
Detecting Load Imbalance
on the Cray XT

Luiz DeRose
Programming Environment Director

Cray Inc.
ldr@cray.com

Slide 2

Motivation for Load Imbalance Analysis

  Increasing system software and architecture complexity
•  Current trend in high end computing is to have systems with tens of

thousands of processors
  This is being accentuated with multi-core processors

  Applications have to be very well balanced In order to
perform at scale on these MPP systems
•  Efficient application scaling includes a balanced use of requested

computing resources

  Desire to minimize computing resource “waste”
•  Identify slower paths through code
•  Identify inefficient “stalls” within an application

Slide 3

Cray Tools Load Imbalance Support

  Very few performance tools focus on load imbalance
•  Need standard metrics
•  Need intuitive way of presentation

  CrayPat support:
•  Imbalance time and %
•  MPI sync time
•  OpenMP Performance Metrics
•  MPI rank placement suggestions

  Cray Apprentice2 support:
•  Load imbalance visualization

Slide 4

Imbalance Time

  Metric based on execution time
  It is dependent on the type of activity:

•  User functions
Imbalance time = Maximum time – Average time

•  Synchronization (Collective communication and barriers)
Imbalance time = Average time – Minimum time

  Identifies computational code regions and synchronization
calls that could benefit most from load balance optimization

  Estimates how much overall program time could be saved if
corresponding section of code had a perfect balance
•  Represents upper bound on “potential savings”

•  Assumes other processes are waiting, not doing useful work while
slowest member finishes

Slide 5

Load balance metric - rationale

Slide 6

Imbalance %

  Represents % of resources available for parallelism that is
“wasted”

  Corresponds to % of time that rest of team is not engaged in
useful work on the given function

  Perfectly balanced code segment has imbalance of 0%

  Serial code segment has imbalance of 100%

Imbalance% =
Imbalance time

Max Time
X

N - 1
N

100 X

Call Tree Visualization (Swim3d)

Slide 7

Discrete Unit of Help (DUH Button)

Slide 8

Slide 9

Load Distribution

November 3-6, 2008 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 10

Profile with Load Distribution by Groups
Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group
 | | | Time % | | Function
 | | | | | PE='HIDE'

 100.0% | 0.482144 | -- | -- | 2530 |Total
|--
| 83.7% | 0.403314 | -- | -- | 303 |USER
||---
|| 32.4% | 0.156028 | 0.009882 | 6.8% | 98 |calc3_
|| 27.7% | 0.133643 | 0.007400 | 6.0% | 100 |calc2_
|| 21.0% | 0.101406 | 0.002552 | 2.8% | 100 |calc1_
|| 2.0% | 0.009696 | 0.000287 | 3.3% | 1 |inital_
||===
| 16.3% | 0.078830 | -- | -- | 2227 |MPI
||---
|| 12.7% | 0.061266 | 0.078133 | 64.1% | 351 |mpi_waitall_
|| 2.2% | 0.010607 | 0.011582 | 59.7% | 936 |mpi_isend_
|| 1.4% | 0.006945 | 0.004463 | 44.7% | 936 |mpi_irecv_
|==

November 3-6, 2008 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 11

MPI Sync Time

  Measure load imbalance in programs instrumented to trace
MPI functions to determine if MPI ranks arrive at collectives
together

  Separates potential load imbalance from data transfer

  Sync times reported by default if MPI functions traced

  If desired, PAT_RT_MPI_SYNC=0 deactivated this feature

November 3-6, 2008 Luiz DeRose (ldr@cray.com) © Cray Inc. Slide 12

MPI Sync Time Statistics

 Time % | Time |Imb. Time | Imb. | Calls |Group
 | | | Time % | | Function
 | | | | | PE='HIDE'

 100.0% | 7.193714 | -- | -- | 17604 |Total
|--
| 76.5% | 5.500078 | -- | -- | 4752 |USER
||---
|| 96.0% | 5.277791 | 0.171848 | 3.3% | 12 |sweep_
|| 3.2% | 0.177352 | 0.005482 | 3.1% | 12 |source_
|| 0.3% | 0.018588 | 0.000527 | 2.9% | 12 |flux_err_
|| 0.2% | 0.010866 | 0.003033 | 22.8% | 2280 |snd_real_
|| 0.1% | 0.005032 | 0.000144 | 2.9% | 1 |initialize_
|| 0.1% | 0.004933 | 0.000154 | 3.2% | 1 |initxs_
|| 0.1% | 0.002819 | 0.001773 | 40.3% | 2280 |rcv_real_
||===
| 16.6% | 1.197321 | -- | -- | 4603 |MPI
||---
|| 93.9% | 1.124227 | 0.277878 | 20.7% | 2280 |mpi_recv_
|| 5.9% | 0.070481 | 0.014437 | 17.7% | 2280 |mpi_send_
|| 0.2% | 0.002210 | 0.001088 | 34.4% | 32 |mpi_allreduce_
||===
| 6.3% | 0.453091 | -- | -- | 39 |MPI_SYNC
||---
|| 61.1% | 0.277012 | 0.215608 | 45.7% | 4 |mpi_bcast_(sync)
|| 38.7% | 0.175564 | 0.270049 | 63.2% | 32 |mpi_allreduce_(sync)
|| 0.1% | 0.000515 | 0.000265 | 35.5% | 3 |mpi_barrier_(sync)
|==

