
Programming the Cray XMT

Schedule – Day 1

Starting time Topic

9:00 Introductions and Outline

9:15 Overview of the XMT architecture and history

10:00 XMT Applications

10:30 Programming Environment Basics

11:00 Exercise 1

12:00 Lunch

1:15 Programming for Performance 1

2:30 Exercise 2

5:00 End of Day 1

2

Schedule – Day 2

3

Starting time Topic

9:00 Shared Memory Considerations

10:00 Debugging with MDB

10:30 Programming for Performance 2

11:30 Exercise 3

12:00 Lunch

1:00 Using Canal, Traceview and Bprof in Apprentice 2

2:00 Betweenness Centrality – Multi-level Parallelism

2:30 Graph Generation and Snapshot-Restore I/O

3:15 Break

3:30 Exercise 4

4:30 Class Feedback; Final Comments

5:00 End of Day 2

XMT Architecture Overview

4

Slide 5

Multithreading
Multithreaded processors are to conventional

processors as Gatling guns are to

conventional machine guns.

Many threads per processor core; small

thread state

Thread-level context switch at every

instruction cycle

registers

program
counter

ALU

Commodity
processor

Multithreaded

“stream”

Relative latency to memory continues to increase
•  Vector processors amortize memory latency
•  Cache-based microprocessors reduce memory latency
•  Multithreaded processors tolerate memory latency

Multithreading is most effective when:
•  Parallelism is abundant
•  Data locality is scarce

Large graph problems perform well on the Cray
XMT
•  Semantic databases
•  Big data

Why Multithreading?

5/23/2011
CUG 2011 Golden

Nuggets of Discovery 6

Hiding Memory Latencies
Caches
•  Reduce latency by storing some data in fast,

nearby memory
Vectors
•  Amortize latency by fetching N words at a time

Parallelism
•  Hide latency by switching tasks
•  Multithreading tries to balance “Little’s Law:”
 concurrency = bandwidth * latency

latency

ba
nd

w
id

th

7

Keeping the Bottlenecks Saturated

Conventional processor Multithreaded processor

Slide 8

When one or a few
threads stall, memory/

network bandwidth
become idle

Although some threads
stall, others keep issuing

local/remote memory
requests, keeping most
precious resources busy

network

memory memory

network

XMT’s “Threadstorm” CPU Architecture

9

Threads and Streams

5/23/2011 CUG 2011 Golden
Nuggets of Discovery 10

A thread is a software object

•  A program counter and a set of registers

•  Very lightweight
–  Not pthreads

–  No OS state

A stream is a hardware object

•  Stores and manipulates a thread’s state

•  Very lightweight stream creation
–  A single instruction executed from user space

More threads than streams

Threads multiplexed onto the processor’s streams

To the programmer, a multiple processor XMT
looks like a single processor, except that the
number of threads is increased.

XMT Programming Model

11

Bokhari/Sauer 2003

Memory

When the system is booted, the memory of each
compute node is divided into:
•  Local memory

–  Local or “nearby” memory for the user application
– Used for runtime data structures and I/O

•  Global memory
–  The MTK RAMFS is loaded here
–  Shared memory for the user application
– Addresses for global memory are hashed to distribute

addresses throughout the global memory
• Addresses ranges are not blocked to a node
•  This is done to reduce memory and network contention

Memory word

The XMT memory word has 66 bits
•  64 bits of data, byte addressable

– Data is stored big-endian
•  2 tag bits

–  The full/empty bit
• Used for synchronization

–  The extended bit
• Set by the hardware, for example when there is a trap

Extended bit
Full/empty bit

64 data bits

XMT System Architecture

•  Compute nodes are based on
Cray Threadstorm processor
–  Executes MTA instruction

set; compatible with
previous MTA systems

•  Service nodes are based on
AMD Opteron processor
– Run a full version of SUSE

Linux with additional Cray
and third-party software

–  I/O uses PCI-X/PCIe
interfaces associated with
service nodes
•  Fibre Channel HBAs to

RAIDs
•  1- and 10-Gb Ethernet

cards for network
connections

SS SS SS SS

TS TS TS TS

M M M M

L0

SMW SS SS SS SS

M

L0

L0 L0 L1

H
ig

h
sp

ee
d

ne
tw

or
k

(H
S

N
)

O P
C
I

P
C
I

O

M

P
C
I

P
C
I

RAID and
networks devices

CRMS
(or HSS)
network

Cray XMT System Connections

GigE

10 GigE

GigE

RAID
Subsystem

Fibre
Channels

SMW

Compute node

Login node

Network node

Boot /Syslog/Database nodes

I/O and Metadata nodes

X

Y
Z

Cray XMT Compute Blade

L0 controller

Threadstorm processor

Processor VRM

Memory

Memory VRM

48 – 12Vdc VRMs

SeaStar

Node 0

Node 1

Node 3

Node 2

0
1

2
3

Cray XMT (XT) Service Blade

Node 0

Node 3

0
1

2
3

PCI riser
(PCI-X or PCIe)

PCI card

Opteron processor

Speeds and Feeds

CPU ASIC

127M memory ops

500M memory ops

500 MHz x three pipes

500M memory ops

66M memory ops (loads)

33M memory ops (stores)

Not bidirectional

114M memory ops up to 256 processors

76M memory ops per processor for 512 processors

8 GB DDR DRAM

Sustained memory rates are for
random single word accesses over

entire address space.

18

Potential Architectural Bottlenecks

•  Processor throughput? Never observed to be the
bottleneck.
–  Typical processor utilization ~ 30%

•  Network bandwidth
–  Especially at larger scale

•  Tunable HW settings in the network, based on the amount of
concurrency needed to saturate the bisection BW, in place to
avoid over-saturation of the network

•  128P sized systems and smaller limited to 180 outstanding
memory operations per processor

•  For 512P system, this drops to 144 outstanding operations

•  Memory bandwidth
– Minimizing trips to memory is important

19

Additional Performance Considerations

•  Sequential code murders performance.
–  21 cycles per instruction issue

•  XMT memory references are hashed
– Granularity of 8-word cache lines

•  All jobs use all memories in the system
–  Example: “betweenness centrality” graph computation on 16

processors of a 128-processor system: 25% faster than on 16
processors of a 16-processor system

•  Exclusive protection domains, but no exclusive
ownership of physical hardware resources

20

Cray XMT Architecture – Summary

•  Heavily multi-threaded processor: 128 hardware threads
multiplexed between OS and all applications
–  16 protection domains (address maps) per processor
– Multi-threaded architecture tolerates memory latency
– Data locality not critical for performance

•  Scrambled and distributed shared memory to avoid
contention

•  Lightweight synchronization using full/empty bits on all
memory

•  Interconnect bisection bandwidth scales with the
number of processors

•  No hardware interrupts
– Hardware threads allocated by user via instruction, not OS

•  Exceptions and traps do not cause a privilege change
–  They are handled at the privilege level in which they occur

History of the XMT Architecture
" MTA-1 (Multi Threaded Architecture) launched in 1998

" 18 GaAs chips per processor blade, with custom memory

" Cray MTA-2 launched in 2002
" 5 CMOS chips per processor on 1 large PC board with custom DIMMS

" Cray XMT launched 2008
" Processor reduced to single CMOS chip in Opteron socket
" 4 processors per PC board, standard DIMMS
" Cray XT network, packaging, cooling and RAS features

" First Next Generation XMT delivered to CSCS in 2011

Slide 22

" Next Generation builds on successful Cray XMT

" Memory system improved significantly
" Large improvement in bandwidth
" Very large improvement in capacity

" Hot Spot Avoidance
" Productivity—simple implementation performs best
" Reliability—difficult programs cannot interrupt system services
" Performance—use network more efficiently

Next Generation Cray XMT

5/23/2011

CUG 2011 Golden Nuggets
of Discovery

23

XMT Applications

24

Slide 25

" Any application that involves ...
" Random or indirect memory accesses
" Dynamic or unbalanced subcomputations
" Unstructured, dynamic, and/or sparse data structures
" Linked data structures (lists, graphs, trees)
" Sorting or searching
" … on HUGE data sets

" Applications that need to access large
amounts of memory (terabytes) and in an
unpredictable manner.
" Graph Analysis (intelligence, protein folding,

bioinformatics)
" Data mining
" “Graph mining”
" Business intelligence
" Pattern matching
" Power grid analysis

Cray XMT’s Application Sweet Spot

Cray XMT-Based Applications & Solutions
•  Cyber Security

•  Dynamic Network Analysis for Network Intrusion
•  Anomaly Detection – PDTree
•  String Matching

•  Informatics
•  Semantic Database
•  Interactive Analytics
•  Visualization for Large-scale Graphs

•  Bioinformatics
•  Large-scale Sequence Alignment
•  Histopathological Images Analysis
•  Epidemiology: simulating individual-based models of epidemics in networks
•  Dynamic Biological Network Analysis

•  Video Analytics
•  Unstructured Data Analysis using Sparse Graph Network-of-Networks Algorithms

•  Agent-Based Parallel Discrete Event Simulation
•  Organizational Business Process Simulation

•  Electric Grid
•  Contingency Analysis
•  Smart Grid

Active (funded)
Research Areas

�  RDF	
 triples	
 databases	
 are	
 inherently	
 graphical	

(
 subject	
 predicate	
 object	
)	
 =	
 	

�  Some	
 researchers	
 call	
 seman<c	
 databases	
 “seman<c	
 graph	
 databases”	

subject object
predicate

Edmonton

Canada

North
America

country

object

730,000

Vancouver in-country
is-type

Comparing Relational Databases to Semantic Network Databases

Slide 28

Smith

Jones

Johnson

Wilson

Peterson

Ordonez

Quigley

Roberts

27

36

29

51

48

34

61

53

This type of query is
easy for either:

“Show all company employees
who are age 45 or older”

This type of query is very hard and slow for
relational, fast for semantic network database:

“Show all people who have met with Al-Zawahiri or
have met with someone who met with Al-Zawahiri”

Semantic networks also support reasoning:
 X attended meeting M &
 Y attended meeting M → X met with Y

A-Z

Jena
 open source

SPARQL engine

SELECT ?p ?x
WHERE {
 (?x type person)
 (?p sells “DVD”)
 (?x shops-at ?p)
}

UNION
OPTIONAL
FILTER

generate low-level query

Service nodes XMT compute nodes

API

Send
query

Receive
results

Parse,
interpret
query

Set up
query
engine

Translate,
send
results

SCAN

JOIN

MERGE

UNION

OPTIONAL

FILTER

database

x
x
x

SNORQL	

SPARQL	
 Explorer	

Fuseki
HTTP Interface

Programming Environment Basics

30

Topics

•  Accessing a Cray XMT System
•  Cray XMT Programming Environment
•  Interactive Program Launch
•  Monitoring
•  Batch Program Launch

Accessing a Cray XT System

• ssh is normally used to connect to the system
– User account information is maintained through an LDAP or

Kerberos server
–  Passwordless ssh can be set up to access a system

• Set up a pass phrase for a more secure session

Application

Compute nodes

Multithreaded Kernel (MTK)

Customer network

Login node Login node Login node

High speed network (HSN)

Also referred to as the
front-end processors

Also referred to as the
back-end processors

Cray XT Programming Environment

•  A cross-compiler environment
– Compiler runs on Linux login node
–  The executable runs on the compute nodes
–  Provides automatic parallelism if proper options are included
– Recognizes C and C++ directives and language constructs

•  Modules utility
– Consists of the module command and module files
–  Initializes the environment for a specific compiler
– Allows easy swapping of compilers and compiler versions

•  Cray written compiler driver scripts for C (cc) and C++
(CC)
– MTA compiler options, system libraries, and header files
– Compiler specific programming environment libraries
– Compilers support shared libraries (non-static linking)

• No dynamic libraries

PE Summary

Compilers C and C++

Compiler tools Canal

Libraries libc++.a, libm.a, libprand.a, libluc.a, libsnapshot.a

Runtime libraries librt.a, libc.a, libs.a

Debuggers mdb

Performance tools Tview, Bprof, and Apprentice2

Module Commands

Cray uses modules to control the user
environment, use the commands:

module

list to list the modules in your environment

avail to list available modules

load to load a module

show to see what a module loads

swap
to swap two modules
For example: to swap mta-pe version 6.0.0 with 6.2.1
% module swap mta-pe/6.0.0 mta-pe/6.2.0

Standard Modules

%> module list

Currently Loaded Modulefiles:

 1) modules/3.1.6 3) mta-man/6.5.0

 2) xmt-tools/3.7.2 4) mta-pe/6.5.0

%>

• mta-pe module includes
–  cc, c++, mdb, nm, dis, etc..

• xmt-tools module includes
– mtarun and mtatop

• mta-man module includes the man pages

Compiling an Application

Two modes for compiling: skinny and fat
•  skinny or whole-program mode

–  The preferred mode on the XMT
–  Information about the entire program (every file) is stored in a

single program library file (.pl suffix)
– A knowledge of the entire program enables the compiler to

perform optimizations
– .o files are still produced, but they are merely timestamps

•  fat or separate module mode
–  Like traditional gcc
–  Information for each module is stored in a separate .o file
– Useful for porting code and reusing Makefiles

Compiling Skinny

To compile skinny, either compile and link
everything as one event or specify a program
library file using -pl.
•  Skinny compilation as one event:

•  Skinny compilation with -pl:

–  Each successive compilation inserts more information into the

original program library

cc -o myapp foo.c bar.c

cc -pl myapp.pl -c foo.c
cc -pl myapp.pl -c bar.c
cc -pl myapp.pl -o myapp foo.o bar.o

Compiling Fat

If you compile and link separately and do not
specify a .pl file (the -pl option), the compiler
defaults to fat mode

•  Use this mode only if you must; for example, porting

code with a complicated build system.

cc -c foo.c
cc -c bar.c
cc -o myapp foo.o bar.o

Compiler Flags

•  Without any options, the compiler disables implicit
parallelism and loop restructuring and observes
(enables) parallelization directives
– Available flags are listed below; if multiple flags are provided,

the order of precedence is highest to lowest

-nopar Do not parallelize; ignore everything

-serial Enable automatic loop restructuring and obey
parallelization directives

-par1 Enable automatic parallelization, but limit
execution to a single processor

-parfuture Future-based parallelization (very dynamic
scheduling)

-par Normal parallelization (default)

Compilation Failures

•  Error in user code
– May also appear as “warning” or “remark”
– Does not halt compilation; is only a notification

•  Syntax or other error in user’s code:

•  Link error – user’s reference is undefined; may need to

link a library -w or –l:

"test.cc", line 4: error: expected a ")"
 int x = strtol("6", 0, 0;
 ^

resolve: undefined symbol foo(int).data
from a.out.pl(test.cc)
resolve: undefined function foo(int)
from a.out.pl(test.cc)

Compiler version mismatch

An attempt to mix compiler versions will cause a
mismatch error
•  For example, compile foo.c and bar.c with 6.0.2 and

link with 6.0.3

Error: Compiler version mismatch on
file: a.out.pl
 Expected: 6.0.3, Actual: 6.0.2

Libraries

•  The runtime library (librt) supports:
–  Future variables
–  Synchronization
–  Scheduling
–  Event logging
– Compiler generated parallelism
– Debugging

•  Lightweight user communication (LUC) interface
– Use LUC to build a client/server interface between the front-end

and back-end
• Back-end processors do not have direct access to the Lustre

file system; service processors do not have direct access to
compute processor memory

•  LUC is a C++ interface
• Symmetric; RPC-style interface in either direction

Vocabulary Review

•  Task: The complete program
•  Team: Resources and data structures that are

 associated with a single processor
•  Stream: A set of hardware registers that are used for

 instruction issue
•  Thread: A register state; threads (software) run on

 streams

Launching a Compute Node Program

Use the mtarun command
•  During execution, the mtarun command connects to the
mtarund daemon on the back-end
– mtarun sends the path to the binary, the users environment,

and the command line arguments to the back-end
–  Performs simple permissions checks and setup, then forks and
execs the application

–  Path to user binary must exist on the back-end
• User home directories are typically available over NFS

–  The PID on the front-end should be same as on the back-end
• Signals to front-end mtarun process are propagated to the

back-end process (through mtarund)
– Signal names and numbers are slightly different for MTK

mtarun Control

•  Two mtarun options control job execution:
–  The -t num_procs option specifies the number of teams that

are initially assigned to the application
• A team is a protection domain. Normally, an application is

allowed only one protection domain for each Threadstorm
processor .

–  The -m max_procs option limits the number of processors
(teams) that the application is permitted to use

•  The user runtime program reads the MTA_PARAMS
environment variable. Some useful options are:
– echo: prints the parameters (toggled on/off)
– stream_limit n: specifies the max number of streams per

processor
– num_procs n: specifies the maximum number of processors

that the application can use
– no_prereserve: prevents the reservation of 3 streams for the

debugger (for “benchmarking” runs)

Monitoring and Control

mtatop
Similar to the top command, but connects to a daemon
(dashd) that runs on the back-end. Provides additional
information such as the number of processors and streams.

dash The Cray XMT performance monitoring GUI
(The window displays the GUI name as Dashboard2.)

mtatop

XMT: nid00033 UP: 4d+21:44:59
[09:50:54]
Total: 128 cpus @500.00Mhz Mem: 1024.0G 128*128 max streams
AVG Util: 1.5% Traps: 0.1 Strms: 17.3
Free Mem: 832.3G MemR/s: 474.7M Flop/s: 1.8M Strms [res: 2,061, act: 523]

 PID USER S PRI NICE P SIZE TIME UTIL SysUTL TASK
 0 root Ru 0 0 128 16.9G 5d+17:49 0.9% 0.9% mtk
 32798 root Ru 100 0 128 6.0G 2d+17:32 0.5% 0.5% clockd.v1
 32855 root Ru 100 0 1 146.8M 01:37:57 1.6% 0.0% dashd
 32839 root Ru 100 0 1 148.6M 31:25 0.5% 0.0% mtarund
 32824 root Ru 100 0 1 146.7M 27:38 0.5% 0.0% syslogd
 1 root Sl 100 0 1 272.1M 00:00 0.0% 0.0% init
 32789 root Sl 100 0 1 147.6M 00:00 0.0% 0.0% bash
 32790 root Sl 100 0 1 147.6M 00:00 0.0% 0.0% bash
 32795 root Sl 100 0 1 146.2M 00:05 0.0% 0.0% rememd
 32827 root Sl 100 0 1 146.7M 04:03 0.0% 0.0% prngd
 32828 root Sl 100 0 1 148.1M 00:00 0.0% 0.0% bash
 32829 root Sl 100 0 1 148.1M 00:00 0.0% 0.0% bash
 32842 root Sl 100 0 1 146.6M 00:00 0.0% 0.0% portmap

Cursor is here, see next slide for options

Threadstorm processors
Total memory for Threadstorm processors

128 * 128 max streams
is 128 streams on each of 128 processors

mtatop Command Options

•  While mtatop is running “interactively,” some useful
commands are:
– c: displays CPU usage
– p: enables you to view process specific info (see the next slide)
– u: enables you to filter by user name
– t: returns you to the default display

•  Batch (mtatop is not interactive) options that you can
add to the mtatop command:
– -b: a batch mode snapshot of the system; provides the

 typical mtatop output and CPU usage
• Appending -pid process_ID to the -b option provides

additional information about the process

mtatop - Process Information
XMT: nid00033 UP: 4d+22:37:47 [10:43:41]
Total: 128 cpus @500.00Mhz Mem: 1024.0G 128*128 max streams
AVG Util: 19.3% Traps: 0.5 Strms: 57.8
Free Mem: 583.8G MemR/s: 8.1G Flop/s: 1.4M Strms [res: 7,570, act: 6,029]

Util: 21.1% Traps: 195.6 Strms: 60.5
MemR/s: 67.6M Flop/s: 1.0K Strms [res: 12997 act 12994]

Process Name: futurestress
Process ID: 25544
User Name: someuser
Parent Process ID: 32839
Process Group ID: 25544
UID: 95762
Cpu: 11.3%
Processors: 128
User Time: 4min 22sec
State: Running
Nice value: 0
Priority: 100
Resident Size: 266,708,443,136
Program Text Size: 2,588,672
Program Data Size: 266,707,910,656
Shared Size: 532,480
System Calls: 1
Blocked System Calls: 0
FS Bytes: 14,272
Networking Bytes: 3,748

At the cursor, type p
You are then prompted
for the process ID

Exercise 1

Assignment:
Write a loop that initializes each element of an
integer array to its index value squared, followed
by a loop that sums the elements of the array.
#define M 1000000
int array[M];
int i;
for(i = 0; i<M; i++)
//???
int sum=0;
for(i=0; i<M; i++)
//???
printf(“%d\n”, sum);

51

Lunch

52

Programming for
Performance – Part 1

54

Loops

The compiler can automatically parallelize 3 kinds of loops:

•  Loops without loop-carried dependences,

•  First-order linear recurrences, and

•  Reductions.

This is our basic palette and we strive to express all our programs in these forms.

55

Inductive Loops

Before the compiler will consider parallelizing a loop, the loop must be
inductive.

•  Single entrance and single exit,

•  Controlled by a linear induction variable (incremented by an
invariant amount each iteration), and

•  Exit is controlled by comparing the induction variable against an
invariant.

The key here is that the compiled code must be able to determine, a
priori, how many iterations will be executed.

Example of Parallelizing Your Code

This loop parallelizes:

void foo() {
 int i;
 int my_array[10000];
 for (i = 0; i < 10000; i++) {
 my_array[i] = i;
 }
 return;

}

Example 2 of Parallelizing Your Code

This loop does not parallelize:

•  a and b may point to overlapping memory

void foo(int *a, int *b) {
 int i;
 for (i = 0; i < 10000; i++) {
 a[i] = b[i];
 }

}

foo(x+5000, x);

Example 3 of Parallelizing Your Code

If you know that a and b will not point to the same
memory, you can use a pragma to instruct the
compiler it is safe
•  This code will now parallelize

void foo(int *a, int *b) {
 int i;

 #pragma mta noalias *a
 for (i = 0; i < 10000; i++) {
 a[i] = b[i];
 }

}

Compiler Transformations for Parallelism

The compiler attempts to restructure code to find
or enhance parallelism:
•  Scalar expansion
•  Making associative operations atomic
•  Reductions
•  Recurrences

You can view the ways the compiler restructured
your code in Canal (text-based) or in the canal tab
of Apprentice2 (GUI-based).

Scalar Expansion

This loop cannot be parallelized because of the
interaction of the reads from t and the writes to t
in subsequent iterations (an anti-dependence):

for (i = 0; i < n; ++i) {
 t = sqrt(a[i + 1]);
 a[i] = t + 5;
}

Scalar Expansion

•  The compiler resolves this conflict by converting the
scalar integer t into an array of integers

•  The compiler then splits the original single loop into
two loops to preclude the conflict between reading a[i
+1] and writing a[i] on the next iteration.

for (i = 0; i < n; ++i) {
 t[i] = sqrt(a[i + 1]);
 a[i] = t[i] + 5;
}

Scalar Expansion

•  Viewing this loop in the canal tab of Apprentice2, we
see:

 | for (i = 0; i < n; ++i) {
5 P:e | t = sqrt(a[i + 1]);
++ function sqrt inlined
5 P | a[i] = t + 5;
 | }

Performed scalar
expansion

Reductions

•  The compiler attempts to recognize loops that calculate
sums, products, minimums, and maximums over an
array. For example:

•  The compiler converts these to reductions

–  Each thread computes the min/max/sum/product over a
subsection of the array.

–  Threads then combine results to determine the final value.

int min = MAX_VAL;
for (i = 0; i < n; i++) {
 if (x[i] < min)
 min = x[i];
}

Reductions

•  Viewing this in the canal tab of Apprentice2, we see:

 | for (i = 0; i < n; i++) {
3 P:$ | if (x[i] < min)
** reduction moved out of 1 loop
 | min = x[i];
 | }

Converted to reduction

65

Recurrences

Some loops use values computed by early iterations in later
iterations. These recurrences usually prevent parallelization.

The compiler recognizes first-order linear recurrences and
rewrites them so they can be solved in parallel. For example:
 for(i = 2; i < n; i++)
 X(i) = X(i - 1) + Y(i)

Generally, the compiler can handle recurrences of the form

 X(i) = X(i - k)*F(i) + G(i)

Where k is a small constant.

Recurrences

•  Viewing a parallelized recurrence in the canal tab of
Apprentice2, we see:

•  In the loop annotations below, we also see:

2 | for (i = 5; i < n; i++) {
3 L | x[i] = x[i - 3]*f[i] + g[i];
 | }

Loop 2 in main at line 6 in region 1
 Stage 1 of recurrence
 ...
Loop 3 in main at line 7 in region 1
 Stage 2 of recurrence
 ...

Computed as a linear
recurrence

Canal

Canal generates analysis of the parallelization
and optimizations made to the application by the
compiler
•  Can use a fat object (.o) file
•  Can use a program library (.pl) file (compiled with a

skinny .o)

-pl pl_file
Specify the program library file (program compilation in skinny
mode)

-o o_file Specify the object file (program compiled in fat mode)

-P profile
If the application was compiled with the profile option and a
profile file was created, include it in the Canal report

-e Executable, required if the -P option is included

source_file The source file

Additional Canal Options

-a
A s part of the optimization process, annotate generated loops.
(Normally, Canal annotates only your source code.)

-all_inlined Annotate inlined routines from the standard libraries.

-f Ignore source file time-stamp.

-nl Print line numbers with the source code.

-pb Insert page breaks between source files.

-s Print a description of Canal annotations.

-help Print a usage message.

-v Print the version number and exit.

Compiler Annotations

•  Optimizations performed by the compiler appear on the
left side of the Canal output

P The compiler parallelized the loop automatically
p An assertion in the source code caused the loop to parallelize
D An assertion caused the code to parallelize, but would not have

without the assertion
L A parallelized linear recurrence or reduction
- The compile could not parallelize the loop
S The marked statement prevented the loop from parallelizing
s Did not parallelize because the loop was too small
X Did not parallelized because the loop was not inductive
U The compiler completely unrolled the loop
e The compile expanded the scalar variable to a vector and

distributed it to all the loops
$ The statement is atomic (uses the full/empty bit)

Canal

Annotated source code listing

%> canal -pl matreduce2.pl mat_reduce2.c

…
 | for (i=0; i<MAXARRAY; i++) {
 | for (j=0; j<MAXARRAY; j++) {
 |
 4 PP | x[i][j] = i+j+2;
 4 PP | y[i][j] = i+j+2;
 4 PP | dist[i][j] = 0;
 |
 | }
 | }

Loop number

Source file

Two nested loops, both parallelized

Program library file

Canal

Annotated source code listing

Loop 4 in report_example at line 4 in loop 3

 Parallel section of loop from level 2

 Loop summary: 1 memory operations, 0 floating point
 operations

 1 instructions, needs 50 streams for full utilization
 pipelined

Loop number

User Runtime

User runtime can be used to control how an
application runs
•  The runtime controls:

–  Trap handling
– Asynchronous operating system calls
– Debugging support
–  Event logging
– Resource acquisition and management
– Work scheduling and management

•  The MTA_PARAMS environment variable can be used to
control the user runtime
– Many options are also controlled with the mtarun commend
$ export MTA_PARAMS=“param1 n param2 n”

MTA_PARAMS

num_procs n Sets the maximum number of processors to use
stream_linit n Sets the maximum number of streams to use per

processor
num_readypools n Sets the maximum number of ready pools for the

entire task
max_readypool_retries n Sets the maximum number of retries that an idle

thread can make to try to find new work
ft_trapsoptions Enables various floating-point trap options
no_preserve Prevents the runtime from reserving 3 streams

for attaching the debugger
pc_hash n, m, l Sets hash size, age threshold, or dump threshold

for an event
echo Prints a list of parameters to the screen
debug_data_prot Waits for the debugger to attach instead of exiting

when a data protection or poison error occurs
do_backtrace Dumps the registers for all streams

Compiler Directives and Assertions

When the compiler cannot determine safe
automatic parallelization options, you, as the
human behind the code, can help
•  By adding directives or assertions to the source code,

you can help the compile parallelize your code
–  For a complete list of compile directives and assertions see the

“Compile Directives and Assertions” chapter in the Cray XMT
Programming Environment Users Guide, S-2479

Common Directives and Assertions

A short list of common directives and assertions
follows:
•  These are typically written:

#pragma mta assert parallel

•  But can also be written:
_Pragma (“mta assert parallel”)

Parallelization Pragmas

Help the compiler find parallelism
• mta assert noalias *var1, *var2
• mta assert no dependence *var1, *var2 (or
nodep)

• mta assert parallel (use as last resort)
• mta assert par_newdelete

Control parallelism and scheduling
• mta parallel [on|off|default|singleprocessor
|multiprocessor|future]

• mta recurrence [on|off|default]
• mta restructure [on|off|default]
• mta [block|dynamic|interleave] schedule
• mta use n streams

The noalias Pragma

•  Must appear within the scope and after the declarations

of the listed variables
•  Asserts that the listed variables are not used as aliases

for any other variables
•  Can also use restrict pointers to get the same affect

– void foo(int * restrict x, int *y, int *z) {

void foo(int *x, int*y, int*z) {
 #pragma mta noalias *x, *y
 for (int i = 0; i < N; i++) {
 z[i] = x[i] + y[i];
 }
}

The no dependence Pragma

•  Appears immediately before a loop
•  Asserts that any memory location accessed in the loop

through any variable on the no dependence list is
accessed by exactly one iteration of the loop

•  Variables on the list must be noalias or restrict
pointers

#pragma mta assert noalias *IA
#pragma mta assert no dependence *IA
for (int i = 0; i < N; i++) {
 IA[i][1] = IA[i][INDEX[i]];
}

The assert parallel Pragma

•  Asserts that the iterations of the loop can be executed

concurrently without any synchronization
•  Does not force the compiler to parallelize the loop, but it

is a very strong suggestion
•  Should be used only when other techniques to

parallelize your loop fail
–  It limits the types of optimizations and transformations the

compiler can perform on the loop
–  You are asserting that the loop is parallel as written

•  In the end, compiler semantics inhibit loop transformations
that could produce invalid results

#pragma mta assert parallel
for (int i = 0; i < N; i++) {
 printf(“May appear out of order %d\n”, i);
}

The par_newdelete pragma

•  May appear before an array declaration, new, or delete
•  Before an array declaration or new, indicates that the

constructors for the array’s elements should be fired in
parallel

•  Before an array delete, indicates that the destructors for
the array’s elements should be fired in parallel

#pragma mta par_newdelete
aclass an_array[1000];
#pragma mta par_newdelete
aclass *another_array = new double[2000];
#pragma mta par_newdelete
delete [] another_array;

Parallelization and Restructuring pragmas

#pragma mta parallel mode

•  Allows you to change the parallelization mode within a
source module

•  Affects all routines that appear after the pragma
•  mode can be on, off, default, single processor,

multiprocessor, or future
–  Ignored with -nopar

#pragma mta recurrence [on|off|default]

•  Enables or disables parallelization of reductions and
recurrences
–  Ignored with -nopar

#pragma mta restructure [on|off|default]

•  Enables or disables loop restructuring
–  Ignored with -nopar

Scheduling pragmas

#pragma mta block schedule

•  Iterations are broken into <number of threads> equal
size chunks and each thread is assigned a chunk
– Can allow reuse of register data because adjacent iterations are

executed by the same stream
– Best when each iteration does about the same amount of work;

otherwise, may lead to load imbalances.
#pragma mta dynamic schedule

•  Threads are assigned one iteration at a time and receive
a new iteration when they complete their current one
– Avoids load balancing problems (threads that receive cheap

iterations will do more iterations).
– Adds overhead due to keeping track of which iterations have

been assigned (a global, atomic counter).

Scheduling pragmas

#pragma mta block dynamic schedule

•  A mixture of block and dynamic
•  Each thread receives a block of iterations, then receives

a new block after it completes the previous one
– Better load balancing than block, but worse than dynamic
–  Fewer updates of the global atomic counter, thus lower

overhead than dynamic
#pragma mta interleave schedule
•  Each thread receives evenly spaced iterations

–  For example, thread A receives 1,21,41,… while thread B
receives 2,22,42,…

– Works well for triangular loop nests

for(i = 0; i < n; i++)
 for(j = 0; j < i; j++)
 a[i][j] = …;

The use n streams pragma

•  For each parallel region, the compiler attempts to
determine the number of streams per processor, which
are necessary to saturate the processors

•  Occasionally, you may find that raising this number
improves performance

– Request at least n streams per processor
– Request is passed to the runtime, which may or may not grant

the requested number depending on available resources
–  If multiple loops with “use n streams” pragmas are combined

into a single parallel region, the compiler uses the largest
requested number

#pragma mta use n streams

The for all streams Pragma

 #pragma mta for all streams
 {

 …/* execute this set of statements
once for every stream allocated to this
parallel region. */
 …
 }
•  can be used in conjunction with other pragmas:
#pragma mta use 100 streams //NOTE: no guarantee
#pragma mta for all streams
{ … }
 85

The for all streams i of n Pragma

int thrID, numThreads;

…

#pragma mta for all streams thrID of numThreads

{

 …

 int myQuota = arraySize / numThreads;

 int myStart = myQuota*thrID;

 for(int j = myStart; j < myStart + myQuota; j++)

 {

 array[j] = …

 }
86

Other pragmas
• mta inline
• mta no inline
• mta single round required
• mta loop future (Covered later)

88

The future construct

On the MTA, future has two meanings:
•  as a type qualifier (a la sync)

 future int x$;
loads and stores wait for and leave x$ full

•  as a statement
 future x$(i) {
 return printf(“i is %d\n”, i);
 }
–  the statement purges x$ (sets empty)
–  arguments are passed by value
–  enqueued and executed asynchronously in ~FIFO order
–  the return value is stored to x$

Exercise 2

89

/mnt/lustre/Workshop/Exercise2

End of Day 1

90

Shared Memory Programming
Considerations

Writing Programs Correctly

•  Simple: Shared variables should be declared sync or
future (or should be accessed only via the generics) or
be protected by a lock
– Data race-free

•  Caveats
– Deadlock/Livelock
–  Performance bottlenecks

•  Large critical sections
• Hot spots

Intentionally Race-y Code

•  One way to improve efficiency of shared memory
programs is to avoid synchronization if possible – or
make sure it’s as fine-grain as possible

Example: Initialize Graph Search

…

if (!n.initialized) {

 n.initialized = true

 n.id = _id

 n.visited = false

 …

}

…

…

if (!n.initialized) {

 n.initialized = true

 n.id = _id

 n.visited = false

 …

}

…

Thread 1 Thread 2

This race is benign: the order
of operations does not affect
the final result.

…

if (!n.visited) {

 n.visited = true

 if (n.id==target) {

 total++

 }

}

…

…

if (!n.visited) {

 n.visited = true

 if (n.id==target) {

 total++

 }

}

…

Example: Graph Search

Thread 1 Thread 2

This race is real: the order of
operations affects the final
result.

Example: Search with Critical Section

readfe(&global_lock)

if (!n.visited) {

 n.visited = true

 if (n.id == target) {

 total++

 }

}

writeef(&global_lock)

…

Creating a critical section around
node access eliminates the race,
but creates a potential performance
bottleneck by serializing access to
the node.

Hotspot potential

Example: Search with a Shorter Critical Section

…

if (!n.visited) {

 readfe(&n.lock)

 if (!n.visited) {

 n.visited = true

 if (n.id == target) {

 total++

 }

 }

 writeef(&n.lock)

}

…

The critical section is “less critical”
because only threads that arrive at
approximately the same time will
need to execute the critical section.

Synchronized operations
ensure that the compiler will
not remove the second
conditional.

Example: Search Without Locks

…

if (int_fetch_add(&n.visited,1)
==0) {

 // only first one gets here

 if (n.id == target) {

 total++

 }

}

…

Debugging with MDB

Debugging an Application: mdb

• mdb is the XMT text-based debugger
– Derived from gdb version 3.3.5 (very old)

• No C++ conveniences
• No thread support

– On the Cray XMT support was added for:
• MTA extensions to C/C++
•  Threads (info threads, thread, bt options, etc.)
• Watchpoints and breakpoints in a multithreaded environment

–  “Remote” debugging model
• mdb runs on the service node and communicates with the

application via IPC (sockets)

Debugging: mdb

Start programs with mdb
• % mdb a.out

Attach to already running programs
• % mdb a.out 11111
• OR
• % mdb a.out
 …
 (mdb) attach 11111

PID

Debugging: mdb

• info threads
–  Print information about a running program’s threads
– Qualifiers can specify other information

• /a: include runtime threads (negative ids)
• /n: total number only
• /v: verbose mode
• /b: at breakpoint

• info pc
–  Print possible source lines from which the PC is derived

Debugging: mdb

• info registers
–  Print out integer registers and their contents

• info opa
–  Print out instructions that may have been responsible for data

traps

Debugging Without Core Files

MTA_PARAMS: do_backtrace
– Dump registers of the stream that hit the fatal error
–  If the runtime is corrupted, sometimes the register dump fails

MTA_PARAMS: debug_data_prot
– Rather than die on data prot (SEGV), wait for the debugger to

attach
–  It is unwise to have it on all the time because the program will

wait, consuming resources, until the debugger attaches

Debugging without core files

SIGQUIT
–  If a program appears to be stuck, you can send it the SIGQUIT

signal (mtarun kill -QUIT pid) which will print the register
state of all threads in the program (does not terminate the
program)

– Can result in a really large and unmanageable amount of
information

Debugging: Attaching to a “Bad” Program

Attach to a program that has data prot or is
ignoring domain signal:
% mdb –rm –socket 172.30.79.242:1234 a.out
 …
 (mdb) run
•  Hit Ctrl-C to stop the program
•  Look for threads in the ‘bad’ state or threads that are

running in the __data_prot_handler

Common User Problems

•  Users write buggy software. The following problems
require close examination:
– Deadlock/Livelock: no threads making progress
–  Improper synchronization

•  Incorrect initialization (e.g., purge() or writexf() of sync/
future variable)

• Off-by-one errors surrounding synchronization
– Application appears to be making progress, but very slowly

• Appears mostly on large systems
• Other symptoms include mtatop exiting and “processor not

checking in” message on console
– Hot spotting

• Use performance tools to isolate.

Less Common User Problems

•  User programs may accidentally modify runtime data
structures
–  This is a bug in the user program, but manifests itself as a

runtime problem
–  These problems are notoriously difficult to find

Less Common User Problems

•  Data prot due to forwarding to a bad location
– Address format is typically 0xbad)

• Use mdb info opa
– Check for invalid pointer values

• Use before initializing
•  Incorrect pointer arithmetic
• Bad type casting

– Assertions by the runtime
• Check for similar

Software

•  Compiler performs all the standard scalar optimizations
(copy propagation, common sub-expression
elimination, loop-invariant code motion, etc.)

•  When debugging an application
–  For –g1, stores are not moved beyond sequence points
–  For –g2, loads and stores are not moved beyond sequence

points

Compiler Flags for Debugging

• -g: Can view variable values inside mdb
–  Internally: compiler won’t move stores

• -g2: Can view and set variables in mdb
–  Internally: won’t move loads or stores

y = 0;
....

x = 4;
y = 5;
....

z = 6;

In mdb, should see y = 0

In mdb, should see y = 5

a = 1;
....

x = y;
....

b = 1;

If we set y here in mdb, x
should see new y.
If we set y here in mdb, x
should see old y.

Software

•  By definition, variables that are declared volatile are not
considered for any optimization

•  No reordering (memory fence) around loads/stores of
sync and future variables

•  No reordering around the following MTA generics:
– readfe/writeef (sync load/store)
– readff/writeff (future load/store)
– touch
– int_fetch_add of sync/future

Software

•  Reordering of generics that are indifferent to full/empty
state is allowed:
– readxx/writexf (normal load/store)
– purge
– int_fetch_add of a normal variable

•  Reordering can be enabled via a compiler directive
#pragma mta may reorder

Example: Enabling Reordering

 sync int A$[10000];

 …

 for (i=0; i<10000; i++) {

 A$[i] = i;

 }

Loop is not parallelized
because accesses to A
$ may not be reordered

#pragma mta may reorder A

Tells compiler that
accesses to A$ may be
reordered, enabling
parallelization

