
Luiz DeRose (ldr@cray.com) © Cray Inc.

CSCS
July 13-15, 2009

Using Hardware Performance
Counters on the Cray XT

Luiz DeRose
Programming Environment Director

Cray Inc.
ldr@cray.com

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 2 2

Simplified memory hierachy on the Quad Core AMD Opteron

…...

registers

L1 data cache

L2 cache

16 SSE2 128-bit registers
16 64 bit registers

2 x 16 Bytes per clock loads or 1 x 16 Bytes per clock load and store, (76.8 GB/s or 38.4 GB/s on 2.4 Ghz)

Main memory

  64 Byte cache line, 8 banks
  complete data cache lines are loaded from main
memory, if not in L2 or L3 cache
  if L1 data cache needs to be refilled, then
storing back to L2 cache, if L2 needs to be refilled,
storing back to L3
 Items in L1 and L2 are exclusive, L3 is “sharing
aware”

  64 Byte cache line
  write back cache: data offloaded from L1 data
 cache are stored here first
 until they are flushed out to main memory

16 Bytes wide => 10.6 GB/s for DDR2-667, 73ns

16 Bytes per clock,
38.4 GB/s BW

…... Shared L3 cache

32 GB/s

Remote memory
8GB/s over coherent Hyper Transport, 115ns

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 3

Hardware Performance Counters

  AMD Opteron Hardware Performance Counters
•  Four 48-bit performance counters.

  Each counter can monitor a single event
•  Count specific processor events

»  the processor increments the counter when it detects an
occurrence of the event

»  (e.g., cache misses)
•  Duration of events

»  the processor counts the number of processor clocks it
takes to complete an event

»  (e.g., the number of clocks it takes to return data from
memory after a cache miss)

•  Time Stamp Counters (TSC)
  Cycles (user time)

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 4

PAPI Predefined Events

  Common set of events deemed relevant and useful for
application performance tuning
•  Accesses to the memory hierarchy, cycle and instruction counts,

functional units, pipeline status, etc.
•  The “papi_avail” utility shows which predefined events are available

on the system – execute on compute node

  PAPI also provides access to native events
•  The “papi_native_avail” utility lists all AMD native events available on

the system – execute on compute node

  Information on PAPI and AMD native events
•  pat_help counters
•  man papi_counters
•  For more information on AMD counters:

  http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/26049.PDF

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 5

Hardware Counters Selection

  PAT_RT_HWPC <set number> | <event list>
•  Specifies hardware counter events to be monitored

  A set number can be used to select a group of predefined
hardware counters events (recommended)

•  CrayPat provides 19 groups on the Cray XT systems
  Alternatively a list of hardware performance counter event names

can be used
•  Maximum of 4 events

  Both formats can be specified at the same time, with later
definitions overriding previous definitions

  Hardware counter events are not collected by default
  Hardware counters collection is not supported with sampling on

systems running Catamount on the compute nodes

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 6

Accuracy Issues

  Pay attention to what is not measured:
•  Out-of-order processors
•  Speculation
•  Lack of standard on what is counted

  Microbenchmarks can help determine accuracy of the hardware
counters

  For more information on AMD counters:
•  architecture manuals:

  http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/26049.PDF

user

interface

Kernel

Hardware
counters

  Granularity of the measured code
•  If not sufficiently large enough, overhead of the

counter interfaces may dominate

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 7

Hardware Performance Counters

Hardware performance counter events:
 PAPI_TOT_INS Instructions completed
 PAPI_L1_DCA Level 1 data cache accesses
 PAPI_FP_OPS Floating point operations
 DATA_CACHE_MISSES Data Cache Misses
 CYCLES_USER User Cycles (approx, from clock ticks)

Estimated minimum overhead per call of a traced function,
 which was subtracted from the data shown in this report
 (for raw data, use the option: -s overhead=include):
 PAPI_TOT_INS 2021.905 instr
 PAPI_L1_DCA 1275.739 refs
 PAPI_FP_OPS 0.000 ops
 DATA_CACHE_MISSES 7.702 misses
 CYCLES_USER 0.000 cycles
 Time 2.054 microseconds

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 8

 PAPI_TLB_DM Data translation lookaside buffer misses
 PAPI_L1_DCA Level 1 data cache accesses
 PAPI_FP_OPS Floating point operations
 DC_MISS Data Cache Miss
 User_Cycles Virtual Cycles
==
USER
--
 Time% 68.0%
 Time 1.336838 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 1500.0 calls
 PAPI_L1_DCM 14.365M/sec 18539562 misses
 PAPI_TLB_DM 2.114M/sec 2727811 misses
 PAPI_L1_DCA 276.056M/sec 356285406 refs
 PAPI_FP_OPS 382.697M/sec 493918940 ops
 User time (approx) 1.291 secs 2839375000 cycles 96.5%Time
 Average Time per Call 0.000891 sec
 CrayPat Overhead : Time 0.2%
 HW FP Ops / User time 382.697M/sec 493918940 ops 4.3%peak(DP)
 HW FP Ops / WCT 369.468M/sec
 Computational intensity 0.17 ops/cycle 1.39 ops/ref
 MFLOPS (aggregate) 6123.16M/sec
 TLB utilization 130.61 refs/miss 0.255 avg uses
 D1 cache hit,miss ratios 94.8% hits 5.2% misses
 D1 cache utilization (M) 19.22 refs/miss 2.402 avg uses
==

PAT_RT_HWPC=1 (Summary with TLB)

PAT_RT_HWPC=1
 Flat profile data

Hard counts
 Derived metrics

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 9

PAT_RT_HWPC=2 (L1 and L2 Metrics)
==
USER
--
 Time% 57.5%
 Time 1.282322 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 1500.0 calls
 REQUESTS_TO_L2:DATA 92.608M/sec 117033567 req
 DATA_CACHE_REFILLS:
 L2_MODIFIED:L2_OWNED:
 L2_EXCLUSIVE:L2_SHARED 9.691M/sec 12247253 fills
 DATA_CACHE_REFILLS_FROM_SYSTEM:
 ALL 23.312M/sec 29461089 fills
 PAPI_L1_DCA 285.477M/sec 360771229 refs
 User time (approx) 1.264 secs 2780250000 cycles 98.6%Time
 Average Time per Call 0.000855 sec
 CrayPat Overhead : Time 0.1%
 D1 cache hit,miss ratio (R) 88.4% hits 11.6% misses
 D1 cache utilization 8.65 refs/refill 1.081 avg uses
 D2 cache hit,miss ratio 74.8% hits 25.2% misses
 D1+D2 cache hit,miss ratio 91.8% hits 8.2% misses
 D1+D2 cache utilization 12.25 refs/miss 1.531 avg uses
 System to D1 refill 23.312M/sec 29461089 lines
 System to D1 bandwidth 1422.878MB/sec 1885509672 bytes
 L2 to Dcache bandwidth 591.504MB/sec 783824176 bytes
==

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 10

PAT_RT_HWPC=3 (Bandwidth)
==
USER / mlwxyz_
--
 Time% 44.0%
 Time 5.393606
 Imb.Time 0.054000
 Imb.Time% 1.0%
 Calls 10
 QUADWORDS_WRITTEN_TO_SYSTEM:
 ALL 76.516M/sec 410363958 ops
 DATA_CACHE_REFILLS:
 L2_MODIFIED:L2_OWNED:
 L2_EXCLUSIVE:L2_SHARED 14.494M/sec 77731399 fills
 DATA_CACHE_REFILLS_FROM_SYSTEM:
 ALL 18.999M/sec 101891701 fills
 DATA_CACHE_LINES_EVICTED:ALL 52.589M/sec 282042348 ops
 User time (approx) 5.363 secs 11262496875 cycles
 Average Time per Call 0.539361 sec/call
 Cycles 5.363 secs 11262496875 cycles
 User time (approx) 5.363 secs 11262496875 cycles
 Utilization rate 99.4%
 D2 cache hit ratio 43.3%
 System to D1 refill 18.999M/sec 101891701 lines
 System to D1 bandwidth 1159.587MB/sec 6521068888 bytes
 L2 to Dcache bandwidth 884.629MB/sec 4974809544 bytes
 L2 to System BW per core 583.773MB/sec 3282911662 bytes
==

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 11

PAT_RT_HWPC=5 (Floating point mix)

==
USER
--
 Time% 58.5%
 Time 1.166749 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 1500.0 calls
 RETIRED_MMX_AND_FP_INSTRUCTIONS:
 PACKED_SSE_AND_SSE2 481.704M/sec 544927850 instr
 PAPI_FML_INS 153.030M/sec 173115267 ops
 PAPI_FAD_INS 283.583M/sec 320803673 ops
 PAPI_FDV_INS 7.258M/sec 8210206 ops
 User time (approx) 1.131 secs 2601875000 cycles 97.0%Time
 Average Time per Call 0.000778 sec
 CrayPat Overhead : Time 0.2%
 HW FP Ops / Cycles 0.19 ops/cycle
 HW FP Ops / User time 436.613M/sec 493918940 ops 4.7%peak(DP)
 HW FP Ops / WCT 423.329M/sec
 FP Multiply / FP Ops 35.0%
 FP Add / FP Ops 65.0%
 MFLOPS (aggregate) 6985.81M/sec
==

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 12

PAT_RT_HWPC=12 (QC Vectorization)
==
USER
--
 Time% 62.6%
 Time 1.251600 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 1500.0 calls
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS 199.842M/sec 248803518 ops
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS:OP_TYPE 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS:OP_TYPE 396.722M/sec 493918940 ops
 User time (approx) 1.245 secs 2863500000 cycles 99.5%Time
 Average Time per Call 0.000834 sec
 CrayPat Overhead : Time 0.2%
==

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 13

Vectorization Example
==
USER / calc2_
--
 Time% 28.2%
 Time 0.600875 secs
 Imb.Time 0.069872 secs
 Imb.Time% 11.9%
 Calls 864.9 /sec 500.0 calls
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS 369.139M/sec 213408500 ops
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS:OP_TYPE 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS:OP_TYPE 369.139M/sec 213408500 ops
 User time (approx) 0.578 secs 1271875000 cycles 96.2%Time

When compiled with fastsse:
==
USER / calc2_
--
 Time% 24.3%
 Time 0.485654 secs
 Imb.Time 0.146551 secs
 Imb.Time% 26.4%
 Calls 0.001M/sec 500.0 calls
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS 208.641M/sec 103016531 ops
 RETIRED_SSE_OPERATIONS:
 SINGLE_ADD_SUB_OPS:
 SINGLE_MUL_OPS:OP_TYPE 0 ops
 RETIRED_SSE_OPERATIONS:
 DOUBLE_ADD_SUB_OPS:
 DOUBLE_MUL_OPS:OP_TYPE 415.628M/sec 205216531 ops
 User time (approx) 0.494 secs 1135625000 cycles 100.0%Time

How do I interpret these derived metrics?

  The following thresholds are guidelines to identify if
optimization is needed:

•  Computational Intensity: < 0.5 ops/ref
  This is the ratio of FLOPS by L&S
  Measures how well the floating point unit is being used

•  FP Multiply / FP Ops or FP Add / FP Ops: < 25%

•  Vectorization: < 1.5

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 14

Memory Hierarchy Thresholds
  TLB utilization: < 90.0%

•  Measures how well the memory hierarchy is being utilized with regards to TLB
•  This metric depends on the computation being single precision or double precision

  A page has 4 Kbytes. So, one page fits 512 double precision words or 1024 single
precision words

•  TLB utilization < 1 indicates that not all entries on the page are being utilized
between two TLB misses

  D1 cache utilization: < 1 (D1+D2 cache utilization: < 1)
•  A cache line has 64 bytes (8 double precision words or 16 single precision words)
•  D1 cache utilization < 1 indicates that not all entries on the cache line are being

utilized between two cache misses
  D1 cache hit (or miss) ratios: < 90% (> 10%)

  D2 (L2) cache hit (or miss) ratios: < 95% (> 5%)
  D1 + D2 cache hit (or miss) ratios: < 92% (> 8%)

•  D1 and D2 caches on the Opteron are complementary
•  This metric provides a view of the Total Cache hit (miss) ratio

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 15

Luiz DeRose (ldr@cray.com) © Cray Inc.

CSCS
July 13-15, 2009

Detecting Load Imbalance
on the Cray XT

Luiz DeRose
Programming Environment Director

Cray Inc.
ldr@cray.com

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 17

Motivation for Load Imbalance Analysis

  Increasing system software and architecture complexity
•  Current trend in high end computing is to have systems with tens of

thousands of processors
  This is being accentuated with multi-core processors

  Applications have to be very well balanced In order to
perform at scale on these MPP systems
•  Efficient application scaling includes a balanced use of requested

computing resources

  Desire to minimize computing resource “waste”
•  Identify slower paths through code
•  Identify inefficient “stalls” within an application

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 18

Cray Tools Load Imbalance Support

  Very few performance tools focus on load imbalance
•  Need standard metrics
•  Need intuitive way of presentation

  CrayPat support:
•  Imbalance time and %
•  MPI sync time
•  OpenMP Performance Metrics
•  MPI rank placement suggestions

  Cray Apprentice2 support:
•  Load imbalance visualization

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 19

Imbalance Time

  Metric based on execution time
  It is dependent on the type of activity:

•  User functions
Imbalance time = Maximum time – Average time

•  Synchronization (Collective communication and barriers)
Imbalance time = Average time – Minimum time

  Identifies computational code regions and synchronization
calls that could benefit most from load balance optimization

  Estimates how much overall program time could be saved if
corresponding section of code had a perfect balance
•  Represents upper bound on “potential savings”

•  Assumes other processes are waiting, not doing useful work while
slowest member finishes

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 20

Load balance metric - rationale

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 21

Imbalance %

  Represents % of resources available for parallelism that is
“wasted”

  Corresponds to % of time that rest of team is not engaged in
useful work on the given function

  Perfectly balanced code segment has imbalance of 0%

  Serial code segment has imbalance of 100%

Imbalance% =
Imbalance time

Max Time
X

N - 1
N

100 X

Call Tree Visualization (Swim3d)

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 22

Discrete Unit of Help (DUH Button)

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 23

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 24

Load Distribution

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 25

Profile with Load Distribution by Groups
Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group

 | | | Time % | | Function

 | | | | | PE='HIDE'

 100.0% | 0.482144 | -- | -- | 2530 |Total

|--

| 83.7% | 0.403314 | -- | -- | 303 |USER

||---

|| 32.4% | 0.156028 | 0.009882 | 6.8% | 98 |calc3_

|| 27.7% | 0.133643 | 0.007400 | 6.0% | 100 |calc2_

|| 21.0% | 0.101406 | 0.002552 | 2.8% | 100 |calc1_

|| 2.0% | 0.009696 | 0.000287 | 3.3% | 1 |inital_

||===

| 16.3% | 0.078830 | -- | -- | 2227 |MPI

||---

|| 12.7% | 0.061266 | 0.078133 | 64.1% | 351 |mpi_waitall_

|| 2.2% | 0.010607 | 0.011582 | 59.7% | 936 |mpi_isend_

|| 1.4% | 0.006945 | 0.004463 | 44.7% | 936 |mpi_irecv_

|==

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 26

MPI Sync Time

  Measure load imbalance in programs instrumented to trace
MPI functions to determine if MPI ranks arrive at collectives
together

  Separates potential load imbalance from data transfer

  Sync times reported by default if MPI functions traced

  If desired, PAT_RT_MPI_SYNC=0 deactivated this feature

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 27

MPI Sync Time Statistics

 Time % | Time |Imb. Time | Imb. | Calls |Group
 | | | Time % | | Function
 | | | | | PE='HIDE'

 100.0% | 7.193714 | -- | -- | 17604 |Total
|--
| 76.5% | 5.500078 | -- | -- | 4752 |USER
||---
|| 96.0% | 5.277791 | 0.171848 | 3.3% | 12 |sweep_
|| 3.2% | 0.177352 | 0.005482 | 3.1% | 12 |source_
|| 0.3% | 0.018588 | 0.000527 | 2.9% | 12 |flux_err_
|| 0.2% | 0.010866 | 0.003033 | 22.8% | 2280 |snd_real_
|| 0.1% | 0.005032 | 0.000144 | 2.9% | 1 |initialize_
|| 0.1% | 0.004933 | 0.000154 | 3.2% | 1 |initxs_
|| 0.1% | 0.002819 | 0.001773 | 40.3% | 2280 |rcv_real_
||===
| 16.6% | 1.197321 | -- | -- | 4603 |MPI
||---
|| 93.9% | 1.124227 | 0.277878 | 20.7% | 2280 |mpi_recv_
|| 5.9% | 0.070481 | 0.014437 | 17.7% | 2280 |mpi_send_
|| 0.2% | 0.002210 | 0.001088 | 34.4% | 32 |mpi_allreduce_
||===
| 6.3% | 0.453091 | -- | -- | 39 |MPI_SYNC
||---
|| 61.1% | 0.277012 | 0.215608 | 45.7% | 4 |mpi_bcast_(sync)
|| 38.7% | 0.175564 | 0.270049 | 63.2% | 32 |mpi_allreduce_(sync)
|| 0.1% | 0.000515 | 0.000265 | 35.5% | 3 |mpi_barrier_(sync)
|==

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 28

A() {

}

OMP loop

Source code

main() {

}

A()

OMP parallel

OMP end parallel

OpenMP (Ideal) Instrumentation

run-time library

Compiler generated

A() {

 }

// Region

main() {

}

A()

master thread

Outlined {
Function

}

 // Do

all threads

do I=start,end
 loop body
enddo

OpenMP loop {

}

Parallel_enter

Parallel_exit

 Parallel_begin

 Parallel_end

Loop_enter

Loop_exit

Function_enter

Function_exit

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 29

CrayPat OpenMP Performance Metrics

  Per-thread timings

  Overhead incurred at enter/exit of
•  Parallel regions
•  Worksharing constructs within parallel regions

  Load balance information across threads

  Sampling performance data without API

  Separate metrics for OpenMP runtime and OpenMP API
calls

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 30

OpenMP Data from pat_report

  Default view (no options needed to pat_report)
•  Focus on where program is spending its time

•  Shows imbalance across all threads

•  Assumes all requested resources should be used

•  Highlights non-uniform imbalance across threads

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 31

MPI Rank Reorder

  MPI rank placement with environment variable

0
 1
 2
 3
4
 5
 6
 7

  Distributed placement
  SMP style placement

0
 2
 4
 6
1
 3
 5
 7

  Folded rank placement

0
 1
 2
 3
7
 6
 5
 4

  User provided rank file

?
 ?
 ?
 ?
?
 ?
 ?
 ?

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 32

Rank Reorder Example - hycom
pat_report -O load_balance

Table 2: Load Balance across PE's by FunctionGroup

 Time % | Cum. | Time | Calls |Group
 | Time % | | | PE[mmm]

 100.0% | 100.0% | 482.705844 | 7446623155 |Total
|---
| 57.7% | 57.7% | 278.657370 | 7329740077 |USER
||--
|| 0.5% | 0.5% | 361.310805 | 33130409 |pe.201
|| 0.4% | 58.2% | 311.898417 | 34020074 |pe.45
|| 0.0% | 100.0% | 23.780267 | 320096 |pe.184
||==
| 42.3% | 100.0% | 204.048383 | 116783478 |MPI
||--
|| 0.9% | 0.9% | 476.662251 | 399087 |pe.184
|| 0.3% | 61.9% | 167.921814 | 422197 |pe.37
|| 0.2% | 100.0% | 119.123503 | 514637 |pe.201
|===

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 33

Rank Reorder Example - hycom
pat_report -O load_balance -s pe=ALL

Table 2: Load Balance across PE's by FunctionGroup

 Time % | Cum. | Time | Calls |Group
 | Time % | | | PE

 100.0% | 100.0% | 482.705844 | 7446623155 |Total
|--
| 57.7% | 57.7% | 278.657370 | 7329740077 |USER
||---
|| 0.5% | 0.5% | 361.310805 | 33130409 |pe.201
|| 0.5% | 1.0% | 349.849557 | 30460022 |pe.182
|| 0.5% | 1.5% | 346.919713 | 33685730 |pe.200
|| 0.5% | 2.0% | 342.844256 | 34879988 |pe.188
|| 0.5% | 2.5% | 342.308415 | 34913960 |pe.172
. . .
|| 0.1% | 99.8% | 45.464691 | 3000260 |pe.248
|| 0.1% | 99.9% | 35.970972 | 399401 |pe.213
|| 0.0% | 99.9% | 27.431543 | 340673 |pe.232
|| 0.0% | 100.0% | 25.142167 | 117620 |pe.240
|| 0.0% | 100.0% | 23.780267 | 320096 |pe.184
||===

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 34

Rank Reorder Example - hycom
After custom placement (10% performance improvement):

Table 2: Load Balance with MPI Sent Message Stats

 Time % | Time | Sent Msg | Sent Msg | Avg Sent |Group
 | | Count | Total Bytes | Msg Size | PE[mmm]

 100.0% | 437.418783 | 17161829 | 289328285840 | 16858.83 |Total
|--
| 60.2% | 263.211966 | -- | -- | -- |USER
||---
|| 0.5% | 322.019049 | -- | -- | -- |pe.158
|| 0.4% | 286.179471 | -- | -- | -- |pe.126
|| 0.0% | 23.318648 | -- | -- | -- |pe.184
||===
| 39.8% | 174.206510 | 17161829 | 289328285840 | 16858.83 |MPI
||---
|| 1.0% | 414.091071 | 62224 | 635942368 | 10220.21 |pe.184
|| 0.3% | 151.242560 | 68002 | 1039329136 | 15283.80 |pe.126
|| 0.3% | 115.396258 | 68002 | 1039329136 | 15283.80 |pe.158
|==

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 35

MPI Rank Placement Suggestions
  When to use?

•  Point-to-point communication consumes significant fraction of the program
time and have a significant imbalance
  pat_report -O mpi_sm_rank_order ...

•  When there seems to be a load imbalance of another type
  Can get a suggested rank order file based on user time

•  pat_report -O mpi_rank_order ...

  Can have a different metric for load balance
•  pat_report -O mpi_rank_order -s

mro_metric=DATA_CACHE_MISSES ...

  Information in resulting report
•  Available if MPI functions traced (-g mpi)

  Custom placement files automatically generated

MPI Rank Placement Suggestions (cont’d)

  See table notes in resulting report from pat_report

  Report provides quad core and dual core suggestions

  Set MPICH_RANK_REORDER_METHOD environment
variable
•  Set to numerical value or MPICH_RANK_ORDER file

from pat_report

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 36

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 37

Example: -O mpi_rank_order (asura)
Notes for table 1:

 To maximize the locality of point to point communication, choose
 and specify a Rank Order with small Max and Avg Sent Msg Total Bytes
 per node for the target number of cores per node.

 To specify a Rank Order with a numerical value, set the environment
 variable MPICH_RANK_REORDER_METHOD to the given value.

 To specify a Rank Order with a letter value 'x', set the environment
 variable MPICH_RANK_REORDER_METHOD to 3, and copy or link the file
 MPICH_RANK_ORDER.x to MPICH_RANK_ORDER.

Table 1: Sent Message Stats and Suggested MPI Rank Order

 Sent Msg Total Bytes per MPI rank

 Max Avg Min Max Min
 Total Bytes Total Bytes Total Bytes Rank Rank

 378638104 271474542 169280552 56 109

--
 Quad core: Sent Msg Total Bytes per node

 Rank Max Avg Min Max Node Min Node
Order Total Bytes Total Bytes Total Bytes Ranks Ranks

 d 1093188824 1085898170 1071670808 92,124,35,91 86,27,108,63
 u 1093188824 1085898170 1071670808 92,124,35,91 86,27,108,63
 1 1249207480 1085898170 930426320 56,57,58,59 108,109,110,111
 2 1297029256 1085898170 936841176 70,57,71,56 74,53,75,52
 0 1300686504 1085898170 923754472 6,70,7,71 52,116,53,117

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 38

Example: File MPICH_RANK_ORDER.u (asura)

Suggested custom rank placement:

pat_report -O mpi_sm_rank_order \
/home/crayadm/ldr/ASURA/asura10it.x+apa+4442-824tdt.ap2

Targets multi-core processors, based on Sent Msg Total Bytes.

Program: /work/crayadm/ldr/ASURA/run/asura10it.x
Number PEs: 128
Cores/Node: 4

Heuristic: u

86,27,108,63,13,67,23,39,70,3,113,17,21,46,40,89
28,36,34,10,7,127,41,105,94,25,12,38,6,75,57,60
56,109,106,68,42,66,43,79,72,45,85,80,33,111,49,107
14,103,114,9,126,52,78,2,55,88,87,118,119,64,15,16
90,102,122,31,37,123,29,59,71,53,98,82,92,124,35,91
5,125,115,11,97,95,30,54,19,4,69,0,62,110,51,112
26,32,121,77,65,100,76,24,58,74,1,18,101,116,84,50
44,96,93,20,83,61,104,47,99,81,120,73,8,117,22,48

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 39

MPI + OpenMP? (some ideas)

  When does it pay to add OpenMP to my MPI code?

•  Only add OpenMP when code is network bound

•  Adding OpenMP to memory bound codes will most likely
hurt performance rather than help it

•  Look at collective time, excluding sync time: this goes up
as network becomes a problem

•  Look at point-to-point wait times: if these go up, network
may be a problem

Luiz DeRose (ldr@cray.com) © Cray Inc.

CSCS
July 13-15, 2009

Parallel Performance Analysis
and Visualization on the Cray XT

Luiz DeRose
Programming Environment Director

Cray Inc.
ldr@cray.com

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 41

Cray Apprentice2

  Call graph profile
  Communication statistics
  Time-line view

•  Communication
•  I/O

  Activity view
  Pair-wise communication

statistics
  Text reports
  Source code mapping

  Cray Apprentice2
  is target to help identify

and correct:
•  Load imbalance
•  Excessive communication
•  Network contention
•  Excessive serialization
•  I/O Problems

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 42

Statistics Overview
Switch Overview display

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 43

Function Profile

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 44

Load Balance View (Aggregated)
Min, Avg, and Max

Values

-1, +1
Std Dev

marks

Call Tree View

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 45

Function

List

Load balance overview:

Height  Max time

Middle bar  Average time

Lower bar  Min time

Yellow represents
imbalance time

Zoom

Height  exclusive time

Width  inclusive time

DUH Button:

Provides hints

for performance
tuning

Filtered

nodes or

sub tree

Call Tree View – Function List

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 46

Function

List off

Right mouse click:

Node menu

e.g., hide/unhide
children

Sort options

% Time,

Time,

Imbalance %

Imbalance time

Right mouse click:

View menu:

e.g., Filter

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 47

Load Balance View (from Call Tree)

-1, +1
Std Dev

marks

Min, Avg, and Max
Values

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 48

Source Mapping from Call Tree

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 49

Function Profile

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 50

Distribution by PE, by Call, & by Time

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 51

Environment & Execution Details

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 52

Time Line View (Sweep3D)

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 53

Time Line View (Zoom)
User Functions, MPI

& SHMEM Line

I/O Line

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 54

Time Line View (Fine Grain Zoom)

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 55

Activity View

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 56

Pair-wise Communication

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 57

I/O Overview

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 58

I/O Rates

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 59

Hardware Counters Overview

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 60

Hardware Counters Time Line

Controlling Performance File Size
  Performance files can be quite large. There are several run-time environment

variables to keep data files down to reasonable sizes
  The particular run-time environment variables to use vary depending on the type

of experiment being conducted

  Sampling:
•  PAT_RT_RECORD_PE

  Collect trace for a subset of the PEs
•  PAT_RT_RECORD_THREAD

  Collect trace for a subset of the threads
•  PAT_RT_INTERVAL

  Specifies the interval, at which the instrumented program is sampled
•  PAT_RT_CALLSTACK

  Limit the depth to trace the call stack
•  PAT_RT_HWPC

  Avoid collecting hardware counters (unset)
•  PAT_RT_SIZE

  The number of contiguous bytes in the text segment available for sampling
•  PAT_RT_WRITE_BUFFER_SIZE

  Specifies the size, of a buffer that collects measurement data for a single thread

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 61

Controlling Trace File Size
  Tracing:

•  PAT_RT_CALLSTACK
  Limit the depth to trace the call stack

•  PAT_RT_HWPC
  Avoid collecting hardware counters (unset)

•  PAT_RT_RECORD_PE
  Collect trace for a subset of the PEs

•  PAT_RT_RECORD_THREAD
  Collect trace for a subset of the threads

•  PAT_RT_TRACE_FUNCTION_ARGS
  Limit the number of function arguments to be traced

•  PAT_RT_TRACE_FUNCTION_LIMITS
  Avoid tracing indicated functions

•  PAT_RT_TRACE_FUNCTION_MAX
  Limit the maximum number of traces generated for all functions for a single

process
•  PAT_RT_TRACE_THRESHOLD_PCT

  Specifies a % of time threshold to enforce when executing in full trace mode
•  PAT_RT_TRACE_THRESHOLD_TIME

  Specifies a time threshold to enforce when executing in full trace mode
  Use the limit built-in command for ksh(1) or csh(1) to control how much disk

space the trace file can consume
July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 62

July 13-15, 2009 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 63

Additional API Functions

  int PAT_state (int state)
•  State can have one of the following:

  PAT_STATE_ON
  PAT_STATE_OFF
  PAT_STATE_QUERY

  int PAT_record (int state)
•  Controls the state for all threads on the executing PE. As a rule, use

PAT_record() unless there is a need for different behaviors for
sampling and tracing
  int PAT_sampling_state (int state)
  int PAT_tracing_state (int state)

  int PAT_trace_function (const void *addr, int state)
•  Activates or deactivates the tracing of the instrumented function

  int PAT_flush_buffer (void)

Luiz DeRose (ldr@cray.com) © Cray Inc.

CSCS
July 13-15, 2009

Parallel Performance Analysis
and Visualization on the Cray XT

Questions / Comments
Thank You!

