Compilers

PGl

Recommended first compile/run
— -fastsse —tp barcelona-64
Get diagnostics
— -Minfo —Mneginfo
Inlining
— —Mipa=fast,inline
Recognize OpenMP directives

— -mp=nonuma
Automatic parallelization
— -Mconcur

Pathscale

Recommended first compile/run

— Ftn —03 —OPT:Ofast -
march=barcelona

Get Diagnostics

— -LNO:simd_verbose=ON
Inlining

— -ipa

Recognize OpenMP directives
— -mp

Automatic parallelization

— -apo

PGI Basic Compiler Usage

A compiler driver interprets options and invokes pre-processors, compilers,
assembler, linker, etc.

Options precedence: if options conflict, last option on command line takes
precedence

Use -Minfo to see a listing of optimizations and transformations performed
by the compiler

Use -help to list all options or see details on how to use a given option, e.g.
pgfo0 -Mvect -help

Use man pages for more details on options, e.g. “man pgf90”

Use —v to see under the hood

Flags to support language dialects

* Fortran

— pgf77, pgf90, pgfo5, pghpf tools

— Suffixes .f, .F, .for, .fpp, .f90, .F90, .f95, .F95, .hpf, .HPF

— -Mextend, -Mfixed, -Mfreeform

— Type size —i2, -i4, -i8, -r4, -r8, etc.

— -Mcray, -Mbyteswapio, -Mupcase, -Mnomain, -Mrecursive, etc.
 C/C++

— psgcc, pgCC, aka pgcpp

— Suffixes .c, .C, .cc, .cpp, .i

— -B, -c89, -c9x, -Xa, -Xc, -Xs, -Xt

— -Msignextend, -Mfcon, -Msingle, -Muchar, -Mgccbugs

Specifying the target architecture

 Use the “tp” switch. Don’t need for Dual Core
— -tp k8-64 or —tp p7-64 or —tp core2-64 for 64-bit code.
— -tp amd64e for AMD opteron rev E or later
— -tp x64 for unified binary
— -tp k8-32, k7, p7, piv, piii, p6, p5, px for 32 bit code
— -tp barcelona-64

Flags for debugging aids

-g generates symbolic debug information used by a debugger

-gopt generates debug information in the presence of optimization
-Mbounds adds array bounds checking

-v gives verbose output, useful for debugging system or build problems
-Milist will generate a listing

-Minfo provides feedback on optimizations made by the compiler

-S or —Mkeepasm to see the exact assembly generated

Basic optimization switches

Traditional optimization controlled through -O[<n>], nis O to 4.

-fast switch combines common set into one simple switch, is equal to -0O2 -
Munroll=c:1 -Mnoframe -Mire

— For -Munroll, ¢ specifies completely unroll loops with this loop count or
less

— -Munroll=n:<m> says unroll other loops m times
-Mire is loop-carried redundancy elimination

Basic optimization switches, cont.

» fastsse switch is commonly used, extends —fast to SSE hardware, and
vectorization

« -fastsse is equal to -0O2 -Munroll=c:1 -Mnoframe -Mlre (-fast) plus -
Mvect=sse, -Mscalarsse -Mcache_align, -Mflushz

* -Mcache_align aligns top level arrays and objects on cache-line boundaries
 -Mflushz flushes SSE denormal numbers to zero

Node level tuning

Vectorization — packed SSE instructions maximize performance
Interprocedural Analysis (IPA) — use it! motivating examples
Function Inlining — especially important for C and C++

Parallelization — for Cray multi-core processors

Miscellaneous Optimizations — hit or miss, but worth a try

What can Interprocedural Analysis and
Optimization with —Mipa do for You?
o Interprocedural constant propagation
o Pointer disambiguation
o Alignment detection, Alighnment propagation
o Global variable mod/ref detection
o F90 shape propagation
o Function inlining

o IPA optimization of libraries, including inlining

Effect of IPA on
the WUPWISE Benchmark

Execution Time in
PGF9S5 Compiler Options Seconds
—fastsse 156.49
—fastsse —Mipa=fast 121.65
—fastsse —Mipa=fast.inline 91.72

o —Mipa=fast => constant propagation => compiler sees complex
matrices are all 4x3 => completely unrolls loops

0 —Mipa=fast,inline => small matrix multiplies are all inlined

Using Interprocedural Analysis

Must be used at both compile time and link time
Non-disruptive to development process — edit/build/run
Speed-ups of 5% - 10% are common

—Mipa=safe:<name> - safe to optimize functions which
call or are called from unknown function/library name

—Mipa=libopt — perform IPA optimizations on libraries

—Mipa=libinline — perform IPA inlining from libraries

Explicit Function Inlining

—Minline[=[lib:]<inlib> | [name:]<func> | except:<func> |
size:<n> | levels:<n>]

[1ib:]<inlib> Inline extracted functions from inlib
[name: |<func> Inline function func

except:<func> Do not inline function func
size:<n> Inline only functions smaller than n

statements (approximate)

levels:<n> Inline n levels of functions

For C++ Codes, PGI Recommends IPA-based
inlining or —Minline=levels:10!

Other C++ recommendations

o Encapsulation, Data Hiding - small functions, inline!
o Exception Handling — use —no_exceptions until 7.0

o Overloaded operators, overloaded functions - okay
o Pointer Chasing - -Msafeptr, restrict qualifer, 32 bits?
o Templates, Generic Programming — now okay

0 Inheritance, polymorphism, virtual functions — runtime
lookup or check, no inlining, potential performance penalties

SMP Parallelization
o —Mconcur for auto-parallelization on multi-core
> Compiler strives for parallel outer loops, vector SSE inner loops
> —Mconcur=innermost forces a vector/parallel innermost loop
> —Mconcur=cncall enables parallelization of loops with calls
o —mp to enable OpenMP 2.5 parallel programming model
> See PGl User’s Guide or OpenMP 2.5 standard

> OpenMP programs compiled w/out -mp=nonuma

o —Mconcur and —-mp can be used together!

EKOPath Basic Optimizations PathScale-

—r
-g Generate debug (DWARF) information. Changes
optimization level to -O0 unless explicitly overridden.
-00 No optimization
-01 Local optimization (straight line code)
-02 Global scalar optimizations (-O2 is default)
-03 Loop level transformations and vectorizations
-ipa Inter-procedural optimizations (whole program). Can

be used at any optimization level.

-OPT:0fast Generally safe but may impact floating point
correctness. Maximizes performance. Equivalent to:

-OPT:r0=2:01imit=0:div _split=0ON:alias=typed
-Ofast Equivalent to
-03 -ipa -OPT:0fast -fno-math-errno

FathScale, LLC - Copyright @ 2008 Slide 11
/] L7/UY 10

Option Groups PathScale-
——

Options organized into groups by compiler phase or by class of feature

General syntax:
-GROUPNAME : opt [=val]{:opt=[val]}
Some GNU-style flags map to these options
-march -ffast-math -ffloat-store -fno-inline

* Group names:

-LIST: User listing

-OPT: Optimizations

-TARG: Target machine

-TENV: Target environment

-INLINE: Back-end inlining

-IPA: Inter-procedural analysis

-LANG: Language features

-CG: Code generation

-WOPT: Global scalar optimization

-LNO: Loop nest optimization
FathScale. LLC - Copyright @ 2008 Slide 12

7/17/09 L/

Alias options PathScale

Improving performance of generated code by allowing the
compiler to make assumptions about aliasing

Mainly for C/C++ programs
-OPT:alias=typed
Activate ANSI/ISO C standard
Object not aliased if they have different base types
Implied by —Ofast

-OPT:alias=restrict
Regard all pointers as having the ‘restrict’ attribute

-OPT:alias=disjoint
No two pointers ever point to the same object
Many programs will not run correctly with this option

. , Slide 14
7/17/07 PathScale. LLC - Copyright @ 2008 I e,

Controlling Floating-point Code PathScale
——

+ Lower precision requirements to allow for faster code

- OPT:roundoff=
- Specifies extent of roundoff error the compiler is allowed to introduce
- 0 = no roundoff error (default at -00, -01, -02)
- 1 = limited roundoff error (default at -03)

- 2 = allow roundoff error due to re-associating expressions (default at -0Ofast)
- 3 = any roundoff error is allowed
- OPT:IEEE arithmetics=

- Specifies level of conformance to IEEE 754 floating-point roundoff and
overflow behavior

- 1 = string conformance to |IEEE accuracy (default at -00, -01, -02)
- 2 = allow inexact results not conforming to IEEE 754 (default at -03)
- 3 = allow any mathematically valid transformations

-OPT:IEEE NaN Inf={(on|off)
— Controls conformance to IEEE for Not-a-Number and Infinity operands
— Defaultis on

FathScalo, LLC - Copyright @ 2008 Slide 15

7/17/09 19

7/

Parallelization PathScale

—

* OpenMP

— Option to enable directives:

_mp
— OpenMP 2.5 in Fortran, C, & C++

* The C++ OpenMP support is limited and does not support OpenMP
directives in C++ source that use exceptions, classes or templates.

(We have found some codes with very simplistic use of classes may
work.)

* Autoparallelization
— Option to enable: -apo

FathScale, LLC - Copyright @ 2008 Slide 13

7/17/09

Performance Tuning PathScale

-Ofast Is the most aggressive optimization option

Equivalentto -03 -ipa -0OPT:0fast -fno-math-errno

-OPT:0fast is equivalent to
-OPT:ro=2:01limit=0:div_split=0N:alias=typed

— A large number of other options are related to performance
tuning
* Phase specific options:
-CG
-INLINE
-IPA

-WOPT
-LNO

— PathOpt2 allows automatic search of best flag
combinations

PathSecalo, LLC - Copyright @ 2008 Slide 20

—

21

P_athScaIe'

—

Tuning for AMD “Barcelona”

* Tuned Prefetch for smaller L2 cache

— option LNO: stream_prefetch=1

— option CG:use_prefetch_nta (non temporal)
« SIMD unaligned loads

— improves vectorization

* FP instruction tuning

— aligned packed double (movapd)
* replaces scalar double (movsd)
* removes register dependency

— movsd replaces movlpd (for loads)

Above changes account for >10% performance improvement

PathScale, LLC - Copyvight @ 2008 Slide 21

7/17/09 22

Options to Help Expose User Errors PathScale

e ———

——

Prlograi\ms may run incorrectly only at higher optimization
evels

— Causes include compiler bugs or bad coding practices

To help diagnose bad coding practices
-OPT:alias=no_parm

* Fortran compiler does NOT assume Fortran no-alias rule for
parameters

-LANG:rw_const=on
* For cases where callee modifies constant argument
-trapuv

* Initializes variables with NaN. If program uses the uninitialized
variable, it will crash instead of generating incorrect results

-zZerouv
* |nitializes variables to 0

* Good for programs that incorrectly assume memory is always
initialized to zero.

PathScale. LLC - Copyright @ 2008 Slide 23

7/17/09 —

The Cray Compiler Environment:
Introduction and Intial Results

Nathan Wichmann
wichmann@cray.com

Outline

Introduction to the Cray compiler

Example
GTC
Overflow
PARQUET

THE SUPERCOMPUTER COMPANY

Cray Compiler Environment (CCE): = S=Eaay.

Brief History of Time
Cray has a long tradition of high performance compilers

Vectorization
Parallelization

Code transformation
More...

Began internal investigation leveraging an open source
compiler called LLVM

Initial results and progress better than expected
Decided to move forward with Cray X86 compiler
7.0 released in December 2008

7.1 will be released Q2 2009

CRRANY

THE SUPERCOMPUTER COMPANY

Technology Sources

Fortran Source C and C++ Source C and C++ Front End
supplied by Edison Design
Group, with Cray-developed
code for extensions and
interface support

Cray Inc. Compiler
Technology

X86 Code Generation from
Open Source LLVM, with
additional Cray-developed
optimizations and interface
support

Cray Opteron Compiler: Howtouseit ~—mnmmmnsmmm

Make sure it is available
module avail PrgEnv-cray

To access the Cray compiler
module load PrgEnv-cray

To target the Barcelona chip
module load xtpe-quadcore

Once you have loaded the module “cc” and “ftn” are the Cray
compilers

Recommend just using default options
Use —rm (fortran) and —hlist=m (C) to find out what happened
man crayftn

Cray Opteron Compiler: Current Capabilities @ = mesremconmmncowmw

Excellent Vectorization

Vectorize more loops than other compilers
OpenMP

2.0 standard

Nesting
PGAS: Functional UPC and CAF available today.
Excellent Cache optimizations

Automatic Blocking

Automatic Management of what stays in cache

Prefetching, Interchange, Fusion, and much more...

Cray Opteron Compiler: Future Capabilities @~ — mesrewmencom

C++ Support
Automatic Parallelization

Modernized version of Cray X1 streaming capability
Interacts with OMP directives

OpenMP 3.0
Optimized PGAS
Will require Gemini network to really go fast
Improved Vectorization
Improve Cache optimizations

Case Study: The Gyrokinetic Toroidal Code (GTC)

Plasma Fusion Simulation
3D Particle-in-cell code (PIC) in toroidal geometry
Developed by Prof. Zhihong Lin (now at UC Irvine)

Code has several different characteristics
Stride-1 copies
Strided memory operations
Computationally intensive
Gather/Scatter
Sorting and Packing

Main routine is known as the “pusher”

CCCCCCCCCCCCCCCCCCCCCCC

Case Study: The Gyrokinetic Toroidal Code (GTC) — mesremsormurencomma

Main Pusher kernel consists of 2 main loop nests

First loop nest contains groups of 4 statements which include
significant indirect addressing
el=el+wpO0*wt00*(wz0*gradphi(1,0,ij)+wzl1*gradphi(1,1,ij))
e2=e2+wp0*wt00*(wz0*gradphi(2,0,ij)+wzl1*gradphi(2,1,ij))
e3=e3+wp0*wt00*(wz0*gradphi(3,0,ij)+wzl1*gradphi(3,1,ij))
ed4=ed+wp0*wt00*(wz0*phit(0,ij)+wz1*phit(1,ij))

Turn 4 statements into 1 vector shortloop
ev(1:4)=ev(1:4)+wp0*wt00*(wz0*tempphi(1:4,0,ij)+wzl*tempphi(1:4,1,ij))
Second loop is large, computationally intensive, but contains
strided loads and computed gather

CCE automatically vectorizes loop

Case Study: GTC

CRRANY

THE SUPERCOMPUTER COMPANY

Billion Particles Pushed/Sec

40.0

35.0

30.0

25.0

20.0

15.0

10.0

5.0

GTC Pusher performance
3200 MPI ranks and 4 OMP threads

W CCE

M Previous Best

Case Study: GTC

Billion Particles Pushed/Sec

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

GTC performance
3200 MPI ranks and 4 OMP threads

CRANY

THE SUPERCOMPUTER COMPANY

W CCE

M Previous Best

Case Study: Overflow i mesreewnmcounw

Overflow is a NASA developed Navier-Stokes flow solver for
unstructured grids

Subroutines consist of two or three simply-nested loops

Inner loops tend to be highly vectorized and have 20-50
Fortran statements

MPI is used for parallel processing

Solver automatically splits grid blocks for load balancing
Scaling is limited due to load balancing at > 1024

Code is threaded at a high-level via OpenMP

Overflow Scaling using only MPI vs MPI & OMP

CRANY”

THE SUPERCOMPUTER COMPANY

Time in Seconds

4096

2048

1024

512

256

Overflow Scaling

Previous-MPI
\ CCE-MPI
== CCE-OMP 2 thr
><\)\/X =>¢=CCE-OMP 4 thr
256 512 1024 2048 4096 8192

Number of Cores

PPPPPPPPPPPPPPPPPPPPPPP

Case Study: PARQUET

Materials Science code
Scales to 1000s of MPI ranks before it runs out of parallelism
Want to use shared memory parallelism across entire node

Main kernel consists of 4 independent zgemms
Want to use multi-level OMP to scale across the node

Case Study: PARQUET

ISomp parallel do ...
doi=1,4
call complex_matmul(...)

enddo

Subroutine complex_matmul(...)
ISomp parallel do private(j,jend,jsize)! num_threads(p2)
do j=1,n,nb
jend = min(n, j+nb-1)
jsize=jend-j+1
call zgemm(transA,transB, m,jsize,k, &
alpha,A,ldA,B(j,1),ldb, beta,C(1,j),IdC)
enddo

CCCCCCCCCCCCCCCCCCCCCCC

CRANY
Ca se Stu dy: PARQU ET THE SUPERCOMPUTER COMPANY

ZGEMM 1000x1000

80

70

60

50

40

GFlops

30

20

10

Serial ZGEMM High Level OMP Nested OMP Nested OMP Nested OMP Low level OMP
ZGEMM 4x1 ZGEMM 3x3 ZGEMM 4x2 ZGEMM 2x4 ZGEMM 1x8

Parallel method and Nthreads at each level

CRANY
Ca se Stu dy: PARQU ET THE SUPERCOMPUTER COMPANY

ZGEMM 100x100

35

30

25

20

15

10 I:
0 -1

Serial ZGEMM High Level OMP Nested OMP Nested OMP Low Level ZGEMM
ZGEMM 4x1 ZGEMM 3x3 ZGEMM 4x2 1x8

GFlops

(92}
]

Parallel method and Nthreads at each level

PPPPPPPPPPPPPPPPPPPPPPP

Conclusions

The Cray Compiling Environment is a new, different, and
interesting compiler with several unique capabilities

Several codes are already taking advantage of CCE
Development is ongoing

Consider trying CCE if you think you could take
advantage of its capabilities

