
Cray Inc. Confidential

The Cray Compiling Environment:
Bridging the User to High Performance

Luiz DeRose
Programming Environment Director

C I

Luiz DeRose (ldr@cray.com) © Cray Inc.

CSCS
July 13-15, 2009

Cray Inc.

Cray Programming Environment Focus

It is the role of the Programming Environment to close the gap between
observed performance and peak performance
• Help users achieve highest possible performance from the hardware

The Cray Programming Environment addresses issues of scale and
complexity of high end HPC systems.
• The Cray Programming Environment helps users to be more productive
• It is the place at which the complexity of a system is hidden from the user

User productivity is enhanced with

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 2

p y
• Increased automation
• Ease of use
• Extended functionality and improved reliability
• Close interaction with users for feedback targeting functionality

enhancements

Cray Inc. Confidential

The Cray Compiling Environment
Ability and motivation to provide high-quality support for custom
Cray network hardware
Cray technology focused on scientific applications
• Takes advantage of Cray’s extensive knowledge of automaticTakes advantage of Cray s extensive knowledge of automatic

vectorization
• Takes advantage of Cray’s extensive knowledge of automatic shared

memory parallelization
• Supplements, rather than replaces, the available compiler choices

Standard conforming languages and programming models
• Fortran 2003 Compliant – Working on Fortran 2008
• OpenMP

Fully integrated with other compiler optimizations, including
automatic shared memory parallelization

• UPC & CoArray Fortran• UPC & CoArray Fortran
Fully optimized and integrated into the compiler
No preprocessor involved
Target the network appropriately:

• GASNet with Portals
• DMAPP with Gemini

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 3Slide 3

CCE Main Features
Fortran 2003 standard compliant
• Selected F2008 features

C99 and C++ support
UPC 1.2 and Fortran 2008 CAF functional support
OpenMP 3.0 support (with limitations)
Vectorization
Automatic cache blocking
Automatic multithreading
Prefetching, Interchange, Fusion
Cray performance tools and debugger support

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 4

Cray Inc. Confidential

OpenMP
CCE 7.1 supports the OpenMP 3.0 specification, with minor limitations:
• C++ random access iterator loops marked for work sharing may not get work

shared
• Task switching is not implementedg p
• Limitations to be removed in future releases

OpenMP and automatic multithreading are fully integrated with the
compiler
• Share the same runtime and resource pool
• Aggressive loop restructuring and scalar optimization is done in the

presence of OpenMP
• Consistent interface for managing OpenMP and automatic multithreadingg g p g

Nested parallelism and OpenMP tasks can be used to take advantage of
increasing numbers of cores within a node

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 5

CCE case studies
Cray benchmark team studies
Examples of multiple levels of parallelism
• MPIMPI
• OpenMP (including nesting and tasks)
• Vectorization

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 6

Cray Inc. Confidential

Case Study: The Gyrokinetic Toroidal Code (GTC)

Plasma Fusion Simulation
3D Particle-in-cell code (PIC) in toroidal geometry
Developed by Prof. Zhihong Lin (now at UC Irvine)
Code has several different characteristics
• Stride-1 copies
• Strided memory operations
• Computationally intensive
• Gather/ScatterGather/Scatter
• Sorting and Packing

Main routine is known as the “pusher”

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 7

Case Study: GTC
GTC Pusher
performance

3200 MPI ranks and 4

GTC Pusher
performance

3200 MPI ranks and 4

20 0

25.0

30.0

35.0

40.0

es
 P

us
he

d/
Se

c

3200 MPI ranks and 4
OMP threads

CCE
20 0

25.0

30.0

35.0

40.0

es
 P

us
he

d/
Se

c

3200 MPI ranks and 4
OMP threads

CCE

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 8

-

5.0

10.0

15.0

20.0

B
ill

io
n

Pa
rt

ic
le Previous

Best

-

5.0

10.0

15.0

20.0

B
ill

io
n

Pa
rt

ic
le Previous

Best

Cray Inc. Confidential

Case Study: Overflow
Overflow is a NASA developed Navier-Stokes flow
solver for unstructured grids
Subroutines consist of two or three simply-nestedSubroutines consist of two or three simply nested
loops
Inner loops tend to be highly vectorized and have
20-50 Fortran statements
MPI is used for parallel processing
• Solver automatically splits grid blocks for load

balancingbalancing
• Scaling is limited due to load balancing at >

1024
Code is threaded at a high-level via OpenMP

Slide 9July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc.

Overflow Scaling using only MPI vs MPI & OMP

4096

Overflow Scaling

1024

2048

Ti
m

e
in

 S
ec

on
ds

Previous-MPI

CCE-MPI

CCE-OMP 2 thr

CCE-OMP 4 thr

256

512

256 512 1024 2048 4096 8192

Number of Cores

July 13-15 2009 Slide 10Luiz DeRose (ldr@cray.com) © Cray Inc.

Cray Inc. Confidential

Case Study: PARQUET

Materials Science code
Scales to 1000s of MPI ranks before it runs out of
parallelismparallelism
Want to use shared memory parallelism across
entire node

Main kernel consists of 4 independent zgemms
Want to use multi-level OMP to scale across the
node

Slide 11July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc.

Case Study: PARQUET
!$omp parallel do …
do i=1,4

call complex_matmul(…)
ddenddo

Subroutine complex_matmul(…)
!$omp parallel do private(j,jend,jsize)! num_threads(p2)

do j=1,n,nb
jend = min(n, j+nb-1)
jsize = jend j + 1jsize = jend - j + 1
call zgemm(transA,transB, m,jsize,k, &

alpha,A,ldA,B(j,1),ldb, beta,C(1,j),ldC)
enddo

Slide 12July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc.

Cray Inc. Confidential

Case Study: PARQUET

70

80

ZGEMM 1000x1000

20

30

40

50

60

70

G
Fl

op
s

Slide 13

0

10

20

Serial ZGEMM High Level OMP
ZGEMM 4x1

Nested OMP
ZGEMM 3x3

Nested OMP
ZGEMM 4x2

Nested OMP
ZGEMM 2x4

Low level OMP
ZGEMM 1x8

Parallel method and Nthreads at each level
July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc.

Case Study: PARQUET

30

35

ZGEMM 100x100

10

15

20

25

30

G
Fl

op
s

Slide 14

0

5

Serial ZGEMM High Level OMP
ZGEMM 4x1

Nested OMP
ZGEMM 3x3

Nested OMP
ZGEMM 4x2

Low Level
ZGEMM 1x8

Parallel method and Nthreads at each level

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc.

Cray Inc. Confidential

CrayPat OpenMP Performance Metrics
Per-thread timings

Overhead incurred at enter/exit of
• Parallel regions
• Worksharing constructs within parallel regions

Load balance information across threads

Separate metrics for OpenMP runtime and OpenMP API calls

Default view (no options needed to pat_report)
• Focus on where program is spending its time
• Shows imbalance across all threads
• Assumes all requested resources should be used
• Highlights non-uniform imbalance across threads

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 15

UPC Overview
Unified Parallel C (UPC)
• Extensions to the standard C language

Programmer can statically or dynamically allocate data inProgrammer can statically or dynamically allocate data in
shared storage that is accessible from all PEs
Different parts of an allocation can have affinity to different
Pes
• Referred to as Partitioned Global Address Space (PGAS)

All PEs execute the whole program
• UPC PEs are called threads

these are not pthreads

Conditional code used to limit certain program regions to
smaller groups of PEs

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 16

Cray Inc. Confidential

UPC 1.2 extensions
Shared type qualifier can be applied to scalars, arrays, and
pointers
Array elements distributed across PEs in a “round-robin”Array elements distributed across PEs in a round-robin
fashion
Optional block size value can change the distribution
granularity from one element to many

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 17

UPC for Cray XT systems
Command line option –hupc
UPC is fully integrated into the compiler
• No preprocessor involvedNo preprocessor involved
• Compiler optimizer is UPC-aware

Runtime provided by Cray libpgas
• Libpgas supports both UPC and Fortran with Coarrays (CAF)

Remote accesses turn into networking layer library calls
• GASNet

Berkeley library for supporting PGAS programming models
Used for Cray XT SeaStar systems (Portals conduit)

• DMAPP
Cray Distributed Memory Application communication library
Optimized for Cray XT Gemini systems

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 18

Cray Inc. Confidential

UPC compiler implementation
Recognize global memory (PGAS) accesses
Linearize PGAS addresses such that the PE number is in
the upper bitsthe upper bits
Mask off the PE number for accesses that are really local
Turn UPC operations into libpgas calls
• Use direct calls to GASNet or DMAPP when possible

Optimize stride-1 data accesses
• Compiler pattern matching feature
• Recognize stride-1 data access patterns and substitute calls toRecognize stride 1 data access patterns and substitute calls to

optimized library routines

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 19

UPC Gemini enhancements
Compiler takes advantage of new functionality available with
DMAPP on Gemini
• Remote AMO functions
• PE-strided remote memory access functions
• Remote memory scatter and gather functions

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 20

Cray Inc. Confidential

Summary
The Cray Compiling Environment is focused on enhancing
user productivity
• Deliver high performance automatically

Aggressive optimization with default command line options
Support for custom Cray network hadware

• Support standard programming models
Fully integrated OpenMP
Fully integrated UPC and Fortran Coarrays

July 13-15 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 21

Thank You!

Luiz DeRose (ldr@cray.com) © Cray Inc.

CSCS
July 13-15, 2009

