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Cray Programming Environment Focus

It is the role of the Programming Environment to close the gap between 
observed performance and peak performance
• Help users achieve highest possible performance from the hardware

The Cray Programming Environment addresses issues of scale and 
complexity of high end HPC systems.
• The Cray Programming Environment helps users to be more productive
• It is the place at which the complexity of a system is hidden from the user

User productivity is enhanced with 
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p y
• Increased automation
• Ease of use
• Extended functionality and improved reliability
• Close interaction with users for feedback targeting functionality 

enhancements



Cray Inc. Confidential

The Cray Compiling Environment
Ability and motivation to provide high-quality support for custom 
Cray network hardware
Cray technology focused on scientific applications
• Takes advantage of Cray’s extensive knowledge of automaticTakes advantage of Cray s extensive knowledge of automatic 

vectorization
• Takes advantage of Cray’s extensive knowledge of automatic shared 

memory parallelization
• Supplements, rather than replaces, the available compiler choices 

Standard conforming languages and programming models
• Fortran 2003 Compliant – Working on Fortran 2008
• OpenMP

Fully integrated with other compiler optimizations, including 
automatic shared memory parallelization

• UPC & CoArray Fortran• UPC & CoArray Fortran
Fully optimized and integrated into the compiler
No preprocessor involved
Target the network appropriately:

• GASNet with Portals
• DMAPP with Gemini
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CCE Main Features
Fortran 2003 standard compliant
• Selected F2008 features

C99 and C++ support
UPC 1.2 and Fortran 2008 CAF functional support
OpenMP 3.0 support (with limitations)
Vectorization
Automatic cache blocking
Automatic multithreading
Prefetching, Interchange, Fusion
Cray performance tools and debugger support
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OpenMP
CCE 7.1 supports the OpenMP 3.0 specification, with minor limitations:
• C++ random access iterator loops marked for work sharing may not get work 

shared
• Task switching is not implementedg p
• Limitations to be removed in future releases

OpenMP and automatic multithreading are fully integrated with the 
compiler
• Share the same runtime and resource pool
• Aggressive loop restructuring and scalar optimization is done in the 

presence of OpenMP
• Consistent interface for managing OpenMP and automatic multithreadingg g p g

Nested parallelism and OpenMP tasks can be used to take advantage of 
increasing numbers of cores within a node
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CCE case studies
Cray benchmark team studies
Examples of multiple levels of parallelism
• MPIMPI
• OpenMP (including nesting and tasks)
• Vectorization
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Case Study: The Gyrokinetic Toroidal Code (GTC)

Plasma Fusion Simulation
3D Particle-in-cell code (PIC) in toroidal geometry
Developed by Prof. Zhihong Lin (now at UC Irvine) 
Code has several different characteristics
• Stride-1 copies
• Strided memory operations
• Computationally intensive
• Gather/ScatterGather/Scatter
• Sorting and Packing

Main routine is known as the “pusher”
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Case Study:  GTC
GTC Pusher 
performance 
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Case Study:  Overflow
Overflow is a NASA developed Navier-Stokes flow 
solver for unstructured grids
Subroutines consist of two or three simply-nestedSubroutines consist of two or three simply nested 
loops
Inner loops tend to be highly vectorized and have 
20-50 Fortran statements
MPI is used for parallel processing
• Solver automatically splits grid blocks for load 

balancingbalancing
• Scaling is limited due to load balancing at > 

1024
Code is threaded at a high-level via OpenMP
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Overflow Scaling using only MPI vs MPI & OMP
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Case Study:  PARQUET

Materials Science code 
Scales to 1000s of MPI ranks before it runs out of 
parallelismparallelism
Want to use shared memory parallelism across 
entire node

Main kernel consists of 4 independent zgemms
Want to use multi-level OMP to scale across the 
node
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Case Study:  PARQUET
!$omp parallel do …
do i=1,4

call complex_matmul(…)
ddenddo

Subroutine complex_matmul(…)
!$omp       parallel do private(j,jend,jsize)! num_threads(p2)

do j=1,n,nb
jend = min(n, j+nb-1)
jsize = jend j + 1jsize = jend - j + 1
call zgemm( transA,transB, m,jsize,k,                        &

alpha,A,ldA,B(j,1),ldb, beta,C(1,j),ldC)
enddo
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Case Study:  PARQUET
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CrayPat OpenMP Performance Metrics
Per-thread timings

Overhead incurred at enter/exit of
• Parallel regions
• Worksharing constructs within parallel regions

Load balance information across threads

Separate metrics for OpenMP runtime and OpenMP API calls

Default view (no options needed to pat_report)
• Focus on where program is spending its time
• Shows imbalance across all threads
• Assumes all requested resources should be used
• Highlights non-uniform imbalance across threads
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UPC Overview
Unified Parallel C (UPC)
• Extensions to the standard C language

Programmer can statically or dynamically allocate data inProgrammer can statically or dynamically allocate data in 
shared storage that is accessible from all PEs
Different parts of an allocation can have affinity to different 
Pes
• Referred to as Partitioned Global Address Space (PGAS)

All PEs execute the whole program
• UPC PEs are called threads

these are not pthreads

Conditional code used to limit certain program regions to 
smaller groups of PEs
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UPC 1.2 extensions
Shared type qualifier can be applied to scalars, arrays, and 
pointers
Array elements distributed across PEs in a “round-robin”Array elements distributed across PEs in a round-robin  
fashion
Optional block size value can change the distribution 
granularity from one element to many
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UPC for Cray XT systems
Command line option –hupc
UPC is fully integrated into the compiler
• No preprocessor involvedNo preprocessor involved
• Compiler optimizer is UPC-aware

Runtime provided by Cray libpgas
• Libpgas supports both UPC and Fortran with Coarrays (CAF)

Remote accesses turn into networking layer library calls
• GASNet 

Berkeley library for supporting PGAS programming models
Used for Cray XT SeaStar systems (Portals conduit)

• DMAPP
Cray Distributed Memory Application communication library
Optimized for Cray XT Gemini systems
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UPC compiler implementation
Recognize global memory (PGAS) accesses
Linearize PGAS addresses such that the PE number is in 
the upper bitsthe upper bits
Mask off the PE number for accesses that are really local
Turn UPC operations into libpgas calls
• Use direct calls to GASNet or DMAPP when possible

Optimize stride-1 data accesses
• Compiler pattern matching feature
• Recognize stride-1 data access patterns and substitute calls toRecognize stride 1 data access patterns and substitute calls to 

optimized library routines

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 19

UPC Gemini enhancements
Compiler takes advantage of new functionality available with 
DMAPP on Gemini
• Remote AMO functions
• PE-strided remote memory access functions
• Remote memory scatter and gather functions
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Summary
The Cray Compiling Environment is focused on enhancing 
user productivity
• Deliver high performance automatically

Aggressive optimization with default command line options
Support for custom Cray network hadware

• Support standard programming models
Fully integrated OpenMP
Fully integrated UPC and Fortran Coarrays
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Thank You!
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