
Programming for 
Performance – Part 2 



XMT Performance-Tuning Tools 
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The C/C++ Compiler: Initial Comments 

•  The XMT programmer needs to think about algorithms 
and the compiler. 

•  Running XMT programs is, practically speaking, 
dependent on the XMT C/C++ compiler. 

•  Programming the XMT for performance is a 
“negotiation” with the compiler. 
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The XMT C/C++ Compiler: Optimizing 
Loop-Level Parallelism 

 – with thanks to Mike Ringenburg 
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Outline 

Introduction to loop parallelism 
•  Conditions necessary for parallelism 
•  Single processor, multiprocessor, and loop future 

parallelism 
Pragmas to assist parallelization 
•  The noalias pragma and the restrict type qualifier 
•  The no dependence pragma 
•  The assert parallel pragma 

Compiler transformations to augment parallelism 
•  Scalar expansion 
•  Reductions/Recurrences 
•  Nested parallelism and loop collapse 

A parallelization example 
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When Will the Compiler Parallelize a Loop? 

The compiler attempts to parallelize your loops if: 
1.  It can figure out how to compute the number of 

iterations prior to executing the loop 
2.  It can prove that there are no dependences between 

iterations 
3.  There are no function calls with unknown side 

effects (e.g., output) 
4.  The loop has a simple structure (e.g., no multiple 

exits) 

Pragmas are promises made by the user that help 
the compiler establish that these conditions hold. 
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Example 

This loop parallelizes: 

void foo(int n) { 
 int i; 
 int my_array[n]; 
 for (i = 0; i < n; i++) { 
  my_array[i] = i; 
 } 
 return; 

} 
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Example 2 

This loop does not: 
 
 
 
 
 
 
 
a and b may point to overlapping memory 

void foo(int *a, int *b) { 
 int i; 
 for (i = 0; i < 10000; i++) { 
  a[i] = b[i]; 
 } 

} 

foo(x+5000, x); 
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The Three Forms of Parallelism 

There are three forms of loop parallelism available 
on the XMT: single processor, multiprocessor, 
and loop futures. 
 
•   You can select a preferred mode with a compile flag 

•  -par  for multiprocessor (this is the default), -par1  for single 
processor, and -parfuture  for loop futures 

•  In multiprocessor mode, the compiler will sometimes choose to 
use single processor if it judges that the amount of work and 
iterations are too small to justify the overhead of multiprocessor. 

•  You can override the parallelization mode with a pragma 

•  Parallelization mode is determined on a per-region basis 
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Single Processor Parallelism 

 
 
 
 
•  Use multiple threads on a single processor. 
•  Very low overheard. 
•  Good for shorter loops where the time saved by going 

parallel does not justify the expense of more heavy-
weight forms of parallelism. 

#pragma mta loop single processor 
for (int i = 0; i < small_size; i++) 
  a[i] = b[i]; 
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Multiprocessor Parallelism 

 
 
 
 
•  Use multiple threads on multiple processors. 
•  Higher overhead. 
•  Allows you to take advantage of all the resources of the 

machine. 

#pragma mta loop multiprocessor 
for (int i = 0; i < big_size; i++) 
  a[i] = b[i]; 
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•  Loop futures are a highly dynamic style of loop parallelism 
–  For those familiar with futures, this is not just a loop of futures 
– Compiler still manages threads and schedules iterations 

•  Highest overhead form of loop parallelism 
•  The only form of parallelism where the number of assigned threads 

can increase dynamically 
•  Good for recursive-style loops with highly variable workloads 

Loop Future Parallelism 

#pragma mta loop future 
for (i = firstNode; i < lastNode; i++) { 
  int nbr = Neighbors[i]; 
  int v = int_fetch_add(&Visited[nbr], 1); 
  if (v == 0) BFS(nbr, A); 
} 
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Outline 

Introduction to loop parallelism 
•  Conditions necessary for parallelism 
•  Single processor, multiprocessor, and loop future parallelism 

Pragmas to assist parallelization 
•  The noalias pragma and the restrict type qualifier 
•  The no dependence pragma 
•  The assert parallel pragma 

Compiler transformations to augment parallelism 
•  Scalar expansion 
•  Reductions/Recurrences 
•  Nested parallelism and loop collapse 

A parallelization example 
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Using Pragmas to Help Find Parallelism 

The XMT compiler supports a number of pragmas that can 
be used to give the compiler additional information about 
loops and the variables referenced inside them.  The most 
commonly used are: 

1.   pragma mta assert noalias 
2.   pragma mta assert no dependence 
3.   pragma mta assert parallel 

 
The compiler treats these pragmas as promises by the user 

•  The compiler trusts what you tell it 
•  If you give incorrect information, and the compiler relies on it, 

your program may not run correctly. 
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The noalias Pragma and restrict 

 
 
 
 
 
 
•  Promises that the listed variables are not aliased with 

any other variables. 
•  Must appear within the scope and after the declarations 

of the listed variables. 
•  Only need to use once per variable (not once per loop). 

void foo(int *x, int*y, int*z) { 
  #pragma mta noalias *x, *y 
  for (int i = 0; i < N; i++) { 
    z[i] = x[i] + y[i]; 
  } 
} 
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The noalias Pragma and restrict  

void foo(int* restrict x, int* restrict 
y, 
         int* z) { 
  for (int i = 0; i < N; i++) { 
    z[i] = x[i] + y[i]; 
  } 
} 
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•  Promises that the listed variables are not aliased with 

any other variables. 
•  Must appear within the scope and after the declarations 

of the listed variables. 
•  Only need to use once per variable (not once per loop). 
•  Can also use restrict pointers to get the same affect. 
 



The no dependence Pragma (or nodep) 

 
 
 
 
 
•  Promises that any memory location accessed in the 

loop via any variable on the no dependence list is 
accessed by exactly one iteration of the loop 

•  Appears immediately before a loop 
•  Variables must be noalias or restrict pointers 

#pragma mta assert noalias *IA 
#pragma mta assert no dependence *IA 
for (int i = 0; i < N; i++) { 
  IA[i][1] = IA[i][INDEX[i]]; 
} 
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The no dependence Pragma (or nodep) 

 
 
 
 
•  Promises that any memory location accessed in the 

loop via any variable on the no dependence list is 
accessed by exactly one iteration of the loop 

•  Appears immediately before a loop 
•  Variables must be noalias or restrict pointers 
•  Can also use with no variable list.  This makes the 

pragma apply to all memory references in the loop (and 
doesn’t require noalias pragmas). 

#pragma mta assert no dependence 
for (int i = 0; i < N; i++) { 
  IA[i][1] = IA[i][INDEX[i]]; 
} 
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The assert parallel Pragma 
 
 
 
 

•  Promises that the iterations of the loop can safely be executed 
concurrently without any synchronization. 

•  Does not force the compiler to parallelize the loop, but it is a strong 
suggestion. 

•  Should only be used when other techniques to get your loop to 
parallelize fail.  It limits the types of optimizations and 
transformations the compiler can perform on the loop. 
–  You are only asserting that the loop is parallel as written. 
– Compiler worries that loop transformations may invalidate that. 

#pragma mta assert parallel 
for (int i = 0; i < N; i++) { 
  printf(“May appear out of order %d”,i); 
} 
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Outline 

Introduction to loop parallelism 
•  Conditions necessary for parallelism 
•  Single processor, multiprocessor, and loop future 

parallelism 
Pragmas to assist parallelization 
•  The noalias pragma and the restrict type qualifier 
•  The no dependence pragma 
•  The assert parallel pragma 

Compiler transformations to augment parallelism 
•  Scalar expansion 
•  Reductions/Recurrences 
•  Nested parallelism and loop collapse 

A parallelization example 
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Compiler Transformations for Parallelism 

The compiler will attempt to restructure code to 
find or enhance parallelism: 
•  Scalar expansion 
•  Reductions 
•  Loop collapse 

 
You can view the ways the compiler restructured 
your code in Canal (text-based) or in the Canal 
report of Apprentice2 (GUI-based). 
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Scalar Expansion 

This loop can not be parallelized as written 
because of dependences between the reads and 
writes of  t in different  iterations (writing t in one 
iteration may overwrite the value of t from 
another iteration before it is used): 
 
 
 
 

int t; 
for (i = 0; i < n; ++i) { 
  t = sqrt(b[i]); 
  ... 
  a[i] = t + 5; 
} 
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Scalar Expansion 

This loop can not be parallelized as written 
because of dependences between the reads and 
writes of  t in different  iterations (writing t in one 
iteration may overwrite the value of t from 
another iteration before it is used): 
 
 
 
 
 
The compiler solves this by converting the scalar 
integer t into an array of integers 

int t; 
for (i = 0; i < n; ++i) { 
  t[i] = sqrt(b[i]); 
  ... 
  a[i] = t[i] + 5; 
} 
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Scalar Expansion 

Viewing this loop in the Canal report of 
Apprentice2, we see: 

      | int t; 
      | for (i = 0; i < n; ++i) { 
5 P:e |   t = sqrt(b[i + 1]); 
          ... 
5 P   |   a[i] = t + 5; 
      | } 

Performed scalar 
expansion 
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Reductions 

The compiler attempts to recognize loops that 
calculate sums, products, minimums, and 
maximums over an array.  E.g.: 
 
 
 
 
The compiler converts these to reductions 
•  Each thread computes the min/max/sum/product over a 

sub-section of the array. 
•  Threads then combine results to determine the final 

value. 

int min = MAX_VAL; 
for (i = 0; i < n; i++) { 
  if (x[i] < min) 
    min = x[i]; 
} 
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Reductions 

Viewing this in the Canal report of Apprentice2, 
we see: 

      | for (i = 0; i < n; i++) { 
3 P:$ |   if (x[i] < min) 
** reduction moved out of 1 loop 
      |     min = x[i]; 
      | } 
 

Converted to reduction 
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•  How do we handle nested parallel loops? 
•  Option 1: Go parallel for the outer loop, and then again 

for the inner loop. 
–  Inefficient – there is a significant overhead to going parallel.  If 

we nest, then every iteration of the outer loop has to pay that 
overhead. 

–  Limits the effectiveness of the load balancing obtained by some 
of the scheduling methods. 

Nested Parallelism 
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void foo(int* restrict num_bars, int size_x, !
!    int* restrict x, int* restrict bar) {!

  for (int i = 0; i < size_x; i++)!
    for (int j = 0; j < num_bars[i]; j++)!
      x[i] += bar[i + j];!
}!



 
 
 
 
 
Option 2: Loop collapse. 
•  Convert the nested pair of parallel loops to a single parallel loop 

that simulates the execution of the nested loops. 
–  Create a new parallel loop to calculate the total number of iteration of 

the inner loop (across all iterations of the outer loop).  
–  Convert the pair of loops into a single loop where each iteration 

corresponds to a distinct outer/inner iteration pair. 

Often a big performance win. 

Loop Collapse 
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void foo(int* restrict num_bars, int size_x, !
!    int* restrict x, int* restrict bar) {!

  for (int i = 0; i < size_x; i++)!
    for (int j = 0; j < num_bars[i]; j++)!
      x[i] += bar[i + j];!
}!
 



Collapse Psuedocode 
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// t[i] = total # of inner loop iterations !
// in first i iterations of outer loop!
t[0] = 0;!
for (i = 0; i < size_x; i++)!
  t[i + 1] = t[i] + num_bars[i];!
!
for (k = 0; k < t[size_x]; k++) {!
  // Set i to index of largest element of t !
  // less than k (use binary search)!
  i = max_element_less_than(t,  k);!
  j = k - t[i];!
!
  x[i] += bar[i + j]; // original loop body!
}!



Loop Collapse in Canal 
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        | for (int i = 0; i < size_x; i++) {!
        |   for (int j = 0; j < num_bars...!
4 PP:m$ |     x[i] += bar[i + j];!
** reduction moved out of 1 loop 

‘m’ indicates loop 
collapse occurred 



Outline 

Introduction to loop parallelism 
•  Conditions necessary for parallelism 
•  Single processor, multiprocessor, and loop future 

parallelism 
Pragmas to assist parallelization 
•  The noalias pragma and the restrict type qualifier 
•  The no dependence pragma 
•  The assert parallel pragma 

Compiler transformations to augment parallelism 
•  Scalar expansion 
•  Reductions/Recurrences 
•  Nested parallelism and loop collapse 

A parallelization example 
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An Example 

32 

bool foo(int *a, int *b, int n, !
         int sought, int *old_val) {!
  int i;!
  for (i = 0; i < n; i++) {!
    if (b[i] == sought)!
      break;!
    a[i] = b[i];!
  }!
  return (i < n);!
}!
 



An Example (2) 
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 1 X |   for (i = 0; i < n; i++) {!
** loop exit!
** multiple exits!
    1 X |     if (b[i] == sought)!
        |       break;!
    1 X |     a[i] = b[i];!
        |   } 



An Example (3) 
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bool foo(int *a, int *b, int n, !
         int sought, int *old_val) {!
  int i;!
  int found_index = n;!
  for (i = 0; i < n; i++) {!
    if (b[i] == sought)!
      if (i < found_index)!

!   found_index = i;!
  }!
  for (int i = 0; i < found_index; i++)!
    a[i] = b[i];!
  return (found_index < n);!
}!



An Example (4) 
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     |   for (i = 0; i < n; i++) {!
3 P:$|     if (b[i] == sought)!
** reduction moved out of 1 loop!
     |       if (i < found_index)!
     |         found_index = i;!
     |   }!
     |   for (int i = 0; i < found_index; i++)!
4 S  |     a[i] = b[i]; 



An Example (5) 

36 

bool foo(int *a, int *b, int n, !
         int sought, int *old_val) {!
#pragma mta assert noalias *a!
  int i;!
  int found_index = n;!
  for (i = 0; i < n; i++) {!
    if (b[i] == sought) {!
      if (i < found_index) {!

!   found_index = i;!
  }!
  for (int i = 0; i < found_index; i++)!
    a[i] = b[i];!
  return (found_index < n);!
}!



An Example (6) 
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     | #pragma mta assert noalias *a!
     |   int i;!
     |   int found_index = n;!
     |   for (i = 0; i < n; i++) {!
3 P:$|     if (b[i] == sought) {!
** reduction moved out of 1 loop!
     |       if (i < found_index) {!
     |         found_index = i;!
     |   }!
     |   for (int i = 0; i < found_index; i++)!
5 P  |     a[i] = b[i]; 



Summary 

Loop parallelism is an important technique for 
obtaining good performance on the XMT. 
The compiler will automatically parallelize loop if 
it can establish that it is safe to do so. 
•  Safe means that parallelization will preserve the correct 

program behavior. 
Pragmas may be used to assist the compiler in 
proving safety. 
The compiler will also attempt to aggressively 
transform loops to make them safe to parallelize. 
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Reading the Canal Output 

Canal parallel annotations 
 Code Description 

P The compiler parallelized the loop automatically. 

p An assertion caused the compiler to parallelize the loop. 

D The compiler parallelized the loop, even though it looks like there 
is a dependence between iterations. 

L The loop is a linear recurrence or reduction that the compiler 
parallelized. 
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Reading the Canal Output 

Canal sequential annotations 
 
 
 
 
 

Additional annotations 

Code Description 
- The compiler could not parallelize the loop. 
S The marked statement prevented the compiler from 

parallelizing the loop. 
s The compiler could have parallelized the loop, but didn’t 

because the loop had too few iterations. 
X The compiler didn’t parallelize the loop, because the loop isn’t 

inductive. 

Code Description 
U The compiler completely unrolled the loop. 
e The compiler expanded the scalar variable in the statement to a 

vector that it distributed across the loop iterations. 
$ The compiler implemented the memory update in this statement 

as an atomic operation, using full-empty bits. 
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Exercise 3 
 
/mnt/lustre/Workshop/Exercise3 
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Lunch 
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Using Canal, Traceview and Bprof in 
Apprentice2 

 – with thanks to Tracy Hartford 
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Overview 

§ Apprentice2 
•  GUI application for debugging performance problems 
•  Consists of one or more reports based on how your program 

was compiled and executed 
•  Canal Report 

•  Feedback from the compiler 
•  Insight on how latent parallelism was exploited 
•  Information on expected resource utilization and scheduling 

•  Tview Report 
•  Hardware counter plots 
•  Actual performance of your application 
•  Runtime trap information for detecting hotspots 

•  Bprof Report 
•  Profile tables in terms of instructions issued and memory 

references 
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Outline 

§ Two sample workflows 
•  Provide an overview of all the visual elements of Apprentice2 
•  Highlight the interactions between the reports 

•  Parallelizing and tuning a radix sort 
•  Removing a hotspot from a BFS-like queue 
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Workflow: Radix Sort I 

§ Write code 
•  Sequentially sorts on each byte of an eight byte word, starting with 
the least significant byte and preserving the relative ordering from 
partial sort to partial sort. 
•  Count the elements with the same value at the current byte position: 
    for (i = 0; i < size; ++i) { 

      cnt[MTA_BIT_PACK(~mask, src[i])]++; 

    } 
§ Compile 
• cc –o radix.v1 sorted.c radix.v1.c 
§ Post-process 
• pproc radix.v1 
§ Run Apprentice2 
• app2 radix.v1.ap2 [additional .ap2 files] 
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Workflow: Radix Sort II 

§ Modify code 
•  Add user trace events to further identify areas of interest 
•  Move the elements to their new relative positions 
#pragma mta trace "shift elements" 

    for (i = 0; i < size; ++i) { 

      j = pos[MTA_BIT_PACK(~mask, src[i])]++; 

      dst[j] = src[i]; 

    } 

§ Recompile with tracing and profiling enabled 
• cc –trace –profile –o radix.v1 sorted.c radix.v1.c 
§ Run the application and post-process 
• mtarun –trace –pproc radix.v1 
§ Run Apprentice2 
• app2 sorted.v1.ap2 
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Workflow: Radix Sort III 

Further modify code 
•  Split the array up into sequential blocks, allowing us to 

replicate the buckets into which we determine the 
element counts and new positions. 
#pragma mta assert no dependence 
    for (k = 0; k < blocks; ++k) { 
      for (i = beg(k); i < end(k); ++i) { 
        j = pos[MTA_BIT_PACK(~mask, 
            src[i])*blocks + k]++; 
        dst[j] = src[i]; 
      } 
    } 

Recompile, run, post-process, and run 
Apprentice2 
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Workflow: Queue Append I 

§ Write code 
•  Append elements onto a queue like what might be done 

when looking for unvisited nodes in the adjacency lists 
for set of nodes during a parallelized BFS.  
unsigned sync k = 0; 
#pragma mta assert parallel 
#pragma mta use 100 streams 
  for (unsigned i = 0; i < n; ++i) { 
    for (unsigned j = 0; j < cnt[i]; ++j) { 
      dst[int_fetch_add(&k, 1)] = src[idx[i]+j]; 
    } 
  } 

§ Compile, run, post-process, and run Apprentice2 
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Workflow: Hotspot Queue II 

§ Modify code 
•  Grab multiple input and output elements at a time, 

allowing blanks 
  for (unsigned t = 0; t < blocks; ++t) { 
    unsigned l = 0; 
    for (unsigned i = beg(t); i < end(t); ++i) { 
      for (unsigned j = 0; j < cnt[i]; ++j) {    
        if (mod(l, BLOCKSIZE) == 0) { 
          l = int_fetch_add(&k, BLOCKSIZE); 
        } 
        dst[l++] = src[idx[i] + j]; 
      } 
    } 
  } 

§ Compile, run, post-process, and run Apprentice2 
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Source Code Trace Controls 

#pragma mta trace [on | off | default] 
– Doesn’t work unless compiled with the –trace flag 

#pragma mta trace level n 
–  Trace only functions that contain at least n lines 
– Affects the rest of the source code in this file 

#pragma mta trace “string that identifies this 
point in the source code” 

– Resource usage data is recorded at this point and associated 
with this character string in the Traceview textual output 
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Managing very large trace/ap2 files 

§  Created mechanism using temporary to help 
offset memory usage on the login nodes 
§ XMT login nodes lack the ability to swap 
§ Root name for temp files set by environment 
variable 

§  export APP2_SWAPFILE = /mnt/lustre/users/app2 
§  Will generate files with names like 

§  /mnt/lustre/users/app2.xxxxxx 
§ Temp files cleaned when exiting Apprentice2 
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Summary 

§ Apprentice2 
•  GUI based system allows rapid assimilation of information 
•  Interaction between reports assists problem detection 

•  Canal Report 
•  Establishes a dialogue with the compiler that allows the creation 

of highly parallelized and optimized code 
•  Tview Report 

•  Quickly identify underperforming code sections 
•  Visualize resource utilization and concurrency 
•  Pinpoint memory hotspots 

•  Bprof Report 
•  Target specific functions running the least efficiently 
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Additional Tools and Approaches 
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Dash: a Real-Time Resource Monitor 
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Accessing the Hardware Counters 

unsigned issues, memrefs, concur, streams, traps, retries; 

mta_reserve_task_event_counter( RT_ANY_COUNTER, RT_TRAP ); 

 /* other counters are available without reserving them */ 

  issues = mta_get_task_counter(RT_ISSUES); 

  memrefs= mta_get_task_counter(RT_MEMREFS); 

  concur= mta_get_task_counter(RT_CONCURRENCY); 

  streams= mta_get_task_counter(RT_STREAMS); 

  traps = mta_get_task_counter(RT_TRAP); 

  retries = mta_get_task_counter(RT_MEM_RETRY); 

  /* (continued on next slide) */ 
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Accessing the Hardware Counters 

  double start_time = timer();  

  int result = bigParallelFunction(); 

  double elapsed_time = start_time - timer(); 

 

  issues = mta_get_task_counter(RT_ISSUES) - issues; 

  memrefs= mta_get_task_counter(RT_MEMREFS) - memrefs; 

  concur= mta_get_task_counter(RT_CONCURRENCY) - concur; 

  streams= mta_get_task_counter(RT_STREAMS) - streams; 

  traps = mta_get_task_counter(RT_TRAP) - traps; 

  retries = mta_get_task_counter(RT_MEM_RETRY) - retries; 

  /* printf() probably goes here */ 
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Example: Using Hardware Counters 

•  Customer was observing significant performance 
difference between the two loops. 
–  Loop 1: 

 

–  Loop 2: 

•  Significant point: 
–  Endpoints is an array of unsigned integers, initialized using 

prand_int. 
–  Elements of endpoints are then randomly distributed 64-bit 

unsigned integers over the range of all possible 64-bit unsigned 
integers. 

for (i = 0; i < no_of_edges; i++) { 
    ends[i] = endpoints[i] + 1; 
} 

for(i = 0; i <  no_of_edges; i++) { 
    endpoints[i] = ends[i] % BILLION; 
} 
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Modulo Instrumentation Example 

Loop1: time copying to ends 6.654852e-02 
 
 
 
 
 Loop2: time modulo 4.534740e+01 

  
 

for (i = 0; i < no_of_edges; i++) { 
     ends[i] = endpoints[i] + 1; 
} 

ticks: 33257303, secs: 0.066515, issues: 104509017, memrefs: 101770916, 
traps: 0, retries: 717757, concurrency: 2542, streams: 755 

for(i = 0; i <  no_of_edges; i++) { 
    endpoints[i] = ends[i] % BILLION; 
} 

ticks: 22673682155, secs: 45.347364, issues: 32993662421,  
memrefs: 15585715642, traps: 49976693, retries: 18913196115, 
concurrency: 811, streams: 610 
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Modulo Instrumentation Example  

XMT only provides a 53-bit integer divide 
 
Details: 
•  If either x or y is more than 53 bits, the float extension 

will be raised and the trap handler will complete the 
operation successfully. 

•  Sign extension is handled correctly, so for example, 
INV_DIV_CHOP/INV_DIV_FLOOR support values in the 
range [-253,253-1], whereas UNS_DIV supports values 
in the range [0,253-1]. 
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Modulo Instrumentation Example  

The performance issue was that the modulo operator was 
being applied to integers generated to be random across 
all 64-bit unsigned integers. 
 
Modified code snippet which avoids 64-bit divide   
 

 unsigned int mask = (1 << 53) - 1; 
#pragma mta assert nodep *endpoints 
#pragma mta assert nodep *ends 
for (i = 0; i < no_of_edges; i++) { 
     endpoints[i] = (ends[i] & mask) % N2; 
} 
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Modulo Instrumentation Example 

Loop1: time copying to ends 6.654919e-02 
  

  

 
 

 
 

Loop2: time modulo 8.084661e-02 
unsigned int mask = (1 << 53) - 1; 
for (i = 0; i < no_of_edges; i++) { 
     endpoints[i] = (ends[i] & mask) % N2; 
} 

ticks: 40407611, secs: 0.080815, issues: 155276319, memrefs: 102072724,  
traps: 0, retries: 673585, concurrency: 1939, streams: 720 
 

for (i = 0; i < no_of_edges; i++) { 
    ends[i] = endpoints[i] + 1; 
} 

ticks: 33258200, secs: 0.066516, issues: 104491617, memrefs: 101756261,  
traps: 0, retries: 705688, concurrency: 2541, streams: 754 
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Looking at Assembly Code 

•  From the command line 
dis executableName 

•  From within mdb 
mdb> disass 

0x004ac9ec      (inst 2 (STORE_DISP r25 r1 (* 8 2)) (NOP))  

0x004ac9ed      (inst 1 (STORE_DISP r19 r1 (* 8 9)) (NOP))  

0x004ac9ee      (inst 0 (STORE_DISP r21 r1 (* 8 12)) (NOP))  

0x004ac9ef      (inst 0 (NOP) (INT_ADD_IMM r30 r0 15) (CLOCK r26 r0))  

0x004ac9f0      (inst 0 (REG_LOAD_DISP r25 r31 (* 8 10)) (BIT_AND r30 r26 r30))  

0x004ac9f1      (inst 0 (REG_LOAD_DISP r3 r31 (* 8 10)) (INT_ADD_IMM r25 r25 104))  

0x004ac9f2      (inst 2 (LOAD_DISP r28 r31 (* 8 19)) (INT_ADD_IMM r3 r3 96))  

0x004ac9f3      (inst 0 (LOAD r25 r25) (INT_ADD_IMM r29 r0 216) (REG_MOVE r10 r9))  

0x004ac9f4      (inst 3 (LOAD r3 r3) (TARGET_RESTORE t5 r25) (REG_MOVE r5 r27))  

0x004ac9f5      (inst 0 (LOAD_AC_INDEX r28 r28 ( (fe_control FE_FUTURE)) r30) (TARGET_DISP t1… 
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SSCA #2, Kernel 4,  
Betweenness Centrality 
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Betweenness Centrality of a Vertex 

∑
s≠t≠v 

# shortest paths through v 
# all shortest paths from s to t 

v 

s 

t 

s 

t 

1 

3 

1 

2 

BC(v) = 
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Our Original Implementation 

•  Large data structures => sequential outer loop 

 /* Use |Vs| nodes to compute centrality values */ 
  for (s = 0; (s < NV) && (Vs > 0); s ++) { 
  … 
#pragma mta assert no dependence 
      for (j = QHead[nQ - 1]; j < QHead[nQ]; j++) { 
          … 
          int myStart = start[v]; 
          int myEnd   = start[v + 1]; 
#pragma mta assert no dependence 
          for (k = myStart; k < myEnd; k++) { 
              … 
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Original Version Didn’t Scale Well 

Note: MTEPS=millions of traversed edges per second, 
estimate defined as #vertices * 7 / execution time. 
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Trying to Scale Better 

•  With larger systems, we thought we could run a few 
iterations of the outermost loop in parallel 

•  First attempt: 

#define BFS_THREADS  16 
… 
#pragma mta assert parallel 
  for(num_threads=0; num_threads < BFS_THREADS; num_threads ++){ 
for(;;) { 
          start_vertex = int_fetch_add(&Vs_ptr,1); 
          if (start_vertex > Vs -1) break; 
          … 
  
#pragma mta assert no dependence 
          for (j = QHead[nQ - 1]; j < QHead[nQ]; j++) { 
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Resulting Canal Listing 

•  Performance was horrible. 
•  Canal: 

•  What happened: 
– Compiler assumed there was sufficient parallelism in the outer 

loop. 

… 
7 pXX     |  for (j = QHead[nQ - 1]; j < QHead[nQ]; j++) { 
… 
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Second Try 

•  Using “loop future” parallelism 

•  Performance was bad. 
•  Canal output: 

 

•  Parallelism was confined within BFS_THREADS 
processors. 

 

#pragma mta assert parallel 

#pragma mta loop future 

for(num_threads=0; num_threads < BFS_THREADS; num_threads ++){ 

… 

Parallel region   7 in cenTrality in loop 6 
       Single processor implementation 
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Third Approach 

•  Use “future” variables 
#define BFS_THREADS 16 

  future int thread_id[BFS_THREADS]; 

  … 

// Spawn off futures to run independent BFS processes 

  for (num_threads=0; num_threads < BFS_THREADS; num_threads++) { 

     future thread_id[num_threads](num_threads, G, BC,  

                                   Vs, &Vs_ptr, permV, bfs_counter) { 

         Process_cenTrality(G, BC, Vs, &Vs_ptr, … 

         … 

  for (num_threads=0; num_threads < BFS_THREADS; num_threads++) { 

     touch (&thread_id[num_threads]); 

  } 

… 

150 



Additional tuning 

#pragma mta max n processors 
•  Limits the number of processors used on a multi-

processor loop to n 
•  n must be a compile-time integer constant > 0 
•  for collapsible loop nests, the max processors value for 

the collapsed loop is the same as that specified for the 
outer loop 

 /* Use at most 4 processors.  */ 

#pragma mta max 4 processors 

  for(i = 0; i < size; i++) { 

    array[i] += array[i] + (size + i); 

  } 
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Much Improved Performance and Scaling 
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Lessons Learned 

•  We used future variable parallelism because 
–  The amount of parallelism in the outermost loop was small 
–  The amount of parallelism in the inner loops was large and 

dynamic 
•  We used  #pragma mta max n processor to control how 

wide each of the inner parallel loops could grow 
– Better load balancing across outer loops 
– Avoid hotspotting in the Queues 

153 



This also works 

•  Use “mta loop future” pragma on outer loop, but have 
inner loop inside subroutine call 
–  Loop parallelism inside Process_cenTrality subroutine call is 

now  multi-processor 
– OK to do it  this way, but not the intended use of the loop future 

pragma. More targeted for large loop bounds. 
 

#define BFS_THREADS 16 

  … 

// Outer loop to run independent BFS processes 

#pragma mta loop future 

  for (num_threads=0; num_threads < BFS_THREADS; num_threads++) { 

      Process_cenTrality(G, BC, Vs, &Vs_ptr, … 

         … 

  } 
154 



Parallelism-Limiting Pragmas 

#pragma mta max n processors 
•  Limits the number of processors used on a 

multiprocessor loop to n 
•  n must be a compile-time integer constant > 0 
•  for collapsible loop nests, the max processors value for 

the collapsed loop is the same as that specified for the 
outer loop 

 /* Use at most 4 processors.  */ 

#pragma mta max 4 processors 

  for(i = 0; i < size; i++) { 

    array[i] += array[i] + (size + i); 

  } 
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Parallelism-Limiting Pragmas 

#pragma mta max concurrency c 
•  Limits the number of processors used by a 

multiprocessor loop to max(1, c/<num_streams_per_processor>), 
where <num_streams_per_processor> is the number of streams 
the compiler requests for each processor used by the 
parallel loop.  

•  Limits the number of streams used by a single 
processor parallel loop to min(c, <max_streams_per_processor>) 

•  c is a compile-time integer constant > 0 
 
/* Use at most 512 streams across all processors.  */ 
#pragma mta max concurrency 512 
  for(i = 0; i < size; i++) { 
    array[i] += array[i] + (size + i); 

  } 
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Parallelism-Limiting Pragmas 

•  Using them together… 
 /* Use at most 512 streams across all processors or 

     at most 8 processors, whichever is smaller       */ 

#pragma mta max concurrency 512 

#pragma mta max 8 processors 

  for(i = 0; i < size; i++) { 

    array[i] += array[i] + (size + i); 

  } 

•  Loop future loops can only use the max concurrency 
pragma: 

 /* Create at most 512 futures.  */ 

#pragma mta loop future 

#pragma mta max concurrency 512 

  for(i = 0; i < size; i++) { 

    array[i] += array[i] + (size + i); 

  } 157 



New Pragmas in XMT PE Release 1.4 (1) 

#pragma mta for all streams 
{ 
   … 
} 
•  starts a parallel region 
•  executes the statement or block of statements exactly 

once for each stream allocated to the region 
•  acts like an “assert parallel” pragma 
•  can be used in conjunction with “use n streams” (but 

no guarantee that many will be allocated) 
#pragma mta use 100 streams 
#pragma mta for all streams 
{  //do parallel stuff 
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#pragma mta for all streams i of n 
•  Sets n to the total number of streams executing the 

region 
•  Variable i is a unique per-stream identifier; 0 ≤ i ≤ n-1 
int istr, ntotal; 

int check_in_array[SOME_BIG_NUMBER]; 

 

for( istr=0; istr<SOME_BIG_NUMBER; istr++ ) 

 check_in_array[istr] = 0; 

 

#pragma mta for all streams istr of ntotal 

{  check_in_array[istr] = 1; 

 printf(“Stream %d of %d checked in.\n”, istr, ntotal); 

} 
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New Pragmas in XMT PE Release 1.4 (2) 



Generating Graphs on the 
XMT 
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Generating synthetic graphs 
•  Random graphs 
•  R-MAT graphs 
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Random Graph 

•  Or Erdös-Renyi graph 

•  Given the number of vertices n, average number of out-
edges per vertex (out-degree) x, 

•  Return a randomly-generated graph with n vertices with 
a uniformly-distributed out-degree with average x 

•  Random graphs are pretty “well-behaved” 
–  Partition reasonably well 
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What Our Random Graph Generator Does 

•  SSCA #2 Handout 1 
•  Given desired # vertices (int), and desired average out-

degree (double), generates random graph 
•  How it works: 

– Generate array, length numEdges, with random vertex IDs in it 
  randNeighbors(Neighbors, nN, numEdges,(double*)Marked, nN); 

– Histogram the IDs 
numNeighbors[Neighbors[i]]++; 
–  This decides how many out-edges each vertex has. 
– Now generate another array of numEdges random vertex IDs 

  randNeighbors(Neighbors, nN, numEdges,(double*)Marked, nN); 

–  Prefix-sum the numNeighbors array 
numNeighbors[i] += numNeighbors[i-1]; 
– numNeighbors[i] now holds the starting index in the Neighbors 

array of the neighbors of vertex i 
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Random Graph Generator Example 

0 1 2 3 Want five vertices, average two out-edges each. 

2 

1 3 

0 0 

2 

1 4 1 0 3 2 

4 

4 

randNeighbors(Neighbors, … 

Neighbors 

2 2 3 1 

numNeighbors[Neighbors[i]]++; 
 

numNeighbors Histogram: 

2 1 3 4 0 2 3 0 

8 5 3 0 7 numNeighbors Prefix sum: 

numNeighbors[i] += numNeighbors[i-1]; 
 

Neighbors 

randNeighbors(Neighbors, … 
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Resulting Graph 
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4 
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Power Law Graphs 

•  Number of vertices with out-degree x = cx-β 

•  Straight line on a log-log graph, with slope -β 

out-degree 

# vertices 
with that 
degree 

log(out-degree) 

log(# vertices)  
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About Power Law Graphs 

•  A few vertices with huge out-degree (“heavy-tailed” 
distribution) 

•  Contain clusters of “communities” (connectivity inside 
> connectivity outside) 

•  Found to be much closer fit to many “real world” social 
networks 
– WWW 
–  Internet router graphs 
– Citation graphs 
–  Facebook 
– … 

•  Small diameter but high connectivity (“six degrees of 
separation”) 

•  AKA “self-similar”, “scale-free” graphs 
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Popular Power Law Graph Generator 

•  R-MAT = “recursive matrix” 
•  Invented by Chakrabarti, Yahoo! Research and 

Falutsos, CMU 
•  Four probability parameters, a, b, c and d 

–  Three, really: d = 1.0 – ( a + b + c ) 
•  Divide the graph adjacency matrix into four quadrants 

start vertex 

end vertex 

a b 

c d 
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Power Law Graph Generator 

•  Apply recursively until you reach a single cell 
•  Our implementation tweaks a, b, c and d ± at most 10% 

every iteration 
•  It also uses a hash table to eliminate duplicate edges 
•  Typical parameters are a=.55, b=.19, c=.19, d=.07 
•  SSCA #2 Handout 2 point to file instead??? 

start vertex 

end vertex 

a b 

c d 

a 

d 

b 

c 

b a 

c d 
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Parallel I/O Using Snapshot/Restore 
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Avoiding Graph Generation 

•  Generating synthetic data is often slow – e.g. graph 
generation 

•  We try to avoid it, when possible, by using Snapshot-
Restore. 

•  STEPS: 
– What you put in the source code: SSCA #2 Handout 3 
– How you initialize for using the parallel file system 
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In the current configuration, the parallel file system is /
mnt/lustre, a Lustre file system 

When fully configured, matterhorn will attach to a DVS 
filesystem 

 
Snapshot/restore will work identically on both systems 



In the Source Code 

The #includes needed, and some file names 

#include <luc/luc_exported.h> 
#include <snapshot/client.h> 

 
const char  VE_FILENAME[] =  
     "/scratch/dmizell/mydata/rmat28_vertex_edge_info.data"; 
const char  SV2_FILENAME[] =  
     "/scratch/dmizell/mydata/rmat28_sv2_snapshot.data"; 
const char  EV2_FILENAME[] =  
     "/scratch/dmizell/mydata/rmat28_ev2_snapshot.data"; 
const char  START_FILENAME[] =  
     "/scratch/dmizell/mydata/rmat28_start_snapshot.data"; 
const char  WEIGHT_FILENAME[] =  
     "/scratch/dmizell/mydata/rmat28_weight_snapshot.data"; 
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In the Source Code 

Initializing the Snapshot library 

// Initialize Snapshot Library 
// The SWORKER_EP environment variable is read at this point. 

 
    if (err = snap_init() != SNAP_ERR_OK) 
    { 
        fprintf(stderr,  
"Failed to initialize snapshot library. Error %d. \n", err); 
    } 
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Snapshot/Restore I/O Calls 

Writing files 

/* Memory allocated for the vertex/edge info data structure */ 
  int *veptr = (int *)malloc(2*sizeof(int)); 
  veptr[0] = G->numVertices; veptr[1] = G->numEdges; 
 
// All file system workers must be able to access the specified path. 
   numbytes = (size_t)(2*sizeof(int)); 
   err = snap_snapshot ((char *)VE_FILENAME, veptr, 
                         numbytes, &snapError); 
    
   numbytes = (size_t)(G->numEdges*sizeof(int)); 
   err = snap_snapshot ((char *)SV2_FILENAME, G->startVertex, 
                         numbytes, &snapError); 
 
//… more file writes… 
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Snapshot/Restore I/O Calls 

Reading files 

// Restore the Graph from disk 

   numbytes = (size_t)(2*sizeof(int)); 

   err = snap_restore ((char *)VE_FILENAME, veptr, numbytes, &snapError); 

   G->numVertices = veptr[0]; G->numEdges = veptr[1]; 

//… 

// All file system workers must be able to access the specified path. 

   numbytes = (size_t)(G->numEdges*sizeof(int)); 

   err = snap_restore ((char *)SV2_FILENAME, G->startVertex, numbytes, &snapError); 

//… more file reads… 
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Exercise 4 
 
/mnt/lustre/Workshop/Exercise4 
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Optional Homework 

Dataflow exercise 
/mnt/lustre/Workshop/Homework/wavefront 
 
Integer Sort 
/mnt/lustre/Workshop/Homework/sort 
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The End! 
 

Thanks! 
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End of Day 2 
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Backup 
Slides 
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Making Reductions and 
Recurrences Run in Parallel 
Thanks to Jon Berry, Sandia 
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Example 1 

Summing the absolute values of integers 
•  First try (compiler didn’t parallelize it) 

 

 int total=0;  
for (int i=0; i<n; i++) {  
       if (v[i] < 0) {  
             total += -v[i];  
       } else {  
             total += v[i];  
       }  
} 
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Second Try 

Parallelized successfully 
 int total=0;  
for (int i=0; i<n; i++) {  
    int incr = (v[i] < 0) * -v[i]  + (v[i] >= 0) * v[i]; 
    total += incr;  
}  
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A Conditional Reduction 

•  This didn’t parallelize: 

 

•  This did: 
 
 

int max=0;  
for (int i=0; i<n; i++) {  
       int candidate = mask[i] * v[i];  
       if (candidate > max) {  
             max = candidate;  
       }  
}  

int max=0;  
for (int i=0; i<n; i++) {  
       if (mask[i] && v[i] > max) {  
             max = v[i];  
       }  
}  
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