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The steps — 1) Identify Application and Science Worthy Problem

e Formulate the problem

e The problem identified should

make good science sense

* No publicity stunts that are not of
interest

e |t should be a production style
problem

e Weak scaling

Think Bigger

e Finer grid as processors increase

* Fixed amount of work when processors
increase

e Strong scaling

* Fixed problem size as processors increase

e Less and less work for each processor
as processors increase
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The steps — 2) Understand the target system Hardware and Software

e Hardware
Node Architecture

Interconnect
Input-Output

e Software
Operating System
Parallel I/O software

Programming Environment
e Compilers

* Programming Considerations
Cache Optimization

Vectorization
Efficient MPI
OpenMP

Multi-core, MPP
systems are very
similar; however,
there are important
differences



The steps — 3) Instrument the application

e Instrument the application
Run the production case

e Run long enough that the initialization does not use
> 1% of the time

e Run with normal I/O

Use Craypat’s APA

e First gather sampling for line number profile

e Second gather instrumentation (-g mpi,io)
Hardware counters
MPI message passing information
I/O information
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load module
make
pat_build -O apa a.out
Execute
pat_report *.xf
pat_build -0 *.apa
Execute



The steps —4) Examine Results

e Examine Results

Is there load imbalance?
e Yes—fix it first — go to step 5

e No —you are lucky
Is computation > 50% of the runtime
* Yes—gotostepb
Is communication > 50% of the runtime

e Yes—gotostep?

Is I/O > 50% of the runtime
e Yes—gotostep$8
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Always fix load
imbalance first



The steps — 5) Application is load imbalanced

e What is causing the load imbalance

Computation
e |s decomposition appropriate?
e Would RANK_REORDER help?

Communication
e |s decomposition appropriate?
e Would RANK_REORDER help?
e Are receives pre-posted

e OpenMP may help

Able to spread workload with less
overhead

e Large amount of work to go from all-MPI to Hybrid

Must accept challenge to OpenMP-ize large
amount of code

* Go back to step 3
® Re-gather statistics
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Need Craypat reports

Is SYNC time due to
computation?



The steps — 6) Computation is Major Bottleneck

e What is causing the Bottleneck?
Computation

e |s application Vectorized

No — vectorize it
e What library routines are being used?

Memory Bandwidth

e \What is cache utilization?

e TLB problems?

e OpenMP may help

Able to spread workload with less
overhead

e Large amount of work to go from all-MPI to Hybrid

Must accept challenge to OpenMPize large
amount of code

e Go back to step 3
e Re-gather statistics
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Need Hardware
counters
&
Compiler listing
in hand



The steps — 6) Communication is Major Bottleneck

e What is causing the Bottleneck?

e Collectives
o MPI_ALLTOALL
e MPI_ALLREDUCE

e MPI_REDUCE
e MPI_VGATHER/MPI_VSCATTER

e Point to Point
e Are receives pre-posted
e Don’t use MPI_SENDRECV
e What are the message sizes

e Small—-Combine
e Llarge —divide and overlap

e OpenMP may help

* Able to spread workload with less
overhead

e Large amount of work to go from all-MPI to Hybrid

* Must accept challenge to OpenMP-ize large
amount of code

* Go back to step 3
e Re-gather statistics

CRRANY

THE SUPERCOMPUTER COMPANY

Look at craypat
report
MPI message sizes



The steps — 7) I/0 is Major Bottleneck

e What type of I/0O?
One writer — large files

e Stripe across most OSTs

All writers — small files

e Stripe across one OST

MPI-1/O?
e Try using subset of writers

Go back to step 3
e Re-gather statistics
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Look at craypat
report on file
statistics
Look at read/write
sizes
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Vectorization

e Stride one memory accesses
e No IF tests

e No subroutine calls
e [nline

e What is size of loop

e Loop nest
e Stride one on inside
e Longest on the inside

e Unroll small loops

* Increase computational intensity
* CU = (vector flops/number of memory accesses)



Simple Strip Mining loop

integer, parameter :: nx=100, ny=100, nz=512, nc=100
real (r4) a(nx,ny,nz),s
o & SO initialize array a: a(ix,iy,iz)=ix+(nx*((iy-1)+ny*(iz-1)))

do i1=1,10
call system clock (count=start time)
do ic=1,nc*in
do iz=1,nz/in
do iy=1,ny
do ix=1,nx
a(ix,iy,iz)=a(ix,iy,iz)*2.0
end do
end do
end do
do iz=1,nz/in
do iy=1l,ny
do ix=1,nx
a(ix,iy,iz)=a(ix,iy,iz)*0.5
end do
end do
end do
end do
call system clock (count=stop time)




Storage Analysis
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Running code across 1, 2, and 4 cores
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TLB Utilization

B e

e Must be striding in array
e Reorganize looping structures

e Use large pages
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Background: Virtual Memory

e Modern programs operate in “virtual memory”
e Each program thinks it has all of memory to itself

* Fixed sized blocks (“pages”) vs variable sized blocks (“segments”)

e Virtual Memory benefits

e Allow a program that is larger than physical memory to run

e Programmer does not have to manually create overlays
e Allow many programs to share limited physical memory
e Virtual Memory problems

e Each virtual memory reference must be translated into a physical
memory reference
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Translation Speed

e Translation page table is stored in main memory

e Each memory access logically takes twice as long — once to find the
physical address, once to get the actual data

e Use a hardware cache of least recently used addresses

e Called a Translation Lookaside Buffer or TLB
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Performance Problem: TLB Refills

e AMD dual core opteron: 512 data TLB entries
e Covers 2MB of physical memory
e OK if program fits (unlikely)

e Large programs accessing data from all over their virtual memory range

can trigger excessive TLB misses (“thrash”)

* One solution: huge pages
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