A methodical approach for
scaling applications on Multi-core
MPP Systems

John Levesque & Luiz DeRose
Cray’s
Supercomputing Center of Excellence

CRANY

THE SUPERCOMPUTER COMPANY

The steps — 1) Identify Application and Science Worthy Problem

e Formulate the problem

e The problem identified should

make good science sense

* No publicity stunts that are not of
interest

e |t should be a production style
problem

e Weak scaling

Think Bigger

e Finer grid as processors increase

* Fixed amount of work when processors
increase

e Strong scaling

* Fixed problem size as processors increase

e Less and less work for each processor
as processors increase

CRRANY

THE SUPERCOMPUTER COMPANY

The steps — 2) Understand the target system Hardware and Software

e Hardware
Node Architecture

Interconnect
Input-Output

e Software
Operating System
Parallel I/O software

Programming Environment
e Compilers

* Programming Considerations
Cache Optimization

Vectorization
Efficient MPI
OpenMP

Multi-core, MPP
systems are very
similar; however,
there are important
differences

The steps — 3) Instrument the application

e Instrument the application
Run the production case

e Run long enough that the initialization does not use
> 1% of the time

e Run with normal I/O

Use Craypat’s APA

e First gather sampling for line number profile

e Second gather instrumentation (-g mpi,io)
Hardware counters
MPI message passing information
I/O information

CRRANY

THE SUPERCOMPUTER COMPANY

load module
make
pat_build -O apa a.out
Execute
pat_report *.xf
pat_build -0 *.apa
Execute

The steps —4) Examine Results

e Examine Results

Is there load imbalance?
e Yes—fix it first — go to step 5

e No —you are lucky
Is computation > 50% of the runtime
* Yes—gotostepb
Is communication > 50% of the runtime

e Yes—gotostep?

Is I/O > 50% of the runtime
e Yes—gotostep$8

CRRANY

THE SUPERCOMPUTER COMPANY

Always fix load
imbalance first

The steps — 5) Application is load imbalanced

e What is causing the load imbalance

Computation
e |s decomposition appropriate?
e Would RANK_REORDER help?

Communication
e |s decomposition appropriate?
e Would RANK_REORDER help?
e Are receives pre-posted

e OpenMP may help

Able to spread workload with less
overhead

e Large amount of work to go from all-MPI to Hybrid

Must accept challenge to OpenMP-ize large
amount of code

* Go back to step 3
® Re-gather statistics

CRRANY

THE SUPERCOMPUTER COMPANY

Need Craypat reports

Is SYNC time due to
computation?

The steps — 6) Computation is Major Bottleneck

e What is causing the Bottleneck?
Computation

e |s application Vectorized

No — vectorize it
e What library routines are being used?

Memory Bandwidth

e \What is cache utilization?

e TLB problems?

e OpenMP may help

Able to spread workload with less
overhead

e Large amount of work to go from all-MPI to Hybrid

Must accept challenge to OpenMPize large
amount of code

e Go back to step 3
e Re-gather statistics

CRRANY

THE SUPERCOMPUTER COMPANY

Need Hardware
counters
&
Compiler listing
in hand

The steps — 6) Communication is Major Bottleneck

e What is causing the Bottleneck?

e Collectives
o MPI_ALLTOALL
e MPI_ALLREDUCE

e MPI_REDUCE
e MPI_VGATHER/MPI_VSCATTER

e Point to Point
e Are receives pre-posted
e Don’t use MPI_SENDRECV
e What are the message sizes

e Small—-Combine
e Llarge —divide and overlap

e OpenMP may help

* Able to spread workload with less
overhead

e Large amount of work to go from all-MPI to Hybrid

* Must accept challenge to OpenMP-ize large
amount of code

* Go back to step 3
e Re-gather statistics

CRRANY

THE SUPERCOMPUTER COMPANY

Look at craypat
report
MPI message sizes

The steps — 7) I/0 is Major Bottleneck

e What type of I/0O?
One writer — large files

e Stripe across most OSTs

All writers — small files

e Stripe across one OST

MPI-1/O?
e Try using subset of writers

Go back to step 3
e Re-gather statistics

CRANY

THE SUPERCOMPUTER COMPANY

Look at craypat
report on file
statistics
Look at read/write
sizes

CRANY”

THE SUPERCOMPUTER COMPANY

Vectorization

e Stride one memory accesses
e No IF tests

e No subroutine calls
e [nline

e What is size of loop

e Loop nest
e Stride one on inside
e Longest on the inside

e Unroll small loops

* Increase computational intensity
* CU = (vector flops/number of memory accesses)

Simple Strip Mining loop

integer, parameter :: nx=100, ny=100, nz=512, nc=100
real (r4) a(nx,ny,nz),s
o & SO initialize array a: a(ix,iy,iz)=ix+(nx*((iy-1)+ny*(iz-1)))

do i1=1,10
call system clock (count=start time)
do ic=1,nc*in
do iz=1,nz/in
do iy=1,ny
do ix=1,nx
a(ix,iy,iz)=a(ix,iy,iz)*2.0
end do
end do
end do
do iz=1,nz/in
do iy=1l,ny
do ix=1,nx
a(ix,iy,iz)=a(ix,iy,iz)*0.5
end do
end do
end do
end do
call system clock (count=stop time)

Storage Analysis

NX

100

100

100

100

100

100

100

100

100

NY

100

100

100

100

100

100

100

100

100

NZ

512

256

128

64

32

16

Ic

16

32

64

128

256

Mwords
5.12
2.56
1.28
0.64
0.32
0.16
0.08
0.04

0.02

MB

40.96

20.48

10.24

5.12

2.56

1.28

0.64

0.32

0.16

L1 Refills

625.00

312.50

156.25

78.13

39.06

19.53

9.77

4.88

2.44

L2 Refills

81.92

40.96

20.48

10.24

5.12

2.56

1.28

0.64

0.32

L3 Refills

40.96

20.48

10.24

5.12

2.56

1.28

0.64

0.32

0.16

CRANY”

THE SUPERCOMPUTER COMPANY

CRANY”

THE SUPERCOMPUTER COMPANY

Running code across 1, 2, and 4 cores

5

) ‘____‘_—-—-‘——\
35 \
\
\

3

= 0 0 — 60 — — 0o S

2.5 =41 Core

2 . \ == 2 Cores

- \ s
| \ |

w 90 5 0 o o O
[

Chunk Size on Third Dimension

14

TLB Utilization

B e

e Must be striding in array
e Reorganize looping structures

e Use large pages

CRANY”

THE SUPERCOMPUTER COMPANY

Background: Virtual Memory

e Modern programs operate in “virtual memory”
e Each program thinks it has all of memory to itself

* Fixed sized blocks (“pages”) vs variable sized blocks (“segments”)

e Virtual Memory benefits

e Allow a program that is larger than physical memory to run

e Programmer does not have to manually create overlays
e Allow many programs to share limited physical memory
e Virtual Memory problems

e Each virtual memory reference must be translated into a physical
memory reference

CRANY"

THE SUPERCOMPUTER COMPANY

Translation Speed

e Translation page table is stored in main memory

e Each memory access logically takes twice as long — once to find the
physical address, once to get the actual data

e Use a hardware cache of least recently used addresses

e Called a Translation Lookaside Buffer or TLB

CRANY

THE SUPERCOMPUTER COMPANY

Performance Problem: TLB Refills

e AMD dual core opteron: 512 data TLB entries
e Covers 2MB of physical memory
e OK if program fits (unlikely)

e Large programs accessing data from all over their virtual memory range

can trigger excessive TLB misses (“thrash”)

* One solution: huge pages

CRANY

THE SUPERCOMPUTER COMPANY

