
Programming for
Performance – Part 2

XMT Performance-Tuning Tools

2

The C/C++ Compiler: Initial Comments

•  The XMT programmer needs to think about algorithms
and the compiler.

•  Running XMT programs is, practically speaking,
dependent on the XMT C/C++ compiler.

•  Programming the XMT for performance is a
“negotiation” with the compiler.

3

The XMT C/C++ Compiler: Optimizing
Loop-Level Parallelism

 – with thanks to Mike Ringenburg

4

Outline

Introduction to loop parallelism
•  Conditions necessary for parallelism
•  Single processor, multiprocessor, and loop future

parallelism
Pragmas to assist parallelization
•  The noalias pragma and the restrict type qualifier
•  The no dependence pragma
•  The assert parallel pragma

Compiler transformations to augment parallelism
•  Scalar expansion
•  Reductions/Recurrences
•  Nested parallelism and loop collapse

A parallelization example

5

When Will the Compiler Parallelize a Loop?

The compiler attempts to parallelize your loops if:
1.  It can figure out how to compute the number of

iterations prior to executing the loop
2.  It can prove that there are no dependences between

iterations
3.  There are no function calls with unknown side

effects (e.g., output)
4.  The loop has a simple structure (e.g., no multiple

exits)

Pragmas are promises made by the user that help
the compiler establish that these conditions hold.

6

Example

This loop parallelizes:

void foo(int n) {
 int i;
 int my_array[n];
 for (i = 0; i < n; i++) {
 my_array[i] = i;
 }
 return;

}

7

Example 2

This loop does not:

a and b may point to overlapping memory

void foo(int *a, int *b) {
 int i;
 for (i = 0; i < 10000; i++) {
 a[i] = b[i];
 }

}

foo(x+5000, x);

8

The Three Forms of Parallelism

There are three forms of loop parallelism available
on the XMT: single processor, multiprocessor,
and loop futures.

•  You can select a preferred mode with a compile flag

•  -par for multiprocessor (this is the default), -par1 for single
processor, and -parfuture for loop futures

•  In multiprocessor mode, the compiler will sometimes choose to
use single processor if it judges that the amount of work and
iterations are too small to justify the overhead of multiprocessor.

•  You can override the parallelization mode with a pragma

•  Parallelization mode is determined on a per-region basis
9

Single Processor Parallelism

•  Use multiple threads on a single processor.
•  Very low overheard.
•  Good for shorter loops where the time saved by going

parallel does not justify the expense of more heavy-
weight forms of parallelism.

#pragma mta loop single processor
for (int i = 0; i < small_size; i++)
 a[i] = b[i];

10

Multiprocessor Parallelism

•  Use multiple threads on multiple processors.
•  Higher overhead.
•  Allows you to take advantage of all the resources of the

machine.

#pragma mta loop multiprocessor
for (int i = 0; i < big_size; i++)
 a[i] = b[i];

11

•  Loop futures are a highly dynamic style of loop parallelism
–  For those familiar with futures, this is not just a loop of futures
– Compiler still manages threads and schedules iterations

•  Highest overhead form of loop parallelism
•  The only form of parallelism where the number of assigned threads

can increase dynamically
•  Good for recursive-style loops with highly variable workloads

Loop Future Parallelism

#pragma mta loop future
for (i = firstNode; i < lastNode; i++) {
 int nbr = Neighbors[i];
 int v = int_fetch_add(&Visited[nbr], 1);
 if (v == 0) BFS(nbr, A);
}

12

Outline

Introduction to loop parallelism
•  Conditions necessary for parallelism
•  Single processor, multiprocessor, and loop future parallelism

Pragmas to assist parallelization
•  The noalias pragma and the restrict type qualifier
•  The no dependence pragma
•  The assert parallel pragma

Compiler transformations to augment parallelism
•  Scalar expansion
•  Reductions/Recurrences
•  Nested parallelism and loop collapse

A parallelization example

13

Using Pragmas to Help Find Parallelism

The XMT compiler supports a number of pragmas that can
be used to give the compiler additional information about
loops and the variables referenced inside them. The most
commonly used are:

1.   pragma mta assert noalias
2.   pragma mta assert no dependence
3.   pragma mta assert parallel

The compiler treats these pragmas as promises by the user

•  The compiler trusts what you tell it
•  If you give incorrect information, and the compiler relies on it,

your program may not run correctly.

14

The noalias Pragma and restrict

•  Promises that the listed variables are not aliased with

any other variables.
•  Must appear within the scope and after the declarations

of the listed variables.
•  Only need to use once per variable (not once per loop).

void foo(int *x, int*y, int*z) {
 #pragma mta noalias *x, *y
 for (int i = 0; i < N; i++) {
 z[i] = x[i] + y[i];
 }
}

15

The noalias Pragma and restrict

void foo(int* restrict x, int* restrict
y,
 int* z) {
 for (int i = 0; i < N; i++) {
 z[i] = x[i] + y[i];
 }
}

16

•  Promises that the listed variables are not aliased with

any other variables.
•  Must appear within the scope and after the declarations

of the listed variables.
•  Only need to use once per variable (not once per loop).
•  Can also use restrict pointers to get the same affect.

The no dependence Pragma (or nodep)

•  Promises that any memory location accessed in the

loop via any variable on the no dependence list is
accessed by exactly one iteration of the loop

•  Appears immediately before a loop
•  Variables must be noalias or restrict pointers

#pragma mta assert noalias *IA
#pragma mta assert no dependence *IA
for (int i = 0; i < N; i++) {
 IA[i][1] = IA[i][INDEX[i]];
}

17

The no dependence Pragma (or nodep)

•  Promises that any memory location accessed in the

loop via any variable on the no dependence list is
accessed by exactly one iteration of the loop

•  Appears immediately before a loop
•  Variables must be noalias or restrict pointers
•  Can also use with no variable list. This makes the

pragma apply to all memory references in the loop (and
doesn’t require noalias pragmas).

#pragma mta assert no dependence
for (int i = 0; i < N; i++) {
 IA[i][1] = IA[i][INDEX[i]];
}

18

The assert parallel Pragma

•  Promises that the iterations of the loop can safely be executed
concurrently without any synchronization.

•  Does not force the compiler to parallelize the loop, but it is a strong
suggestion.

•  Should only be used when other techniques to get your loop to
parallelize fail. It limits the types of optimizations and
transformations the compiler can perform on the loop.
–  You are only asserting that the loop is parallel as written.
– Compiler worries that loop transformations may invalidate that.

#pragma mta assert parallel
for (int i = 0; i < N; i++) {
 printf(“May appear out of order %d”,i);
}

19

Outline

Introduction to loop parallelism
•  Conditions necessary for parallelism
•  Single processor, multiprocessor, and loop future

parallelism
Pragmas to assist parallelization
•  The noalias pragma and the restrict type qualifier
•  The no dependence pragma
•  The assert parallel pragma

Compiler transformations to augment parallelism
•  Scalar expansion
•  Reductions/Recurrences
•  Nested parallelism and loop collapse

A parallelization example

20

Compiler Transformations for Parallelism

The compiler will attempt to restructure code to
find or enhance parallelism:
•  Scalar expansion
•  Reductions
•  Loop collapse

You can view the ways the compiler restructured
your code in Canal (text-based) or in the Canal
report of Apprentice2 (GUI-based).

21

Scalar Expansion

This loop can not be parallelized as written
because of dependences between the reads and
writes of t in different iterations (writing t in one
iteration may overwrite the value of t from
another iteration before it is used):

int t;
for (i = 0; i < n; ++i) {
 t = sqrt(b[i]);
 ...
 a[i] = t + 5;
}

22

Scalar Expansion

This loop can not be parallelized as written
because of dependences between the reads and
writes of t in different iterations (writing t in one
iteration may overwrite the value of t from
another iteration before it is used):

The compiler solves this by converting the scalar
integer t into an array of integers

int t;
for (i = 0; i < n; ++i) {
 t[i] = sqrt(b[i]);
 ...
 a[i] = t[i] + 5;
}

23

Scalar Expansion

Viewing this loop in the Canal report of
Apprentice2, we see:

 | int t;
 | for (i = 0; i < n; ++i) {
5 P:e | t = sqrt(b[i + 1]);
 ...
5 P | a[i] = t + 5;
 | }

Performed scalar
expansion

24

Reductions

The compiler attempts to recognize loops that
calculate sums, products, minimums, and
maximums over an array. E.g.:

The compiler converts these to reductions
•  Each thread computes the min/max/sum/product over a

sub-section of the array.
•  Threads then combine results to determine the final

value.

int min = MAX_VAL;
for (i = 0; i < n; i++) {
 if (x[i] < min)
 min = x[i];
}

25

Reductions

Viewing this in the Canal report of Apprentice2,
we see:

 | for (i = 0; i < n; i++) {
3 P:$ | if (x[i] < min)
** reduction moved out of 1 loop
 | min = x[i];
 | }

Converted to reduction

26

•  How do we handle nested parallel loops?
•  Option 1: Go parallel for the outer loop, and then again

for the inner loop.
–  Inefficient – there is a significant overhead to going parallel. If

we nest, then every iteration of the outer loop has to pay that
overhead.

–  Limits the effectiveness of the load balancing obtained by some
of the scheduling methods.

Nested Parallelism

27

void foo(int* restrict num_bars, int size_x, !
! int* restrict x, int* restrict bar) {!

 for (int i = 0; i < size_x; i++)!
 for (int j = 0; j < num_bars[i]; j++)!
 x[i] += bar[i + j];!
}!

Option 2: Loop collapse.
•  Convert the nested pair of parallel loops to a single parallel loop

that simulates the execution of the nested loops.
–  Create a new parallel loop to calculate the total number of iteration of

the inner loop (across all iterations of the outer loop).
–  Convert the pair of loops into a single loop where each iteration

corresponds to a distinct outer/inner iteration pair.

Often a big performance win.

Loop Collapse

28

void foo(int* restrict num_bars, int size_x, !
! int* restrict x, int* restrict bar) {!

 for (int i = 0; i < size_x; i++)!
 for (int j = 0; j < num_bars[i]; j++)!
 x[i] += bar[i + j];!
}!

Collapse Psuedocode

29

// t[i] = total # of inner loop iterations !
// in first i iterations of outer loop!
t[0] = 0;!
for (i = 0; i < size_x; i++)!
 t[i + 1] = t[i] + num_bars[i];!
!
for (k = 0; k < t[size_x]; k++) {!
 // Set i to index of largest element of t !
 // less than k (use binary search)!
 i = max_element_less_than(t, k);!
 j = k - t[i];!
!
 x[i] += bar[i + j]; // original loop body!
}!

Loop Collapse in Canal

30

 | for (int i = 0; i < size_x; i++) {!
 | for (int j = 0; j < num_bars...!
4 PP:m$ | x[i] += bar[i + j];!
** reduction moved out of 1 loop

‘m’ indicates loop
collapse occurred

Outline

Introduction to loop parallelism
•  Conditions necessary for parallelism
•  Single processor, multiprocessor, and loop future

parallelism
Pragmas to assist parallelization
•  The noalias pragma and the restrict type qualifier
•  The no dependence pragma
•  The assert parallel pragma

Compiler transformations to augment parallelism
•  Scalar expansion
•  Reductions/Recurrences
•  Nested parallelism and loop collapse

A parallelization example

31

An Example

32

bool foo(int *a, int *b, int n, !
 int sought, int *old_val) {!
 int i;!
 for (i = 0; i < n; i++) {!
 if (b[i] == sought)!
 break;!
 a[i] = b[i];!
 }!
 return (i < n);!
}!

An Example (2)

33

 1 X | for (i = 0; i < n; i++) {!
** loop exit!
** multiple exits!
 1 X | if (b[i] == sought)!
 | break;!
 1 X | a[i] = b[i];!
 | }

An Example (3)

34

bool foo(int *a, int *b, int n, !
 int sought, int *old_val) {!
 int i;!
 int found_index = n;!
 for (i = 0; i < n; i++) {!
 if (b[i] == sought)!
 if (i < found_index)!

! found_index = i;!
 }!
 for (int i = 0; i < found_index; i++)!
 a[i] = b[i];!
 return (found_index < n);!
}!

An Example (4)

35

 | for (i = 0; i < n; i++) {!
3 P:$| if (b[i] == sought)!
** reduction moved out of 1 loop!
 | if (i < found_index)!
 | found_index = i;!
 | }!
 | for (int i = 0; i < found_index; i++)!
4 S | a[i] = b[i];

An Example (5)

36

bool foo(int *a, int *b, int n, !
 int sought, int *old_val) {!
#pragma mta assert noalias *a!
 int i;!
 int found_index = n;!
 for (i = 0; i < n; i++) {!
 if (b[i] == sought) {!
 if (i < found_index) {!

! found_index = i;!
 }!
 for (int i = 0; i < found_index; i++)!
 a[i] = b[i];!
 return (found_index < n);!
}!

An Example (6)

37

 | #pragma mta assert noalias *a!
 | int i;!
 | int found_index = n;!
 | for (i = 0; i < n; i++) {!
3 P:$| if (b[i] == sought) {!
** reduction moved out of 1 loop!
 | if (i < found_index) {!
 | found_index = i;!
 | }!
 | for (int i = 0; i < found_index; i++)!
5 P | a[i] = b[i];

Summary

Loop parallelism is an important technique for
obtaining good performance on the XMT.
The compiler will automatically parallelize loop if
it can establish that it is safe to do so.
•  Safe means that parallelization will preserve the correct

program behavior.
Pragmas may be used to assist the compiler in
proving safety.
The compiler will also attempt to aggressively
transform loops to make them safe to parallelize.

38

Reading the Canal Output

Canal parallel annotations
 Code Description

P The compiler parallelized the loop automatically.

p An assertion caused the compiler to parallelize the loop.

D The compiler parallelized the loop, even though it looks like there
is a dependence between iterations.

L The loop is a linear recurrence or reduction that the compiler
parallelized.

39

Reading the Canal Output

Canal sequential annotations

Additional annotations

Code Description
- The compiler could not parallelize the loop.
S The marked statement prevented the compiler from

parallelizing the loop.
s The compiler could have parallelized the loop, but didn’t

because the loop had too few iterations.
X The compiler didn’t parallelize the loop, because the loop isn’t

inductive.

Code Description
U The compiler completely unrolled the loop.
e The compiler expanded the scalar variable in the statement to a

vector that it distributed across the loop iterations.
$ The compiler implemented the memory update in this statement

as an atomic operation, using full-empty bits.
40

Exercise 3

/mnt/lustre/Workshop/Exercise3

41

Lunch

42

Using Canal, Traceview and Bprof in
Apprentice2

 – with thanks to Tracy Hartford

43

Overview

§ Apprentice2
•  GUI application for debugging performance problems
•  Consists of one or more reports based on how your program

was compiled and executed
•  Canal Report

•  Feedback from the compiler
•  Insight on how latent parallelism was exploited
•  Information on expected resource utilization and scheduling

•  Tview Report
•  Hardware counter plots
•  Actual performance of your application
•  Runtime trap information for detecting hotspots

•  Bprof Report
•  Profile tables in terms of instructions issued and memory

references
44

Outline

§ Two sample workflows
•  Provide an overview of all the visual elements of Apprentice2
•  Highlight the interactions between the reports

•  Parallelizing and tuning a radix sort
•  Removing a hotspot from a BFS-like queue

45

Workflow: Radix Sort I

§ Write code
•  Sequentially sorts on each byte of an eight byte word, starting with
the least significant byte and preserving the relative ordering from
partial sort to partial sort.
•  Count the elements with the same value at the current byte position:
 for (i = 0; i < size; ++i) {

 cnt[MTA_BIT_PACK(~mask, src[i])]++;

 }
§ Compile
• cc –o radix.v1 sorted.c radix.v1.c
§ Post-process
• pproc radix.v1
§ Run Apprentice2
• app2 radix.v1.ap2 [additional .ap2 files]

46

Workflow: Radix Sort II

§ Modify code
•  Add user trace events to further identify areas of interest
•  Move the elements to their new relative positions
#pragma mta trace "shift elements"

 for (i = 0; i < size; ++i) {

 j = pos[MTA_BIT_PACK(~mask, src[i])]++;

 dst[j] = src[i];

 }

§ Recompile with tracing and profiling enabled
• cc –trace –profile –o radix.v1 sorted.c radix.v1.c
§ Run the application and post-process
• mtarun –trace –pproc radix.v1
§ Run Apprentice2
• app2 sorted.v1.ap2

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Workflow: Radix Sort III

Further modify code
•  Split the array up into sequential blocks, allowing us to

replicate the buckets into which we determine the
element counts and new positions.
#pragma mta assert no dependence
 for (k = 0; k < blocks; ++k) {
 for (i = beg(k); i < end(k); ++i) {
 j = pos[MTA_BIT_PACK(~mask,
 src[i])*blocks + k]++;
 dst[j] = src[i];
 }
 }

Recompile, run, post-process, and run
Apprentice2

 87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Workflow: Queue Append I

§ Write code
•  Append elements onto a queue like what might be done

when looking for unvisited nodes in the adjacency lists
for set of nodes during a parallelized BFS.
unsigned sync k = 0;
#pragma mta assert parallel
#pragma mta use 100 streams
 for (unsigned i = 0; i < n; ++i) {
 for (unsigned j = 0; j < cnt[i]; ++j) {
 dst[int_fetch_add(&k, 1)] = src[idx[i]+j];
 }
 }

§ Compile, run, post-process, and run Apprentice2

121

122

123

124

125

Workflow: Hotspot Queue II

§ Modify code
•  Grab multiple input and output elements at a time,

allowing blanks
 for (unsigned t = 0; t < blocks; ++t) {
 unsigned l = 0;
 for (unsigned i = beg(t); i < end(t); ++i) {
 for (unsigned j = 0; j < cnt[i]; ++j) {
 if (mod(l, BLOCKSIZE) == 0) {
 l = int_fetch_add(&k, BLOCKSIZE);
 }
 dst[l++] = src[idx[i] + j];
 }
 }
 }

§ Compile, run, post-process, and run Apprentice2
126

127

128

129

Source Code Trace Controls

#pragma mta trace [on | off | default]
– Doesn’t work unless compiled with the –trace flag

#pragma mta trace level n
–  Trace only functions that contain at least n lines
– Affects the rest of the source code in this file

#pragma mta trace “string that identifies this
point in the source code”

– Resource usage data is recorded at this point and associated
with this character string in the Traceview textual output

130

Managing very large trace/ap2 files

§  Created mechanism using temporary to help
offset memory usage on the login nodes
§ XMT login nodes lack the ability to swap
§ Root name for temp files set by environment
variable

§  export APP2_SWAPFILE = /mnt/lustre/users/app2
§  Will generate files with names like

§  /mnt/lustre/users/app2.xxxxxx
§ Temp files cleaned when exiting Apprentice2

131

Summary

§ Apprentice2
•  GUI based system allows rapid assimilation of information
•  Interaction between reports assists problem detection

•  Canal Report
•  Establishes a dialogue with the compiler that allows the creation

of highly parallelized and optimized code
•  Tview Report

•  Quickly identify underperforming code sections
•  Visualize resource utilization and concurrency
•  Pinpoint memory hotspots

•  Bprof Report
•  Target specific functions running the least efficiently

132

Additional Tools and Approaches

133

Dash: a Real-Time Resource Monitor

134

Accessing the Hardware Counters

unsigned issues, memrefs, concur, streams, traps, retries;

mta_reserve_task_event_counter(RT_ANY_COUNTER, RT_TRAP);

 /* other counters are available without reserving them */

 issues = mta_get_task_counter(RT_ISSUES);

 memrefs= mta_get_task_counter(RT_MEMREFS);

 concur= mta_get_task_counter(RT_CONCURRENCY);

 streams= mta_get_task_counter(RT_STREAMS);

 traps = mta_get_task_counter(RT_TRAP);

 retries = mta_get_task_counter(RT_MEM_RETRY);

 /* (continued on next slide) */

135

Accessing the Hardware Counters

 double start_time = timer();

 int result = bigParallelFunction();

 double elapsed_time = start_time - timer();

 issues = mta_get_task_counter(RT_ISSUES) - issues;

 memrefs= mta_get_task_counter(RT_MEMREFS) - memrefs;

 concur= mta_get_task_counter(RT_CONCURRENCY) - concur;

 streams= mta_get_task_counter(RT_STREAMS) - streams;

 traps = mta_get_task_counter(RT_TRAP) - traps;

 retries = mta_get_task_counter(RT_MEM_RETRY) - retries;

 /* printf() probably goes here */

136

Example: Using Hardware Counters

•  Customer was observing significant performance
difference between the two loops.
–  Loop 1:

–  Loop 2:

•  Significant point:
–  Endpoints is an array of unsigned integers, initialized using

prand_int.
–  Elements of endpoints are then randomly distributed 64-bit

unsigned integers over the range of all possible 64-bit unsigned
integers.

for (i = 0; i < no_of_edges; i++) {
 ends[i] = endpoints[i] + 1;
}

for(i = 0; i < no_of_edges; i++) {
 endpoints[i] = ends[i] % BILLION;
}

137

Modulo Instrumentation Example

Loop1: time copying to ends 6.654852e-02

 Loop2: time modulo 4.534740e+01

for (i = 0; i < no_of_edges; i++) {
 ends[i] = endpoints[i] + 1;
}

ticks: 33257303, secs: 0.066515, issues: 104509017, memrefs: 101770916,
traps: 0, retries: 717757, concurrency: 2542, streams: 755

for(i = 0; i < no_of_edges; i++) {
 endpoints[i] = ends[i] % BILLION;
}

ticks: 22673682155, secs: 45.347364, issues: 32993662421,
memrefs: 15585715642, traps: 49976693, retries: 18913196115,
concurrency: 811, streams: 610

138

Modulo Instrumentation Example

XMT only provides a 53-bit integer divide

Details:
•  If either x or y is more than 53 bits, the float extension

will be raised and the trap handler will complete the
operation successfully.

•  Sign extension is handled correctly, so for example,
INV_DIV_CHOP/INV_DIV_FLOOR support values in the
range [-253,253-1], whereas UNS_DIV supports values
in the range [0,253-1].

139

Modulo Instrumentation Example

The performance issue was that the modulo operator was
being applied to integers generated to be random across
all 64-bit unsigned integers.

Modified code snippet which avoids 64-bit divide

 unsigned int mask = (1 << 53) - 1;
#pragma mta assert nodep *endpoints
#pragma mta assert nodep *ends
for (i = 0; i < no_of_edges; i++) {
 endpoints[i] = (ends[i] & mask) % N2;
}

140

Modulo Instrumentation Example

Loop1: time copying to ends 6.654919e-02

Loop2: time modulo 8.084661e-02
unsigned int mask = (1 << 53) - 1;
for (i = 0; i < no_of_edges; i++) {
 endpoints[i] = (ends[i] & mask) % N2;
}

ticks: 40407611, secs: 0.080815, issues: 155276319, memrefs: 102072724,
traps: 0, retries: 673585, concurrency: 1939, streams: 720

for (i = 0; i < no_of_edges; i++) {
 ends[i] = endpoints[i] + 1;
}

ticks: 33258200, secs: 0.066516, issues: 104491617, memrefs: 101756261,
traps: 0, retries: 705688, concurrency: 2541, streams: 754

141

Looking at Assembly Code

•  From the command line
dis executableName

•  From within mdb
mdb> disass

0x004ac9ec (inst 2 (STORE_DISP r25 r1 (* 8 2)) (NOP))

0x004ac9ed (inst 1 (STORE_DISP r19 r1 (* 8 9)) (NOP))

0x004ac9ee (inst 0 (STORE_DISP r21 r1 (* 8 12)) (NOP))

0x004ac9ef (inst 0 (NOP) (INT_ADD_IMM r30 r0 15) (CLOCK r26 r0))

0x004ac9f0 (inst 0 (REG_LOAD_DISP r25 r31 (* 8 10)) (BIT_AND r30 r26 r30))

0x004ac9f1 (inst 0 (REG_LOAD_DISP r3 r31 (* 8 10)) (INT_ADD_IMM r25 r25 104))

0x004ac9f2 (inst 2 (LOAD_DISP r28 r31 (* 8 19)) (INT_ADD_IMM r3 r3 96))

0x004ac9f3 (inst 0 (LOAD r25 r25) (INT_ADD_IMM r29 r0 216) (REG_MOVE r10 r9))

0x004ac9f4 (inst 3 (LOAD r3 r3) (TARGET_RESTORE t5 r25) (REG_MOVE r5 r27))

0x004ac9f5 (inst 0 (LOAD_AC_INDEX r28 r28 ((fe_control FE_FUTURE)) r30) (TARGET_DISP t1…

142

SSCA #2, Kernel 4,
Betweenness Centrality

143

Betweenness Centrality of a Vertex

∑
s≠t≠v

shortest paths through v
all shortest paths from s to t

v

s

t

s

t

1

3

1

2

BC(v) =

144

Our Original Implementation

•  Large data structures => sequential outer loop

 /* Use |Vs| nodes to compute centrality values */
 for (s = 0; (s < NV) && (Vs > 0); s ++) {
 …
#pragma mta assert no dependence
 for (j = QHead[nQ - 1]; j < QHead[nQ]; j++) {
 …
 int myStart = start[v];
 int myEnd = start[v + 1];
#pragma mta assert no dependence
 for (k = myStart; k < myEnd; k++) {
 …

145

Original Version Didn’t Scale Well

Note: MTEPS=millions of traversed edges per second,
estimate defined as #vertices * 7 / execution time.

146

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140

M
TE

PS

Number of Processors

Original Betweeness Centrality Version,
Scale = 26

Trying to Scale Better

•  With larger systems, we thought we could run a few
iterations of the outermost loop in parallel

•  First attempt:

#define BFS_THREADS 16
…
#pragma mta assert parallel
 for(num_threads=0; num_threads < BFS_THREADS; num_threads ++){
for(;;) {
 start_vertex = int_fetch_add(&Vs_ptr,1);
 if (start_vertex > Vs -1) break;
 …

#pragma mta assert no dependence
 for (j = QHead[nQ - 1]; j < QHead[nQ]; j++) {

147

Resulting Canal Listing

•  Performance was horrible.
•  Canal:

•  What happened:
– Compiler assumed there was sufficient parallelism in the outer

loop.

…
7 pXX | for (j = QHead[nQ - 1]; j < QHead[nQ]; j++) {
…

148

Second Try

•  Using “loop future” parallelism

•  Performance was bad.
•  Canal output:

•  Parallelism was confined within BFS_THREADS
processors.

#pragma mta assert parallel

#pragma mta loop future

for(num_threads=0; num_threads < BFS_THREADS; num_threads ++){

…

Parallel region 7 in cenTrality in loop 6
 Single processor implementation

149

Third Approach

•  Use “future” variables
#define BFS_THREADS 16

 future int thread_id[BFS_THREADS];

 …

// Spawn off futures to run independent BFS processes

 for (num_threads=0; num_threads < BFS_THREADS; num_threads++) {

 future thread_id[num_threads](num_threads, G, BC,

 Vs, &Vs_ptr, permV, bfs_counter) {

 Process_cenTrality(G, BC, Vs, &Vs_ptr, …

 …

 for (num_threads=0; num_threads < BFS_THREADS; num_threads++) {

 touch (&thread_id[num_threads]);

 }

…

150

Additional tuning

#pragma mta max n processors
•  Limits the number of processors used on a multi-

processor loop to n
•  n must be a compile-time integer constant > 0
•  for collapsible loop nests, the max processors value for

the collapsed loop is the same as that specified for the
outer loop

 /* Use at most 4 processors. */

#pragma mta max 4 processors

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

151

Much Improved Performance and Scaling

152

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140

M
TE

PS

Number of Processors

Improved Version, Scale = 26

Lessons Learned

•  We used future variable parallelism because
–  The amount of parallelism in the outermost loop was small
–  The amount of parallelism in the inner loops was large and

dynamic
•  We used #pragma mta max n processor to control how

wide each of the inner parallel loops could grow
– Better load balancing across outer loops
– Avoid hotspotting in the Queues

153

This also works

•  Use “mta loop future” pragma on outer loop, but have
inner loop inside subroutine call
–  Loop parallelism inside Process_cenTrality subroutine call is

now multi-processor
– OK to do it this way, but not the intended use of the loop future

pragma. More targeted for large loop bounds.

#define BFS_THREADS 16

 …

// Outer loop to run independent BFS processes

#pragma mta loop future

 for (num_threads=0; num_threads < BFS_THREADS; num_threads++) {

 Process_cenTrality(G, BC, Vs, &Vs_ptr, …

 …

 }
154

Parallelism-Limiting Pragmas

#pragma mta max n processors
•  Limits the number of processors used on a

multiprocessor loop to n
•  n must be a compile-time integer constant > 0
•  for collapsible loop nests, the max processors value for

the collapsed loop is the same as that specified for the
outer loop

 /* Use at most 4 processors. */

#pragma mta max 4 processors

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

155

Parallelism-Limiting Pragmas

#pragma mta max concurrency c
•  Limits the number of processors used by a

multiprocessor loop to max(1, c/<num_streams_per_processor>),
where <num_streams_per_processor> is the number of streams
the compiler requests for each processor used by the
parallel loop.

•  Limits the number of streams used by a single
processor parallel loop to min(c, <max_streams_per_processor>)

•  c is a compile-time integer constant > 0

/* Use at most 512 streams across all processors. */
#pragma mta max concurrency 512
 for(i = 0; i < size; i++) {
 array[i] += array[i] + (size + i);

 }

156

Parallelism-Limiting Pragmas

•  Using them together…
 /* Use at most 512 streams across all processors or

 at most 8 processors, whichever is smaller */

#pragma mta max concurrency 512

#pragma mta max 8 processors

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 }

•  Loop future loops can only use the max concurrency
pragma:

 /* Create at most 512 futures. */

#pragma mta loop future

#pragma mta max concurrency 512

 for(i = 0; i < size; i++) {

 array[i] += array[i] + (size + i);

 } 157

New Pragmas in XMT PE Release 1.4 (1)

#pragma mta for all streams
{
 …
}
•  starts a parallel region
•  executes the statement or block of statements exactly

once for each stream allocated to the region
•  acts like an “assert parallel” pragma
•  can be used in conjunction with “use n streams” (but

no guarantee that many will be allocated)
#pragma mta use 100 streams
#pragma mta for all streams
{ //do parallel stuff
} 158

#pragma mta for all streams i of n
•  Sets n to the total number of streams executing the

region
•  Variable i is a unique per-stream identifier; 0 ≤ i ≤ n-1
int istr, ntotal;

int check_in_array[SOME_BIG_NUMBER];

for(istr=0; istr<SOME_BIG_NUMBER; istr++)

 check_in_array[istr] = 0;

#pragma mta for all streams istr of ntotal

{ check_in_array[istr] = 1;

 printf(“Stream %d of %d checked in.\n”, istr, ntotal);

}

159

New Pragmas in XMT PE Release 1.4 (2)

Generating Graphs on the
XMT

160

Generating synthetic graphs
•  Random graphs
•  R-MAT graphs

161

Random Graph

•  Or Erdös-Renyi graph

•  Given the number of vertices n, average number of out-
edges per vertex (out-degree) x,

•  Return a randomly-generated graph with n vertices with
a uniformly-distributed out-degree with average x

•  Random graphs are pretty “well-behaved”
–  Partition reasonably well

162

What Our Random Graph Generator Does

•  SSCA #2 Handout 1
•  Given desired # vertices (int), and desired average out-

degree (double), generates random graph
•  How it works:

– Generate array, length numEdges, with random vertex IDs in it
 randNeighbors(Neighbors, nN, numEdges,(double*)Marked, nN);

– Histogram the IDs
numNeighbors[Neighbors[i]]++;
–  This decides how many out-edges each vertex has.
– Now generate another array of numEdges random vertex IDs

 randNeighbors(Neighbors, nN, numEdges,(double*)Marked, nN);

–  Prefix-sum the numNeighbors array
numNeighbors[i] += numNeighbors[i-1];
– numNeighbors[i] now holds the starting index in the Neighbors

array of the neighbors of vertex i
 163

Random Graph Generator Example

0 1 2 3 Want five vertices, average two out-edges each.

2

1 3

0 0

2

1 4 1 0 3 2

4

4

randNeighbors(Neighbors, …

Neighbors

2 2 3 1

numNeighbors[Neighbors[i]]++;

numNeighbors Histogram:

2 1 3 4 0 2 3 0

8 5 3 0 7 numNeighbors Prefix sum:

numNeighbors[i] += numNeighbors[i-1];

Neighbors

randNeighbors(Neighbors, …

164

Resulting Graph

0

1

2

3

4

165

Power Law Graphs

•  Number of vertices with out-degree x = cx-β

•  Straight line on a log-log graph, with slope -β

out-degree

vertices
with that
degree

log(out-degree)

log(# vertices)

166

About Power Law Graphs

•  A few vertices with huge out-degree (“heavy-tailed”
distribution)

•  Contain clusters of “communities” (connectivity inside
> connectivity outside)

•  Found to be much closer fit to many “real world” social
networks
– WWW
–  Internet router graphs
– Citation graphs
–  Facebook
– …

•  Small diameter but high connectivity (“six degrees of
separation”)

•  AKA “self-similar”, “scale-free” graphs

167

Popular Power Law Graph Generator

•  R-MAT = “recursive matrix”
•  Invented by Chakrabarti, Yahoo! Research and

Falutsos, CMU
•  Four probability parameters, a, b, c and d

–  Three, really: d = 1.0 – (a + b + c)
•  Divide the graph adjacency matrix into four quadrants

start vertex

end vertex

a b

c d

168

Power Law Graph Generator

•  Apply recursively until you reach a single cell
•  Our implementation tweaks a, b, c and d ± at most 10%

every iteration
•  It also uses a hash table to eliminate duplicate edges
•  Typical parameters are a=.55, b=.19, c=.19, d=.07
•  SSCA #2 Handout 2 point to file instead???

start vertex

end vertex

a b

c d

a

d

b

c

b a

c d

169

Parallel I/O Using Snapshot/Restore

170

Avoiding Graph Generation

•  Generating synthetic data is often slow – e.g. graph
generation

•  We try to avoid it, when possible, by using Snapshot-
Restore.

•  STEPS:
– What you put in the source code: SSCA #2 Handout 3
– How you initialize for using the parallel file system

171

In the current configuration, the parallel file system is /
mnt/lustre, a Lustre file system

When fully configured, matterhorn will attach to a DVS
filesystem

Snapshot/restore will work identically on both systems

In the Source Code

The #includes needed, and some file names

#include <luc/luc_exported.h>
#include <snapshot/client.h>

const char VE_FILENAME[] =
 "/scratch/dmizell/mydata/rmat28_vertex_edge_info.data";
const char SV2_FILENAME[] =
 "/scratch/dmizell/mydata/rmat28_sv2_snapshot.data";
const char EV2_FILENAME[] =
 "/scratch/dmizell/mydata/rmat28_ev2_snapshot.data";
const char START_FILENAME[] =
 "/scratch/dmizell/mydata/rmat28_start_snapshot.data";
const char WEIGHT_FILENAME[] =
 "/scratch/dmizell/mydata/rmat28_weight_snapshot.data";

172

In the Source Code

Initializing the Snapshot library

// Initialize Snapshot Library
// The SWORKER_EP environment variable is read at this point.

 if (err = snap_init() != SNAP_ERR_OK)
 {
 fprintf(stderr,
"Failed to initialize snapshot library. Error %d. \n", err);
 }

173

Snapshot/Restore I/O Calls

Writing files

/* Memory allocated for the vertex/edge info data structure */
 int *veptr = (int *)malloc(2*sizeof(int));
 veptr[0] = G->numVertices; veptr[1] = G->numEdges;

// All file system workers must be able to access the specified path.
 numbytes = (size_t)(2*sizeof(int));
 err = snap_snapshot ((char *)VE_FILENAME, veptr,
 numbytes, &snapError);

 numbytes = (size_t)(G->numEdges*sizeof(int));
 err = snap_snapshot ((char *)SV2_FILENAME, G->startVertex,
 numbytes, &snapError);

//… more file writes…

174

Snapshot/Restore I/O Calls

Reading files

// Restore the Graph from disk

 numbytes = (size_t)(2*sizeof(int));

 err = snap_restore ((char *)VE_FILENAME, veptr, numbytes, &snapError);

 G->numVertices = veptr[0]; G->numEdges = veptr[1];

//…

// All file system workers must be able to access the specified path.

 numbytes = (size_t)(G->numEdges*sizeof(int));

 err = snap_restore ((char *)SV2_FILENAME, G->startVertex, numbytes, &snapError);

//… more file reads…

175

Exercise 4

/mnt/lustre/Workshop/Exercise4

176

Optional Homework

Dataflow exercise
/mnt/lustre/Workshop/Homework/wavefront

Integer Sort
/mnt/lustre/Workshop/Homework/sort

177

The End!

Thanks!

178

End of Day 2

179

Backup
Slides

180

Making Reductions and
Recurrences Run in Parallel
Thanks to Jon Berry, Sandia

181

Example 1

Summing the absolute values of integers
•  First try (compiler didn’t parallelize it)

 int total=0;
for (int i=0; i<n; i++) {
 if (v[i] < 0) {
 total += -v[i];
 } else {
 total += v[i];
 }
}

182

Second Try

Parallelized successfully
 int total=0;
for (int i=0; i<n; i++) {
 int incr = (v[i] < 0) * -v[i] + (v[i] >= 0) * v[i];
 total += incr;
}

183

A Conditional Reduction

•  This didn’t parallelize:

•  This did:

int max=0;
for (int i=0; i<n; i++) {
 int candidate = mask[i] * v[i];
 if (candidate > max) {
 max = candidate;
 }
}

int max=0;
for (int i=0; i<n; i++) {
 if (mask[i] && v[i] > max) {
 max = v[i];
 }
}

184

