
Programming the Cray XMT 



Schedule – Day 1 

Starting time           Topic 

9:00 Introductions and Outline 

9:15 Overview of the XMT architecture and history 

10:00 XMT Applications 

10:30 Programming Environment Basics 

11:00 Exercise 1  

12:00 Lunch 

1:15 Programming for Performance 1 

2:30 Exercise 2   

5:00 End of Day 1 
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Schedule – Day 2 
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Starting time           Topic 

9:00 Shared Memory Considerations 

10:00 Debugging with MDB 

10:30 Programming for Performance 2  

11:30 Exercise 3  

12:00 Lunch 

1:00 Using Canal, Traceview and Bprof in Apprentice 2 

2:00 Betweenness Centrality – Multi-level Parallelism 

2:30 Graph Generation and Snapshot-Restore I/O 

3:15 Break 

3:30 Exercise 4 

4:30 Class Feedback; Final Comments 

5:00 End of Day 2 



XMT Architecture Overview 
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Slide 5  

Multithreading  
Multithreaded processors are to conventional 

processors as Gatling guns are to 

conventional machine guns. 

Many threads per processor core; small 

thread state 

Thread-level context switch at every 

instruction cycle 

registers 

program 
counter 

ALU 

Commodity 
processor 

Multithreaded  

“stream” 



Relative latency to memory continues to increase 
•  Vector processors amortize memory latency 
•  Cache-based microprocessors reduce memory latency 
•  Multithreaded processors tolerate memory latency 

Multithreading is most effective when: 
•  Parallelism is abundant 
•  Data locality is scarce 

Large graph problems perform well on the Cray 
XMT 
•  Semantic databases 
•  Big data 

Why Multithreading? 
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Hiding Memory Latencies 
Caches 
•  Reduce latency by storing some data in fast, 

nearby memory 
Vectors 
•  Amortize latency by fetching N words at a time 

Parallelism 
•  Hide latency by switching tasks 
•  Multithreading tries to balance “Little’s Law:”  
                  concurrency = bandwidth * latency 

latency 

ba
nd

w
id

th
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Keeping the Bottlenecks Saturated 

Conventional processor Multithreaded processor 

Slide 8  

When one or a few 
threads stall, memory/

network bandwidth 
become idle 

Although some threads 
stall, others keep issuing 

local/remote memory 
requests, keeping most 
precious resources busy 

network 

memory memory 

network 



XMT’s “Threadstorm” CPU Architecture 

9 



Threads and Streams 

5/23/2011 CUG 2011 Golden 
Nuggets of Discovery 10 

A thread is a software object 

•  A program counter and a set of registers 

•  Very lightweight 
–  Not pthreads 

–  No OS state 

A stream is a hardware object 

•  Stores and manipulates a thread’s state 

•  Very lightweight stream creation 
–  A single instruction executed from user space 

More threads than streams 

Threads multiplexed onto the processor’s streams 



To the programmer, a multiple processor XMT 
looks like a single processor, except that the 
number of threads is increased.  
 

XMT Programming Model 
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Memory 

When the system is booted, the memory of each 
compute node is divided into: 
•  Local memory 

–  Local or “nearby” memory for the user application 
– Used for runtime data structures and I/O 

•  Global memory 
–  The MTK RAMFS is loaded here 
–  Shared memory for the user application 
– Addresses for global memory are hashed to distribute 

addresses throughout the global memory 
• Addresses ranges are not blocked to a node 
•  This is done to reduce memory and network contention 



Memory word 

The XMT memory word has 66 bits 
•  64 bits of data, byte addressable 

– Data is stored big-endian 
•  2 tag bits 

–  The full/empty bit 
• Used for synchronization 

–  The extended bit 
• Set by the hardware, for example when there is a trap 

Extended bit 
Full/empty bit 

64 data bits 



XMT System Architecture 

•  Compute nodes are based on 
Cray Threadstorm processor 
–  Executes MTA instruction 

set; compatible with 
previous MTA systems 

•  Service nodes are based on 
AMD Opteron processor 
– Run a full version of SUSE 

Linux with additional Cray 
and third-party software 

–  I/O uses PCI-X/PCIe 
interfaces associated with 
service nodes 
•  Fibre Channel HBAs to 

RAIDs 
•  1- and 10-Gb Ethernet 

cards for network 
connections 
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Cray XMT System Connections 

GigE 

10 GigE 

GigE 

RAID 
Subsystem 

Fibre  
Channels 

SMW 

Compute node 

Login node 

Network node 

Boot /Syslog/Database nodes 

I/O and Metadata nodes 

X 

Y 
Z 



Cray XMT Compute Blade 

L0 controller 

Threadstorm processor 

Processor VRM 

Memory 

Memory VRM 

48 – 12Vdc VRMs 

SeaStar 

Node 0 

Node 1 

Node 3 

Node 2 

0 
1 

2 
3 



Cray XMT (XT) Service Blade 

Node 0 

Node 3 

0 
1 

2 
3 

PCI riser 
(PCI-X or PCIe) 

PCI card 

Opteron processor 



Speeds and Feeds 

CPU ASIC 

127M memory ops 

500M memory ops 

500 MHz x three pipes 

500M memory ops 

66M memory ops (loads) 

33M memory ops (stores) 

Not bidirectional 

114M memory ops up to 256 processors 

76M memory ops per processor for 512 processors 

8 GB DDR DRAM 

Sustained memory rates are for 
random single word accesses over 

entire address space. 
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Potential Architectural Bottlenecks   

•  Processor throughput? Never observed to be the 
bottleneck. 
–  Typical processor utilization ~ 30% 

•  Network bandwidth 
–  Especially at larger scale 

•  Tunable HW settings in the network, based on the amount of 
concurrency needed to saturate the bisection BW, in place to 
avoid over-saturation of the network 

•  128P sized systems and smaller limited to 180 outstanding 
memory operations per processor 

•  For 512P system, this drops to 144 outstanding operations 

•  Memory bandwidth 
– Minimizing trips to memory is important 

19 



Additional Performance Considerations 

•  Sequential code murders performance. 
–  21 cycles per instruction issue 

•  XMT memory references are hashed  
– Granularity of 8-word cache lines 

•  All jobs use all memories in the system 
–  Example: “betweenness centrality” graph computation on 16 

processors of a 128-processor system: 25% faster than on 16 
processors of a 16-processor system 

•  Exclusive protection domains, but no exclusive 
ownership of physical hardware resources 
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Cray XMT Architecture – Summary  

•  Heavily multi-threaded processor: 128 hardware threads 
multiplexed between OS and all applications 
–  16 protection domains (address maps) per processor 
– Multi-threaded architecture tolerates memory latency 
– Data locality not critical for performance 

•  Scrambled and distributed shared memory to avoid 
contention 

•  Lightweight synchronization using full/empty bits on all 
memory 

•  Interconnect bisection bandwidth scales with the 
number of processors 

•  No hardware interrupts  
– Hardware threads allocated by user via instruction, not OS 

•  Exceptions and  traps do not cause a privilege change 
–  They are handled at the privilege level in which they occur 



History of the XMT Architecture 
" MTA-1 (Multi Threaded Architecture) launched in 1998 

" 18 GaAs chips per processor blade, with custom memory 

" Cray MTA-2 launched in 2002 
" 5 CMOS chips per processor on 1 large PC board with custom DIMMS 

" Cray XMT launched 2008 
" Processor reduced to single CMOS chip in Opteron socket 
" 4 processors per PC board, standard DIMMS 
" Cray XT network, packaging, cooling and RAS features 

" First Next Generation XMT delivered to CSCS in 2011 

Slide 22  



" Next Generation builds on successful Cray XMT 

" Memory system improved significantly 
" Large improvement in bandwidth 
" Very large improvement in capacity 

" Hot Spot Avoidance  
" Productivity—simple implementation performs best 
" Reliability—difficult programs cannot interrupt system services 
" Performance—use network more efficiently 

Next Generation Cray XMT 

5/23/2011 

CUG 2011 Golden Nuggets 
of Discovery 
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XMT Applications 
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Slide 25  

" Any application that involves ... 
" Random or indirect memory accesses 
" Dynamic or unbalanced subcomputations 
" Unstructured, dynamic, and/or sparse data structures 
" Linked data structures (lists, graphs, trees) 
" Sorting or searching 
" … on HUGE data sets 

" Applications that need to access large 
amounts of memory (terabytes) and in an 
unpredictable manner.   
" Graph Analysis (intelligence, protein folding, 

bioinformatics) 
" Data mining 
" “Graph mining” 
" Business intelligence 
" Pattern matching 
" Power grid analysis  
 

Cray XMT’s Application Sweet Spot 



Cray XMT-Based Applications & Solutions 
•  Cyber Security 

•  Dynamic Network Analysis for Network Intrusion 
•  Anomaly Detection – PDTree 
•  String Matching 

•  Informatics 
•  Semantic Database 
•  Interactive Analytics 
•  Visualization for Large-scale Graphs 

•  Bioinformatics 
•  Large-scale Sequence Alignment 
•  Histopathological Images Analysis 
•  Epidemiology: simulating individual-based models of epidemics in networks 
•  Dynamic Biological Network Analysis 

•  Video Analytics 
•  Unstructured Data Analysis using Sparse Graph Network-of-Networks Algorithms 

•  Agent-Based Parallel Discrete Event Simulation 
•  Organizational Business Process Simulation 

•  Electric Grid 
•  Contingency Analysis 
•  Smart Grid 

Active (funded) 
Research Areas 
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Comparing Relational Databases to Semantic Network Databases 
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This type of query is 
easy for either: 

“Show all company employees 
who are age 45 or older” 

This type of query is very hard and slow for 
relational, fast for semantic network database: 

“Show all people who have met with Al-Zawahiri or 
have met with someone who met with Al-Zawahiri” 

Semantic networks also support reasoning:   
            X attended meeting M & 
            Y attended meeting M → X met with Y 

A-Z 



Jena 
 open source 

SPARQL engine 

SELECT ?p ?x 
WHERE { 
      (?x type person) 
      (?p sells “DVD”) 
      (?x shops-at ?p) 
} 
 

 
UNION 
OPTIONAL  
FILTER 
 
generate low-level query 

Service nodes XMT compute nodes 

API 

Send 
query 

Receive 
results 

Parse, 
interpret 
query 
 
 
Set up 
query 
engine 
 
 
Translate, 
send 
results 
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HTTP Interface 



Programming Environment Basics 
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Topics 

•  Accessing a Cray XMT System 
•  Cray XMT Programming Environment 
•  Interactive Program Launch 
•  Monitoring 
•  Batch Program Launch 



Accessing a Cray XT System 

• ssh is normally used to connect to the system 
– User account information is maintained through an LDAP or 

Kerberos server 
–  Passwordless ssh can be set up to access a system 

• Set up a pass phrase for a more secure session 

Application 

Compute nodes 

Multithreaded Kernel (MTK) 

Customer network 

Login node Login node Login node 

High speed network (HSN) 

Also referred to as the 
front-end processors 

Also referred to as the 
back-end processors 



Cray XT Programming Environment 

•  A cross-compiler environment 
– Compiler runs on Linux login node 
–  The executable runs on the compute nodes 
–  Provides automatic parallelism if proper options are included 
– Recognizes C and C++ directives and language constructs 

•  Modules utility 
– Consists of the module command and module files 
–  Initializes the environment for a specific compiler 
– Allows easy swapping of compilers and compiler versions 

•  Cray written compiler driver scripts for C (cc) and C++
(CC) 
– MTA compiler options, system libraries, and header files 
– Compiler specific programming environment libraries 
– Compilers support shared libraries (non-static linking) 

• No dynamic libraries 



PE Summary 

Compilers C and C++ 

Compiler tools Canal 

Libraries libc++.a, libm.a, libprand.a, libluc.a, libsnapshot.a 

Runtime libraries librt.a, libc.a, libs.a 

Debuggers mdb 

Performance tools Tview, Bprof,  and Apprentice2 



Module Commands 

Cray uses modules to control the user 
environment, use the commands: 

module  

list to list the modules in your environment 

avail  to list available modules 

load to load a module 

show to see what a module loads 

swap  
to swap two modules 
For example: to swap mta-pe version 6.0.0 with 6.2.1 
% module swap mta-pe/6.0.0 mta-pe/6.2.0 



Standard Modules 

%> module list 

Currently Loaded Modulefiles: 

  1) modules/3.1.6     3) mta-man/6.5.0 

  2) xmt-tools/3.7.2   4) mta-pe/6.5.0 

%>  

• mta-pe module includes 
–  cc, c++, mdb, nm, dis, etc.. 

• xmt-tools module includes 
– mtarun and mtatop 

• mta-man module includes the man pages 
 
 



Compiling an Application 

Two modes for compiling: skinny and fat 
•  skinny or whole-program mode 

–  The preferred mode on the XMT 
–  Information about the entire program (every file) is stored in a 

single program library file (.pl suffix) 
– A knowledge of the entire program enables the compiler to 

perform optimizations 
– .o files are still produced, but they are merely timestamps 

•  fat or separate module mode 
–  Like traditional gcc 
–  Information for each module is stored in a separate .o file 
– Useful for porting code and reusing Makefiles 



Compiling Skinny 

To compile skinny, either compile and link 
everything as one event or specify a program 
library file using -pl. 
•  Skinny compilation as one event: 

•  Skinny compilation with -pl: 

 
–  Each successive compilation inserts more information into the 

original program library 

cc -o myapp foo.c bar.c 

cc -pl myapp.pl -c foo.c 
cc -pl myapp.pl -c bar.c 
cc -pl myapp.pl -o myapp foo.o bar.o 



Compiling Fat 

If you compile and link separately and do not 
specify a .pl file (the -pl option), the compiler 
defaults to fat mode 
 
 
 
 
•  Use this mode only if you must; for example, porting 

code with a complicated build system. 

cc -c foo.c 
cc -c bar.c 
cc -o myapp foo.o bar.o 



Compiler Flags 

•  Without any options, the compiler disables implicit 
parallelism and loop restructuring and observes 
(enables) parallelization directives 
– Available flags are listed below; if multiple flags are provided, 

the order of precedence is highest to lowest 

-nopar Do not parallelize; ignore everything 

-serial Enable automatic loop restructuring and obey 
parallelization directives 

-par1  Enable automatic parallelization, but limit 
execution to a single processor  

-parfuture Future-based parallelization (very dynamic 
scheduling) 

-par  Normal parallelization (default) 



Compilation Failures 

•  Error in user code 
– May also appear as “warning” or “remark”  
– Does not halt compilation; is only a notification 

•  Syntax or other error in user’s code: 
 
 
 
•  Link error – user’s reference is undefined; may need to 

link a library -w or –l: 

"test.cc", line 4: error: expected a ")" 
    int x = strtol("6", 0, 0; 
                            ^ 

resolve: undefined symbol foo(int).data 
from a.out.pl(test.cc) 
resolve: undefined function foo(int) 
from a.out.pl(test.cc) 



Compiler version mismatch 

An attempt to mix compiler versions will cause a 
mismatch error 
•  For example, compile foo.c and bar.c with 6.0.2 and 

link with 6.0.3 

Error: Compiler version mismatch on 
file: a.out.pl 
  Expected: 6.0.3, Actual: 6.0.2 



Libraries 

•  The runtime library (librt) supports: 
–  Future variables 
–  Synchronization 
–  Scheduling 
–  Event logging 
– Compiler generated parallelism 
– Debugging 

•  Lightweight user communication (LUC) interface 
– Use LUC to build a client/server interface between the front-end 

and back-end 
• Back-end processors do not have direct access to the Lustre 

file system; service processors do not have direct access to 
compute processor memory 

•  LUC is a C++ interface 
• Symmetric; RPC-style interface in either direction 



Vocabulary Review 

•  Task:       The complete program 
•  Team:      Resources and data structures that are  

                 associated with a single processor 
•  Stream:   A set of hardware registers that are used for  

                instruction issue 
•  Thread:   A register state; threads (software) run on  

                streams 



Launching a Compute Node Program 

Use the mtarun command 
•  During execution, the mtarun command connects to the 
mtarund daemon on the back-end 
– mtarun sends the path to the binary, the users environment, 

and the command line arguments to the back-end 
–  Performs simple permissions checks and setup, then forks and 
execs the application 

–  Path to user binary must exist on the back-end 
• User home directories are typically available over NFS 

–  The PID on the front-end should be same as on the back-end 
• Signals to front-end mtarun process are propagated to the 

back-end process (through mtarund) 
– Signal names and numbers are slightly different for MTK 



mtarun Control 

•  Two mtarun options control job execution: 
–  The -t num_procs option specifies the number of teams that  

are initially assigned to the application 
• A team is a protection domain. Normally, an application is 

allowed only one protection domain for each Threadstorm 
processor . 

–  The -m max_procs option limits the number of processors 
(teams) that the application is permitted to use 

•  The user runtime program reads the MTA_PARAMS 
environment variable. Some useful options are: 
– echo: prints the parameters (toggled on/off) 
– stream_limit n: specifies the max number of streams per 

processor 
– num_procs n: specifies the maximum number of processors 

that  the application can use 
– no_prereserve: prevents the reservation of 3 streams for the 

debugger  (for “benchmarking” runs) 



Monitoring and Control 

mtatop 
Similar to the top command, but connects to a daemon 
(dashd) that runs on the back-end. Provides additional 
information such as the number of processors and streams. 

dash The Cray XMT performance monitoring GUI 
(The window displays the GUI name as Dashboard2.) 



mtatop 

XMT: nid00033 UP: 4d+21:44:59                                        
[09:50:54] 
Total: 128 cpus  @500.00Mhz  Mem: 1024.0G  128*128 max streams 
AVG Util:   1.5% Traps:     0.1 Strms:    17.3 
Free Mem: 832.3G MemR/s: 474.7M Flop/s:   1.8M Strms [res: 2,061, act: 523] 
 
    PID USER      S  PRI NICE   P    SIZE     TIME   UTIL SysUTL TASK 
      0 root     Ru    0    0 128   16.9G 5d+17:49   0.9%   0.9% mtk 
  32798 root     Ru  100    0 128    6.0G 2d+17:32   0.5%   0.5% clockd.v1 
  32855 root     Ru  100    0   1  146.8M 01:37:57   1.6%   0.0% dashd 
  32839 root     Ru  100    0   1  148.6M    31:25   0.5%   0.0% mtarund 
  32824 root     Ru  100    0   1  146.7M    27:38   0.5%   0.0% syslogd 
      1 root     Sl  100    0   1  272.1M    00:00   0.0%   0.0% init 
  32789 root     Sl  100    0   1  147.6M    00:00   0.0%   0.0% bash 
  32790 root     Sl  100    0   1  147.6M    00:00   0.0%   0.0% bash 
  32795 root     Sl  100    0   1  146.2M    00:05   0.0%   0.0% rememd 
  32827 root     Sl  100    0   1  146.7M    04:03   0.0%   0.0% prngd 
  32828 root     Sl  100    0   1  148.1M    00:00   0.0%   0.0% bash 
  32829 root     Sl  100    0   1  148.1M    00:00   0.0%   0.0% bash 
  32842 root     Sl  100    0   1  146.6M    00:00   0.0%   0.0% portmap 

Cursor is here, see next slide for options 

Threadstorm processors 
Total memory for Threadstorm processors 

128 * 128 max streams 
is 128 streams on  each of 128 processors 



mtatop Command Options 

•  While mtatop is running “interactively,” some useful 
commands are: 
– c: displays CPU usage 
– p:  enables you to view process specific info (see the next slide) 
– u:   enables you to filter by user name 
– t:  returns you to the default display 

•  Batch (mtatop is not interactive) options that you can 
add to the mtatop command: 
– -b: a batch mode snapshot of the system; provides the  

        typical mtatop output and CPU usage 
• Appending -pid process_ID to the -b option provides 

additional information about the process 



mtatop - Process Information 
XMT: nid00033 UP: 4d+22:37:47                                        [10:43:41] 
Total: 128 cpus  @500.00Mhz  Mem: 1024.0G  128*128 max streams 
AVG Util:  19.3% Traps:     0.5 Strms:    57.8 
Free Mem: 583.8G MemR/s:   8.1G Flop/s:   1.4M Strms [res: 7,570, act: 6,029] 
 
----------------------------------------------------- 
Util:    21.1% Traps:   195.6 Strms:   60.5 
MemR/s:  67.6M Flop/s:   1.0K Strms [res: 12997 act 12994] 
----------------------------------------------------- 
Process Name:          futurestress 
Process ID:            25544 
User Name:             someuser 
Parent Process ID:     32839 
Process Group ID:      25544 
UID:                   95762 
Cpu:                   11.3% 
Processors:            128 
User Time:             4min 22sec 
State:                 Running 
Nice value:            0 
Priority:              100 
Resident Size:         266,708,443,136 
Program Text Size:     2,588,672 
Program Data Size:     266,707,910,656 
Shared Size:           532,480 
System Calls:          1 
Blocked System Calls:  0 
FS Bytes:              14,272 
Networking Bytes:      3,748 

At the cursor, type p 
You are then prompted 
for the process ID 



Exercise 1 

Assignment: 
Write a loop that initializes each element of an 
integer array to its index value squared, followed 
by a loop that sums the elements of the array. 
#define M 1000000 
int array[M]; 
int i; 
for( i = 0; i<M; i++) 
//??? 
int sum=0; 
for(i=0; i<M; i++) 
//??? 
printf(“%d\n”, sum); 
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Lunch 
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Programming for 
Performance – Part 1 
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Loops 

The compiler can automatically parallelize 3 kinds of loops: 

•  Loops without loop-carried dependences, 

•  First-order linear recurrences, and 

•  Reductions. 

 

This is our basic palette and we strive to express all our programs in these forms. 
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Inductive Loops 

Before the compiler will consider parallelizing a loop, the loop must be 
inductive. 

•  Single entrance and single exit, 

•  Controlled by a linear induction variable (incremented by an 
invariant amount each iteration), and 

•  Exit is controlled by comparing the induction variable against an 
invariant. 

The key here is that the compiled code must be able to determine, a 
priori, how many iterations will be executed. 



Example of Parallelizing Your Code 

This loop parallelizes: 

void foo() { 
 int i; 
 int my_array[10000]; 
 for (i = 0; i < 10000; i++) { 
  my_array[i] = i; 
 } 
 return; 

} 
 



Example 2 of Parallelizing Your Code 

This loop does not parallelize: 
 
 
 
 
 
 

•  a and b may point to overlapping memory 

void foo(int *a, int *b) { 
 int i; 
 for (i = 0; i < 10000; i++) { 
  a[i] = b[i]; 
 } 

} 

foo(x+5000, x); 



Example 3 of Parallelizing Your Code 

If you know that a and b will not point to the same 
memory, you can use a pragma to instruct the 
compiler it is safe 
•  This code will now parallelize 

void foo(int *a, int *b) { 
 int i; 

  #pragma mta noalias *a 
 for (i = 0; i < 10000; i++) { 
  a[i] = b[i]; 
 } 

} 



Compiler Transformations for Parallelism 

The compiler attempts to restructure code to find 
or enhance parallelism: 
•  Scalar expansion 
•  Making associative operations atomic 
•  Reductions 
•  Recurrences 

You can view the ways the compiler restructured 
your code in Canal (text-based) or in the canal tab 
of Apprentice2 (GUI-based). 



Scalar Expansion 

This loop cannot be parallelized because of the 
interaction of the reads from t and the writes to t 
in subsequent iterations (an anti-dependence): 
 
 
 
 

for (i = 0; i < n; ++i) { 
  t = sqrt(a[i + 1]); 
  a[i] = t + 5; 
} 



Scalar Expansion 

•  The compiler resolves this conflict by converting the 
scalar integer t into an array of integers 

•  The compiler then splits the original single loop into 
two loops to preclude the conflict between reading a[i
+1] and writing a[i] on the next iteration. 

for (i = 0; i < n; ++i) { 
  t[i] = sqrt(a[i + 1]); 
  a[i] = t[i] + 5; 
} 



Scalar Expansion 

•  Viewing this loop in the canal tab of Apprentice2, we 
see: 

      | for (i = 0; i < n; ++i) { 
5 P:e |   t = sqrt(a[i + 1]); 
++ function sqrt inlined 
5 P   |   a[i] = t + 5; 
      | } 

Performed scalar 
expansion 



Reductions 

•  The compiler attempts to recognize loops that calculate 
sums, products, minimums, and maximums over an 
array.  For example: 

 
 
 
 
 
•  The compiler converts these to reductions 

–  Each thread computes the min/max/sum/product over a  
subsection of the array. 

–  Threads then combine results to determine the final value. 

int min = MAX_VAL; 
for (i = 0; i < n; i++) { 
  if (x[i] < min) 
    min = x[i]; 
} 



Reductions 

•  Viewing this in the canal tab of Apprentice2, we see: 

      | for (i = 0; i < n; i++) { 
3 P:$ |   if (x[i] < min) 
** reduction moved out of 1 loop 
      |     min = x[i]; 
      | } 
 

Converted to reduction 



65 

Recurrences 

Some loops use values computed by early iterations in later 
iterations.  These recurrences usually prevent parallelization. 

The compiler recognizes first-order linear recurrences and 
rewrites them so they can be solved in parallel.  For example: 
    for( i = 2; i < n; i++ ) 
        X(i) = X(i - 1) + Y(i) 
     

 

Generally, the compiler can handle recurrences of the form 

     X(i) = X(i - k)*F(i) + G(i) 

Where k is a small constant. 



Recurrences 

•  Viewing a parallelized recurrence in the canal tab of 
Apprentice2, we see: 

 
 
•  In the loop annotations below, we also see: 

2   | for (i = 5; i < n; i++) { 
3 L |   x[i] = x[i - 3]*f[i] + g[i]; 
    | } 

Loop   2 in main at line 6 in region 1 
       Stage 1 of recurrence 
       ... 
Loop   3 in main at line 7 in region 1 
       Stage 2 of recurrence 
       ... 

Computed as a linear 
recurrence 



Canal 

Canal generates analysis of the parallelization 
and optimizations made to the application by the 
compiler 
•  Can use a fat object (.o) file 
•  Can use a program library (.pl) file (compiled with a 

skinny .o) 

-pl pl_file 
Specify the program library file (program compilation in skinny 
mode) 

-o o_file Specify the object file (program compiled in fat mode)  

-P profile 
If the application was compiled with the profile option and a 
profile file was created, include it in the Canal report 

-e Executable, required if the -P option is included 

source_file The source file 



Additional Canal Options 

-a 
A s part of the optimization process, annotate generated loops. 
(Normally, Canal annotates only your source code.) 

-all_inlined Annotate inlined routines from the standard libraries. 

-f Ignore source file time-stamp. 

-nl Print line numbers with the source code. 

-pb Insert page breaks between source files. 

-s Print a description of Canal annotations. 

-help Print a usage message. 

-v Print the version number and exit. 



Compiler Annotations 

•  Optimizations performed by the compiler appear on the 
left side of the Canal output 

P The compiler parallelized the loop automatically 
p An assertion in the source code caused the loop to parallelize 
D An assertion caused the code to parallelize, but would not have 

without the assertion 
L A parallelized linear recurrence or reduction 
- The compile could not parallelize the loop 
S The marked statement prevented the loop from parallelizing 
s Did not parallelize because the loop was too small 
X Did not parallelized because the loop was not inductive 
U The compiler completely unrolled the loop 
e The compile expanded the scalar variable to a vector and 

distributed it to all the loops 
$ The statement is atomic (uses the full/empty bit) 



Canal 

Annotated source code listing 

%> canal -pl matreduce2.pl mat_reduce2.c 
 
… 
         |    for (i=0; i<MAXARRAY; i++) { 
         |       for (j=0; j<MAXARRAY; j++) { 
         | 
    4 PP |          x[i][j] = i+j+2; 
    4 PP |          y[i][j] = i+j+2; 
    4 PP |          dist[i][j] = 0; 
         | 
         |       } 
         |    } 

Loop number 

Source file 

Two nested loops, both parallelized 

Program library file 



Canal 

Annotated source code listing 

Loop   4 in report_example at line 4 in loop 3 

       Parallel section of loop from level 2 

       Loop summary: 1 memory operations, 0 floating point 
       operations 

  1 instructions, needs 50 streams for full utilization 
       pipelined 

 

Loop number 



User Runtime 

User runtime can be used to control how an 
application runs 
•  The runtime controls: 

–  Trap handling 
– Asynchronous operating system calls 
– Debugging support 
–  Event logging 
– Resource acquisition and management 
– Work scheduling and management 

•  The MTA_PARAMS environment variable can be used to 
control the user runtime 
– Many options are also controlled with the mtarun commend 
$ export  MTA_PARAMS=“param1 n param2 n” 



MTA_PARAMS 

num_procs n Sets the maximum number of processors to use 
stream_linit n Sets the maximum number of streams to use per 

processor 
num_readypools n Sets the maximum number of ready pools for the 

entire task 
max_readypool_retries n Sets the maximum number of retries that an idle 

thread can make to try to find new work 
ft_trapsoptions Enables various floating-point trap options 
no_preserve Prevents the runtime from reserving 3 streams 

for attaching the debugger 
pc_hash n, m, l Sets hash size, age threshold, or dump threshold 

for an event 
echo Prints a list of parameters to the screen 
debug_data_prot Waits for the debugger to attach instead of exiting 

when a data protection or poison error occurs 
do_backtrace Dumps the registers for all streams 



Compiler Directives and Assertions 

When the compiler cannot determine safe 
automatic parallelization options, you, as the 
human behind the code, can help 
•  By adding directives or assertions to the source code, 

you can help the compile parallelize your code 
–  For a complete list of compile directives and assertions see the 

“Compile Directives and Assertions” chapter in the Cray XMT 
Programming Environment Users Guide, S-2479 



Common Directives and Assertions 

A short list of common directives and assertions 
follows: 
•  These are typically written: 

#pragma mta assert parallel 

•  But can also be written: 
_Pragma (“mta assert parallel”) 



Parallelization Pragmas 

Help the compiler find parallelism 
• mta assert noalias *var1, *var2 
• mta assert no dependence *var1, *var2 (or 
nodep) 

• mta assert parallel (use as last resort) 
• mta assert par_newdelete 

Control parallelism and scheduling 
• mta parallel [on|off|default|singleprocessor 
|multiprocessor|future] 

• mta recurrence [on|off|default] 
• mta restructure [on|off|default] 
• mta [block|dynamic|interleave] schedule 
• mta use n streams 



The noalias Pragma 

 
 
 
 
 
•  Must appear within the scope and after the declarations 

of the listed variables 
•  Asserts that the listed variables are not used as aliases 

for any other variables 
•  Can also use restrict pointers to get the same affect 

– void foo(int * restrict x, int *y, int *z) { 
 

void foo(int *x, int*y, int*z) { 
  #pragma mta noalias *x, *y 
  for (int i = 0; i < N; i++) { 
    z[i] = x[i] + y[i]; 
  } 
} 



The no dependence Pragma 

 
 
 
 
 
•  Appears immediately before a loop 
•  Asserts that any memory location accessed in the loop 

through any variable on the no dependence list is 
accessed by exactly one iteration of the loop 

•  Variables on the list must be noalias or restrict 
pointers 

#pragma mta assert noalias *IA 
#pragma mta assert no dependence *IA 
for (int i = 0; i < N; i++) { 
  IA[i][1] = IA[i][INDEX[i]]; 
} 



The assert parallel Pragma 

 
 
 
 
•  Asserts that the iterations of the loop can be executed 

concurrently without any synchronization 
•  Does not force the compiler to parallelize the loop, but it 

is a very strong suggestion 
•  Should be used only when other techniques to 

parallelize your loop fail 
–  It limits the types of optimizations and transformations the 

compiler can perform on the loop 
–  You are asserting that the loop is parallel as written 

•  In the end, compiler semantics inhibit loop transformations 
that could produce invalid results 

#pragma mta assert parallel 
for (int i = 0; i < N; i++) { 
  printf(“May appear out of order %d\n”, i); 
} 



The par_newdelete pragma 

 
 
 
 
 
•  May appear before an array declaration, new, or delete 
•  Before an array declaration or new, indicates that the 

constructors for the array’s elements should be fired in 
parallel 

•  Before an array delete, indicates that the destructors for 
the array’s elements should be fired in parallel 

#pragma mta par_newdelete 
aclass an_array[1000]; 
#pragma mta par_newdelete 
aclass *another_array = new double[2000]; 
#pragma mta par_newdelete 
delete [] another_array; 



Parallelization and Restructuring pragmas 

#pragma mta parallel mode 

•  Allows you to change the parallelization mode within a 
source module 

•  Affects all routines that appear after the pragma 
•  mode can be on, off, default, single processor, 

multiprocessor, or future 
–  Ignored with -nopar 

#pragma mta recurrence [on|off|default] 

•  Enables or disables parallelization of reductions and 
recurrences 
–  Ignored with -nopar 

#pragma mta restructure [on|off|default] 

•  Enables or disables loop restructuring 
–  Ignored with -nopar 



Scheduling pragmas 

#pragma mta block schedule 

•  Iterations are broken into <number of threads> equal 
size chunks and each thread is assigned a chunk 
– Can allow reuse of register data because adjacent iterations are 

executed by the same stream 
– Best when each iteration does about the same amount of work; 

otherwise, may lead to load imbalances. 
#pragma mta dynamic schedule 

•  Threads are assigned one iteration at a time and receive 
a new iteration when they complete their current one 
– Avoids load balancing problems (threads that receive cheap 

iterations will do more iterations). 
– Adds overhead due to keeping track of which iterations have 

been assigned (a global, atomic counter). 



Scheduling pragmas 

#pragma mta block dynamic schedule 

•  A mixture of block and dynamic 
•  Each thread receives a block of iterations, then receives 

a new block after it completes the previous one 
– Better load balancing than block, but worse than dynamic 
–  Fewer updates of the global atomic counter, thus lower 

overhead than dynamic 
#pragma mta interleave schedule 
•  Each thread receives evenly spaced iterations 

–  For example, thread A receives 1,21,41,… while thread B 
receives 2,22,42,… 

– Works well for triangular loop nests 

for(i = 0; i < n; i++) 
  for(j = 0; j < i; j++) 
    a[i][j] = …; 



The use n streams pragma 

•  For each parallel region, the compiler attempts to 
determine the number of streams per processor, which 
are necessary to saturate the processors 

•  Occasionally, you may find that raising this number 
improves performance 

– Request at least n streams per processor 
– Request is passed to the runtime, which may or may not grant 

the requested number depending on available resources 
–  If multiple loops with “use n streams” pragmas are combined 

into a single parallel region, the compiler uses the largest 
requested number 

#pragma mta use n streams 
 



The for all streams Pragma 

 #pragma mta for all streams 
 { 

 …/* execute this set of statements 
once for every stream allocated to this 
parallel region. */ 
    …  
 } 
•  can be used in conjunction with other pragmas: 
#pragma mta use 100 streams //NOTE: no guarantee 
#pragma mta for all streams 
{ … } 
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The for all streams i of n Pragma 

int thrID, numThreads; 

… 

#pragma mta for all streams thrID of numThreads 

{ 

 …  

      int myQuota = arraySize / numThreads; 

 int myStart = myQuota*thrID; 

 for(int j = myStart; j < myStart + myQuota; j++) 

 { 

  array[j] = … 

 } 
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Other pragmas 
• mta inline 
• mta no inline 
• mta single round required 
• mta loop future (Covered later) 
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The future construct 

On the MTA, future has two meanings: 
•  as a type qualifier (a la sync) 

    future int x$; 
loads and stores wait for and leave x$ full 
 

•  as a statement 
    future x$(i) { 
      return printf(“i is %d\n”, i); 
    } 
–  the statement purges x$ (sets empty) 
–  arguments are passed by value 
–  enqueued and executed asynchronously in ~FIFO order 
–  the return value is stored to x$ 



Exercise 2 
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/mnt/lustre/Workshop/Exercise2 



End of Day 1 
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Shared Memory Programming 
Considerations 



Writing Programs Correctly 

•  Simple: Shared variables should be declared sync or 
future (or should be accessed only via the generics) or 
be protected by a lock 
– Data race-free 

•  Caveats 
– Deadlock/Livelock 
–  Performance bottlenecks 

•  Large critical sections 
• Hot spots 



Intentionally Race-y Code 

•  One way to improve efficiency of shared memory 
programs is to avoid synchronization if possible – or 
make sure it’s as fine-grain as possible 



Example: Initialize Graph Search 

… 

if (!n.initialized) { 

   n.initialized = true 

   n.id = _id 

   n.visited = false 

   … 

} 

… 

… 

if (!n.initialized) { 

   n.initialized = true 

   n.id = _id 

   n.visited = false 

   … 

} 

… 

Thread 1 Thread 2 

This race is benign: the order 
of operations does not affect 
the final result. 



… 

if (!n.visited) { 

   n.visited = true 

   if (n.id==target) { 

     total++ 

   } 

} 

… 

… 

if (!n.visited) { 

   n.visited = true 

   if (n.id==target) { 

     total++ 

   } 

} 

… 

Example: Graph Search 

Thread 1 Thread 2 

This race is real: the order of 
operations affects the final 
result. 



Example: Search with Critical Section 

readfe(&global_lock) 

if (!n.visited) { 

 

 

   n.visited = true 

   if (n.id == target) { 

      total++ 

   } 

 

} 

writeef(&global_lock) 

… 

Creating a critical section around 
node access eliminates the race, 
but creates a potential performance 
bottleneck by serializing access to 
the node. 

Hotspot potential 



Example: Search with a Shorter Critical Section 

… 

if (!n.visited) { 

   readfe(&n.lock) 

   if (!n.visited) { 

     n.visited = true 

     if (n.id == target) { 

        total++ 

     } 

   } 

   writeef(&n.lock) 

} 

… 

The critical section is “less critical” 
because only threads that arrive at 
approximately the same time will 
need to execute the critical section. 

Synchronized operations 
ensure that the compiler will 
not remove the second 
conditional. 



Example: Search Without Locks 

… 

if (int_fetch_add(&n.visited,1)
==0) { 

 

   // only first one gets here  

   if (n.id == target) { 

      total++ 

   } 

 

} 

… 



Debugging with MDB 



Debugging an Application: mdb 

• mdb is the XMT text-based debugger 
– Derived from gdb version 3.3.5 (very old) 

• No C++ conveniences 
• No thread support 

– On the Cray XMT support was added for: 
• MTA extensions to C/C++ 
•  Threads (info threads, thread, bt options, etc.) 
• Watchpoints and breakpoints in a multithreaded environment 

–  “Remote” debugging model 
• mdb runs on the service node and communicates with the 

application via IPC (sockets) 



Debugging: mdb 

Start programs with mdb 
• % mdb a.out 

Attach to already running programs 
• % mdb a.out 11111 
• OR  
• % mdb a.out 
  … 
 (mdb) attach 11111 

PID 



Debugging: mdb 

• info threads 
–  Print information about a running program’s threads 
– Qualifiers can specify other information 

• /a: include runtime threads (negative ids) 
• /n: total number only 
• /v: verbose mode 
• /b: at breakpoint 

• info pc 
–  Print possible source lines from which the PC is derived 



Debugging: mdb 

• info registers 
–  Print out integer registers and their contents 

• info opa 
–  Print out instructions that may have been responsible for data 

traps 



Debugging Without Core Files 

MTA_PARAMS: do_backtrace 
– Dump registers of the stream that hit the fatal error 
–  If the runtime is corrupted, sometimes the register dump fails 

MTA_PARAMS: debug_data_prot 
– Rather than die on data prot (SEGV), wait for the debugger to 

attach 
–  It is unwise to have it on all the time because the program will 

wait, consuming resources, until the debugger attaches 



Debugging without core files 

SIGQUIT 
–  If a program appears to be stuck, you can send it the SIGQUIT 

signal (mtarun kill -QUIT pid) which will print the register 
state of all threads in the program (does not terminate the 
program) 

– Can result in a really large and unmanageable amount of 
information 



Debugging: Attaching to a “Bad” Program 

Attach to a program that has data prot or is 
ignoring domain signal: 
% mdb –rm –socket 172.30.79.242:1234 a.out 
  … 
 (mdb) run 
•  Hit Ctrl-C to stop the program 
•  Look for threads in the ‘bad’ state or threads that are 

running in the __data_prot_handler 
 



Common User Problems 

•  Users write buggy software. The following problems 
require close examination: 
– Deadlock/Livelock: no threads making progress 
–  Improper synchronization 

•  Incorrect initialization (e.g., purge() or writexf() of sync/
future variable) 

• Off-by-one errors surrounding synchronization 
– Application appears to be making progress, but very slowly 

• Appears mostly on large systems 
• Other symptoms include mtatop exiting and “processor not 

checking in” message on console 
– Hot spotting  

• Use performance tools to isolate. 



Less Common User Problems 

•  User programs may accidentally modify runtime data 
structures 
–  This is a bug in the user program, but manifests itself as a 

runtime problem 
–  These problems are notoriously difficult to find 



Less Common User Problems 

•  Data prot due to forwarding to a bad location 
– Address format is typically 0xbad)  

• Use mdb info opa  
– Check for invalid pointer values 

• Use before initializing 
•  Incorrect pointer arithmetic 
• Bad type casting 

– Assertions by the runtime 
• Check for similar 



Software 

•  Compiler performs all the standard scalar optimizations 
(copy propagation, common sub-expression 
elimination, loop-invariant code motion, etc.) 

•  When debugging an application 
–  For –g1, stores are not moved beyond sequence points 
–  For –g2, loads and stores are not moved beyond sequence 

points 



Compiler Flags for Debugging 

• -g: Can view variable values inside mdb 
–  Internally: compiler won’t move stores 

 

• -g2: Can view and set variables in mdb 
–  Internally: won’t move loads or stores 

y = 0; 
.... 

x = 4; 
y = 5; 
.... 

z = 6; 

In mdb, should see y = 0 

In mdb, should see y = 5 

a = 1;  
.... 

x = y; 
.... 

b = 1; 

If we set y here in mdb, x  
should see new y. 
If we set y here in mdb, x  
should see old y. 



Software 

•  By definition, variables that are declared volatile are not 
considered for any optimization 

•  No reordering (memory fence) around loads/stores of 
sync and future variables 

•  No reordering around the following MTA generics: 
– readfe/writeef (sync load/store) 
– readff/writeff (future load/store) 
– touch 
– int_fetch_add of sync/future 

 



Software 

•  Reordering of generics that are indifferent to full/empty 
state is allowed: 
– readxx/writexf (normal load/store) 
– purge 
– int_fetch_add of a normal variable 

•  Reordering can be enabled via a compiler directive 
#pragma mta may reorder 

 



Example: Enabling Reordering 

 sync int A$[10000]; 

 … 

 

 for (i=0; i<10000; i++) { 

   A$[i] = i; 

 } 

 
Loop is not parallelized 
because accesses to A
$  may not be reordered 

#pragma mta may reorder A 

Tells compiler that 
accesses to A$ may be 
reordered, enabling 
parallelization 


