

Cray XMT™ Programming Environment User’'s Guide

#i
#i
#i
#i
#i
#i
#i
#i

co

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

<stdi o. h>
<string. h>
<stdlib. h>
<errno. h>

<sys/types.

Use the following functions to call r enmend from a program.
per si st _remenber

Causes ther enend daemon to call mmap to map the shared memory
into its virtual address space and write arecord of it to disk. If

r emend has aready mapped this segment, its reference count is
incremented instead. This function returns O on success, and errno
on failure.

persi st _mmap_si ze

Causes ther emend daemon to return the size of the shared memory
mapped into its virtual address space. This function returns the size,
in bytes, of the memory region on success, and O if the region is not
found. When an error occurs, errno is set and - 1 isreturned.

persi st _forget

Causes the r emrend daemon to decrement the specified segment's
reference count. If the reference count is zero, the r emmend daemon
calls munmap to unmap the shared memory from its virtual address
space and remove the record of it from disk. This function returns0
on success, and the errno on failure.

The following example shows how to persist memory in your program.

h>

<sys/ mman. h>
<sys/file.h>
<r emem persi st nem h>

nst char *renmenber_path = "/tnp/ny_data_handl e";

voi d run_conput ation(caddr_t addr, size_t len, int ret);

int main(int argc,
caddr _t mmap_addr

S

ize t

char **argv) {

0;

nmap_l en = 4096

int fd -1,

/1 find out if menory is mapped

ssize_t ret = persist_nmap_si ze(renmenber _path);

if (-1 ==ret) { // -1 indicates there was an error
printf("Unexpected error fromlibremem %\n", strerror(errno));
exit(1);

} else if (0 ==ret) { // O indicates the menory has not been mapped yet

50

if (-1

== fd) {

fd = open(renenber_path, O CREAT | O RDWR, 0600);

printf("Unexpected error opening remenber_path: %\n", strerror(errno));
exit(1);

S-2479-20

Shared Memory Between Processes [4]

}
mmap_addr = mmap(0, mmap_l en, PROT_WRI TE, MAP_ANON | MAP_SHARED, fd, 0);
i f (MAP_FAILED == mmap_addr) {
printf("Unexpected error calling map: %\n", strerror(errno));
cl ose(fd);
exit(1);
}
int remenber_ret = persist_renmenber(renenber_path, nmap_|en);
if(0 !'=remenber_ret) {
printf("Unexpected error calling persist_remenber: 9%\n", strerror(renenber_ret));
cl ose(fd);
munmap(mmap_addr, mrap_|l en);
exit(1);
}
} else { /] if ret is not -1 or O, thenit's the length of the mapped segnent
fd = open(renenber_path, O CREAT | O RDWR, 0600);
if (-1 ==1d) {
printf("Unexpected error opening remenber_path: %\n", strerror(errno));
exit(1);
}
mmap_len = ret;
mmap_addr = nmmap(0, mmap_l en, PROT_WRI TE, MAP_ANON | MAP_SHARED, fd, 0);
i f (MAP_FAILED == mmap_addr) {
printf("Unexpected error calling map: %\n", strerror(errno));
cl ose(fd);
exit(1);
}
}

run_conput ati on(nmrap_addr, nmap_len, ret);

int forget_ret = persist_forget(renenber_path, false);
if(0 !'=forget_ret) {
printf("Unexpected error calling persist_renmenber: %\n", strerror(forget_ret));

if(0 !'= munmap(nmap_addr, mmap_len)) {
printf("Unexpected error calling munmap: %\n", strerror(errno))

}
if(0 !'=close(fd)) {
printf("Unexpected error calling close: %\n", strerror(errno));

}

return O

}

S-2479-20 51

Cray XMT™ Programming Environment User’'s Guide

52 S-2479-20

Developing LUC Applications [5]

This chapter describes how to use the LUC library in your application. The following
tasks are discussed:

Constructing a client
Constructing a server

Making remote procedure calls

5.1 Programming Considerations for LUC Applications

On the service (Linux) nodes, i nt is defined as 4 bytes. On the MTK compute
nodesi nt isdefined as 8 bytes. To avoid potential issues, programmers should
use types that have explicit sizes, for examplei nt 64 _t .

Thereisalimit of 256 MB of data that can be transferred in asingle call. This
applies to both input and output buffers.

Linux and MTK have different native byte ordering, Linux is little endian (4
bytes) and MTK is big endian (8 bytes). LUC does not byte-swap or otherwise
interpret the application's input and output data so you must add byte-swapping
into your application that will perform byte swapping for data transfers between
the server and client applications.

The number of threads that are assigned to an object during a call to

st art Ser vi ce should be determined by the length of time function calls made
by that object are expected to take. Allocate enough threads so that an operation is
never stalled while waiting for a thread to become available.

The Linux version of the library can only honor a requestedPid value other than
PTL_PI D_ANY for thefirst endpoint in an application process. The exception is
that subsequent values of requestedPid may be honored if they are equal to the
requestedPid of the first endpoint for a process.

5.2 Creating and Using a LUC Client

Use the following procedure to create a client object.

S-2479-20

53

Cray XMT™ Programming Environment User’'s Guide

54

Procedure 3. Creating and using a LUC client object

1

Include the header file <l uc/ | uc_export ed. h>. This header fileincludes
all of the definitions required for both the client and server endpoints, including
the LucEndpoi nt class definition, configuration variables, and external
function prototype definitions.

Declare a pointer to a LucEndpoi nt object. A LucEndpoi nt isthe
abstract base class for both the Linux and MTK implementations of LUC
endpoints and defines the user interface as virtual functions. Internal to

the LUC implementation, there are two subclasses that are derived from

the LucEndpoi nt abstract class: LucPor t al sEndpoi nt isthe Linux
implementation, and LucFi oEndpoi nt isthe MTK implementation. These
derived classes implement the virtual functions for either Linux/Portals or
MTK/FAST 1/O. From the user-application perspective, both derived classes
present an identical interface.

Allocate the object by calling| uc_al | ocat e_endpoi nt () . Thisfunction
takes a service type as an argument and allocates the correct LucEndpoi nt
derived class object. When compiling for a Linux node, the Linux version of
the object is returned. When compiling for an MTK node, the MTK version of
the object is returned.

Activate the client endpoint by calling st ar t Ser vi ce. Thiscauses LUC to
allocate a system wide unigue endpoint identifier and to allocate the underlying
Fast 1/0 data streams. If an error is encountered while activating the service,
LUC returns an error code

Prepare the input and output buffers. The input buffer is provided as input to
the remote server function. The output buffer contains the output data from the
remote server function. The buffers may reside in nearby or global distributed
memory.

Invoke a remote function synchronously by calling r enot eCal | Sync; provide
the server endpoint identifier, the service type, the function index, and the input
and output buffers and lengths. The out put Dat aLen parameter specifies the
size of the data buffer provided by the caller. On return from the function, this
parameter will contain the actual size of the output data, which is less than or
equal to the original value provided by the caller.

. The service type and function index are application defined and can be any

integer value. Asillustrated in the example that follows, the function indices
need not be consecutive. The service types describe the type of service provided
by the object.

Wait for the remote function to complete and then process the result. The
renot eCal | Sync() method will not return until the remote function has
completed or an error has occurred. The return value fromr enot eCal | Sync
iseither aLUC error code or the return value from the remote function.

S-2479-20

Developing LUC Applications [5]

S-2479-20

9. Stop the service by calling st opSer vi ce. This releases any nearby memory
that was allocated by the endpoint, closes all previously opened Fast 1/0 data
streams, and deactivates the object.

10. Delete the object. Thisinvokes the virtual destructor for the derived object. If
an endpoint object is deleted before calling st opSer vi ce, the destructor
automatically stops the service and deactivates the object.

Example 11. LUC client code example

user _application_defs.h // sanple header

// function index definitions
/'l note that the values do not have to be contiguous

#defi ne FUNC_QUERY1 1
#defi ne FUNC_QUERY3 3
#defi ne FUNC_QUERY8 8

/'l service type definitions
#define QUERY_MANAGER 1
#define QUERY_ENG NE 2
#define UPDATE_MANAGER 3
#define UPDATE_ENG NE 4

user _application.cpp //sanple client code
#i ncl ude <l uc/luc_exported. h>
#i ncl ude <user_app_definitions. h>

const int INBUF_SIZE = (1 * 1024 * 1024); /1 1 MB input data
const int OQUTBUF_SIZE = (2 * 1024 * 1024); /1 2 MB output data

void client(luc_endpoint_id_t serverlD)
{
LucEndpoi nt *cl i ent Endpoi nt;
luc_error_t result;
char *outbuf = mall oc(QUTBUF_SI ZE);
char *inbuf = malloc(!NBUF_SI ZE);
size_t outDatalLen = OUTBUF_SI ZE;

client Endpoint = luc_allocate_endpoint (LUC CLI ENT_ONLY);
result = clientEndpoint->startService();
if (result !'= LUC ERR OK)

{

/1 process LUC error

del ete client Endpoint;

return;

55

Cray XMT™ Programming Environment User’'s Guide

result = client Endpoi nt->renoteCal | Sync(serverlD,

QUERY_ENGQ NE, FUNC_QUERY1,
i nbuf, | NBUF_SIZE, outbuf, &outDatLen);

if(result == LUC_ERR (K)

/1 The RPC was successful.

/1 outDatalLen contains the size of data returned in outbuf.
else if result < LUC ERR MAX)

{

/1 Result contains a LUC error code.

el se

/! Result is the return value fromrenote function

cl i ent Endpoi nt - >st opSer vi ce() ;
del ete client Endpoi nt;

5.3 Creating and Using a LUC Server

56

The server allocates and activates an endpoint object in a manner similar to that of
the client. Object deactivation and deletion are also similar. The primary difference
is the requirement for the server to register its remote functions. Use the following
steps to create a server object.

Procedure 4. Creating and using a LUC server object

1

Include the header file <l uc/ | uc_export ed. h>, aswell as the application
defined header file.

Declare a pointer to aLucEndpoi nt object.
Allocate the object by calling | uc_al | ocat e_endpoi nt .

Cdl regi st er Renot eCal | to register each function that will be serviced by
this endpoint. The first parameter isthe service type, the second parameter isthe
function index, and the third parameter is the address of the function.

Activate the server endpoint by calling st art Ser vi ce. The parameter isthe
number of LUC worker threads to start. The default is1. The MTK version of
the library ignores this value and creates one worker thread for each RPC. This
method call causes LUC to allocate a number of nearby memory buffers for
incoming requests and pre-post these receive buffers with the Fast 1/O driver. The
worker threads service the client requests as they comein.

. Wait for areguest to halt the service. There are many ways to accomplish this.

In the following MTK example, the main application server thread then waits to
be told to halt the service — by doing a synchronized read on an empty memory
location. When the request is received, the application stops the service and

deletes the endpoint. The application coordinates the notification to the server to

S-2479-20

Developing LUC Applications [5]

shutdown the service. For instance, if a serious application internal error occurs
or an application shutdown request is received, the server must be told to halt
by the application.

Example 12. LUC Server code example

#i ncl ude <l uc/l uc_exported. h>
#i ncl ude <user _app_definitions. h> (see below, step 6)

void server()

{
LucEndpoi nt *svr Endpoi nt;
luc_error_t err;

svr Endpoi nt = luc_al | ocat e_endpoi nt (LUC_SERVER ONLY) ;

err = svrEndpoi nt->regi st er Renot eCal | (QJERY_ENG NE,
FUNC_QUERY1, queryl);
if (err !'= LUC_ERR _OX)
{
/!l Process LUC error code
del et e svrEndpoi nt;
return;

}

/'l Register nore renote calls as above

err = svrEndpoint->start Service();
if (err !'= LUC_ERR _OX)
{

/1 process LUC error code
del et e svrEndpoi nt;
return;

}

readf e(&hal t Service); // MK full-enpty synchronization
svr Endpoi nt - >st opSer vi ce() ;

del et e svrEndpoi nt;

return;

5.4 Communication Between LUC Objects

The following example shows how the application uses the client and server objects
to communicate.

Example 13. Allocating and using LucEndpoi nt objects to communicate

/1 Application-specific definitions

#def i ne QUERY_ENG NE_ALI VE_FCTN_I D 1
#def i ne QUERY_ENG NE_DATA_BOUNCE_FCTN_I D 2
/1

/1 This asynchronous conpl etion handl er confornms to LUC Conpl eti on_Handl er
11

voi d dient Conpl eti onHandl er (I uc_endpoint _id_t dest Addr,

S-2479-20 57

Cray XMT™ Programming Environment User’'s Guide

| uc_service_type_t servi ceType,

i nt servi ceFunct i onl ndex,
void * user Handl e,
luc_error_t r enot eLucError)
{
/1 In the exanple given, 'userHandle' wll equal OxfO00
return;
}
voi d Lucd i ent Onl yUsagehModel (voi d)
{

/Il First create an endpoint. This is used to nmake the renpte calls.
LucEndpoi nt *client = luc_all ocate_endpoi nt (LUC_CLI ENT_ONLY);

/1 In order to issue the renpte calls, we need to know where to send them
/1 The library uses the abstract 64 bit 'luc_endpoint_id_t' value, so the
/1 client application has to get this value fromthe server by some ot her
/1 means.

luc_endpoint _id_t server Endpoi nt 1 d;

/1 This exanpl e assunes that 'serverEndpointld is filled in by sone
/1 other means; environnent variable, conmand |ine option, etc.

/1 Enable the |l ocal endpoint. This will create worker threads and all ocate
/'l resources.
luc_error_t lucError = client->startService();
if (LUC_ERR OK != | ucError)
{
/'l error case
delete client;
return;

}

/1 Once the client object has been started successfully, the application
/1 can use it to make synchronous and asynchronous calls.

/1 A synchronous (bl ocking) call.

/1 The application is responsible for setting serviceType and
/'l serviceFunctionl ndex to sonething meani ngful (ie. sonething
/1 registered by the object at 'serverEndpointid).

luc_service_type_t servi ceType = LUC_ST_Quer yEngi ne;
int servi ceFuncti onl ndex = QUERY_ENG NE_ALI VE_FCTN_I D

/1 This particular rempte call passes no data.
lucError = client->renoteCall Sync(serverEndpointld,
servi ceType,
servi ceFuncti onl ndex,
NULL, // void *i nput Dat a,

0, /1 size_t inputDatalen,
NULL, // void *out put Dat a,
0); /1 size_t *outputDatalen);

if(lucError == LUC_ERR OK)
/| RPC was successf ul

58 S-2479-20

Developing LUC Applications [5]

else if (lucError < LUC_ERR_MAX)

/1 LUC library generated error code
el se

/1 user renote function return val ue

I

/1 An asynchronous (non-blocking) call.

/1 Return data is not supported for asynchronous callers.
I

voi d *nyMeani ngf ul Handl e = 0xf 00;

lucError = client->renoteCall (serverEndpointld,
servi ceType,
servi ceFuncti onl ndex,
NULL, // void *inputData,
0, /1 size_t inputDatalen,
nmyMeani ngf ul Handl e,
Cl i ent Conpl eti onHandl er) ;

/1 The application can do other work while the rempte call is in progress.
/1 dientConpletionHandler will fire in some other context at a later tinmne.

/1 \When the application is finished with the endpoint object,

/1 be stopped.
lucError = client->stopService();

/1 and destroyed.
delete client;

return;
}
/'l Server Quer yEngi neAl i veFuncti on:
/1 inplenments {LUC_ST_QueryEngi ne, QUERY_ENG NE_ALI VE_FCTN_I D}
/1 confornms to LUC RPC Function_lnCut prototype
I
luc_error_t Server QueryEngi neAl i veFunction(void *
u_inté4d t
void **
uintéd4_t *
void **
LUC Mem Avail _Conpletion *
| uc_endpoint _id_t

it should

i nDat a,

i nDat aLen,

out Dat a,

out Dat aLen,
conpl eti onArg,
conpl eti onFct n,
cal | er Endpoi nt)

/1 This function is a sinple case. It does not accept or return any data.

i f (*outData)
*out Data = NULL;
i f (*outDatalLen)
*out Dat aLen = O;

/1 Since this function is not returning data, it does not need to register

/1 a nenory-avail able (or dereference) handler.
*conpl eti onFctn = NULL;

return LUC ERR OK; // successful return code

S-2479-20

59

Cray XMT™ Programming Environment User’'s Guide

voi d LucServer Onl yUsagehMbdel (voi d)

{

5

60

/1 First create a communication endpoint. This is used to accept calls from
/'l remote clients.
LucEndpoi nt *server = luc_all ocate_endpoi nt (LUC_SERVER _ONLY) ;

/'l These val ues correspond to values used by clients of this service.
| uc_service_type_t serviceType = LUC _ST_Quer yEngi ne;
int serviceFunctionlndex = QUERY_ENG NE_ALI VE FCTN I D;

/1 The registration routine sinply records the desired function in a
/1 table so that future client requests know which function to fire.
|l ucError = server->regi sterRenoteCall (serviceType,

servi ceFuncti onl ndex,

Ser ver Quer yEngi neAl i veFuncti on);

/1 The LucEndpoi nt object nmust be started before it can accept renote
/1 function call requests.

/1 This exanple creates two server worker threads; one to do main processing
/1 and one to execute the Server QueryEngi neAl i veFunction when it's call ed.
uint_t total ThreadCount = 2;

/1 This server doesn't need a specific Portals PID val ue.
uint _t requestedPid = PTL_PI D_ANY;

|l ucError = server->start Service(total ThreadCount,
request edPi d) ;

/1 1f the server wants to report its endpoint id, via printf or socket-based
/1 conmuni cation to some other application, it can get its endpoint ID

/1 with the follow ng function.

| uc_endpoint _id_t nyEndpointld = server->get MyEndpoi ntld();

/1 A proper service can go do other work here, wait for a termnation
/1 signal, or exit this thread (as long as the server object isn't

/1 destroyed).

/1 The endpoint object will accept and renmpte function requests

/1 until stopped at some later tinme with stopService.

| ucError = server->stopService();

del ete server;

return;

.5 LUC Client/Server Example

This example implements a server-side sum of values provided by the client, with
the sum returned to the client. The program should be run once using the following

command to start the server:

% exl uc -s

S-2479-20

Developing LUC Applications [5]

Then the client can be run multiple times using the following command:

% exluc -c id

Where id is the server endpoint ID printed to the command line when the server
starts.

#i ncl ude <stdi o. h>

#i ncl ude <uni std. h>

#i nclude <stdlib.h>

#i ncl ude <netinet/in.h> // htonl/ntohl byte swapping
#i ncl ude <l uc/ | uc_exported. h>

/'l The service type is an application-specific major service id.

/1 1t identifies the general type of service requested by the client.
/1 One server may inplenment one or nore service types.

/1l For this exanple, one service type is defined.

int svc_type = 0;

/1 The function index is an application-specific mnor service id.

/1 1t identifies a specific server function out of the functions defined

/1 by the server within one of its supported service types.

/1 Each service type nmay inplement one or nore functions.

/1 For this exanple, one function within the svc_type service type is defined.
int reduce_func_idx = 0;

#define NREDUCE 10 // nunber of values to be sunmed

/1 Opteron uses little-endian byte order and XMI uses big-endi an byte order.

/1 When an Opteron client uses an XMI server, byte swapping is required

/1 to convert the data between the two systens.

/1 This exanpl e uses network byte order (big-endian) for all LUC data transfers,
/1 and converts to host byte order before using LUC data.

#if defined(__MIA) || defined(NO BYTE _SWAP)

/1 Host byte order is the sane as network byte order on XM,
/1 so no conversion is necssary.

#defi ne Networ kToHost (b, |)
#defi ne Host ToNet wor k(b, I)
t#el se

/1 Byte swap to convert between host and network byte ordering.

voi d ByteSwap(void *buf, size_t |en)

{
char *c = (char *) buf;
int i;
for (i=0;i < len;i+=2)
{
char t = c[0];
c[0] = c[1];
c[1] =t;
}
}

S-2479-20 61

Cray XMT™ Programming Environment User’'s Guide

#defi ne Networ kToHost (b,) ByteSwap((b), (I))
#defi ne Host ToNetwork(b,|) ByteSwap((b), (I))

#endi f

/1 The LUC client runs on the XMI | ogin node, and acts as
/1 the application user interface.

// Return value is O for success, 1 for error.

int client(luc_endpoint_id_t serverlD)

{
doubl e i nput [NREDUCE] ; /1 input data
doubl e out put; /1 result
size_t in_size = sizeof(double) * NREDUCE;, // input size in bytes
size_t out_size = sizeof (double); /1 output size in bytes

luc_error_t err; /1 result code fromLUC calls

[/ Initialize the input data.
for (int i=0;i < NREDUCE;i++) input[i] =i;

/1 Create the LUC client endpoint.
LucEndpoi nt *client Endpoint = luc_all ocate_endpoi nt (LUC_CLI ENT_ONLY) ;

/1 Initialize the endpoint (connect to the server).
err = clientEndpoint->startService();
if (err !'= LUC_ERR OX)

fprintf(stderr,"client: LUC startService error %d\n",err);
delete clientEndpoint; // free menory
return 1; Il error

}

Host ToNet wor k(i nput,in_size); // convert data to network byte order

/1 Send the request to the server and wait for a response.

/1 In this exanple, the array of values to be sunmmed is sent,

/1 and the sumis returned as the result.

err = clientEndpoint->renoteCall Sync(serverl D, svc_type, reduce_func_idx,
nput, in_size, &output, &out_size);

if (err !'= LUC_ERR OX)
{

[l err contains a LUC error code.
fprintf(stderr,"client: LUC renoteCall Sync error %\n",err);

el se

/1 out_size contains the size of data returned in outbuf
Net wor kToHost (&out put, out _si ze); // convert data to host byte order
printf("The sum of the %l values is % f\n", NREDUCE, out put);

}

cl i ent Endpoi nt->stopService(); // disconnect fromthe server
del ete client Endpoint; /1 free nenory

return (err !'= LUC ERR OKX) ? 1 : O;

62 S-2479-20

Developing LUC Applications [5]

/1 Reduction service.

/1 This routine is called by the LUC server library

/1 when a client request of type

/1 (svc_type,reduce_func_idx) is received.

luc_error_t reduce(void *inPtr, u_int64_t inDatalen,
void **outPtr, u_int64_t *outDatalen,
voi d **conpl eti onArg, LUC Mem Avail _Conpl etion *conpl eti onFctn,
| uc_endpoint _id_t callerEndpoint)

{
doubl e *input = (double *) inPtr; // input data
doubl e *out put = NULL;
int n = inDataLen / sizeof(double); // nunber of values to sum
/1 Default (error) return will be no output data

*out Ptr = NULL;
*conpl eti onArg = NULL;
*conpl eti onFctn = NULL;

/1 Allocate space for the return data
out put = (double *)mall oc(sizeof (double));
if (NULL == output)

{
return LUC_ERR RESOURCE_FAI LURE; // or use a custom code
}
Net wor kToHost (i nput, i nDat aLen) ; /1 convert data to host byte order

/1 Performthe reduction.
doubl e sum = 0;
for (int i=0;i < n;i++) sum+= input[i];

*out put = sum /1 set result val ue

Host ToNet wor k(out put , si zeof (doubl e)); // convert result to network byte order
*out Dat aLen = si zeof (doubl e); /1 set result size

*outPtr = (void *)output; /1 set result / output pointer

[/ Tell LUC to call 'free' when it is done without the output data.
/1l Pass the 'output' pointer to free()

*conpl eti onArg = out put;

*conpl etionFctn = free;

return LUC_ERR CX;

/1 The LUC server can run on the XMI | ogin node or in the conpute partition.
/] Return value is O for success, 1 for error.

int server(int threadCount)
{

luc_error_t err; // result code fromLUC calls

/1 Create the LUC server endpoint.
LucEndpoi nt *svrEndpoi nt = |l uc_al |l ocat e_endpoi nt (LUC_SERVER_ONLY) ;

/'l Register routines which inplenent the services.

S-2479-20 63

Cray XMT™ Programming Environment User’'s Guide

1/
/1
/1
1/
in

{

64

err = svrEndpoint->registerRenpteCall (svc_type, reduce_func_idx, reduce);
if (err !'= LUC_ERR OK)

fprintf(stderr,"client: LUC registerRenoteCall error %\ n",err);
del et e svrEndpoi nt;
return 1; // error

}

/1 Begin offering services (begin listening for requests).
err = svrEndpoint->start Servi ce(threadCount);
if (err !'= LUC_ERR OK)

fprintf(stderr,"client: LUC startService error %d\n",err);
del et e svrEndpoi nt;
return 1; // error

}

/1 Print out the endpoint id for the server. This value is a required
/1 input for the client.
fprintf(stderr,"server: Server ready.

My endpoint idis %d\n", svrEndpoi nt->get MyEndpoi ntld());

/1 At this point, the main server thread waits while requests

/1l to the server are handl ed by other threads.

/1 A "terminate server" client request can be defined by the

/1 application to handl e server shutdown, or else the server can
/1 sinply be killed when the server is no | onger needed.

/1 For this exanple, the server waits until it is killed.
getc(stdin);

/'l The server has been requested to shut down.

svr Endpoi nt - >st opService(); // stop listening for requests
del ete svrEndpoint; // free nenory

return O;

The main programeither calls the server routine or the client
routine. The server (-s) should be started first, then the
client (-c id) can be run nultiple tines.

Shut down by killing the server process.

t main(int argc, char **argv)

| uc_endpoint _id_t id;
int i;

while ((i = getopt(argc,argv,"c:s")) != EOF)

{
switch (i)
{
case 'c':
id = strtoul (optarg, NULL, 0);
return client(id); // nake a request to server with this endpoint id
case 's':
return server(1l); // start server with 1 request-processing thread
}
}

S-2479-20

Developing LUC Applications [5]

/1 1f no valid options were given, print the program usage nessage.

fprintf(stderr
fprintf(stderr
fprintf(stderr
return 1;

,"Usage: exluc -c id | -s\n");
,"-c id Run as a client with the given endpoint id.\n");
,"-s Run as a server, printing the endpoint id.\n");

5.6 Fast I/O Memory Usage

S-2479-20

The MTK Fast I/O Library performs al data transfer operations through nearby
memory. Nearby memory is memory on the same node as the Threadstorm processor
where the LUC endpoint was started. The library transfers user datainto and out of
nearby memory buffers automatically. Use configuration variables to control the
amount of nearby memory used by the library.

The MTK Fast I/O Library uses one or two regions of nearby memory for each local
endpoint as I/O buffers. The library requires one region for al small allocations and
alows for an optional region for large allocations. The small region is used for core
RPC data structures that are sent over the high speed network. Small data transfer
buffers may use the small region aswell. The optional large memory region is used
for large transfer requests and many concurrent smaller requests. The large region
may be sized to support one very large RPC request or several smaller requests.

To control the size of the small memory region use the configuration variable
LUC_CONFI G_MAX_SMALL_NEARMEM SI ZE. Legal values range from 1 MB
(1,048,576) to 256 MB (268,435,456), inclusive, in power-of-two increments. The
size of the largest allowable request on this memory region may be specified with the
LUC_CONFI G_MAX_SMALL_MEM REQUEST variable. Lega values range from
64 KB (65,536) to one half of the current small memory region size, inclusive, in
power-of-two increments.

To control the size of the large memory region use the configuration variable
LUC_CONFI G_MAX_LARGE_NEARMEM SI ZE. Legal values range from 1 MB
(1,048,576) to 2 GB (2,147,483,648), inclusive, in power-of-two increments. While
the library allows for a very large nearby memory region, the system may not be
configured with enough nearby memory to support a maximum size nearby memory
region. The size of the largest allowable request on this memory region may be
specified with the LUC_CONFI G_ MAX_LARGE_MEM REQUEST variable. Legal
values range from 1 MB (1,048,576) to the current large memory region size or 256
MB, whichever isless. The maximum request size must be an integral power-of-two.

To disable the large memory region specify arequested size of zero.

65

Cray XMT™ Programming Environment User’'s Guide

Initialize the memory region variables from the global variables when creating

the LUC Endpoint object. Changes to the global variables are propagated to new
endpoint objects, not objects that already exist. An endpoint's memory configuration
variables may be changed by using the LucEndpoi nt : : set Confi gVal ue()
method until the endpoint is started. Once the endpoint starts, the size of the
nearby memory regions and the maximum transfer sizes are locked in and

may not be modified until you stop the endpoint. Attempts to change these
configuration variables by using LucEndpoi nt : : set Confi gVal ue() fall
with LUC_ERR | NVALI D_STATE. If you try to change the global configuration
variables, the changes do not propagate to started endpoints. Attempts to set invalid
memory sizes or maximum request sizes fail with LUC_ERR BAD PARAMETER.

66 S-2479-20

Managing Lustre I/O with the Snapshot
Library [6]

6.1 About the Snapshot Library

The Cray XMT snapshot library provides a high speed bulk data transfer facility that
moves data between memory regions within an MTK application and files hosted on
the XMT Linux service partition. The primary use of the snapshot library is to load
and save large data sets that are being stored on a Lustre file system. For example,
an application might use the snapshot library to load alarge data set at the beginning
of arun, process the data, then use the snapshot library to save the processed datain
afile at the end of arun. An application might also use the snapshot library to save
intermediate copies of the processed data during the course of arun.

The snapshot library uses the Fast 10 (FIO) mechanism on the compute partition to
transfer data, in parallel, to and from files on the service partition using instances

of a helper program called f swor ker that provide file system access on login
nodes. Multiple instances of f swor ker can be used in parallél to provide higher
throughput. This figure shows the most common data communication paths between
an application using the snapshot library and afile on the compute partition. The data
moves, in four distinct stages, between a global memory buffer in the application and
afileon aLustre file system hosted by the service partition.

Figure 1. Snapshot Library Data Paths

Global

Snapshot Client Memory
FC Portals
\ >
(=—
‘ Application
'@/2: : | Data Buffer
K > |
Lustre %D/
File System
Linux Service Partition Threadstorm Compute Nodes

S-2479-20 67

Cray XMT™ Programming Environment User’'s Guide

The easiest way to understand this is to imagine data going to a file from the
application. In this case, the data is copied by each compute node into the FIO
transport and sent to its corresponding f swor ker on alogin node in the Linux
service partition. Each f swor ker then uses Linux system calls to write datainto
the Lustre file, which results in the data moving across the Portals transport from the
login node to one or more Lustre OSS nodes. From there, the data moves through
Fibre Channel (FC) to the actual storage device.

Moving data from afile to the application simply reverses the order of the stages and
the direction of the data flow through each stage, ultimately resulting in data being
copied from compute nodes into the application's global memory buffer.

6.2 The Snapshot Library Interface

68

Note: Effectivewith Cray XMT version 2.0 thesnap_* functions are replaced by
dsl r_* equivalents. Thesnap_* functions are deprecated and will be removed
in afuture release.

The snapshot library interface consists of these functions:
dsl r _snapshot

Copies datain parallel from a buffer in the application to a file on
the service partition.

dslr_restore

Copies datain parallel from afile on the service partition to a buffer
in the application.

dsl r_pread Allowsthe application to specify an offset into afile from which to
read data. Does not move datain parallel.

dslr_pwite

Allows the application to specify an offset into afile at which to
write data. Does not move datain parallel.

dslr_stat Allowsthe application to obtain file status from afile, similar to the
st at function.

dslr_truncate

Truncates afile to a specified length.

For more information on any of these functions, see the associated man page.

S-2479-20

Managing Lustre I/O with the Snapshot Library [6]

For large data transfers starting at the beginning of afile, the best functions to use
aredsl r _snapshot anddsl r _rest or e, because they are able to transfer
datain parallel to achieve high throughput. To store data, the application calls

dsl r _snapshot , specifying the buffer to be copied, the length of the data, and the
name of the file receiving the data. To read back (restore) data from the file into
application memory, the application callsdsl r _r est or e, specifying the buffer
receiving the data, the length of the data to read, and the name of the file providing
the data. Because this name will be used by all instances of f swor ker to open and
read or write the file the file name should be an absol ute path name to the location
of the file on the service partition. A relative path name could be ambiguous or
meaninglessto a particular f swor ker .

A typical application might usedsl r _rest ore anddsl r _snapshot inthe
following manner:

1. Start up and allocate a large buffer to hold a data set.

2. Call dsl r _r est or e specifying the name of the file providing the data, the
buffer allocated in step 1, and the length of that buffer.

3. Process and change the data set.

4. Cdl dsl r _snapshot to store the data set back to the file (or to a new modified
datafile).

5. If necessary repeat 3 and 4, using the snapshots as a way to preserve forward
progress.

Thedsl r_pwriteanddslr_pread functions are provided for transferring
smaller amounts of data between a buffer and arbitrary locationsin afile. To write
datato afile, the application callsdsl r _pwri t e specifying the endpoint-1D of a
singlef swor ker , the name of the file, the offset of the datain the file, a pointer to a
buffer from which to take the data, and the length of the data to be written. To read
datafrom afile, the application callsdsl r _pr ead specifying the endpoint-1D of
asinglef swor ker , the name of the file, the offset of the datain the file, a pointer
to a buffer into which to put the data, and the length of the datato be read. Again,
absolute path names for files are strongly recommended.

S-2479-20 69

Cray XMT™ Programming Environment User’'s Guide

AN

A typical application might usedsl r _pread anddsl r_pwr it e inthefollowing
manner:

1. Start up and alocate a small buffer to be initialized from afile.

2. Cdl dsl r _pread specifying the name of the file providing the data, the offset
of the datain the file, a pointer to the buffer allocated in 1, and the length of the
data.

3. Process and change the data.

4. Caldslr_pwrit e tostorethe data back to the file (or to a new modified data
file).

5. Repeat 3 and 4 as often needed, using snapshots as a way to preserve forward
progress in case of failure or for the sake of sharing the system.

It is possible to mix uses of dsl r _snapshot /dsl r _r est or e and uses of
dslr_pwite/dsl r_pread asneeded in an application.

Caution: The snapshot library functions can only be used one at atime; they
cannot be used in parallel. Any attempt to use snapshot library functionsin parallel
will eventually result in corruption of the snapshot data and possible uncontrolled
failure of the snapshot library or of one or more instances of f swor ker .

6.3 Maintaining File System and 1/O Parallelism

70

The snapshot library isintended primarily for saving and retrieving large data sets on
platforms with a Lustre file system. Lustre supports parallel access and is highly
tunable, allowing users and administrators to set many options, including file stripe
widths and block sizes. With proper provisioning and tuning, Lustre can sustain many
gigabytes per second of throughput. Because the performance of the underlying
Lustre configuration bounds the throughput of most snapshot library operations,
careful Lustre tuning is essential for optimal snapshot performance.

A detailed discussion of Lustre provisioning, configuration and tuning are beyond
the scope of this document. One rule of thumb, however, makes a good starting
point whenusing dsl r _snapshot anddsl r _r est or e in single-file mode with
multiplef swor ker s. Setting the block size to 32 megabytes and a file stripe width
of all object storage server (OSS) nodes (-1) generally yields good results. Typically,
for multi-file mode the directory is striped to a single object storage target (OST).
Thel f s command allows a user to set these parameters on a per-directory basis.
Seetheset st ri pe/ get st ri pe documentation inthel f s man page for more
information. Contact your system administrator for more detailed information on
tuning Lustre to the requirements of a particular application.

S-2479-20

Managing Lustre I/O with the Snapshot Library [6]

If the underlying file system is naturally seria (NFS, for example) its performance
is constrained by the serial performance of the file system and any contention
introduced by trying to use the file system in parallel. Again, the throughput of
the snapshot library is bounded by the file system performance, so when using a
serid file system asingle f swor ker provides the best throughput for the snapshot
library. Note that f swor ker s are not resilient. If atransaction fails, all involved
f swor ker s must be terminated and restarted. If the file system is full a snapshot
function may return success even though the file was not written, or was only
partialy written.

6.4 Examples

Example 14. Using dsl r _snapshot and dsl r _rest or e to save and restore
data in afile.

Note that this example waits for the call to dsl r _snapshot to complete before
callingdsl r _rest ore. Whilethisislogical in thisexample, it isaso crucial for
correct operation. (See the caution about using snapshot library functionsin parallel
above.)

#i ncl ude <stdio. h>

#i
#i
#i
#i
#i

ncl ude <stdlib. h>

ncl ude <string. h>

ncl ude <sys/types. h>

ncl ude <sys/stat. h>

ncl ude <snapshot/client. h>

const size_t DEFAULT_BUFFER SI ZE = 1024 * 1024 * 1024;
const char DEFAULT_FILENAME[] = "/mmt/| ustre/ nyuser nane/ snapshot. data";
int main(int argc, char *argv[])

{

void *testBuffer = NULL;
int64_t err;
int64_t snapError = 0;

/1 Allocate a large buffer to be transferred.

if (NULL == (testBuffer = malloc(DEFAULT BUFFER Sl ZE)))

fprintf(stderr,"Failed to malloc % byte snapshot buffer.\n",
DEFAULT_BUFFER_SI ZE) ;
return -1;

menset (testBuffer, 'a', DEFAULT_BUFFER_SI ZE);

/1 Snapshot the testBuffer to disk

/1 Al file systemworkers nmust be able to access the specified path.
err = dslr_snapshot ((char *)DEFAULT_FI LENAME, testBuffer,
DEFAULT_BUFFER_SI ZE, &snapError);

if (dslr_ERR OK !'= err)

{

fprintf(stderr,"Failed to snapshot the dataset. Error %d.\n",err);free(testBuffer);
return -1;

}

S-2479-20 71

Cray XMT™ Programming Environment User’'s Guide

72

menset (testBuffer, 0, DEFAULT_BUFFER_SI ZE);
/1l Restore a snapshot dataset from di sk back into nmenory.
err = dslr_restore ((char *)DEFAULT_FI LENAVE, testBuffer,
DEFAULT_BUFFER_SI ZE, &snapError);
if (dslr_ERR OK !'= err)

{

fprintf(stderr,"Failed to restore the dataset. Error %l.\n",err);
free(testBuffer);
return -1;

}
/1 At this point, the testBuffer should be full of '"a'

free(testBuffer);
return O;

Example 15. Using dsl r _pwri t e to write data to afile and dsl r _pr ead to read
back the data

Note that the callstodsl r _pwrit e and dsl r _pr ead accept the value

dsl r _ANY_SWto specify the endpoint ID of the f swor ker , alowing libsnapshot
to use any registered endpoint. Therefore, the f swor ker | Disautomatically set to
dsl r _ANY_SWrather than requiring the user to enter the endpoint either manually
or by the environment.

Also note that, while the function call interface appears to invite parallel use of
dslr_pwite anddsl r_pread, the functions cannot be used in parallel.
Concurrent calls to these or any other snapshot library functions results in the
problems described in the caution statement above. Regardless of how the endpoint is
set, only one thread of one instance of f swor ker will be applied to any given call
todslr_pwiteanddslr_pread.

S-2479-20

Managing Lustre I/O with the Snapshot Library [6]

#i
#i
#i
#i
#i
#i

While these functions are useful for transferring small quantities of data to or from
arbitrary locations in files but, because they are unable to benefit from parallelism,
they are not useful for bulk data transfer. You should not expect throughput greater
than 100MB/second whenusingdsl r _pwri te ordsl r _pread.

ncl ude <stdio. h>

ncl ude <stdlib. h>

ncl ude <string. h>

ncl ude <sys/types. h>

ncl ude <sys/stat. h>

ncl ude <snapshot/client. h>

const size_t DEFAULT_BUFFER SIZE = 1024 * 1024; // Relatively short buffer
const char DEFAULT_FILENAME[] = "/mmt/| ustre/ nyuser nane/ snapshot. data";
int main(int argc, char *argv[])

{
void *testBuffer = NULL;]
inté4 t err;
int64_t snapError = 0;
uint64_t fsworkerl D = dslr_ANY_SW
off t fileOifset = 0;
int rc = 0;
I/l Allocate a small buffer to be transferred.
if (NULL == (testBuffer = mall oc(DEFAULT_BUFFER Sl ZE)))
{
fprintf(stderr,"Failed to malloc % byte snapshot buffer.\n",
DEFAULT_BUFFER_SI ZE) ;
return -1;
}
menset (testBuffer, 'a', DEFAULT_BUFFER_SI ZE);
/1l pwite the testBuffer to disk
fileOfset = 0;
err = dslr_pwite((char *)DEFAULT_FI LENAME,
f swor ker | D,
t est Buf fer, DEFAULT_BUFFER_SI ZE,
fileOfset, &napError);
if (dslr_ERR OK !'= err)
{
fprintf(stderr,"Failed to pwite the dataset. Error %l.\n",err);
free(testBuffer);
return -1;
}
menset (testBuffer, 0, DEFAULT_BUFFER SI ZE);
/1 pread the testBuffer from disk.
err = dslr_pread ((char *)DEFAULT_FI LENAME,
f swor ker | D,
t est Buf f er, DEFAULT_BUFFER_SI ZE,
fileOifset, &snapError);
if (dslr_ERR OK !'= err)
{
fprintf(stderr,"Failed to pread the dataset. Error %d.\n",err);
free(testBuffer);
return -1;

/1 At this point, the testBuffer should be full of 'a'
free(testBuffer);
return O;

S-2479-20 73

Cray XMT™ Programming Environment User’'s Guide

6.5 Managing File I/O on File Systems Other Than Lustre

Using the snapshot library to read and write files on afile system, such as NFS

that does not support high performance parallel 1/0 can result in overloading the
underlying file system with data requests and transfers. Cray does not support this use
of the snapshot library on any system with more than a single login node, as even file
transfers of afew hundred MB can cause unacceptable network congestions.

The standard operating system 1/0 functions OPEN(2), cl ose(2), r ead(2) and

wr it e(2) are available for reading and writing files on NFS file systems that are
cross-mounted to the compute partition. Files larger than 1 GB should always be read
or written using thedsl r * functions to a high performance parallel file system,
such as Lustre.

74 S-2479-20

Compiler Overview [7]

S-2479-20

This chapter provides an overview of the Cray XMT compilers. You need to
understand these concepts before you compile your program.

The Cray XMT platform includes Cray XMT compilers for C and C++ applications.
These compilers optimize programs to improve performance. These features include:

Debugging support

The Cray XMT compilers support multiple levels of debugging.
Each level receives some degree of optimization, but the level of
optimization decreases as the level of debugging support increases.
For example, the compilation process suppresses parallelization of
loops at the highest debugging level.

Optimization
The Cray XMT compilers optimize parallelization, loop
restructuring, and software pipelining, in addition to the classical
scalar optimizations.

Inlining The Cray XMT compilers support automatic and

programmer-directed inlining within source files and

among multiple source files. In addition, the compilers support
inlining from separately compiled libraries. For a discussion of
inlining, see Inlining Functions on page 84.

Incremental recompiling and relinking

The Cray XMT compiler detects unmodified functions and avoids
recompiling them, even when other functions in the same file have
been changed. The Cray XMT compiler uses incremental linking
to avoid relinking an entire executable when some, but not all, of
the functions have been modified.

Each compiler is organized as alanguage-dependent front end. Both compilers use a
common set of backend subprograms for trandating, optimizing, and linking. The
Cray XMT C compiler supports ANSI X3.159-1989 standard C. The Cray XMT
C++ compiler supports the draft | SO/IEC 14882 C++ standard. Because of the
commonality between the Cray XMT C and C++ compilers, they are referred to
collectively as the compiler in the remainder of this chapter.

75

Cray XMT™ Programming Environment User’'s Guide

7.1 The Compilation Process

There are two major phases of building a program executable from a number of

source files.
Compilation
The compiler creates object files by invoking subprograms that
tranglate the source files and optimize functions in the program.
The compiler starts by invoking the front end. When the front end
finishes, the compiler invokes the trandator, which is the subprogram
that optimizes and parallelizes code, and generates object files.
Linking The compiler creates an executable program by invoking

subprograms that create links between object files created during
the compilation process and any associated libraries. Links can
be created between two or more object files, in any combination,
including the startup file, any specified object files or compile
results, and user-created or standard libraries.

For atraditional UNIX compiler, you usethecc -c¢ fil el. c command to
tranglate the source filef i | el. ¢ into an object file, which, by default, is called
filel.o. Youthenlink aset of object filesusingthecc filel.o file2.0
command. This creates an executable called a. out . Unfortunately, this approach
to compilation decreases the efficiency of the resultant executable program because
each file of functionsis first compiled independently and then linked together in a
separate process. Using this approach, information that the compiler uses to optimize
functions during the first compilation is not available during the linking phase
when the object files are combined to form an executable. Asaresult, the compiler
cannot perform some optimizations between object files that might seem simpleto a
programme.

In response to this problem, the Cray XMT compiler supports a compilation mode
that enables information to be captured from individual modules and used when
compiling multi-module programs. In this mode, each function is compiled in the
context of a complete program, and the compiler may use facts about that context to
optimize the trandlation of the function. The compiler retains this information so that
when you modify your program's functions in the future, the compiler only needs to
recompile the modified functions, resulting in a shorter recompile time. Thismode is
called whole-program compilation. The Cray XM T compiler also supports a mode
for the traditional UNIX style of compiling called separate-module compilation.

76 S-2479-20

Compiler Overview [7]

S-2479-20

The compilation processes for these modes differ in the following ways:
Whole-program compilation

This is the preferred method for compiling applications. In
whole-program compilation, the compilation phase is made up of
several sub-phases. The compiler first parses (partially compiles)
each sourcefile. During this phase, the compiler gathers information
about every module in the program and saves it to the program
library. The next phase is the tranglation phase. During this phase,
the program is translated and optimized. The compiler optimizes
each function in the program using information from within that
function's module or other modules, including linked libraries,

that the compiler gathered earlier. Finally, in the linking phase,

the compiler links separate modules into a program executable.
Information about all modulesis stored, and passed between phases,
in the program library.

Separate-module compilation

The compiler creates a separate object file for each source file and
optimizes the functions within each source file using information
about functions within that file. Then, the separate modules are
linked to create a program executable.

Whole-program compilation generally produces more highly optimized code than
separate-module compilation. You can compile a program using one mode or the
other, or a combination of the two.

The following diagram shows the object files that the compiler creates when
compiling the same ar nol di . cc and bl as. cc filesin different modes.

77

Cray XMT™ Programming Environment User’s Guide

Figure 2. Comparison of Whole-program and Separate-module Modes

Whole-program Compilation Separate-module Compilation
skinny .o Files fat .o Files

test.pl arnoldi.o

Parsed source code
Partial call graph
Object code

Parsed source code
Call graph

Object code
Debugger information

Debugger information

blas.o

Parsed source code

arnoldi.o
: Partial call graph
Object code
Debugger information
blas.o

test.pl

—

| Debugger information '

test

Executable
code

Executable
code

In whole-program mode, all the traditional object information for a program is
contained in asingle program library file. The program library hasa. pl filename
extension. The compilation process also produces an abject filewith a. o extension
for each source file. Thisfileis used as a time stamp to drive build processes.

Each . o file corresponds to a module contained in the program library. The object
information, or modules, for a program's source files are packaged together. This
enables the compiler to optimize each function within the context of the entire
program.

78 S5-2479-20

Compiler Overview [7]

In separate-module mode, the . o files are true object files. The compiler optimizes
each abject file, or module, separate from the others. The link step produces a
program library, athough this program library primarily contains information that
directs the debugger to various object files.

Because of the relative sizes of the . o filesin the two compilation modes, the
qualifier skinny refers to whole-program mode and its products (such asthe . o files)
and the qualifier fat refersto separate-module mode and its products.

During the compilation process, the compiler creates the following files:

a. out The executablefile.
a.out. pl The program library.
LOCK. a. out . pl

The temporary lock file. The lock file prevents other compilers from
accessing a program library when it is already in use. The compiler
removes this file after use, unless the compiler terminates before
completion.

*. 0 Relocatable object files.

7.1.1 File Types Accepted by the Compiler

S-2479-20

The compiler accepts files that use the following extensions:
. C C file when invoked with cc, C++ file when invoked with c++.
.cc, .cpp C++file

.0 In whole-program compilation, time stamp file that does not need
to be compiled but participates in any link step. Also referred to as
askinny . o file. In separate-module compilation, a true object file.
Also referred to asafat . o file.

. pl Program library. Used to support incremental recompiling and
debugging. In whole-program compilation, used to support
inter-module analysis.

.a Archive or library file.
File prefixes used in the compilation process include the following:

LOCK Temporary lock file used to prevent concurrent updates to the
associated program library.

79

Cray XMT™ Programming Environment User’'s Guide

7.2 Invoking the Compiler

You can only use the Cray XMT compiler when the Cray XM T Programming
Environment (nt a- pe) module is loaded. The commands to use to invoke the
compiler arecc for aC program and c++ for a C++ program.

You can control the operation of the compiler by setting various options when
running the compiler command. The compiler uses driver options, language options,
parallelization options, and debugging options.

The driver options control how the compiler invokes subprograms. The compiler
mode is set using driver options. The driver options that you use most often are the
following:

- ¢ filename

Compiles a specified source file.
-0 filename

Links files and creates an executable.
-pl filename

Places object code and other data generated by the compiler into
aprogram library file. This option is used for whole-program
compilation.

For example, if you specify both the - ¢ and - pl driver options, the compiler
compiles the program in whole program mode, but it does not link the filesinto an
executable. For more information, see Setting the Compiler Mode on page 80.

The language options control how the front end processes information. For example,
the - E option indicates that the compiler should preprocess source files but not
compilethem. The- no_f | oat _opt option prevents floating-point optimization.

The parallelization options control parallelism in the program. For example, the
- par 1 option compiles a program so that it runs in parallel on a single processor.
For more information, see Optimizing Parallelization on page 85.

The debugging options control how the debugger works. For more information, see
Setting Debugger Options during Compilation on page 88.

Each compiler uses the same set of command-line options. For a complete list of
command-line options, seethe cc(1) or c++(1) man pages.

7.3 Setting the Compiler Mode

80

To set the compiler mode to whole-program mode, run the cc or ¢c++ command with
the - pl option. This option builds a program library.

S-2479-20

Compiler Overview [7]

The following examples show how to use the compiler options for various compiler
tasks using the whol e-program and separate-module modes.

Whole-program:

c++ -c a.cc -pl prog.pl (parses a.cc)

c++ -c b.cc -pl prog.pl (parses b.cc)

c++ -pl prog.pl -0 prog a.o b.o (translates a.0, b.o; links prog)
Or, as a shortcut:

c++ a.cc b.cc -0 prog (compiles a.cc, b.cc; links prog, and creates prog.pl)

Separate-modul e:

c++ -Cc a.cc (parses and trandates a.cc)
c++ -c b.cc (parses and translates b.cc)
c++ -0 prog a.o0 b.o (links prog)

7.3.1 Whole-program Mode

S-2479-20

With whole-program compilation, the compiler has access to information about all
functions in the program while optimizing each function. This information provides
the compiler with the context for how the larger program uses each function. For
example, when you use the ¢ ++ command to link the filesj acobi an. cc and

bl as. cc, the compiler has access to the entire program during al but the initial
compilation phases, and compiles the program in whole-program mode. To do this,
use the following command:

c++ jacobi an.cc bl as. cc

The previous command produces the skinny . o filesj acobi an. o and bl as. o,
the executable a. out , and the program library a. out . pl .

Whol e-program compilation enables inlining among files. The compiler can inline
functionsin bl as into cal sitesinj acobi an, and vice versa. The compiler can
also inline functionsinto j acobi an and bl as from user-defined libraries linked
with the program. See Creating New Libraries on page 87.

The compiler builds the program library a. out . pl during the compilation phase.

The whole-program compilation mode can be specified while retaining the flexibility
of multiple compilation steps that you typically use for separate-module compilation.
To do this, use the following sequence of commands:

c++ -pl test.pl -c ddot.cc
c++ -pl test.pl -c svd.cc
c++ -pl test.pl -0 test svd.o ddot.o

The first two commands perform the initial compilation phase of ddot . cc and
svd. cc using the program library t est . pl . The last command specifies the
construction of thet est executable using thet est . pl program library and the
svd and ddot modules.

81

Cray XMT™ Programming Environment User’'s Guide

When you use the - pl and - ¢ options to compile a source file, the compiler
performs the following tasks during the compilation phase:

* Checks the source for syntax errors
» Creates an interna representation of each function in the program library
e Producesaskinny . o file

During the linking phase, the compiler performs the following tasks to create an
executable:

» Performs optimizations using information about the complete program

» Builds objects for each module

» Links the modules together to produce an executable

« Storesobjectsin the program library to support incremental recompilation

Asin traditional UNIX compilation, the - o flag specifies the executable name
explicitly. To do this, use the following command:

c++ -pl test.pl -0 test svd.o ddot.o

The previous command links the svd and ddot modulesthat resideint est . pl
and creates the executablein afilecaled t est .

You can also specify multistep command sequences that use a mix of source and
object files when using whole-program mode. To do this, use the following sequence
of commands:

c++ -pl a.out.pl -c ddot.cc
c++ -pl a.out.pl arnoldi.cc ddot.o

The first command partially compilesddot . cc. The second command partially
compilesar nol di . cc; completes compilation and optimization of the modules
ddot and ar nol di ; linksar nol di , ddot , and any required libraries; and places
the resulting executable in a. out . The compiler optimizes each function using
information about the ddot and ar nol di modules.

7.3.2 Separate-module Mode

82

- pl flag to compilation and link lines. Separate-module mode also prevents the
propagation of changes made in one module to other modules. This greatly reduces
the level of optimization that occurs when using separate-module mode compared to
that of whole-program mode.

To compile a single source file into its corresponding object file, use the following
command.

c++ -c ddot.cc

S-2479-20

Compiler Overview [7]

This produces (barring errors in the source file) atraditional, or fat, object file
ddot . 0. To produce the two fat object filesddot . o and daxpy. o, each of the two
source files can be compiled separately. To do this, use the following command.

c++ -c ddot.cc daxpy.cc

Using the previous command is the same as using the following sequence of
commands.

c++ -c ddot.cc
c++ -c daxpy.cc

When compiling afilein separate-module mode, the compiler performs inter-function
optimizations within individual files. Asin whole-program mode, when the compiler
constructs an executable, it also produces a program library. In separate-module
mode, however, the program library is much smaller because it contains only
information the debugger uses to locate more detailed debugging information in the
separate fat object files.

7.3.3 Mixed Mode

S-2479-20

Whole-program and separate-module mode may be used in combination to build a
particular program. You can use mixed-mode to isolate code in fat modules from
changes made in other skinny or fat modules. You can also use it to share the same
piece of precompiled object code among several programs, while still allowing the
programs to take advantage of whole-program optimizations performed on unshared
code.

The following sequence of commands shows how to use mixed mode.

c++ -c arnoldi.cc
c++ -pl test.pl -c jacobian.cc blas.cc
c++ -pl test.pl -0 test arnoldi.o jacobian.o blas.o

The first command compiles ar nol di . cc in separate-module mode, and produces
the fat object filear nol d. o . Inthis step, the compiler optimizes functionsin
ar nol di . cc without using information from the j acobi an or bl as functions.

The second command partially compilesj acobi an. cc and bl as. cc in
whole-program mode, placestheresultsint est . pl , and produces the skinny . o
filesj acobi an. o andbl as. o .

The third command performs final compilation and optimizations of functions from
j acobi an. cc and bl as. cc, then links the functions to form the executable

t est . In this step, the compiler has knowledge of functionsin ar nol di . cc,

j acobi an. cc,andbl as. cc.

83

Cray XMT™ Programming Environment User’'s Guide

7.4 Inlining Functions

84

Inline expansion, commonly known as inlining, occurs when the compiler replaces a
function reference with the body of the function. The advantagesto using inlining
include a reduction in memory usage due to the removal of function calls and returns,
and the possibility of optimizing code near the function call with the function body.
The disadvantages include an increase in the size of the executable and an increase
in the level of complexity required during debugging.

When compiling in separate-module mode, the compiler inlines functions that

are defined in the same file where they are referenced. When compiling in
whole-program mode, the compiler can inline any function in the program or
associated libraries. To view functionsthat are inlined, use the canal or Apprentice2
performance tools. See Cray XMT Performance Tools User's Guide.

You can use either command-line switches or compiler directives to control how
the compiler inlines functions.

To set inlining from the command line, you can use either the- i nl i ne fecn to force
the compiler to inline a specified function or - no_i nl i ne fcnto suppressinlining
for the specified function. The option-no_i nl i ne_al | suppressesinlining for all
functions in a program.

For C++, the function name fcn must use the mangled-name format. Mangled names
are internal compiler names with complete type signatures. To do this, use the
following command format.

-inl i ne mangledfunctionname
To obtain the character string for the mangled name, usethe nm - f command.

To set inlining using a directive in your C or C++ program, you can add pragma
statements that require or prohibit inlining of individual functions. To do this, use
one of the following directives.

#pragma nta inline
#pragnma nta no inline

You must place one of the previous directives immediately before the function's
definition in your program.

The C++ keyword i nl i ne aso inlines afunction, but it makes the function local
to thefile. Inthis case, if you also add the function's definition to the header file,
multiple inclusions would result in many copies of this function being added to the
program library. Therefore, the use of the pragma directive is usualy preferable to
the C++ keyword.

S-2479-20

Compiler Overview [7]

7.5 Optimizing Parallelization

S-2479-20

You can control how the compiler makes your program parallel in two ways:
* You can add parallelization directives to your program.

* You can specify a compiler option from the command line that controls
parallelization.

Parallelization directives and options tell the compiler how to parallelize various
sections of a program. The following types of parallelization are allowed.

Single-processor parallelism

This form of parallelism has low overhead, but does not allow

the program to scale beyond a single processor. This type of
parallelization takes advantage of only the streams on the processor
on which the code is running.

Multiprocessor parallelism

Thisform of parallelism uses more memory and has a higher startup
time than single-processor parallelism. However, the number of
streams available is much larger, being bounded by the number of
processors on the entire machine rather than the size of asingle
processor.

Loop future parallelism

Loop future parallelism runs on multiple processors. It is the highest
overhead form of parallelism, but is aso the only form of parallelism
with the ability to dynamically increase thread and processor counts
as needed while the parallel region is executing. It provides good
load balancing, especially with recursive loops.

When using a directive, the parallelization type is set using the #pr agnma nt a
par al | el directive. See Parallelization Directives on page 124.

When the parallelism type is set using a compiler option, the following options are
available.

par Compilesaprogram to runin parallel on multiple processors.
par 1 Compiles aprogram to run in parallel on a single processor.
parfuture

Compiles a program to run on multiple processors using loop future
paralelism.

seri al Compiles a program to run without automatic parallelization.

85

Cray XMT™ Programming Environment User’'s Guide

Parallelism that you specify with f ut ur e statements in your program is always
enabled. Compiler options have no effect on f ut ur e statements. If you do not
specify a compiler option, the default isto run using the par option.

There are also paralelization directives and compiler options available that you

can use to enable or disable loop restructuring. Loop restructuring includes loop
transformations, loop fusion, loop unrolling, loop distribution, and loop interchange.
By default, loop restructuring is enabled when parallelization is enabled, and
disabled otherwise. To enable or disable loop restructuring using a directive, use the
#pragnma nta restructure directive. Disabling loop restructuring may inhibit
parallelization of some loops.

The previous directive restructures loops from the point where it appearsin the file
to the end of thefile. It can be disabled during the compilation process when you
specify the - nopar compiler option from the command line.

You can enable loop restructuring from the command line using the - r est r uct ur e
compiler option. You can disable loop restructuring using the- no_r estruct ur e
option. You may need to use thisif you are also using the - par , - par 1, or

- par f ut ur e option, because these options automatically enable loop restructuring.

You can also control whether the compiler automatically parallelizes recurrences and
reductions. Recurrence is enabled, by default, but you may want to disableit for a
section in the program. To do this, usethe#pragma nta recurrence off
command.

For information about the parallelization options, see the cc(1) or c++(1) man page.
For a complete list and explanation of the parallel directives and assertions, see
Appendix C, Compiler Directives and Assertions on page 109.

7.6 Incremental Recompilation and Relinking

86

When a previously built program library and executable are present, the compiler
performs incremental recompilation and relinking, regardless of the compilation
mode. An incremental recompilation saves time during the compilation process.

The compiler performs incremental recompilation on a function-by-function basis
within each source file. If you repeatedly edit and compile several functionsin
the bl as. cc file, the compiler detects which functions require recompilation
after editing. For example, if you edit a particular function f , the compiler only
recompilesf and any function that inlined f . But if you change a globally-visible
type declaration, the compiler recompiles al functions that use that type.

In whole-program mode, separate-module mode, or mixed mode, the compiler
builds a program library for the executable. The compiler uses the program library
during the incremental compilation. If you deletethe. pl file between compilations,
the compiler cannot execute an incremental recompilation. Similarly, deleting the
executable file prevents incremental linking.

S-2479-20

Compiler Overview [7]

7.7 Creating New Libraries

You can create a user-defined library in the same way that you build a program in
whole-program mode. To do this, use the - R option to suppress the creation of an
executable.

For example, to build the library t i nybl as. a from functionsin thefilesddot . cc
and dgenv. cc, usethe following sequence of commands.

c++ -pl tinyblas.a -c ddot.cc dgenv.cc
c++ -pl tinyblas.a -R ddot.o dgemv.o

In the previous example, the first command creates theinitial program library, checks
the two source files for syntax errors, and copies them into the program library. The
second command finishes compilation of the functionsin ddot and dgemv with
inlining enabled between files and from the standard libraries. The - R flag directs
the compiler to place the generated relocatable object code in the program library and
suppresses the build of an executable.

The following sequence of commands provides the same results:

c++ -pl tinyblas.a -c ddot.cc
c++ -pl tinyblas.a -c dgemv.cc
c++ -pl tinyblas.a -R ddot.o dgemv.o

Or, you can use the following single command:

c++ -pl tinyblas.a -R ddot.cc dgenv.cc

You can update alibrary with an incremental compilation. To do this, use the
following sequence of commands.

c++ -pl tinyblas.a -R ddot.cc dgenv.cc
edit dgemv.cc
c++ -pl tinyblas.a -R ddot.cc dgenv.cc

In the previous example, the first compile creates the library as usual. The second
compile examines ddot . cc (and ignores it because it remains unchanged) and
then focuses on dgenv. cc , which has presumably been changed by the edit. The
compiler recompiles any modified function in dgemv. cc and any function that
depends on a changed function (perhaps because of inlining). The rest of the library
remains the same.

There is no requirement that a library end with an . a suffix. Theinclusion of the- R
flag in a separate-module compilation line enables inlining from the standard libraries
into the newly created library. The library looks like atraditional (fat) object file.

S-2479-20 87

Cray XMT™ Programming Environment User’'s Guide

7.8 Compiler Messages

There are three categories for compiler messages: errors, warnings, and remarks.
Errors are the most severe and indicate problems that cause the compiler to halt after
parsing without generating object code. Warnings are less severe — the compiler
runs to completion and generates object code. Remarks tend to highlight conditions
that prevent the code from being portable, but the resulting object code almost always
behaves as expected.

7.9 Setting Debugger Options during Compilation

88

Rather than providing many levels of optimization, the compiler providesthe - g1
and - g2 options to support progressing levels of debugging. The debugger options
include the following:

-g,-91 At thislevel, the debugger displays the values of variables (including
global variables and array elements) anywhere in their scope.
However, thislevel causes some loss of optimization. Specifically,
the compiler no longer restructures loops, although basic loop
paralelization is still possible. The- g flag isidentical to- g1.

-g2 Thisisthe highest level of debugging support. Thislevel letsyou
view and modify variables anywhere in their scope. However, this
level significantly inhibits optimization. Specifically, the compiler no
longer parallelizes loops.

If you do not specify either option, the compiler runs with all optimizations enabled.
Although debugging is not set, you can still perform some debugging operations. For
example, you can control trace control flow using breakpoints together with the st ep
and next commands. You can also view the value of global variables, athough these
can sometimes be out-of-date.

The compiler also has options that perform tracing. Tracing creates atrace file,
trace. out , that you use for performance tuning. You usethe-t r ace option to
turnontracingand -t race_| evel ntotracefunctions larger than n source lines.
You can also trace stack allocation by usingthe-t race_st ack_al | oc compiler
option. For more information about the trace option, see the cc (1) or c++(1) man
pages. For information about performance tuning, see Cray XMT Performance Tools
User's Guide.

If you compile an executable using modules that have been compiled at different
debugging levels, the level of debugging support changes between one module and
another, whether inlined or not. For more information about using the Cray XMT
debugger, see Cray XMT Debugger Reference Guide.

S-2479-20

Compiler Overview [7]

7.10 Using Compiler Directives and Assertions

S-2479-20

Directives are metalanguage constructs that you can add to a program to influence
how the compiler performs a tranglation. In C and C++, you prefix directives with
#pragna nt a. Macros are allowed after the word nt a in a pragma, as shown in
this example:

#defi ne NUMSTREAMS 40 ...
#pragma nta use NUVSTREAMS streans

The preceding pragmais equivalent to #pr agma. nt a use 40 streans.

You can also write compiler directivesin C and C++ code using _Pr agmna rather
than #pr agma nt a. In this case, the directive appears syntactically asif it were a
single string argument to a function call, as shown in the following command.

_Pragma("nta assert parallel")

The advantage to using the command form of this directive is that you can useit in
macros or similar locations. The disadvantage of this form is that most C and C++
compilerstreat it as an actual function, which makes the code less portable.

Directives are grouped into five general categories. compilation directives,
paralelization directives, semantic assertions, implementation hints, and
language-extension directives. A compilation directive is a command to compile
aprogram in a particular way. Parallelization directives tell the compiler how to
parallelize various sections of a program. Semantic assertions provide information to
the compiler that could be proved true about the program even though that proof is
beyond the capabilities of the compiler. Implementation hints tell the compiler about
the expected behavior of the program. Language-extension directives alow you to
place Cray XMT specific language features into a program without interfering with
the portability of code to other systems.

For more information, see Appendix C, Compiler Directives and Assertions on
page 109.

89

Cray XMT™ Programming Environment User’'s Guide

90 S-2479-20

Running an Application [8]

This chapter contains procedures for launching your application on the Cray XMT.

8.1 Launching the Application

S-2479-20

You use the nt ar un command to launch and run a program. The nt ar un command
connects to the nt ar und daemon that runs on the compute node on the backend.
The daemon creates a copy of your environment and runs it on the compute nodes.
Your file directories from the login node appear on the compute nodes with the same
paths.

From the login node, you use the nt ar un command to launch a program, as shown
in the following example.

nt ar un MyProgram.out

The most common options to use with the mt ar un command are- m max_pr ocs
and-t min_procs.

The - m max_pr ocs option sets the maximum number of processors for the
program. This option is the same as setting the MTA_PARAMS environment variable
to NUM_PRCCS.

The-t m n_procs option sets the number of processors to use when the program
starts running. By default, a program starts with one processor and adds processors,
as needed.

After launching the program, nt ar un acts as the frontend of the program. nt ar un
provides the following services to the program:

e Standard I/O forwarding. Provided by nt arun stdi n,ntarun stdout
and nt arun stderr.

e Signal forwarding. nt ar un forwards all catchable signals.

e Termination management. If the program exits normally, nmt ar un exits with the
same exit status. If the remote processiskilled by asignal, m ar un terminates
with the matching exit status and sends a message to st der r with information
about the signal that caused the program to exit. If nt ar un terminates
prematurely, the nt ar un daemon uses SI GKI LL to kill the program.

91

Cray XMT™ Programming Environment User’'s Guide

The nt ar un command uses a default configuration file, . nt ar unr ¢, which exists
in your home directory. You can modify thisfile to include any nt ar un options,
separated by spaces. The configurations in thisfile are overridden by options that
you use from the command line.

To monitor process or CPU usage by your program, you use nt at op. For more
information about using nt ar un to run the program or nt at op to monitor the
program, see Cray XMT System Management.

Note: When an application that was built for tracing is running, an intermediate
process runs to flush trace data back to the service partition as the tracing buffers
fill. To ensure that al tracing data is captured, the nt ar un that launched the
application will not exit until this tracing process completes. Depending on the
amount of data that needs to be flushed, and the speed of the underlying file
system, nt ar un may not exit for some time after the application has completed. |f
you kill the mt ar un process, in the belief that it is hung, you may get incomplete
tracing data. For more information on partial tracing data see Partial Tracing in the
Cray XMT Performance Tools User's Guide.

8.2 User Runtime Environment Variables

92

There are a number of environment variables that you can use with the user runtime
known as MTA_PARAMS. You can use these environment variables for debugging,
dumping registers, setting the number of streams, setting maximums for processors
and ready pools, and so on.

For csh, use the following command:

% set env MIA_PARAMS "paraml param2"

For example, to set the maximum number of processors and to prevent streams from
being reserved for the debugger, set MTA_PARANS by using the following command:

% set env MITA_PARAMS "num procs 100 no_prereserve"

For abash shell, use the following command:

% export MIA_PARAMS="paraml param2"

For example, to set the maximum number of processors to two and indicate that the
program must wait for a debugger to attach in the event of a poison, you use the
following command on abash shell:

% export MIA_PARAMS="num procs 2 debug_data_prot"

For alist of environment variables that you can set, see Appendix G, MTA_PARANMS
on page 143.

S-2479-20

Running an Application [8]

8.3 Improving Performance

For information about improving performance on your program, see Cray XMT
Performance Tools User's Guide.

S-2479-20 93

Cray XMT™ Programming Environment User’'s Guide

94 S-2479-20

Optional Optimizations [9]

9.1 Scalar Replacement of Aggregates

Effective with version 2.0 of the Cray XMT software, the XMT compiler provides
an optional optimization pass that performs a code transformation called scalar
replacement of aggregates. This transformation replaces C++ class objectsand C
structures (aggregate data types) with collections of temporary scalar variables.
Values are copied from the aggregate to the temporary variables and back again as
needed. These scalar variables allow the compiler to perform more precise anaysisin
later phases, and may enable additional optimizations and parallelization of loops.

For example, consider the following code:

class nyTwol nts {
publi c:
int i;
int j;

H

myTwol nts foobar2(nyTwolnts t, int n, int * restrict foo) {
for (int i =0; i <n; i++) {
t.i +=foo[i];
} return t;

}

Without scalar replacement the compiler cannot determine whether the references to
fields of the object t form aloop-carried dependence, thusit is unable to parallelize
thisloop. By viewing the canal report you can see that the loop is not paralelized:

Twol nts foobar 2 Twolnts t, int n, int * restrict foo
ny ny

| for (int i =0; i <n; i++){
8S | t.i += fooli];

(.

| return t;

I

}

S-2479-20 95

Cray XMT™ Programming Environment User’'s Guide

After recompiling this code with automatic scalar replacement enabled, the compiler
is able to transform the f oobar 2 routine into something that resembles the

following:

nmyTwol nts foobar2(nyTwolnts t, int n, int * restrict foo) {
_tnp_t i =t.i;
for (int i =0; i <n; i++) {

_tnp_t_i +=foo[i];
}
t.i = __tnp_t_i;
return t;

}

Note that the compiler does not bother creating atemporary variable for the unused
fieldj .
After this transformation, the compiler is better able to analyze the dependenciesin

the loop and to determine that the loop can be safely parallelized as areduction. This
can be seeninthe canal report of the recompiled code:

| myTwolnts foobar2(nyTwolnts t, int n, int * restrict foo) {
** scalar replacing t

| for (int i =0; i <n; i++) { 18 P:$
18 P:$ | t.i +=foo[i];
** reduction noved out of 1 |oop

|}

| return t;

|}

Scalar replacement of aggregates can enable parallelization of many additional 1oops.
However, it can also add additional memory references which can adversely affect
performance. For this reason, the compiler performs scalar replacement only when
requested by the programmer. Automatic scalar replacement of aggregates can be
enabled either by using a command-line flag at compile time, or by using pragmas
in your code. If you compile afilewiththe- scal ar _r epl acenent flag, the
compiler will automatically attempt to perform scalar replacement on any aggregates
that it can prove are safely replaceable unless those aggregates have been marked with
annta no repl ace pragma. (See Semantic Assertions on page 125.) You can
usethenoal i as pragmasandr est ri ct type qualifiers as needed to indicate to
the compiler that certain aggregates, or pointers to aggregates, are safe to replace.

96 S-2479-20

Optional Optimizations [9]

S-2479-20

Alternatively, you can enable scalar replacement for individual aggregates by using
thenta assert can repl ace pragma. This pragma, which takes alist of
aggregates and/or aggregate pointers, serves two purposes. First, it tells the compiler
that it is safe to perform scalar replacement on the aggregates or pointers listed. The
compiler follows this assertion even if it was unable to prove that the replacement
was safe. Second, it is arequest to replace the listed aggregates even if the code
was not compiled with the - scal ar _r epl acenent flag. This pragmais useful
in situations where the compiler would not be able to verify that a key aggregate is
replaceable. You can aso use this pragma in situations where, because of the extra
memory references, you do not want to enable scalar replacement for an entire source
file, but where you need a particular aggregate to be replaced in order to achieve
automatic loop parallelization.

For example, consider the loop in the method doi t below:

class foo {
int * restrict b;
int n;

public:

#pragma nta no inline
void doit(int *c) {
int i;
#pragna nta assert noalias *this
for (i =1; i <n; ++) {
b[i] = b[i-1] + c[i-1];
}
s
b
Without scalar replacement, this parallel recurrence loop will not parallelize, because
the accesses to the b array, which are accesses into afield of the aggregate*t hi s,
defy dliasanalysis. By addingannt a assert can repl ace pragma, however,
the loop will paralelize as can be seen in the canal report:

| #pragma nta no inline

| void doit(int *c) {

** gcalar replacing *this
int i;

I
I
| #pragma nta assert noalias *this

| #pragma nta assert can replace *this
| for (i =1; i <n; ++i) {

5L | b[i] = b[i-1] + c[i-1];

I }

I }s

|}

Thecan repl ace assertion also has a loop- specific variant, nt a assert

| oop can repl ace, which requests scalar replacement for a specific loop instead
of an entire function. In this case we copy into the temporaries immediately before
the loop, and copy back into the aggregate immediately after the loop. Any accesses

97

Cray XMT™ Programming Environment User’'s Guide

to fields of the aggregate inside the loop will be replaced with the temporaries. This
can be useful if scalar replacement is unsafe or undesirable for portions of aroutine,
but needed to achieve good performance in specific loops. The loop variant can aso
be used to achieve parallelization of the loop in the previous example:

#pragma nta no inline
void doit(int *c) {
int i;

#ipragma nta assert noalias *this

#pragma nta assert |oop can replace *this
for (i =1; i <n; ++i) {

5L | b[i] = b[i-1] + c[i-1];

** gcalar replacing *this

}

I

I b
|}
The exact syntax of these pragmas is described in Appendix C.3 of Cray XMT
Programming Environment User's Guide.

9.2 Optimizing Calls to nentpy and nenset

98

The compiler option - enabl e_nencd_opt enables a compiler optimization that
replaces callsto mencpy/menset with versions of the functions that were built for
the current parallel mode, which the compiler can inline. This allows the compiler
to potentially merge the parallel region in the memory routine with any surrounding
paralel region, which can reduce the cost of having to tear down and restart parallel
regionsin order to call mentpy or menset . However, when this optimization is
enabled and these functions are called from within a parallel loop, this creates nested
paralel regions. The result is a potentially significant performance degradation.

A new compiler flag, - di sabl e_nmencnd_opt was added to disable this
optimization in case there were performance problems, such as the case mentioned
above. However, because the functions may be getting called indirectly, it may

not always be easy to determine that a call to mencpy or nenset iscausing a
performance problem. For example, this can happenisif aprogram callsafunctionin
the C++ STL that calsmencpy. For thisreason, the default behavior of the compiler
isto have this optimization disabled and allow users to enable it with the option

- enabl e_nmentnd_opt . Use this option only when you know there is no risk of
mencpy or menset being called from within a parallel loop.

For additional control over the parallelism used by mentpy or nenset , you can call
directly versions of of these commands that use a single stream, single processor
paralelism and multiprocessor parallelism. The mencpy functions are called
mencpy_ss, nencpy_sp and mencpy_np, respectively. The corresponding
nmenset functions are called nenset _ss, nenset _sp and menset _np,
respectively. These functions are declared in st ri ng. h and are documented in the
mentpy(3) and menset (3) man pages.

S-2479-20

Error Messages [A]

S-2479-20

Execution-time errors are directly related to exceptions. An exception is an
unexpected condition raised by an event in your program, the operating system, or
the hardware. Exceptions can trigger atrap when the stream that issued the exception
isready for execution, unless the trap is disabled. In cases where several exceptions
occur simultaneously, the trap handler decides the order in which to process the
exceptions.

Use thelist that follows to identify and troubleshoot common exceptions.

create For example, this error will occur when you attempt to create more
streams than were reserved. To prevent this error, you can use the
STREAM_RESERVE operation to reserve the necessary number of
streams before running the STREAM_CREATE operation again.

data_al i gnnent

A data-alignment error has occurred. This error can occur when
you access data that the compiler assumesis on an 8-byte boundary
when it is not.

data_hw error

A data-memory or network-hardware error has occurred. This occurs
when the memory system detects an uncorrectable error while
loading data from memory.

data_prot A dataprotection level error has occurred. This error is equivalent
to a segmentation error. Possible causes include attempting to
access protected data, operating-system data, or data outside your
addressable memory space.

domai n_si gnal

A domain signal error has occurred. This message indicates the
program is not allowing the operating system to interrupt it. This
typically indicates a problem in the runtime system.

fl oat _extension

An error using a floating-point number has occurred. A
floating-point number is using the wrong extension.

99

Cray XMT™ Programming Environment User’'s Guide

fl oat _i nexact

An error using a floating-point number has occurred. An operation
is attempting to use an inexact floating-point number. This type of
error indicates an error in the source registers, the operation, or the
value written to the destination.

float invalid

float_zero_

An error using a floating-point number has occurred. An operation is
attempting to use an invalid floating-point number.

di vi de
An error using a floating-point number has occurred. An operation is
attempting to divide afloating-point number by O.

float overfl ow

An error using a floating-point number has occurred. An operation
using a floating-point number has caused an overflow to occur. This
type of error indicates an error in the source registers, the operation,
or the value written to the destination.

fl oat _underfl ow

poi son

privil eged

An error using a floating-point number has occurred. An operation
using a floating-point number has caused an underflow to occur. This
type of error indicates an error in the source registers, the operation,
or the value written to the destination.

Use of a poisoned register has occurred. A register is poisoned if
it contains an uninitialized value. The exception occurs when you
attempt to access the value in this register.

Use of a poisoned register can sometimes occur when the compiler
uses speculative loading. For example, the compiler may optimize a
loop for n iterations and load n+1 values. Under normal conditions,
the compiler does not use the n+1 value because the program
correctly stops consuming prefetched data after n iterations.
However, if the program accesses the n+1 value, it raises the poison
exception.

A privilege error has occurred. This exception indicates that your
program does not have the necessary privilege level to perform an
operation.

prog_hw error

100

A program-memory error has occurred. This indicates that while
the processor was loading an instruction, there was a temporary or
permanent problem with the physical memory.

S-2479-20

Error Messages [A]

prog_prot A program-protection error has occurred. This error occurs when
the processor attempts to execute an instruction from a PC that is
not avalid PC.

unknown_trap

A error has occurred that does not fit into any other category on this
list.

S-2479-20 101

Cray XMT™ Programming Environment User’'s Guide

102 S-2479-20

User Runtime Functions [B]

S-2479-20

Functions in the runtime library support implicit and explicit parallelism, event
logging, and trap handling. The compiler inserts calls to the runtime library into
your code to handle programming constructs, such asthe f ut ur e statement, or
command-line options, such asthe - t r ace flag. In addition, some functionsin the
runtime library can be called directly by the user. This appendix contains alist of the
runtime functions that you can call from your program.

This list provides only a short description of the runtime functions. A more complete
description of the functions and the syntax required to use them can be found on the
referenced man pages.

nta_create_team
Addsteams. Seethent a_cr eat e_t ean(3) man page.

nta create_thread _on_team
na create thread all teans
nta_create_stream

Creates a new thread on an existing team. See the
nta create_thread_all _teans(3) manpage.

nt a_di sabl e_auto_growth
nt a_enabl e_auto_grow h
nta_assess_growt h

Controls the automatic growth of processors. See the
nt a_di sabl e_aut o_gr owt h(3) man page.

nta get _all _rt_teanids

Returns the team identifiers for all runtime teams. See the
nta_get_all _rt_tean ds(3) man page.

nta_get cl ock

Provides the number of clock ticks that have passed since the
program began. Seethent a_get _cl ock(3) man page.

m a_get _max_t eans

Determines the maximum number of teams available to the program.
Seethem a_get _max_t eans(3) man page.

103

Cray XMT™ Programming Environment User’'s Guide

ma_get _numt eans

Returns the number of currently executing teams. See the
nt a_get _num_t eans(3) man page.

nta get rt teamd

Returns the runtime identifier of the caler's team. See the
nta_get _rt_teamn d(3) man page.

nt a_get _team.index

Returns a user runtime index for a team. See the
nta_get team i ndex(3) man page.

nt a_get _t hread_nane
nt a_set _thread_nane
nta renove_t hread name

Retrieves, sets, and removes user-defined thread names. See the
nt a_get t hread_name(3) man page.

nt a_get _threadid
nt a_get _parent _threadid

Returns the runtime identifier of the calling thread or its parent
thread. Seethent a_get _t hr eadi d(3) man page.

nta_| ock_thread
nt a_unl ock_t hread

Controls thread behavior when a synchronized data fault occurs. See
thent a_| ock_t hr ead(3) man page.

nta_| og_event

nta_ | og_short_event

nta_| og_| ong_event

nta_| og_event _record

nta_| og_short_event _record
nta_| og_| ong_event _record

Sets user-defined event logging. Seethent a_I| og_event (3) man
page.

S-2479-20

User Runtime Functions [B]

S-2479-20

nta _new trapl_continuation
nta_new trapl _continuati on_bl ock
nta_del ete_trapl_continuation
nta_register_trapl_continuation
nt a_unregi ster_trapl_continuation
nt a_update_trapl_val ue

Creates, deletes, binds, or updates trap 1 continuation. See the
nta_new trapl_conti nuati on(3) man page.

nta_print_backtrace

Prints the thread's call stack. Seethent a_pri nt _backtrace(3)
man page.

nt a_probe_| ocation

Probes a memory location to determine whether it can be read or
written. Seethent a_pr obe_I| ocat i on(3) man page.

nta register_event filter

Installs afilter function for user-defined event logging. See the
nta_register_event _filter(3) manpage

nta_register_fatal _error_handl er

Binds a new fatal error handler. See the
nta_register_fatal _error_handl er (3) man page.

nta_register_task _data

Stores thread-specific data used to implement a common task. See
thent a_regi st er _task_dat a(3) man page.

nta register teamexit_fn
nta_unregi ster_teamexit_fn

Binds or unbinds a team exit function. See the
nta_regi ster_team exit_f n(3) man page.

nta register _tertiary_handl er
nta get tertiary_handler

Binds a new tertiary trap handler or return the current tertiary trap
handler. Seethent a_r egi ster_tertiary_handl er (3) man

page.

ma_report_trap_counters

Sets reporting for trap counter statistics. See the
nt a_report _trap_count ers(3) man page.

105

Cray XMT™ Programming Environment User’'s Guide

nta_reserve_task_event _counter
nta_get task_counter
nta_get _team counter

Reserves or queries hardware counters. See the
nta_reserve_task_event _count er (3) man page.

nta set crew limt

Sets the maximum number of crews that can be simultaneously
active. The term crew is applied to the group of processors
that are used when parallelizing the iterations of aloop across
multiple processors. Applications use this type of parallelization
when they are compiled using the multiprocessor mode. See the
nta set _crew |imt(3) manpage

nt a_set _domai n_si gnal _nask

Enables or disables domain signals in the calling thread. See the
nt a_set _domai n_si gnal _mask(3) man page.

nta set _inplicit_processors
nta get _inplicit_processors
nta set _inplicit_streans
nta_get_inplicit_streans

Stores or retrieves the value for the number of implicit processors
or implicit streams that are used for a calling thread for an
implicitly parallelized region of code in a program. See the
nta_set _inplicit_processors(3) man page.

nta_set _private_data
nta_get _private_data

Stores or retrieves private data for a thread. See the
nta_set private_dat a(3) man page.

nta set _rt_error _file

Redirects runtime library messages to afile. See the
nta_set_rt_error_fil e(3) man page

nta set trace limt

Modifies the number of times an individual trace event is recorded.
Seethent a_set _trace_| i m t (3) man page.

nt a_sl eep

Suspends athread. Seethent a_sl eep(3) man page.

106 S-2479-20

User Runtime Functions [B]

nta start_event | oggi ng
nt a_suspend_event _| oggi ng
nt a_resume_event _| oggi ng
nta_is_event | oggi ng_on
nta set _event flush

Traces buffer controls for user-defined event logging. See the
nta_start_event | oggi ng(3) man page.

nta yield

Yields an active stream to any other thread that needs the stream. See
thent a_yi el d(3) man page.

S-2479-20 107

Cray XMT™ Programming Environment User’'s Guide

108 S-2479-20

Compiler Directives and Assertions [C]

This appendix provides a complete list of compiler directives specific to the
Cray XMT and accepted by the Cray XMT compiler.

C.1 Compilation Directives

S-2479-20

A compilation directive is acommand to compile a program in a particular way.

#pragnma nta autotouch [on|of f|defaul t]

This directive automatically appliesthet ouch generic whenever
afuture variable is referenced. The on option enables automatic
touching, the of f option disables automatic touching, and the

def aul t option reverts from autotouch to the default mode for that
source module, as determined by the compile-line flags.

#pragnma nta adjust constructor priority ad

This directive modifies the priority assigned to static constructorsin a
file. The adjusted priority is the priority just before the directive plus
adj. The adjustment variable adj must be an integer in the range of

- 255 t0 255, and the new priority must be in the range of 0 to 255.
This directive remains in effect from the point at which it occurs
until the end of the file or until another directive of the same kind

is encountered.

#pragnma nta conplex limted range [on| of f|defaul t]

This directive specifies whether complex multiplication and
division may be performed using the usual mathematical formulas
for complex arithmetic or safer but slower arithmetic. The usual
mathematical formulas for complex arithmetic use the following
format:

(a,b)*(c,d)
(a,b)/(c,d)

(ac-bd, ad+bc)
((ac+bd)/ (cc+dd), (bc-ad)/(cc+dd))

The previous formulas, however, may cause spurious Not a Number
(NaN) results or infinities if the norm of either complex number is
larger than the maximum expressible real number or if the norm of
the denominator of adivision is smaller than the smallest expressible
real number. Additionally, these formulas may not be as accurate as

109

Cray XMT™ Programming Environment User’'s Guide

110

the safer complex arithmetic performed when complex limited range
isof f. Thisis especialy true when the difference between two
intermediate computations is very small, such asac- bd, in the case
of multiplication, and bc- ad, in the case of division.

This directive applies to whatever follows it textually in the current
file. The directive stays in effect until the end of the file or until
another directive of the same kind is encountered. When the on

or of f options are used, the directive takes precedence over the
-cxlimtedand-no_cxlimnted command-line options.
When thedef aul t option is used, the directive enables the faster
arithmetic if - cxl i m t ed is specified on the command line.
Otherwisg, it disables the faster arithmetic.

#pragna nta constructor priority pri

This directive assigns a priority level of pri to the static constructors
within the file, where pri is an integer in the range O to 255. This
priority determines the treatment of constructors using the following
rules:

» Static constructors with priority j are executed before those
of priority i, for i <j. No order is promised between modules
compiled with the same constructor priority.

e Static constructors with priority less than 200 are executed after
the user runtime has been initialized. In particular, futures and
system calls may be performed reliably by static constructors
with priority less than 200.

« Static constructors with priority less than 100 are executed
after the system libraries have been initialized. For example,
input/output operations may be reliably performed by static
constructors with priority less than 100.

The constructor priority directive overrides any
-constructor_priority ncompilerflag used on the
command line. If neither the directive nor the compiler flag is
used, the constructor priority defaultsto 0. The const r uct or
pri ority directive may occur at any point in a source code
file provided no construct or priority oradjust
constructor priority directivesoccur at an earlier point
in the same file. The directive remainsin effect from the point
at which it occurs until the end of the file or until an adj ust
constructor priority directiveisencountered.

S-2479-20

Compiler Directives and Assertions [C]

S-2479-20

#pragna nta debug | evel [0] 1] 2| default|none]

Set the debug level to the integer constant O, 1, or 2, or to no
debugging by specifying none. Or, set the debug level back to the
level provided on the command line by specifying def aul t . This
directive overridesthe- g, - g1, and - g2 compiler flags. However,
this directive does not affect any function that contains a call to
setj np or si gset j np, which is aways compiled asif the - g2
option was specified. This directive has function-level granularity
and affects any functions whose beginning follows the directive. This
directive applies to whatever follows it textually in the current file.

It stays in effect until the end of the file or until another directive

of the same kind is encountered.

#pragnma nta fence

This directive specifies a boundary in the source code across which
the compiler is not allowed to move loads or stores of any aggregate
or heap allocated variables. The effect of this directiveisto limit the
compiler's ability to move statements that have been marked with a
f ence directive. Thisdirectiveis often used to prevent the compiler
from moving calls to timing functions with respect to the code being
timed, asin the following example.

#pragnma nta fence
t0 = nta_get_cl ock(0);
/* interval of interest */

#pragma nta fence
tl = nta_get_clock(t0);

This directive may prevent some compiler optimizations from being
performed.

111

Cray XMT™ Programming Environment User’'s Guide

#pragnma nmta fenv_access [on| of f| defaul t]

This directive specifies whether the full floating-point environment
isavailable. Whenf env_access ison, strict rules against the
optimization of floating-point operations are enforced. If it is off,
extra optimizations are performed, but floating-point exceptions may
be lost in certain cases. The compiler is allowed to attempt either one
or both of two optimization techniqueswhen f env_access isoff.
The first technique is to evaluate floating-point operations at compile
time. The second isto move floating-point operations to locations
where they are executed with less frequency, such as outside a loop.
In the following example, the addition in the statement that assigns a
value to G can be performed at compile-time, but the addition in the
statement that assigns a value to F cannot.

voi d sub(void) {
float F;
float G

#pragnma nta fenv_access off
G=25+ 3.1,

#pragma nta fenv_access on
F=25+ 3.1;

}

This directive applies to whatever follows it textually in the current
file. The directive stays in effect until the end of the file or until
another directive of the same kind is encountered. The of f and on
optionsto thef env_access directive takes precedence over the
-no_fl oat _opt command-line option. Thedef aul t option
to the directive enables floating-point environment access (disables
floating-point optimization) if the- no_f | oat _opt command-line
option was used. Def aul t disables floating-point environment
access (enables optimization) if the command-line option was

not used. The directive may also be specified in C as #pr agna
fenv_access [on|off|default].

#pragnma nta for all streans

This directive starts up a paralldl region (if the codeis not already in
aparallel region) and cause the next statement or block of statements
to be executed exactly once on every stream allocated to the region.
If the pragmas appear in code that would otherwise not be parallel,
they cause it to go parallel.

112 S-2479-20

Compiler Directives and Assertions [C]

You can use this pragmain conjunction withtheuse n st reans
to ask the compiler to alocate a certain number of streams per
processor to the job.

#pragma nta use 100 streans
#pragma nta for all streans
{ /1 do sonet hi ng

}

However, there is no guarantee that the runtime will grant the
requested number of streams if, for example, they are not available
due to other jobs, the OS, or other simultaneous parallel regionsin
the current job.

#pragna nta for all streans i of n

Thisdirectiveissimilar tothef or al |l streans pragmaexcept
that it also sets the variable n to the total number of streams executing
the region, and the variable i to a unique per-stream identifier
between 0 and n- 1. For example:

int i, n;

int check_in_array[MAX_PROCESSORS * MAX_ STREAMS_PER PROCESSCR] ;

for (int i =0; i < MAX_PROCESSORS * MAX_STREAMS_PER PROCESSOR, i ++)
check_in_array[i] = 0;

#pragma nta for all streanms i of n

{

check_in_array[i] = 1;

printf("Stream % of % checked in.\n", i, n);
}

Note that the integer variablesi and n are declared separately from
the pragma. For more information onthef or al |l streans
pragmas see Using the Cray XMT for all streams Pragmasin the
CrayDoc Knowledge Base at http://docs.cray.com/kbase.

S-2479-20 113

http://docs.cray.com/kbase

Cray XMT™ Programming Environment User’'s Guide

114

#pragna nta fused nul add [on| of f| defaul t]

This directive specifies whether the compiler is allowed to combine
floating-point operations into a fused multiply-add operation. Default
behavior isto allow fused multiply-add operations to be performed
only when float optimization is turned on. When this option is turned
on, the compiler is allowed to, but not required to, fuse multiply-add
operations into one instruction. This directive applies to whatever
follows it textually in the current file. The directive stays in effect
until the end of the file or until another directive of the same kind

is encountered. When the on or of f option is used, the directive
takes precedence over the - no_rmul _add command-line option.
When the def aul t option is used, the directive disables the

fused multiply-add operation if the- no_nul _add command-line
option was used; it enables the fused multiply-add operation if no
command-line option was used. Thesi ngl e round required
directive overridesthef used nul add of f directive.

"<string-constant>"

Thisdirective inserts st ri ng- const ant into the executable file
generated from this code. Strings that have been incorporated into the
executable in this manner can be retrieved from the executable using
commands such asst ri ngs or in some caseswhat . One possible
use of this directive would be to incorporate a version string such as
the following into the executable.

#i dent "conpiling.texinfo,v 1.15 2007/02/10 23:20: 09"

This directive can be placed anywhere in a C file and is the
equivalent to declaring a static string constant.

#pragna nta [no] inline

When this directive is inserted immediately before a function
declaration, the compiler inlines that function wherever possible
throughout the user source program. If used with the no option,
inlining of the specified function is prevented. When the [no]

i nl i ne directiveisnot used, the compiler uses a standard, internal
heuristic to decide whether a function should be inlined. When
there is a conflict between the no i nl i ne directive and the
command-line options-no_inline_all,-inline_all,
-inline <name>or-no_inline <nane>,no inline
takes precedence, regardless of whether it was specified on

the command line or in a directive. The command-line option
-no_inline_directeddisablesthei nl i ne directive but does
not affect theno i nl i ne directive.

S-2479-20

Compiler Directives and Assertions [C]

S-2479-20

#pragna nta instantiate [none|all]|used|l ocal|default]

When used inside a template declaration, the effect of this directive
islimited to the uses of that template. When used outside a template
declaration, this directive sets the template instantiation mode for the
text following the directive and stays in effect until the end of the
file or until another directive of the same kind is encountered. This
directive takes one of the following options:

none No instantiations are created for any template
entities.
used All template entities that were used in the

compilation, including all static data members for
which there are template definitions, are instantiated.

al | All template entities that are declared or referenced
in the compilation unit are instantiated. For each
fully instantiated template class, al of its member
functions and static data members are instantiated,
whether used or not. Nonmember template functions
are instantiated even if the reference was only a
declaration.

| ocal Those template entities that were used in the
compilation are instantiated. This option is similar
to the used option, except that in this case, the
functions are given internal linkages. That is, the
compiler instantiates the functions and static data
members used in the compilation as local static
functions and local static variables.

def aul t The instantiate mode switches back to either the
mode specified by the- i nst ant i at e switch on
the compiler command line, or, if no command line
switch was present, to the none option, which isthe
default behavior when no mode is specified.

Where the mode specified with thei nst ant i at e pragma differs
from that specified with the- i nst ant i at e switch on the compiler
command line, thei nst ant i at e pragma takes precedence.

#pragma nta max concurrency c

Themax concurrency cdirectiveindicates that the next loop
should limit the concurrency to c. This directive can be used on any
paralel loop. For single processor parallel loops, the directive limits
the number of streams used by the parallel 1oop to no more than c.
For multiprocessor parallel loops, the directive estimates the number
of processorsto use for the loop to max(1, ¢/num_streams) , where

115

Cray XMT™ Programming Environment User’'s Guide

116

num_streams is the number of streams the compiler requests for each
processor. For loop future parallel loops, the directive limitsto c the
number of futures created. The directive isignored for explicityly
serial loops and cannot be used on aloop that also usestheuse n
st r eans directive. This directive is useful for managing nested
paralelism in application that have multiple parallel loops running
concurrently, and to reduce or prevent contention for resources.

For more information on using this pragma see Limiting Loop
Parallelismin Cray XMT Applications in the CrayDoc Knowledge
Base at http://docs.cray.com/kbase.

#pragnma nta max n processors

Themax n processors pragmalimitsthe number of processors
used by a multiprocessor parallel loop. Thisis useful for load
balancing in applications that have multiple parallel 1oops running
concurrently. For more information on using this pragma see
Limiting Loop Parallelismin Cray XMT Applications in the CrayDoc
Knowledge Base at http://docs.cray.com/kbase.

#pragma nta max n streanms per processor [may nerge]

This directive sets a limit of n on the number of streams per
processor that will execute a parallel loop. This limit applies to

an entire paralléel region. Thus, by default, the compiler will not
combine loops with different maximum stream specifications into
the same region. Thisincludes cases where one loop has a specified
maximum and the other loop does not. However, if you add the
optiona may mer ge parameter, the compiler will ignore maximum
stream specifications when deciding how to construct parallel regions
(i.e., loops that would have been placed in the same region with no
max streams pragma will still be placed in the same region if max
streams pragmas with may merge are added). You can view how
paralel regions are constructed in the cana report (see the Cray
XMT Performance Tools User's Guide). For example, consider the
following two loops:

for (int i =0; i < size_foobar; i++) {
bar[i] = size_foobar - i;

}

for (int i =0; i < size_foobar; i++) {
foo[i] += bar[i]/2;

}

S-2479-20

http://docs.cray.com/kbase
http://docs.cray.com/kbase

Compiler Directives and Assertions [C]

The output from canal shows that they are both placed into parallel

region 1:
| for (int i =0; i < size_foobar; i++) {
3 P | bar[i] = size_foobar - i;
}

or (int i =0; i < size_foobar; i++) {

f
5P| foo[i] += bar[i+c]/2
}

I
I
I
|
béIaIIeI region 1 in main

Léﬁp 2inmininregion 1

Léép 3innminat line 4 in loop 2
Léép 4 in mininregion 1

Léﬁp 5inminat line 8 in loop 4

If youadd amax streans pragmato one of the loops, they are no
longer placed in the same region:

| for (int i =0; i < size_foobar; i++) {
3P| bar[i] = size_foobar - i

|}

I

| #pragma nta max 50 streans per processor

| for (int i =0; i < size_foobar; i++) {
6 P | foo[i] += bar[i+c]/2

I

}

PéIéIIeI region 1 in main

Léép 2inmininregion 1

Léﬁp 3inminat line 4 in loop 2

Parallel region 4 in main
Usi ng max 50 streans per processor

Loop 5 in maininregion 4
Loop 6 in main at line 9 in loop 5

Notice that canal aso tells usthat the requested maximum was
applied to region 4, which is the region that contains the loop with
themax st reans pragma

S-2479-20 117

Cray XMT™ Programming Environment User’'s Guide

118

However, when you add the may mrer ge option these two loops
remain in the same region:

| for (int i =0; i < size_foobar; i++) {
3P| bar[i] = size_foobar - i;
|}
I
| #pragma mta max 50 streans per processor nay nerge
| for (int i =0; i < size_foobar; i++) {
5P| foo[i] += bar[i+c]/2;
|}

Parallel region 1 in main
Usi ng max 50 streans per processor

i_;);)pZin main in region 1
L66p3in main at line 4 in |loop 2
i_;);)p4in main in region 1
i_;);)pSin main at line 9 in loop 4

Note that the compiler has placed both loops into the same region
and that the stream limit was applied to the entire region. If multiple
limits are specified for the same region the compiler uses the smallest
limit.

Two restrictions apply to the use of this pragma:

* You cannot use this pragma with loop future loops.

» |f this pragma is used within the same region asause n
st r eans pragmawith a conflicting value (for exampleause
value that is higher than the max value) themax n streans
per processor pragmawill take precedence over theuse n
st reans pragma

S-2479-20

Compiler Directives and Assertions [C]

#pragnma no meminit

This directive affects only the declaration statement immediately

following the directive and tells the compiler not to specially

initialize the full/empty bit (or bits) of any sync- or future-qualified

variables defined in that declaration statement. The directive affects

only the definition of variables, including class instance variables; it

may not be used on field declarations inside classes. For example:

struct C

{/* note that a '#pragma nta no neminit'wuld be ineffective here */
sync int k;

b

mai n() {
#pragnma nmta no meminit
static Cc;

/* use the pragma on the instance of the class rather
than on the class definition */

}

When theno nmem i nit directiveis not used, the compiler
initializes the full/empty bit of a sync-qualified variable to full if the
variable itself isinitialized or to empty if the variable itself is not
initialized. Whentheno nmem i ni t directive is used immediately
before a declaration statement, the full/empty bits for any variables
defined in that declaration are initialized to full if the variable itself is
initialized. If the variable itself is not initidlized, the initial state of
the full/empty bit is undefined (although, in practice, uninitialized
variables stored as static or global variables end up with their
full/empty bit initialized to full.) For example:

/* full-enpty bit is set to full for a[0] and enpty for a[1].*/
sync int a[2]={0};

#pragma nta no neminit

/[*full-enpty bit is set to full for b[0] and is undefined for b[1].*/
sync int b[2]={0};

mai n() {}

S-2479-20 119

Cray XMT™ Programming Environment User’'s Guide

120

#pragnma nta no scal ar expansion

This directive instructs the compiler not to expand scalar variables to
vector temporaries in the next loop. Such expansion allows you to
distribute the loop to enhance available parallelism or make effective
use of registers. However, if the loop iterates only a few times,

the increase in memory usage for the expansion may outweigh the
benefits. In this case, you can usetheno scal ar expansi on
pragmato prevent expansion. For example, in the following code, the
useof no scal ar expansi on ensuresthat the definition of T
and its use remain in the same loop.

voi d no_scal ar _exanpl e(doubl e X[], const int N)
{
extern double Y[], Z[];
#pragnma nta no scal ar expansion
for (int i =0; i <N i++) {
const double T = Y[i*2];
Xi] =T+ Z[i*3];
}
}

#pragma nta once

This directive, when placed inside an included file, instructs the C
preprocessor to include this file only once in any single compilation
unit regardless of the number of #i ncl ude directives encountered.
In the following example, the file f 00. h isincluded in the file

f 00. ¢ onetime only.

file foo. h:
#pragna nta once
int i;

file foo.c:

#i ncl ude "foo. h"
#i ncl ude "foo. h"
#i ncl ude "foo.h"

mai n() {

}

This directive may also be specified as#pr agma once. The
directive may occur at any point in the file to be included.

#pragnma nta single round required

This directive specifies that the compiler generate a fused
multiply-add instruction for every expression (or subexpression)
of theform X + Y*Z, X - Y*Z, or Y*Z - X. This selection can be
ambiguous, as shown in the following:

A =BC+ DE

S-2479-20

Compiler Directives and Assertions [C]

S-2479-20

In this case, the compiler is forced to choose one of two possible
implementations. To avoid ambiguity when control of rounding is
important, you should use a sequence of ssimpler assignments to make
the meaning clear. The scope of this directive is the entire source file.
The use of this directive overridesthe - no_nul _add compiler flag
andthe#pragma nta fused nul add of f directive.

#pragna nta trace [on|of f| defaul t]

Enables or disables tracing of functions or returns to the default
heuristicif t race def aul t isused. In order to actualy use the
tracing information, however, a compiler flag must be set. By defauilt,
a heuristic is used to decide whether to trace a function based upon
its size. Thisdirective remains in effect until end-of-file or until
overridden by another directive of the same type. This directive
affects any function whose beginning follows the directive textually
in the current file.

#pragnma nta trace | evel [int-const]

This directive enables the tracing of functions that contain at least
int-const lines, and disables the tracing of functions that contain
fewer lines. Thisdirective is disabled unless either the-t r ace or
-trace_| evel option was specified on the command line. But
after it is enabled, this directive takes precedence over the-t r ace
and-trace_| evel command-line options. This directive remains
in effect until end-of-file or until overridden by another directive of
the same type. This directive affects any function whose beginning
follows the directive textually in the current file.

#pragnma nta trace "<string-name>"

This directive generates a user-defined tracepoint in the executable
code. The tracepoint generated is named the value passed in
string-name. Using the - not r ace option on the compiler command
line causes this directive to be ignored. For more information, see
Cray XMT Performance Tools User's Guide.

#pragna nta update

This directive tells the compiler that the next statement is an update
to avariable, and that the update should be done atomically. By
default, the compiler does not necessarily make updates atomic.
Using this directive does not place any restrictions on code
movement around this update statement such as would occur if the
variable were declared to be a sync-qualified variable. The variable
to be updated may be of any simple arithmetic or logical type. The

121

Cray XMT™ Programming Environment User’'s Guide

variable to be updated must occur as the target on the left side of the
statement and must occur exactly once as a subexpression on the
right side of the statement. For example,

voi d updat e_exanpl e(double A[], int i, int j){

ext ern doubl e V,
extern double X

/1 This is allowed
#pragma nta update
V =10+ X+ 3.0*V,

/1 This is allowed
#pragnma nta update

Al = Al + Alj LS

/1 But this is not allowed
#pragma nta update

A[i] = Ali] + Ali]; // conpiler reports an error
}

This directive applies to the next statement only.

The following four directives control how the compiler parallelizes the loop that
immediately follows.

#pragma nta bl ock schedul e

When this directive appears before a loop that the compiler
parallelizes, each thread assigned to the execution of the loop
performs a contiguous subset of the total iterations. Each thread
executes the same number of iterations, within 1. For example, if
100 iterations are performed by 20 threads, the first thread executes
thefirst 5 iterations of the loop, the second thread executes the next
5 iterations, and so forth.

#pragma nta bl ock dynamic schedul e

This scheduling method combines aspects of both block and dynamic
scheduling. At execution time, threads are assigned one block

of iterations at a time through the use of a shared counter. After
completing an assigned block, each thread receives its next block

by accessing the counter. The number of blocks executed by each
thread depends on the execution time of the particular iterationsin
the blocks assigned to the thread.

#pragnma nta interl eave schedul e

When this directive appears before aloop that the compiler
paralelizes, each thread assigned to the execution of the loop
performs a subsequence of the total iterations, where the members
of the subsequence are regularly spaced. Each thread executes the
same number of iterations, within 1. For example, if 100 iterations

122 S-2479-20

Compiler Directives and Assertions [C]

are performed by 20 threads, the first thread executes iteration 1,
iteration 21, iteration 41, and so forth. This scheduling leads to better
load balancing for triangular loops. For example:

voi d interl eave_exanpl e(const doubl e X[100][100],
const doubl e Y[100], double Z[100], const int N)
{

#pragna nta interl eave schedul e

for (int i =0; i <N i++) {
doubl e sum = 0. 0;
for (int j =0; j <i; j++) {

} sum+= X[i][j] * YIjl;
Z[i] = sum
}
}

Here, a block schedule results in poor load balancing with the
first threads finishing before the last threads. With an interleaved
schedule, the work is much better balanced.

#pragma nta dynam c schedul e

At execution time, threads are assigned one iteration at atime
through the use of a shared counter. After completing an assigned
iteration, each thread receives its next iteration by accessing the
counter. The number of iterations executed by each thread depends
on the execution time of the particular iterations assigned to the
thread. One thread may happen to receive al the long-running
iterations, and thus might execute fewer iterations than any other
thread. This method is preferred when the execution time for
individual iterations may vary grestly, although its overhead makes
it less desirable for general use.

#pragma nta use n streans

This directive indicates that the compiler should request at least n
threads per processor for the next loop. When multiple loops are
contained in the same parallel region, the largest n is used. I1n the
absence of adirective, the compiler determines the number of threads
needed to saturate the processor. This directive affects the next loop
only.

S-2479-20 123

Cray XMT™ Programming Environment User’'s Guide

C.2 Parallelization Directives
The compiler recognizes the following parallelization directives.

#pragna nta parallel [on]|off]|default|
singl e processor| nulti processor|future]

This directive enables or disables automatic generation of

paralel code for a section of the program as well as choosing

the form of parallelismto use. The si ngl e processor,

mul ti processor, and f ut ur e flags indicate the type of
paralelism to use. The of f flag turns off parallelism until it is
turned back on or reaches the end of the file. The on flag turns on
parallel-code generation using the last specified form of parallelism.
Thedef aul t flag uses the command-line option or the default form
of parallelism. By default, automatic generation of multiprocessor
paralel code is enabled. This directive applies to whatever follows
it textually in the current file. It staysin effect until the end of the
file or until another directive of the same kind is encountered. The
directiveisignored if the - nopar flag isused on the command line.

#pragna nta recurrence [on|off|defaul t]

This directive enables/disables automatic parallelization of
recurrences and reductions. By default, recurrence-relation
paralelization is enabled. Recurrence relations are parallelized,
however, only in areas in which paralelization is otherwise allowed.
This directive applies to whatever follows it textually in the current
file. It staysin effect until the end of thefile or until another directive
of the same kind is encountered. The directive isignored if the

- nopar flagis used on the command line.

#pragna nmta restructure [on|of f| default]

This directive enables/disables [oop restructuring and loop
transformations. By default, loop restructuring is allowed in areasin
which parallelization is allowed and it is turned off in areas in which
paralelization is not allowed. This directive applies to whatever
follows it textually in the current file. It staysin effect until the end

124 S-2479-20

Compiler Directives and Assertions [C]

of thefile or until another directive of the same kind is encountered.
Thedirectiveisignored if the - nopar flagis used on the command
line.

#pragma nta | oop | oop_nod[, |oop_nod, ...]

This directive takes a comma-separated list of parallelization modes,
| oop_nod, consisting of no more than one selection from each of
the following sets of possible loop modes:

restructure, norestructure
Enables/disables loop restructuring.
recurrence, norecurrence

Allows/disallows automatic parallel processing of
recurrences.

singl e processor, multiprocessor, future,
seri al

Enables either a single or multiple processor or a
future form of parallelism or disables parallelism.

This directive enables the appropriate parallelization mode (or
modes) for the next loop only. It isignored if the - nopar flagis
used on the command line.

#pragma nta serial

This directive disables parallelization for a section of the program. It
isequivalent tothepar al | el of f directive. Itisignored if the
- nopar flagis used on the command line.

C.3 Semantic Assertions

Semantic assertions provide information to the compiler that could be proved true
about the program even though that proof is beyond the capabilities of the compiler.
Asserting this information often yields more effective compilation.

In the following list, the term variable-list refers to a comma-separated list of variable
names.

S-2479-20 125

Cray XMT™ Programming Environment User’'s Guide

The compiler recognizes the following semantic assertions:
#pragnma nta assert can repl ace variablelist

This directive asserts that it is safe to use scalar replacement of the
aggregates (objects or st r uct s) in variable-list and the aggregates
pointed to by pointersin variable-list. This pragmais also arequest
for scalar replacement of those aggregates even if the code was not
compilied with the- scal ar _r epl acenment option.

Items in variable-list must be aggregates or pointers to aggregates.
Any pointers must either be marked with anoal i as pragma or
qualified withther est ri ct type qudifier. In addition, pointers
must point only to a single aggregate during a given invocation of
the routine in which the pragma appears. See Scalar Replacement
Section of Optimization Guide for more information.

#pragnma nta assert | oop can replace variablelist

This directive asserts that it is safe to use scalar replacement of the
aggregates (objects or st r uct s) in variable-list and the aggregates
pointed to by pointersin variable-list for the loop that immediately
follows the pragma. This pragma is also arequest for scalar
replacement of those aggregates even if the code was not compilied
with the - scal ar _r epl acenent option.

Items in variable-list must be aggregates or pointers to aggregates.
Any pointers must either be marked with anoal i as pragma or
qualified withther est ri ct type qualifier. In addition, pointers
must point only to a single aggregate within the loop. See Scalar
Replacement Section of Optimization Guide for more information.

#pragnma nta assert no repl ace variablelist

This directive tells the compiler not to use scalar replacement of the
aggregates (objects or st r uct s) in variable-list and any aggregates
pointed to by pointersin variable-list. Thisis useful for fine-tuning
filesthat are compilied with the - scal ar _r epl acenent option.
See Scalar Replacement Section of Optimization Guide for more
information.

126 S-2479-20

Compiler Directives and Assertions [C]

S-2479-20

#pragnma nta assert parallel

This directive can appear before aloop construct and asserts that the
Separate iterations of the loop may execute concurrently without
synchronization. It does not guarantee that the compiler parallelizes
the loop, but it is a strong suggestion to the compiler. This directive
affects the next loop only. The directive isignored if the - nopar
flag is used on the command line.

#pragna nta assert | ocal variablelist

This directive can appear inside aloop or inside the body of a
function, or at the top of the loop or function. For aloop, it asserts
that at the beginning of each iteration, the compiler can treat the
listed variables as undefined, and that their values are not referenced
after the completion of that iteration. For afunction, it asserts that the
variables are undefined on entry to the function, and that their values
are not referenced after exiting the function. The behavior of this
directive is the same regardless of whether the loop or function to
which it is attached executesin aparallel or serial context.

voi d assert_| ocal _exanpl e(doubl e B[], const int N)

doubl e Al 2];
for (int i =0; i <N i++) {
#pragnma nta assert |ocal A
A0l =i;
Al 1] = 2*i;
Bli] = ALO]*A[1];

}
}

In the previous example, the directive asserts that A isused as a
scratch array in the loop. This directive must be inside theloop in
order to affect the loop.

127

Cray XMT™ Programming Environment User’'s Guide

#pragnma nta assert no dependence variablelist
#pragna nta assert nodep variablelist

This directive can appear before aloop construct and asserts that if
aword of memory is accessed during execution of the loop through
any load or store derived from avariable in variable-list, the word is
accessed from exactly one iteration of the loop. You can also use the
word nodep in place of no dependence. For example:

voi d nodep_exanpl e(const int INDEX[], double IA[100][100],
const int N)
{
/1 You know that index[l] is never 1.
#pragna nta assert noalias *IA
#pragna nta assert no dependence *I A
for (int i =0; i <N i++) {
FALT][1] = TALTJ[INDEX[i]]

}
}

#pragna nta assert nay reorder variablelist
#pragna nta nmay reorder variablelist

This directive allows the compiler to reorder accesses of the variables
in variable-list with respect to other volatile and global referencesin
the code. Thisdirective is used to remove unnecessary restrictions
that may be placed on the order of execution. For example, in the
following code, if SYNCARRAY$S is a sync-qualified array, the order
of accesses to the various elements of the array are serialized, and
the loop is not parallelized:

voi d may_reorder_exanpl e(sync i nt SYNCARRAY$[10000])
{
for (int i = 0; i < 10000; i++) {
SYNCARRAYS$[i] = O;
}
}

128 S-2479-20

Compiler Directives and Assertions [C]

S-2479-20

However, if we add a#pragna nta nmay reorder
SYNCARRAY$ directive before the loop, each reference to
SYNCARRAY$ may occur before or after any of the other references.
Explicit serialization is not imposed, and the loop is parallelizable.

voi d may_reorder_exanpl e(sync i nt SYNCARRAY$[10000])
{
#pragma nmta may reorder SYNCARRAY$
for (int i =0; i < 10000; i++) {
SYNCARRAY$[i] = O;
}
}

#pragna nta assert may not reorder variablelist
#pragnma nta may not reorder variablelist

This directive is used to deactivate the preceding may r eor der
directive. The following example tells the compiler that accesses to
SYNCARRAY$ can be reordered only in the loop shown.

voi d maynot _reorder _exanpl e(sync int SYNCARRAY$[10000])
{ . .

int i;

for (i =0; i < 10000; i++) {
#pragma nmta may reorder SYNCARRAY$

SYNCARRAYS$[i] = 0;

#pragnma nta nmay not reorder SYNCARRAY$

}
}

#pragnma nta assert noalias variablelist
#pragnma nta noalias variablelist

This directive tells the compiler that the variablesin variable-list are
not used as aliases for any other variables. Thisinformation allows
the compiler to perform a more accurate dependence analysis of
loops involving these variables and to more aggressively parallelize
the code. This directive must follow the declaration of the variables
in variable-list and must lie within the scope in which these variables
are defined. The directive may also take the form #pr agnma

noal i as variable-list.

#pragna nta assert par_newdel ete

This directive is placed before the definition of a new array to
indicate that when the elements of the array are constructed, the
constructors should be invoked in parallel. To do this, use the
following syntax for automatic or external definitions.

#pragna nta assert par_newdel ete
acl ass foo[100];

In this case, the destructors are not fired in parallel; there isno way to
cause destructors to be fired in parallel for these kinds of definitions.

129

Cray XMT™ Programming Environment User’'s Guide

Alternatively, you can use the following syntax for dynamically
alocated arrays.

#pragna nta assert par_newdel ete
foo = new acl ass[100] ;

Thisdirective is placed before the deletion of a dynamically allocated
array to indicate that when the elements of the array are destructed,
the destructors should be invoked in parallel. To do this, use the
following syntax:

#pragna nta assert par_newdel ete

delete [] foo;
foo = 0O;

C.4 Implementation Hints

The following directives provide implementation hints to the compiler about the
expected behavior of the program. The intent isto provide guidance for effective
optimization.

#pragna nta expect count integer-expression

This directive can appear before a loop construct. The
integer-expression is a constant expression and serves as an estimate
of the number of times the loop will iterate. The compiler optimizes
the implementation of the loop based on this value. A constant
integer-expression is one that can be evaluated completely by the
front end of the compiler. It may not use the following:

e Anexpression that syntactically looks like a function call (such as
si zeof or C++ style-type conversions)

* Floating-point literals

e GNU extensions

It may refer to members of enumerations.
#pragma nta expect [true|fal se]

This directive can appear before alogical i f and specifies the
expected value of the associated predicate. You can use this directive
for branch prediction and choosing the best parallel implementation
of a containing loop depending on sparse versus dense branching.

#pragma nta expect case n

Thisdirectiveissimilar totheexpect [true]|fal se] directive
except that n isan integer. This directive must only appear before a
switch statement. It tells the compiler that case arm n is expected.

130 S-2479-20

Compiler Directives and Assertions [C]

The compiler tests for case n first, and all other cases after that. n
must be an integer constant, in any radix. It may not be an integer
expression, nor may it be a member of an enumeration.

#pragma nta expect (predicate)

This directive can appear before any executable statement and
suggests that the compiler should optimize code near that point. This
suggestion is based on the assumption that the predicate typically
evaluates to true. This directiveis deprecated and should not be used.

#pragnma nta expect parallel

Deprecated form of expect paral | el cont ext directivethat
follows.

#pragma nta expect parallel context

This directive is inserted immediately before a function declaration.
It tells the compiler that the following function is expected to

be called in a highly parale context. In this case, the compiler
reduces the total number of instructions issued by the function rather
than the serial execution time. By default, the compiler assumes
that afunction is called in a serial context unless the function is
marked with theexpect paral | el context directiveor the
- par cont ext flag was used on the compiler command line. This
directive affects the next function only.

#pragnma nta expect serial context

This directive is inserted immediately before a function declaration.
It tells the compiler that the following function is expected to be
called in aseria context. In this case, the compiler reduces the seria
execution time for the function. By default, the compiler assumes
that afunction isin a serial context unless the - par cont ext

flag was used on the compiler command line or the function is
marked with the expect paral | el cont ext directivein

the code. Theexpect serial context directive overrides
the - par cont ext compiler flag for the function immediately
following the directive. This directive affects the next function only.

S-2479-20 131

Cray XMT™ Programming Environment User’'s Guide

132 S-2479-20

Condition Codes [D]

You can test the condition codes generated by an expression by using the
MI'A_TEST_CCintrinsic. The eight possible condition code values and their default
meanings are shown in the following table. The Examples column show the
operations that meet the criteriafor the condition code, where 0, p, and n stand for
zero, a positive integer, and a negative integer, respectively. For more information,
see Testing Expressions Using Condition Codes on page 34 and Chapter 4 of the
Cray XMT Principles of Operation.

Table 2. Condition Codes

Name M eaning Examples

COND_ZERO NC Zero, no carry 0 = 0+0

COND_NEG_NC Negative, no carry n =p+tn, n = p-p
COND_POS_NC Positive, no carry p = ptp, p = p-n
COND_OVFNAN_NC Overflow/NaN, no carry n=p+p, N = p-p
COND_ZERO C Zero, carry O =n+p, 0 = n-n
COND_NEG _C Negative, carry n=n+n, n = n-p
COND_PGCs_C Positive, carry p = n+p, p = n-n
COND_OVFNAN_C Overflow/NaN, carry p =n+n, p =n-p

S-2479-20

Most of the important condition masks have one or more names. The named
condition masks are shown in Table 3. For more information, see Cray XMT
Programming Model.

Table 3. Condition Masks

Name Description

Condition Mask: Manifest

| F_ALWAYS Always

| F_NEVER Never

Condition Mask: Equality

| F_EQ y = z (integer, unsigned, float)

133

Cray XMT™ Programming Environment User’'s Guide

134

Name Description

| F_ZE x = 0 (integer, unsigned, float)
IF F x =0 (logical)

| F_NE y 1=z (integer, unsigned, float)
| F_ Nz x 1= 0 (integer, unsigned, float)
IF T x 1= 0 (logica)

Condition Mask: Integer Comparison

IF ILT y < z (integer)

I F I CGE y >= z (integer)

I F I GT y > z (integer)

IF_ILE y <= z (integer)

IF 1M X < 0 (integer)

IF_I1PZ x >= 0 (integer)

I F_IPL x > 0 (integer)

IF_ I M x <= 0 (integer)

Condition Mask: Unsigned Comparison

IF_ULT y < z (unsigned)

| F_UGE y >= z (unsigned)

| F_UGT y > z (unsigned)

| F_ULE y <=z (unsigned)

Condition Mask: Float Comparison
| F_FLT

| F_FGE

| F_FGT

| F_FLE

Condition Mask: Other Tests

| F_I OV

| F_FUN

| F_CY

| F_NC

y < z (float)
y >= 7 (float)
y > z (float)
y <= z (float)

x overflowed (integer)
y and z are unordered (float)
Carry

No carry

Condition Mask: Specific Conditions

I F_0
IF_1
| F_2

Zero, no carry
Negative, no carry

Positive, no carry

S-2479-20

Condition Codes [D]

S-2479-20

Name Description

IF_ 3 Overflow/NaN, no carry
IF_ 4 Zero, carry

IF 5 Negative, carry

IF 6 Positive, carry

IF_ 7 Overflow/NaN, carry

I F_NO Not Zero, no carry

| F_ N1 Not Negative, no carry

I F_N2 Not Positive, no carry

| F_ N3 Not Overflow/NaN, no carry
I F_N4 Not Zero, carry

| F_N5 Not Negative, carry

| F_N6 Not Positive, carry

| F_N7 Not Overflow/NaN, carry

135

Cray XMT™ Programming Environment User’'s Guide

136 S-2479-20

Data Types [E]

This chapter provides information about the C and C++ language data types that
you can use with Cray XMT compilers.

The floating-point types aref | oat , doubl e, and| ong doubl e. Their sizesare
4, 8, and 16 bytes, respectively.

Theinteger typesshort and unsi gned short areeach 4 byteslong. The data
typesi nt, | ong, | ong | ong, and their unsigned equivalents are each 8 bytes
long. The compiler flag - short 16 convertsall short andunsi gned short
integers to 2 bytes. The compiler flag - i 4 convertsall short and unsi gned
short integersto 2 bytesand al i nt and unsi gned i nt to 4 bytes.

The two character types char and unsi gned char are each 1 byte long.
Additionally, the C++ compiler supports a 1-byte boolean type, bool , and the
boolean constantst r ue and f al se. The compiler flag - no_bool turns off
recognition of these three keywords.

S-2479-20 137

Cray XMT™ Programming Environment User’'s Guide

138

The Cray XMT C and C++ compilers also support the ten nonstandard integer types
inthefollowing list. The- short 16 and - i 4 compiler flags do not affect the size of

these types, so it is preferable that you use these in exported include files.

__short16 A 2-byte (16-bit) value.

unsi gned

__short16

A 2-byte (16-bit) value.

__short32 A 4-byte (32-bit) value.

unsi gned

_intl6

unsi gned

__int32

unsi gned

__int 64

unsi gned

__short32

A 4-byte (32-bit) value.
A 2-byte (16-bit) value.

_intlée

A 2-byte (16-bit) value.
A 4-byte (32-bit) value.

_int32

A 4-byte (32-bit) value.

An 8-byte (64-bit) value.
_int64
An 8-byte (64-hit) value.

S-2479-20

Keywords [F]

The C and C++ languages reserve certain words for use as keywords. You cannot use
these words for any other purpose. For example, you cannot use them as identifiers
such as variable names. Some of these reserved words are required by the standards
for the C and C++ languages; others support programming on the Cray XMT.

Table 4. C/C++ Keywords Recognized by the Cray XMT Compiler

aut o
br eak
case
char
const

conti nue

default fl oat

do for
doubl e goto

el se i nt
enum | ong
extern register

return
short

si ghed
si zeof
static

struct

switch whi | e
t ypedef

uni on

unsi gned

voi d

vol atil e

When you usethe -t radi ti onal compiler switch on the C command line, it

disables the keywordsconst , si gned andvol ati | e.

Table 5. Standard C++ Keywords Recognized by the Cray XMT Compiler

and
and_eq
bi t and
bi t or
bool
catch

cl ass

conpl

const _cast
del ete
dynam c_cast
explicit

fal se
friend
inline

mut abl e

namespace
new

not

not _eq
oper at or
or

or _eq

private

pr ot ect ed

public

try
typei d

reinterpret_cast typenane

static_cast

tenpl ate

this

t hr ow

true

usi ng
vi rtual
wchar _t
xor

Xor _eq

S-2479-20

139

Cray XMT™ Programming Environment User’'s Guide

The-no_bool compiler switch disablesthebool , f al se andt r ue keywords.
The- no_wchar compiler switch disablesthewchar _t keyword. The- cf r ont
compiler switch disablesthebool ,explicit,fal se,true andtypenane
keywords. The-no_al t er nati ve_t okens compiler switch disables the
alternate operator keywords and, and_eq, bi t and, bi t or, conpl , not ,

not _eq, or, or _eq, xor, and xor _eq.

In addition to the keywords required by the language standards, the Cray XMT
platform uses several additional reserved words. Most of the additional keywords
reserved by Cray for use on the Cray XMT have two forms: one beginning with an
alphabetic character and one beginning with a double underscore (__). Usethe

- no_nt a_ext compiler switch to disable Cray XMT keywords beginning with
aletter of the alphabet. However, Cray XMT keywords beginning with a double
underscore are not affected by the- no_nt a_ext compiler switch. In addition, the
keywords __int16, _int32,__int64,_ shortl6and__short 32 are
not affected by the - i 4 and - shor t 16 compiler switches. For this reason, you
sometimes see the double underscore format in header files to preserve the meaning
of the keywords.

When using the type qualifier keywords to qualify a pointer type, follow the same
rules as for the standard C and C++ type qualifiers. For example, in the following
declaration:

int * sync f;
f isasync variable of type pointer toi nt , but in the following declaration:
sync int * f;

f isapointer to a sync variable of typei nt .

140 S-2479-20

Keywords [F]

The following reserved words have been added by Cray to both the C and C++
languages for use on the Cray XMT platform.

future
__future

_intl6

__int32

_int64

restrict

__short 16

__short32

sync
__sync

t ask
__task

S-2479-20

Both atype qualifier and a statement. Future variables areinitially
set to afull state. A future variableis set to an empty state when the
f ut ur e statement executes and set to a full state when the return
statement of the future executes. A read or write operation runs
successfully when afuture variable is set to afull state and leaves
the variable set to a full state. For an example that shows the use

of thef ut ur e variable and f ut ur e statement, see Cray XMT
Programming Model.

Integer type. A 2-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

Integer type. A 4-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

Integer type. An 8-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

Type quaifier. Similar in function to the noal i as compiler
directive. See Semantic Assertions on page 125. When you declare a
pointer with ther est ri ct type, it indicates that the code does not
use aliases for that pointer and the compiler can perform additional
optimizations, such asthe implicit parallelization of loops.

Integer type. A 2-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

Integer type. A 4-byte value; may be signed or unsigned. See
Appendix E, Data Types on page 137.

Type qudifier. The system atomically reads sync variableswhenin a
full state and then sets them to an empty state. The system atomically
writes sync variables when in an empty state and then setsthem to a
full state. The system automatically sets uninitialized sync variables
to an empty state unless you use the - no_pur ge compiler switch;
the system setsinitialized sync variables to afull state.

Reserved for future use.

141

Cray XMT™ Programming Environment User’'s Guide

The following reserved words have been added by Cray to the C language for use on
the Cray XMT platform. Keywords beginning with an underscore have also been
added by Cray to the C++ language. The keywords new, del et e, and pr ot ect ed
are required by the C++ standard and did not need to be added to that language.

new

new Unary operator; has the same format as the new operator in the
C++ language. Allocates space for an object of the specified type,
initializes the full-empty bit of any sync or future variables that the
new object contains, and returns the address of the new object. The
system initializes the sync variable to an empty state and the future
variable to afull state. The actual contents of these variables, as for
any variables contained by the new object, is undefined.

del ete

__delete Unary operator; has the same format as the del et e operator in
the C++ language. Deallocates space that was previoudly allocated
using the new operator.

pr ot ect ed
__protected

Reserved for future use.

142 S-2479-20

MTA PARAMS [G]

S-2479-20

The environment variable MTA_PARAMS is used by the Cray XMT user runtime. The
following list contains the values that you can set for MTA_PARANVS.

debug_dat a_pr ot

Waits for the debugger to attach rather than exiting when a data
protection or poison error occurs. This parameter is useful while
troubleshooting a specific problem. However, Cray does not
recommend that you use this parameter during normal operations
because any error that occurs causes the runtime to wait for the
debugger to attach. This results in the runtime holding on to
resources previously used by the program.

do_backtrace

echo

Dumps registers of al active streams when atrap occurs. This
parameter may be useful during troubleshooting, although it
generates alot of information. If the runtime system has become
corrupted, the registers may fail to dump.

Prints alist of parameters to the screen. This parameter toggles on
and off.

exit_on_trace fail

Sets the default behavior to kill the program execution when tracing
fallsto initialize.

ft_traps options

Enables various floating-point traps depending upon which options
you set. See the section of Programming Considerations for
Floating-point Operations in Cray XMT Programming Model. You
can select from the following list of options:

[Invalid. Trapsinvalid floating-point numbers.

z Zero-divide. Traps operations that are attempting to
divide afloating-point number by 0.0. Thistype of
operation would create a NaN.

0 Overflow. Traps overflows that occur.

143

Cray XMT™ Programming Environment User’'s Guide

u Underflow. Traps underflows that occur. Underflows
produce a rounded result smaller in magnitude
than 0x0010000000000000, or about
2. 225e- 308.

X Inexact. Traps subnormal numbers.
max_readypool retries n

Sets the maximum number n of retries that an idle thread can take
when checking random ready pools for new work.

nmap_buffer_size n

Sets the variable size of the persistent mmap buffers, where nis

the size in words. The maximum value, which is also the default,

is 16,777,216 words (16 GB). The size of the persistent buffers
determines how much tracing data can be gathered before requiring a
dump of the gathered datato thet r ace. out file.

nmust _dunp_si ze n

Specifies the minimum number of words that must be present in a
trace buffer before allowing the trace buffer to dump to the mmap
buffer. The default value is 512 words. If an application terminates
prematurely and the trace.out file is missing information, reduce the
size of this buffer to force more frequent dumping.

num procs n

Sets the maximum number of processorsto use. This parameter isthe
same as using the command nt arun - m n.

num r eadypool s n

Sets the maximum number n of ready pools available for the entire
task. Ready pools are used to schedul e futures.

no_prereserve

Prevents the runtime from reserving 3 streams to use for attaching
the debugger.

144 S-2479-20

MIA_PARANS [G]

S-2479-20

pc_hash n,m,|

stream|im

Specifies the hash size n, age threshold m, and dump threshold | of an
event. The has size determines the number of event types that can be
hashed at one time. The age threshold determines the age at which
an event is considered stale, in which case it will be discarded rather
than reported. The age threshold also determines the frequency with
which events are captured in event records. The dump threshold

is the minimum number of events that must have been hashed to a
particular location before that location is captured as an event record
when the next age threshold sampleis taken.

t n

Sets the maximum number of streams to use on each processor. The
system imposed limit is 100 streams. However, while debugging a
program, it may be easier to perform debugging if this parameter is
set to a smaller number. The minimum valueis5.

145

Cray XMT™ Programming Environment User’'s Guide

146 S-2479-20

LUC API Reference [H]

The XMT-PE contains two user-level librariesfor LUC, | i bl uc. a, that usea C++
interface. Oneversion of | i bl uc. a isbuilt for Linux applications and oneis built
for MTK applications. Both versions present the same interface to LUC applications.

For LUC applications, you use the <l uc/ | uc_export ed. h> header file.

H.1 LucEndpoi nt Class

The LucEndpoi nt classdefinesalLucEndpoi nt object.

S-2479-20 147

Cray XMT™ Programming Environment User’'s Guide

The LucEndpoi nt class provides the interface methods that the application uses to

cal functions on aremote server.

cl ass LucEndpoint {
publi c:

I

148

/***

* Shared functions
***/

[/l initialize the service and start the client or server thread
virtual luc_error_t startService(uint_t threadCount=1,
ui nt _t nyRequest edPi d=PTL_PI D_ANY) ;

/1 stop the client or server thread and shutdown the service
virtual luc_error_t stopService(void);

/1 returns the endpoint ID
virtual luc_endpoint_id_t getMEndpointld(void);

set per-endpoint configuration val ues
virtual luc_error_t setConfigValue(luc_config key t key, uint64_t value);

/1 read per-endpoint configuration val ues
virtual luc_error_t getConfigValue(luc_config key t key, uint64_t *val ue);

/***

* Cient functions

***/

/1 client asynchronous RPC
virtual luc_error_t renoteCall (luc_endpoint_id_t serverEndpoint,
| uc_service_type_t serviceType,
int serviceFunctionl ndex,
voi d *user Dat a,
size_t userDatalen,
void * userHandl e,
LUC _Conpl eti on_Handl er user Conpl eti onHandl er);

/1 client synchronous RPC
virtual luc_error_t renoteCall Sync(luc_endpoint_id_t serverEndpoint,
luc_service_type_t serviceType,
int serviceFunctionl ndex,
voi d *input Dat a,
size_t inputDatalen,
voi d *out put Dat a,
size_t *out put Dat aLen);

/***

* Server functions
***/

virtual luc_error_t registerRenoteCall (luc_service_type_t serviceType,
int serviceFunctionl ndex,
LUC_RPC Function_I nQut theFunction);

S-2479-20

LUC API Reference [H]

H.2 [uc_al | ocat e_endpoi nt Function

Usel uc_al | ocat e_endpoi nt to construct LucEndpoi nt objects. The
default value for LucSer vi ceType isLUC _CLI ENT_SERVER. See LUC Type
Definitions on page 159.

LucEndpoi nt *luc_all ocat e_endpoi nt (LucServi ceType_t etype);

H.3 LUC Methods

The LucEndpoi nt class uses the following methods:
 startService

e stopService

* get MyEndpoi nt1 D

* renoteCall

e renoteCall Sync

* registerRenoteCall

* set ConfigVal ue

« get ConfigVal ue

H.3.1 start Servi ce Method

Initializes the LucEndpoi nt object.

Syntax

luc_error_t startService(uint_t threadCount=1,
ptl _pid_t requestedPid = PTL_PI D _ANY);

This method puts the object into a state where it can initiate and respond to RPC
requests. It initializes internal network components and creates the required number
of threads. The MTK version of the library allocates 1/0O buffers for the endpoint as
part of thisinitialization.

For client only objects, thet hr eadCount parameter isignored.

The MTK version of the library ignores both parameters.

S-2479-20 149

Cray XMT™ Programming Environment User’'s Guide

Parameters
threadCount
Specifies the number of server threads that are assigned to an object.
Note: The MTK LUC library ignores the t hr eadCount
parameter.
requestedPid
Specifies a Portals process ID to use when setting up the endpoint.
By default, the LUC library chooses a Portals process ID to use.
Note: MTK ignores the requestedPid parameter.
Return Codes

LUC_ERR K The service was stopped.
LUC_ERR_ALREADY_STARTED

User attempted to st ar t Ser vi ce on a previously started
LucEndpoi nt object

H.3.2 st opServi ce Method

Stops the LucEndpoi nt object.
Syntax

luc_error_t stopService(void);

Undoes the work of st art Ser vi ce. st opSer vi ce waits for running threads
to finish, then terminates them. It frees up any memory and network resources
associated with the endpoint that were allocated in aprevious st ar t Ser vi ce cal.

Return Codes
LUC_ERR_COK The service was stopped.
LUC_ERR_NOT_STARTED

The service has not yet been started. To start the service, use the
st art Servi ce method.

H.3.3 get MyEndpoi nt | D Method

150

Returns the ID of the LucEndpoi nt object.

Syntax
| uc_endpoint _id_t Get MyEndpoi ntld(void);

S-2479-20

LUC API Reference [H]

Getsthe ID of the endpoint. This method isvalid only after st art Ser vi ce has
returned.

Return Codes
This method returns the endpoint's identifier on successful completion.
LUC_ENDPO NT_I NVALI D

The endpoint is invalid because the service has not yet been started.
To start the service, usethe st ar t Ser vi ce method.

H.3.4 renot eCal | Method

S-2479-20

Makes an asynchronous remote procedure call.

Syntax

luc_error_t renoteCall (luc_endpoint_id_t serverEndpoint,
| uc_service_type_t serviceType,
int serviceFunctionl ndex,
voi d *userDat a,
size_t userDatalen,
void * user Handl e,
LUC _Conpl eti on_Handl er user Conpl eti onHandl er) ;

The asynchronous RPC mechanism is useful in cases where the caller does not need
assurance that the remote call actually happened. Locally detected errors may be
returned but remote errors are not returned directly. Remote-side success or failure
are returned if the caller provides a completion handler. The completion handler is
guaranteed to execute once and only once—when the remote call is known to have
executed or has been abandoned.

This method call is valid only on started objects. Multiple concurrent callers of this
method and the synchronous version are supported.

151

Cray XMT™ Programming Environment User’'s Guide

Parameters
server Endpoint
Specifies the endpoint identifier for the desired server of this RPC.

serviceType
serviceFunctionlndex

These parameters specify the particular remote function to
invoke on a server. The server uses the same values in its
regi st er Renot eCal | method.

userData
userDatalen

Specifies an optional pointer to input data and the length of the data.

userHandle Contains the value passed to the specified
user Conpl eti onHandl er when it isinvoked.

user CompletionHandler

Contains a function pointer for a function to be called when the
remote procedure call completes.

Return Codes
LUC_ERR_CK The remote procedure call was launched.
LUC_ERR | O ERROR

An underlying transport error occurred. The remote procedure call
may or may not have launched.

LUC_ERR TOO LARGE

The remote procedure istrying to return more data than the client can
accept. Thisreturn code is generated when servers return data to an
asynchronous caller.

LUC_ERR_NOT_STARTED

The service has not yet been started. To start the service, use the
st art Ser vi ce method.

LUC_ERR_BAD_ADDRESS

Indicates an attempt to use a NULL input or output buffer while
specifying a non-zero size for the corresponding buffer. This error is
returned by ther enot eCal | andr enot eCal | Sync methods.

152 S-2479-20

LUC API Reference [H]

H.3.5 renot eCal | Sync Method

Makes a synchronous remote procedure call.

Syntax

luc_error_t renoteCall Sync(l uc_endpoint _id_t serverEndpoint,
luc_service_type_t serviceType,
int serviceFunctionl ndex,
voi d *i nput Dat a,
size_t inputDatalen,
voi d *out put Dat a,
size_t *out put Dat aLen);

The synchronous procedure call is used in synchronous programming models or in
cases where the caller expects the remote function to return data.

This method is valid only on started objects. Multiple concurrent callers of this
method and the asynchronous version are supported.

Parameters
server Endpoint
Specifies the endpoint identifier for the desired server of this RPC.

serviceType
serviceFunctionlndex

Specifies the particular remote function to invoke on a server
and its service type. The server uses the same values in its
regi st er Renot eCal | method.

inputData
inputDatalen

Specify an optional pointer to input data and the length of the data.
outputData (input parameter)

Specifies an optional buffer for return data from the RPC.
outputDatal en (input/output parameter)

As an input parameter, specifies the maximum amount of data that
the application will accept from the RPC (the alocated size of

out put Dat a). When r enpt eCal | Sync returns, this value will
be changed to the actual amount of returned data.

S-2479-20 153

Cray XMT™ Programming Environment User’'s Guide

Return Codes

LUC_ERR_OK The remote procedure call was completed. Data may have been
returned.

LUC_ERR_NOT_STARTED

The service has not yet been started. This error is returned by the
st opSer vi ce, To start the service, usethe st art Ser vi ce
method.

LUC_ERR_BAD_ADDRESS

Indicates an attempt to use a NULL input or output buffer while
specifying a non-zero size for the corresponding buffer.

asynchronous return codes

Any of the asynchronous calls return codes and completion handler
codes may be returned to indicate failures. Refer to the return codes
sectioninr enot eCal | Method on page 151.

application defined return codes
Any return codes defined by the application.

H.3.6 regi st er Renot eCal | Method

154

Registers a remote application function with the server.

Syntax

luc_error_t registerRenoteCall (luc_service_type_t serviceType,
int serviceFunctionl ndex,
LUC_RPC Function_|l nQut theFunction);

This method registers the specified function to be executed whenever an incoming
request matches the specified service type and function index to be associated with
the application function.

This method operates independent of st art Ser vi ce and st opSer vi ce. It may
be called for an object in any state. (Remote procedure calls are unregistered only
when the object is destroyed).

S-2479-20

LUC API Reference [H]

H.3.7 set Conf i

S-2479-20

Parameters
serviceType

Specifies the service type of the service being provided.
serviceFunctionlndex

Specifies the specific function (by index) being provided by
t heFuncti on.

theFunction

Specifies the application defined function to be called by LUC when
RPC requests arrive at the endpoint with amatching ser vi ceType
and ser vi ceFuncti onl ndex.

Return Codes
LUC_ERR_OK The function was registered successfully.
LUC ERR BAD PARAMETER

The specified service type or function index is out-of-range.
LUC_ERR_ALREADY_REGQ STERED

The specified service type or function index is already occupied.
LUC_ERR_OTHER

The prototype can handle only a fixed number of function
registrations for each server object.

gVal ue Method
Sets configuration values for LUC.

Syntax

luc_error_t setConfigVal ue(
luc_config_key_t key,
uint64_t val ue);
Parameters

key Identifies the configuration option to set. The following options can
be set:

LUC_CONFI G_LOG_LEVEL

This configuration key aters the amount of LUC
internal debugging information that is printed to
standard error.

155

Cray XMT™ Programming Environment User’'s Guide

Values to use for this option:

LUC_DBG_NONE — The library logs assertions
that are fatal to the application.

LUC_DBG_LOW — Thelibrary logsfatal assertions
and errors.

LUC_DBG_MEDI UM — Thelibrary logs errors and
warnings.

LUC DBG HI GH — The library logs errors,
warnings, and verbose information about RPCs and
the endpaints.

LUC_CONFI G_SERVER _RPC_COUNT

This configuration key sets the number of RPCs that
a server endpoint should be able to handle at once.

Valuesto use for this option: 1 to 13106, inclusive.

LUC_CONFI G_CLI ENT_RPC_TI MEOUT

The number of seconds that a server endpoint will
wait for an expected message from a client before
failing the RPC.

Values to use for this option: Any number greater
than zero.

LUC_CONFI G_SERVER_RPC_TI MEQUT

The number of seconds that a server endpoint will
wait for an expected message from a client before
failing the RPC.

Values to use for this option: Any number greater
than zero.

LUC_CONFI G_MAX_NEARVEM S| ZE

156

This configuration key adjusts the amount of nearby
memory allocated for the endpoint's small 1/0 buffer
region. This buffer region may not be disabled.

Thiskey is not valid for Linux endpaints.

S-2479-20

LUC API Reference [H]

S-2479-20

Valuesto use for this option: powers-of-two from 1
MB to 256 MBs, inclusive.

LUC_CONFI G_SWAP_CLI ENT_| NBOUND
LUC_CONFI G_SWAP_CL| ENT_OUTBOUND
LUC_CONFI G_SWAP_SERVER | NBOUND
LUC_CONFI G_SWAP_SERVER OUTBOUND

This configuration key uses boolean flags to enable
byte swapping on messages sent to a LUC client,
fromaLUC client, to aLUC server, and fromaLUC
server, respectively.

These are not valid for Linux endpoints.

Valuesto use for this option: 0 and 1.

LUC_CONFI G_CLI ENT_RPC_COUNT

This configuration key sets the maximum number of
concurrent client RPCs on a single endpoint.

Valuesto use for this option: 1 to 13106, inclusive.

LUC_CONFI G_MAX_LOCAL_ENDPOI NTS

This configuration key sets the maximum number
of started LUC endpoints that may exist in asingle
Linux process.

Thiskey isnot valid for MTK endpoints.

Valuesto use for this option: 1 to 512, inclusive.

LUC_CONFI G_MAX_LARGE_NEARMVEM S| ZE

This configuration key adjusts the amount of nearby
memory allocated for the endpoint's large 1/0O buffer
region.

Thiskey is not valid for Linux endpaints.

Values to use for this option: powers of two from 1
MB to 2 GB, inclusive. A special value of zero (0)
may be used to disable this memory region and force
al 1/0 memory requests to be handled by the small
memory buffer.

LUC_CONFI G_MAX_LARGE_MEM REQUEST

This configuration key sets the largest internal
memory reguest that will be handled by the
endpoint's large I/O buffer region.

157

Cray XMT™ Programming Environment User’'s Guide

Thiskey is not valid for Linux endpaints.

Values to use for this option: powers of two from 1
MB to 256 MBS, inclusive.

LUC_CONFI G_SMALL_NEARMVEM S| ZE

LUC_CONFI G_

value | dentifies the val

Return Codes

This configuration key adjusts the amount of nearby
memory allocated for the endpoint's small I/O buffer
region.

Thiskey is not valid for Linux endpaints.

Values to use for this option: powers of two from 1
MB to 256 MBs, inclusive. This buffer region may
not be disabled.

MAX_SMALL_MEM REQUEST

This configuration key sets the largest internal
memory reguest that will be handled by the
endpoint's small 1/0 buffer region.

Thiskey is not valid for Linux endpoints.

Values to use for this option: powers of two from 64
KBsto 256 MBs, inclusive.

ue to set for the corresponding configuration key.

LUC_ERR K The operation was successful.

LUC_ERR_| NVALI D_KEY

The key parameter is not one of the predefined LUC configuration
keys (LUC_CONFI G_*).

LUC ERR | NVALI D_STATE
The set Conf i

gVal ue method cannot change the key value

because of the endpoint's current state. The endpoint must be stopped

to set the nearby

H.3.8 get Confi gVal ue Method

158

Returns the value for a specified
Syntax

luc_error_t getConfigVal ue(
luc_config_key_t key,
uint64_t *val ue);

memory region configuration values.

configuration option for LUC.

S-2479-20

LUC API Reference [H]

Parameters

key Identifies the configuration option to get. For alist of configuration
options, seeset Conf i gVal ue Method on page 155.

value Returns a pointer to the value for the corresponding configuration
key.

Return Codes

LUC_ERR_CK The operation was successful.
LUC_ERR | NVALI D_KEY

The key parameter is not one of the predefined LUC configuration
keys (LUC_CONFI G_*).

H.4 LUC Type Definitions

S-2479-20

LucSer vi ceType definesthe type of the LucEndpoi nt object.

typedef enum {
LUC_SERVER ONLY = 1,
LUC_CLI ENT_ONLY,
LUC_CLI ENT_SERVER

} LucServiceType_t;

Endpoints may be constructed to behave as a client and a server or they can be
specialized to be one or the other. The LucSer vi ceType t ypedef describes
what type of LucEndpoi nt object is being created.

LUC remote procedure calls can be grouped by their intended service type. The
following service types are predefined. The programmer can specify other application
specific values or use the predefined values.

typedef u_int32_t luc_service_type_t;

#def i ne LUC_ST_Quer yManager
#def i ne LUC_ST_CQuer yEngi ne
#def i ne LUC_ST_Coor di nat or
#def i ne LUC ST Restore

#def i ne LUC_ST_Snapshot

#def i ne LUC_ST_Updat eManager
#def i ne LUC_ST_Updat eEngi ne
#def i ne LUC_ST_Cut put Log
#def i ne LUC_ST_Any

#def i ne LUC ST ErrorlLog

©Ooo~NOOUILDh~WNEO

Error return codes are described with the methods that return them. The programmer
can specify other application specific error return codes or use the predefined values.

typedef int32_t luc_error_t;

159

Cray XMT™ Programming Environment User’'s Guide

H.5 LUC Callback Functions

The LucEndpoi nt class uses the following callback functions:
e LUC RPC Function_I nQut

e LUC Mem Avail _Conpl etion

e LUC Conpl eti on_Handl er

H.5.1 LUC_RPC Functi on_I nQut

The LUC runtime calls LUC_RPC _Functi on_I| nQut callback when aremote
client makes a request.

The application must call ther egi st er Renot eCal | method to register
LUC_RPC _Functi on_I nCut callback functions.

The application should return LUC_ERR_OK when successful. The application
should not return or redefine any other predefined return codes.

Syntax

typedef luc_error_t (*LUC_RPC Function_InQut)(void *inData,
uint64_t inDatalLen,
void ** out Dat a,
ui nt 64_t *out Dat aLen,
void ** conpl etionArg,
LUC _Mem Avai | _Conpl eti on *conpl eti onFctn,
| uc_endpoint _id_t cal | er Endpoi nt);

160 S-2479-20

LUC API Reference [H]

Parameters
inData (input parameter)

Specifies a pointer to a buffer containing input data to the remote
function. NULL if there is no input data.

inDataLen (input parameter)
Specifies the length of thei nDat a buffer.
outData (output parameter)

Specifies a pointer to the output data returned by the application.
NULL if there is no output data.

outDatalen (output parameter)

Specifies the length of the datareturned by the application if thereis
returning data.

completionArg (output parameter)
Specifies the value to passto conpl et i onFct n.
completionFctn (output parameter)

Specifies a pointer to a LUC_Mem Avai | _Conpl eti on
callback function called when the buffer is available. Used when
LUC RPC Function_I nQut returns datato the LUC runtime
and needs to be notified that the buffer is available for use.

callerEndpoint (input parameter)

Specifies the input endpoint identifier of the client's LucEndpoi nt
object passed to the remote function.

H.5.2 LUC_Mem Avai |l _Conpl eti on

S-2479-20

The LUC_Mem Avai | _Conpl et i on callback function notifies
LUC _RPC Functi on_I nQut that its buffer is available for use.

Syntax
typedef void (*LUC_Mem Avail _Conpl etion)(void * userHandl e);

Parameters

userHandle LUC passesintheconpl et i onAr g value returned by the initiating
LUC _RPC Functi on_I nQut function.

161

Cray XMT™ Programming Environment User’'s Guide

H.5.3 LUC _Conpl eti on_Handl er

The LUC_Conpl et i on_Handl er callback function is used by a client for
asynchronous remote procedure calls.

LUC Mem Avail _Conpl etion
Syntax

typedef void (*LUC _Conpl eti on_Handl er)
(luc_endpoint_id_t original Dest Addr,
| uc_service_type_t original ServiceType,
i nt original Functi onl ndex,
void * userHandl e,
luc_error_t renoteError);

The LUC runtime will call the function specified in ther enot eCal | method that
follows this signature when the remote call has completed.

Parameters

original DestAddr
original ServiceType
original Functionlndex

Specifies the destination address, service type, and function index.
LUC passesin the values used by ther enot eCal | method that
initiated this RPC being completed.

userHandle LUC passes in the value specified by ther enot eCal | method that
initiated this RPC being completed.

remotekrror

The ultimate error code for the RPC from either the LUC library or
the server application's registered function. All of the values returned
by r emot eCal | Sync (including application defined return codes)
may be specified here.

H.6 LUC Return Codes

162

The meaning of some predefined return codes are dependent on the method that
returns the code. Applications may define application specific codes.

LUC_ENDPO NT_I NVALI D

Indicates that the object has not been started and does not have a
valid endpoint identifier.

S-2479-20

LUC API Reference [H]

LUC_ERR_OK

The function was registered successfully.

» Thisobject isready to accept remote requests.
* Theremote procedure call was launched.

» Theremote procedure call was completed.

* The endpoint has been stopped successfully.

* The function was prepared for transmission. The application's
completion handler is guaranteed to fire with areal status at
some later point.

LUC_ERR_MAX

Specia value set to be the highest numerical error code generated
by the library. Applications may specify their own error codes to
be greater than this value.

LUC_ERR_BAD_ADDRESS

Indicates an attempt to use a NULL input or output buffer while
specifying a non-zero size for the corresponding buffer. This error is
returned by ther enot eCal | andr enot eCal | Sync methods.

LUC_ERR_NOT_REG STERED

The caller tried to make an RPC call to an unregistered
service type/function index pair that was not registered with
regi st er Renot eCal | .

LUC_ERR_OTHER

e Thelibrary can handle only a fixed number of function
registrations for each server object. The library supports the
registration of 64 functions for each endpoint.

* Falled to create the desired threads.
LUC ERR ALREADY_ REGQ STERED

The specified service type or function index is already occupied.

S-2479-20 163

Cray XMT™ Programming Environment User’'s Guide

LUC_ERR BAD PARANMETER
* The specified service type or function index is out of range.
* The specified configuration value is out of range.
LUC_ERR_RESOURCE_FAI LURE

A transient resource allocation failure has occurred. The caller
should retry the operation at a later time.

LUC_ERR_TOO LARGE

The remote procedure is trying to return more data than the client is
ableto accept. This return code will be generated whenever servers
try to return data to an asynchronous caller.

LUC_ERR LI BRARY

The (Linux) LUC Library received an unexpected error from the
Portals Library.

LUC_ERR_ALREADY_ STARTED

User attempted to st ar t Ser vi ce on a previoudly started
LucEndpoi nt object

LUC_ERR_TI MEQUT

Client failed to get aresponse from the server in atimely manner.
The server isbusy or a message was lost in transit.

LUC_ERR_NOT_| MPLEMENTED

Method not implemented. Returned by r enot eCal |

and r enot eCal | Sync for objects that were created as
LUC_SERVER_ONLY. Returned by r egi st er Renot eCal | for
objects that were created as LUC_CLI ENT_ONLY.

164 S-2479-20

LUC API Reference [H]

LUC_ERR FI O

The (MTK) LUC Library received an unexpected error from the Fast
I/0O System Call Library.

LUC_ERR_| NVALI D_ENDPO NT
The endpoint parameter to the method was invalid.
LUC_ERR_ALREADY_STOPPED

User attempted to st opSer vi ce on a previously stopped, or never
started, LUucEndpoi nt object.

LUC_ERR | O_ERROR

An underlying transport error occurred. The remote procedure call
may or may not have fired.

LUC_ERR_NOT_STARTED

The service has not yet been started. This error is returned by the
stopService,renoteCal | ,andr enpt eCal | Sync methods.
To start the service, usethe st ar t Ser vi ce method.

LUC_ERR_CANCELLED
Endpoint was stopped while this RPC was in progress.
LUC_ERR | NVALI D_KEY

The key parameter for the set Conf i gVval ue or

get Conf i gVal ue methods is not one of the predefined

LUC configuration keys (LUC_CONFI G_*). LUC configuration
keys are defined in get Conf i gVal ue Method on page 158.

LUC_ERR_| NVALI D_STATE

The set Conf i gVal ue method cannot change the key value
because of the endpoint's current state. The endpoint must be stopped
to set the nearby memory region configuration values.

S-2479-20 165

Cray XMT™ Programming Environment User’'s Guide

166 S-2479-20

Glossary

S-2479-20

barrier

In code, abarrier is used after a phase. The barrier delays the streams that were
executing parallel operations in the phase until all the streams from the phase reach
the barrier. Once all the streams reach the barrier, the streams begin work on the
next phase.

block scheduling

A method of loop scheduling used by the compiler where contiguous blocks of

loop iterations are divided equally and assigned to available streams. For example,

if there are 100 loop iterations and 10 streams, the compiler assigns 10 contiguous
iterations to each stream. The advantages to this method are that data in registers can
be reused across adjacent iterations, and that there is no overhead due to accessing a
shared iteration counter

dependence analysis

A technique used by the compiler to determine if any iteration of aloop depends on
any other iteration (thisis known as a loop-carried dependency).

dynamic scheduling

In a dynamic schedule, the compiler does not bind iterations to streams at loop
startup. Instead, streams compete for each iteration using a shared counter.

fork

Occurs when processors allocate additional streamsto athread at the point whereit is
creating new threads for a parallel loop operation.

full-empty state

Indicates whether a variable contains avalue (full) or not (empty). Generic read and
write operations use this state to determine whether they can perform an operation on
the variable. For example, awriteef operation can only write avalueto avariable if
the state is empty. After the write operation, it sets the state to full.

167

Cray XMT™ Programming Environment User’'s Guide

168

future

Implements user-specified or explicit parallelism by creating a continuation that
points to a sequence of statements that may be executed by another idle thread.
Futures also optionally contain areturn value. Execution of code that uses the return
value is delayed until the future completes. The thread that spawns the future uses
parameters to pass data to the thread that executes the future. In a program, the term
future is used as a type qualifier for a synchronization variable used to return the
value of afuture or as a keyword for a future statement.

induction variable

A variable that isincreased or decreased by a fixed amount on each iteration of a
loop.

inductive loop

A loop that contains no loop-carried dependencies and has the following
characteristics. asingle entrance at the top of the loop; controlled by an induction
variable; and has a single exit that is controlled by comparing the induction variable
against an invariant.

interleaved scheduling

A method of executing loop iterations used by the compiler where contiguous
iterations are assigned to distinct streams. For example, for aloop with 100 iterations
and 10 streams, one stream performsiterations 1, 11, 21,... while another stream
performs iterations 2, 12, 22, ..., and so on. This method is typically used for
triangular loops because it reduces imbalances. One disadvantage to using this
method is that there is loss of data reuse between loop iterations because adjacent
iterations are not executed by the same stream.

join
Occurs when threads that are forked for a parallel operation finish the operation.

As threads finish and drop the streams they are running on, the streams join back
together until there is a single stream running the thread.

linear recurrence
A special type of recurrence that can be parallelized.

loop-carried dependences

The value from one iteration of aloop is used during a subsequent iteration of the
loop. Thistype of loop cannot be parallelized by the compiler.

S-2479-20

Glossary

S-2479-20

recurrence

Occurs when aloop uses values computed in one iteration in subsequent iterations.
These subsequent uses of the value imply loop-carried dependences and thus usually
prevent parallelization. To increase parall€elization, use linear recurrences.

reduction

A simple form of recurrence that reduces alarge amount of datato asingle value. Itis
commonly used to find the minimum and maximum elements of avector. Although
similar to arecurrence, it is easier to parallelize and uses less memory.

region

An areain code where threads are forked in order to perform a parallel operation.
The region ends at the point where the threads join back together at the end of the
parallel operation.

169

	Cray XMT Programming Environment User's Guide
	Changes to this Document
	Introduction [1]
	1.1 The Cray XMT Programming Environment

	Setting Up the User Environment [2]
	2.1 Setting Up a Secure Shell
	2.1.1 RSA Authentication
	2.1.2 Additional Information

	2.2 Using Modules
	2.2.1 Modifying the PATH Variable
	2.2.2 Software Locations
	2.2.3 Module Commands

	Developing an Application [3]
	3.1 The Cray XMT Programming Environment
	3.2 Overview of Cray XMT Generic and Intrinsic Functions
	3.2.1 Generic Functions
	3.2.1.1 Generic Write Functions
	3.2.1.2 Generic Read Functions

	3.2.2 Intrinsic Functions

	3.3 Adding Synchronization to an Application
	3.3.1 Synchronizing Data Using int_fetch_add
	3.3.2 Avoiding Deadlock

	3.4 Programming Considerations for Floating-point Operations
	3.4.1 Differences from IEEE Floating-point Arithmetic
	3.4.2 Differences from Cray Floating-point Arithmetic
	3.4.332 -bit and 64-bit Implementation of Floating-point Arithmet
	3.4.4 Rounding Results of Floating-point Operations

	3.5 Using Futures in an Application
	3.5.1 Improving Performance of Future Statements
	3.5.2 Anonymous futures

	3.6 Testing Expressions Using Condition Codes
	3.7 File I/O
	3.7.1 Language-level I/O
	3.7.2 System-level I/O

	3.8 Porting Programs to the Cray XMT
	3.9 Debugging the Program

	Shared Memory Between Processes [4]
	4.1 Mapping a Memory Region for Data Sharing
	4.2 Persisting Shared Memory

	Developing LUC Applications [5]
	5.1 Programming Considerations for LUC Applications
	5.2 Creating and Using a LUC Client
	5.3 Creating and Using a LUC Server
	5.4 Communication Between LUC Objects
	5.5 LUC Client/Server Example
	5.6 Fast I/O Memory Usage

	Managing Lustre I/O with the Snapshot Library [6]
	6.1 About the Snapshot Library
	6.2 The Snapshot Library Interface
	6.3 Maintaining File System and I/O Parallelism
	6.4 Examples
	6.5 Managing File I/O on File Systems Other Than Lustre

	Compiler Overview [7]
	7.1 The Compilation Process
	7.1.1 File Types Accepted by the Compiler

	7.2 Invoking the Compiler
	7.3 Setting the Compiler Mode
	7.3.1 Whole-program Mode
	7.3.2 Separate-module Mode
	7.3.3 Mixed Mode

	7.4 Inlining Functions
	7.5 Optimizing Parallelization
	7.6 Incremental Recompilation and Relinking
	7.7 Creating New Libraries
	7.8 Compiler Messages
	7.9 Setting Debugger Options during Compilation
	7.10 Using Compiler Directives and Assertions

	Running an Application [8]
	8.1 Launching the Application
	8.2 User Runtime Environment Variables
	8.3 Improving Performance

	Optional Optimizations [9]
	9.1 Scalar Replacement of Aggregates
	9.2 Optimizing Calls to memcpy and memset

	Error Messages [A]
	User Runtime Functions [B]
	Compiler Directives and Assertions [C]
	C.1 Compilation Directives
	C.2 Parallelization Directives
	C.3 Semantic Assertions
	C.4 Implementation Hints

	Condition Codes [D]
	Data Types [E]
	Keywords [F]
	MTA_PARAMS [G]
	LUC API Reference [H]
	H.1 LucEndpoint Class
	H.2 luc_allocate_endpoint Function
	H.3 LUC Methods
	H.3.1 startService Method
	H.3.2 stopService Method
	H.3.3 getMyEndpointID Method
	H.3.4 remoteCall Method
	H.3.5 remoteCallSync Method
	H.3.6 registerRemoteCall Method
	H.3.7 setConfigValue Method
	H.3.8 getConfigValue Method

	H.4 LUC Type Definitions
	H.5 LUC Callback Functions
	H.5.1 LUC_RPC_Function_InOut
	H.5.2 LUC_Mem_Avail_Completion
	H.5.3 LUC_Completion_Handler

	H.6 LUC Return Codes

	Glossary
	List of Procedures
	Procedure 1. Setting up RSA authentication with a passphrase
	Procedure 2. Using RSA authentication without a passphrase
	Procedure 3. Creating and using a LUC client object
	Procedure 4. Creating and using a LUC server object

	List of Examples
	Example 1. Testing a shift-left operation for a carried number
	Example 2. Retrieving a condition code and result of a previous
	Example 3. Retrieving a condition code set by a previous operati
	Example 4. Calling standard I/O functions from parallel code
	Example 5. Calling record-oriented I/O functions from parallel c
	Example 6. Preventing racing when calling I/O functions
	Example 7. Calling UNIX I/O functions from parallel code
	Example 8. Using synchronization with UNIX I/O functions
	Example 9. Using synchronization with UNIX record-oriented I/O f
	Example 10. Mapping memory to share among multiple processes
	Example 11. LUC client code example
	Example 12. LUC Server code example
	Example 13. Allocating and using LucEndpoint objects to communic
	Example 14. Using dslr_snapshot and dslr_restore to save and res
	Example 15. Using dslr_pwrite to write data to a file and dslr_p

	List of Figures
	Figure 1. Snapshot Library Data Paths
	Figure 2. Comparison of Whole-program and Separate-module Modes

	List of Tables
	Table 1. mta-pe Utilities
	Table 2. Condition Codes
	Table 3. Condition Masks
	Table 4. C/C++ Keywords Recognized by the Cray XMT Compiler
	Table 5. Standard C++ Keywords Recognized by the Cray XMT Compil

