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Course Outline – Background Knowledge 

•  Why I/O and data storage are important 
•  Introduction to I/O hardware 
•  File systems 
•  Lustre specifics 
•  Data formats and data provenance 
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Course Outline – Parallel I/O 

•  MPI-IO 
–  The foundation for most other parallel libraries 

•  HDF5 
–  A portable data format widely used in HPC 

•  NetCDF 
–  Portable data format commonly used in climate simulations 

•  ADIOS 
–  A library that builds on other data formats 
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Data and I/O in Applications 

•  Checkpoint/restart files 
–  Must use full precision of simulation data 
–  Amount of data needed for restart will determine frequency of 

output 
•  Input of initialisation data 

–  Normally not parallel 
•  Output of data for analysis 

–  Might be output in reduced precision 
–  Might store only a subset of full resolution 

•  Output of data for job monitoring 
–  Typically from process 0 
–  Normally ASCII 
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Recap –why I/O is such a problem 
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•  Limiting factor for many data intensive applications 
•  Speed of I/O subsystems for writing data is not keeping up with increases in speed of 

compute engines 

Idealised 2D grid layout for data 
decomposition with halos: 

Increasing the number of processors 
by 4 leads to each processor having 

•  one quarter the number of grid 
points to compute 
•  one half the number of halo 
points to communicate 

The same amount of total data 
needs to be output at each time 
step. P processors, each with … 

MxN Grid points 
2M+2N Halo points 

4P processors, each with … 
(M/2)x(N/2) Grid points 
M+N Halo points 



I/O reaches a scaling limit 
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Computation: Scales O(P) for P processors Minor scaling problem – issues of 
halo memory bandwidth, vector 
lengths, efficiency of software 
pipeline etc. 

Communication: Scales O(√P) for P processors Major scaling problem – the halo 
region decreases slowly as you 
increase the number of 
processors 

I/O (mainly “O”): No scaling Limiting factor in scaling– the 
same amount of total data is 
output at each time step 



Scalability Limitation of I/O 

•  I/O subsystems are typically very slow compared to other 
parts of a supercomputer 
–  You can easily saturate the bandwidth 

•  Once the bandwidth is saturated scaling in I/O stops 
–  Adding more compute nodes increases aggregate memory 

bandwidth and flops/s, but not I/O 

•  I/O scaling is a problem independent of the method used 
–  Structured grid with domain decomposition, particle methods, 

unstructured grids 
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Storing Data 

•  Long-term data storage can be expensive 
–  Storage systems need to have good I/O bandwidth to read back the 

data 
•  Only a few restart files are normally stored 
•  Most data is for analysis 
•  Storing data in reduced precision saves space 

–  If the simulation can output in reduced precision then this also saves 
on bandwidth 

–  Providing sufficient servers for the compute power required for 
compression is typically more economical than buying large 
amounts of data storage 

•  Data should be compressed before storage 
–  … and reduced precision data can be compressed more than full 

precision data 
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Scientific decisions to be made:  

•  Which output fields from a simulation are needed, which can be ignored? 
–  Re-examine output request before each simulation 

•  Can output frequency be reduced without compromising the scientific analysis? 
•  Can you store less data in general from the simulation ? 

–  Grid based domain decomposition 
•  Can some fields be on reduced resolution grid? 
•  Can you store a subset of the grid? 

–  Particle simulations 
•  Can you store a subset of particles? 

•  Can you reduce the precision of variables 
–  Do you need double precision or is single precision enough for analysis 
–  Can you pack data even further? 

•  E.g. NetCDF offers a reduced precision called NC_SHORT (16 bit)? 
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These questions require a scientific value judgement, but could 
reduce the data storage or I/O requirements substantially 



The case for reduced precision (packing) 

•  Packing data is an efficient method to 
decrease data volumes at the cost of 
less precision 

•  Packed data is already employed in 
some communities 

–  E.g. For weather and climate, the GRIB format 
is already a packed (16-bit) format, and packing 
is supported in NetCDF 

•  In NetCDF it is easy to use packed data 
–  NCO tools have support functions to pack data 
–  Many tools support packed data format 

•  Packed data compresses much better 
with lossless compression algorithms 
compared to  non-packed data 

•  It should be easy to carry out data 
packing in parallel during a simulation 
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Packed	  Data	  

1.  For	  a	  data	  set	  in	  single	  precision,	  find	  the	  minimum	  
min	  and	  maximum	  max	  of	  the	  whole	  data	  set.	  

2.  Store	  the	  offset	  min	  and	  range	  (max-‐min)	  of	  the	  
dataset	  in	  single	  precision	  

3.  For	  each	  element	  Y	  of	  the	  dataset,	  store	  a	  16-‐bit	  
integer	  X	  to	  represent	  its	  posiAon	  within	  the	  range	  

Each	  reduced	  precision	  element	  Yreduced	  of	  the	  data	  can	  
then	  be	  recovered	  from	  the	  formula:-‐	  

Yreduced=offset + (X/65535) * range 



The case for lossless compression 

•  Lossless compression reduces data volumes without losing 
precision 

–  No scientific judgement is required 
•  When uncompressed, the data is back to its original form 

–  Standard LZ compression algorithms are widely used (e.g. gzip) 
•  It is relatively free 

–  Some compute time is required to compress/uncompress 
•  Lossless compression reduces bandwidth requirements for data 

transfer to longer-term storage 
•  It might not be straightforward to introduce lossless compression 

with parallel file I/O from within your application 
–  Most lossless compression will be carried out with tools (e.g. gzip) after the 

simulation has output the data 
–  Using compression in parallel HDF5 for example is not yet supported 
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Compression example 

•  Testing of packing (ncpdq) and compression (gzip –fast) of a 
10 Gigabyte high-resolution COSMO NetCDF output file on Ela 
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Single	  precision	  (32-‐
bit)	  data	  

Packed	  (16-‐bit)	  data	  

Compressed	  file	  –	  
3.5	  GB	  

Compressed	  packed	  
file	  –	  0.7	  GB	  

Packed	  file	  –	  5.2	  GB	  

Original	  file	  –	  10.5	  GB	  

70	  secs	  

280	  secs	  

135	  secs	  

Note	  that	  in	  this	  
case	  packing	  
followed	  by	  

compression	  is	  
faster	  than	  plain	  
compression	  



HPC Systems 

•  Machines consist of three main components 
–  Compute nodes 
–  High-speed interconnect 
–  I/O infrastructure 

•  Most optimisation work on HPC applications is carried 
out on 
1.  Single node performance 
2.  Network performance 
3.  … and I/O only when it becomes a real problem 
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Storage Hardware 

•  Modern storage hardware at 
CSCS consists of 
–  Disk drives to provide storage 

•  Optionally SSDs for fast 
storage 

–  Disk controllers to manage the 
disks 

–  File servers to offer applications 
access to the disks through a 
file system 

–  Network infrastructure to 
connect the components 

–  Tape backup systems for 
failover or long-term storage 

•  CSCS uses tape as a backup 
of the /users file system and as 
a failover for the /project file 
system 
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Disk Drives and SSDs 

•  Disk drives come in several 
varieties 
–  Fibre channel disks 

•  Fast, expensive, low capacity 
–  Often used for metadata 

operations 
–  SATA disks 

•  Slow, cheap, high capacity 
–  SAS disks 

•  SAS controllers with SATA drives 
are being mentioned as a potential 
replacement for standard SATA 

•  Solid state drives are gaining 
acceptance 
–  NAND based flash 

•  Fast, expensive, low capacity 
–  Huge number of IOPs 
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RAID Arrays 

•  For reliability, disks are collected together to form RAID 
arrays 
–  RAID – Redundant Array of Independent Disks 

•  RAID arrays provide protection against disk failures and 
data corruption 

•  Typical RAID attached to HPC systems is RAID 5 or 
RAID 6 
–  Newer systems use RAID 6 

•  RAID array configurations try to find a compromise 
between reliability, speed and volume of storage 

•  A RAID array typically delivers much lower bandwidth 
than the aggregate possible from the disks in the array 
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N.B.	  	  RAID	  0	  does	  not	  provide	  protecLon,	  it	  is	  only	  a	  mechanism	  for	  improved	  performance	  



RAID 5 

•  A RAID 5 array consists of N
+1 disks 
–  Each N blocks of data have 1 

extra block for parity 
–  The parity blocks are 

distributed across the disks 
–  N+1 Terabytes of raw disk 

storage provide N Terabytes 
of usable storage 

–  RAID 5 arrays are typically 
described in terms of being a 
N+1 array 

•  For example 4 disks would 
provide a 3+1 array 
designating 3 blocks of data 
to 1 block of parity 
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RAID 6 

•  A RAID 6 array consists of N+2 
disks 
–  Each N blocks of data have 2 

extra block for parity 
–  The parity blocks are distributed 

across the disks 
–  N+2 Terabytes of raw disk 

storage provide N Terabytes of 
usable storage 

–  RAID 6 arrays are typically 
described in terms of being a N
+1+1 or an N+2 array 

•  For example 5 disks would 
provide a 3+2 array designating 
3 blocks of data to 2 blocks of 
doubly distributed parity 

•  The /scratch file systems on 
Rosa and Palu use 8+2 RAID 6 
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Multiple RAID arrays and LUNs 

•  On a typical parallel file system there are hundreds or 
thousands of disks 
–  Palu /scratch file system uses 280 2-Terabyte disks 
–  Rosa /scratch file system uses 800 512-Megabyte disks 

•  These disks are partitioned into RAID arrays 
•  The RAID arrays are then described as logical units 

(LUNs), and software will then see each LUN as if it were 
a single disk 

•  Palu’s /scratch file system has 28 LUNs 
–  Each LUN is a 8+1+1 RAID 6 array 

•  Rosa’s /scratch file system has 80 LUNs 
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RAID Rebuild 

•  If a disk fails in a LUN, the LUN can continue to be used 
–  In RAID 5 there is no parity check if a disk is down 
–  In RAID 6 data corruption and recovery can still be carried out 

•  When a disk fails, the system will rebuild the missing disk from the remaining 
sector 

•  Disk rebuild is a slow process 
–  The larger the individual disk drive, the longer the rebuild 

•  During the rebuild the remaining disks are in use 
–  Still in use by the filesystem itself 
–  Heavy read activity occurs on the remaining disks as the data is read to reconstruct the 

failed disk 
•  RAID rebuild issues have led to research into alternatives to RAID infrastructure 

for use in high performance file systems 
•  For a /scratch file system it would be preferable to have a larger number of 

smaller disks 
–  More disks means more potential bandwidth 
–  Smaller disks mean quicker rebuild times 
–  … but we tend to be offered only larger disks 

•  As in all aspects of modern HPC we rely on commodity components 
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Disk Controllers 

•  Provision of access to the collection 
of disks in a file system is through a 
disk controller 

•  High performance disk controllers 
control the RAID arrays in a file 
system 

•  Disk controllers organise the RAID 
arrays and present them to the 
outside world as LUNs 

•  Disk controller infrastructure also 
includes disk enclosures 

•  Modern disk controllers can each 
control hundreds of disks and deliver 
up to 10 GB/s of I/O bandwidth to 
those disks 

–  Palu uses a single DDN SFA10K 
controller for its /scratch file system 

•  Total peak sustained write ~8 GB/s 
–  Rosa uses 5 LSI 7900 disk controllers 

for its /scratch file system 
•  Total peak sustained write ~14 GB/s 

Parallel I/O 21 



File Servers 

•  The storage hardware is presented to the application as 
a file system, which is mounted from a number of file 
servers 

•  File servers are typically standard server nodes with 
connectivity to the disk controller hardware 
–  Often they are simple x86 based servers 

•  On the Cray XT3/4/5 systems the file servers are nodes 
on the Cray 3D-Torus 

•  The file servers are where the file system server 
software runs 
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Internal and External File Systems on the Cray XT/E 

•  The Cray XT3/4/5 systems had the file 
systems mounted with internal file servers 

–  The file servers were nodes on the Cray machine 
itself 

–  The only supported file systems were Lustre and 
remote NFS mounted file systems 

•  The Cray XT5/6 and Cray XE6 systems 
support file systems that are mounted with 
external file servers 

–  The file servers are remote nodes 
–  The file servers are reachable from the compute 

nodes through router nodes on the Cray 
–  The Cray XE6 Palu has an external Lustre /scratch 

file system 
–  Additional DVS servers on the Cray provide fast 

access to other file systems 
•  The Cray XE6 Palu has reasonably fast access 

to the GPFS based file system /project 
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Network Connectivity 

•  In order to get data from your 
application to the storage devices, the 
data has to be transmitted over 
networks 

•  The data first has to travel from the 
compute node to the server 

–  On a Cray it passes across the high-speed 
network of the Torus 

•  On a Cray internal file system this is the 
only network 

•  For external file systems we typically 
use Infiniband 

•  For a Cray XE6 external file system the 
data has to pass over two networks 

–  First internally through the Torus to a 
router node 

–  Then across a PCI-express bus and onto 
the Infiniband network 
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File Systems for HPC 

•  There are a number of vendors who supply file systems for 
HPC 

•  The most commonly used file systems in large HPC 
installations 
–  Several vendors supply and support Lustre 
–  GPFS from IBM 
–  PanFS from Panasas 

•  A number of other file systems are available for distributed 
storage 
–  Ceph 
–  Fraunhofer Parallel File System 
–  Parallel Virtual File System 

•  CSCS uses GPFS for its global file systems such as /project 
and /users, and Lustre for the /scratch file systems on the 
Cray 
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Design Criteria for Parallel File Systems 

•  Parallel file systems for HPC are designed to handle 
large volumes of data 

•  It is expected that users of these file systems write data 
in large blocks at a time 

•  Small file writes are not optimised, and may be slow 
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GPFS Overview 

•  The General Parallel File System (GPFS) is a high 
performance file system from IBM 

•  GPFS delivers high resiliency and failover as well as 
high performance 
–  GPFS can be upgraded live without needing to take the file 

system out of service 
–  GPFS has maximum redundancy to avoid file system failures 
–  GPFS has a distributed metadata model to avoid a single point 

of failure 
•  GPFS hides most of the complexity of the file system 

from the user 
•  GPFS is used at CSCS for the central file systems (/

project, /users, /apps and /store) 
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Lustre Overview 

•  Lustre is a high performance file system 
that is used on most of the world’s 
fastest computers 

•  Lustre was designed to deliver high 
scalability in numbers of clients and 
performance in terms of high sustained 
bandwidth 
–  Many resiliency features were not included 

in the earlier versions 
•  Lustre allows users to exercise a great 

degree of control on the mapping of their 
files onto the underlying hardware 
–  The mapping or striping of files onto the 

underlying hardware is exploited by Cray’s 
MPI library to give fast MPI-IO performance 
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Common Features of Parallel File Systems 

•  Most file systems adhere to POSIX standards for I/O 
–  GPFS and Lustre are POSIX compliant 

•  Parallel file systems separate metadata and data storage 
•  Parallel file systems spread data from an individual file 

across multiple RAID arrays 
–  Writing to a single file can deliver the full performance of the file 

system hardware 
•  Very important for parallel I/O libraries 
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Metadata and Data 

•  Parallel file systems such as GPFS and Lustre separate 
information in a file into Metadata and Data 

•  Metadata is information about the file itself 
–  Filename, where it is in the file system heirarchy 
–  Timestamps, permissions, locks 

•  The data for the file is then separated from the metadata 
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Compare	  this	  to	  searching	  for	  journal	  papers	  in	  a	  database.	  
 Metadata	  such	  as	  journal,	  data,	  authors,	  Ltle,	  citaLon	  count	  etc.	  are	  searchable	  
in	  the	  database	  without	  needing	  to	  see	  the	  actual	  paper	  itself	  
 The	  data	  (text)	  is	  then	  only	  accessed	  when	  the	  journal	  paper	  is	  required	  

N.B.	  In	  this	  case	  much	  of	  the	  metadata	  is	  also	  normally	  present	  in	  the	  journal	  paper	  itself	  



Multiple Data Servers 

•  In large parallel file systems multiple servers are used to 
look after the disks 

•  Each server will be responsible for several RAID arrays 
•  Each RAID array may have multiple servers that can 

read/write to it 
–  Typically one server is the primary server, with other servers 

acting only in the case of primary server failure 

•  Using multiple servers increases the bandwidth potential 
of the file system and improves reliability if failover is 
enabled 
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Hardware Bottlenecks 

•  At each stage of the data transfer there are a number of 
potential bottlenecks 
–  Interconnect bottleneck to the metadata or data servers 
–  Number of file servers that are responsible for a particular file 
–  Capacity of individual servers 
–  Number of disk controllers used by each file 
–  Capacity of each disk controller 
–  Number of RAID arrays used by each file 
–  Speed of each RAID array 
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Contention on Networks 

•  The networks are shared resources 
–  Shared by multiple users 
–  Shared by MPI traffic and file system 

traffic 
–  Shared by multiple processes on a node 

•  Contention can occur at several 
stages on networks 

•  For example on a Cray XE6 
–  Network injection bandwidth of a 

compute node is ~ 5 GB/s 
–  Link bandwidth on the Torus is 

approximately 10 GB/s 
–  The router nodes can receive data at ~ 

5 GB/s 
–  The router nodes use PCI-express and 

QDR Infiniband to access the external 
file servers 

–  The file servers use QDR Infiniband to 
talk to the disk controller 

Parallel I/O 33 

Cray	  XE6	  
Compute	  Nodes	  

File	  System	  Servers	  	  

5	  GB/s	  

5	  GB/s	  

5	  GB/s	  

10	  GB/s	  

4	  GB/s	  

Cray	  XE6	  2D	  Torus	  



Contention on the Data Targets 

•  The data targets can have contention when multiple 
writes try to access the same RAID arrays 
–  This could be multiple writes from the same process 
–  Could be multiple writes from multiple processes 

•  From one job, multiple jobs or multiple users 

•  It is important to not just use a few RAID arrays if I/O 
bandwidth is the main bottleneck 
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Contention for Metadata Operations 

•  File metadata operations can also be a bottleneck 
•  Repeatedly opening and closing files can put a strain on 

the file system 
–  Even for parallel I/O libraries, each process needs to issue a 

metadata operation to get its own file handle in order to work on 
the file 

•  On the Cray XT5, poor usage patterns from some 
applications with metadata operations have led to 
dramatic slowdowns of the whole file system 
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Deep Dive Lustre 

•  The Lustre file system is the most widely used file 
system for HPC 

•  Lustre was designed to have very good parallel I/O 
performance from the standpoint of sustained bandwidth 

•  Lustre was designed to be highly scalable and to be able 
to serve thousands of clients 
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Lustre History and Future 

•  Lustre began development in 1999 
•  First Lustre release was in 2003 
•  Current version being shipped with most systems is Lustre 

1.8.X 
•  Lustre was originally developed by Cluster File Systems 

–  … who were bought by Sun Microsystems in 2007 
–  … who were bought by Oracle in 2009 

•  In April 2010 Oracle announced that future development of 
Oracle would only be supported on their hardware 

•  … but since Lustre was released under the GNU public 
licence, a consortium of companies and groups continue 
development themselves 
–  Whamcloud, Xyratex, OpenSFS etc. 
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Lustre Data Layout 

•  Lustre implements a separation 
of data and metadata 

•  The metadata is stored on a 
Metadata Target (MDT) 

•  The data is stored on a number 
of  Object Storage Targets 
(OSTs) 

•  A Metadata Server (MDS) 
serves all file system requests 
for metadata, and it looks after 
the MDT 

•  A number of Object Storage 
Servers (OSS) each look after 
several OSTs and serve 
requests for data on those OSTs 
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MDT	  

OST	  0	  

OST	  1	  

OST	  2	  

OST	  3	  

OST	  4	  

OST	  5	  

OST	  6	  

OST	  7	  

DISK	  Controllers	  

MDS	   OSS	  0	   OSS	  1	  



Striping in Lustre 

•  Lustre allows the user to have explicit control over the how a file is 
striped over the OSTs 

•  A default is configured by the system adminstrator 
–  On Rosa the default is 4 OSTs per file, 1 Mbyte stripes 
–  On Palu the default is 8 OSTs per file, 1 Mbyte stripes 

•  When data is written to a file, it is split into chunks equivalent to the 
stripe size 

•  Chunks are then sent to the different OSTs to improve disk 
bandwidth 

•  The file system tries to balance the load across all OSTs, but 
through dynamic file deletion and creation there is usually some 
imbalance 

•  Note that small files will typically be only have real data on 1 OST 
–  E.g. files less than one megabyte on Rosa and Palu /scratch file systems 
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Striping Example 

•  A 12MB file “File 1” is 
configured with a stripe 
count of 3, and a stripe size 
of 1MB 
–  The file system assigns 

OSTs 3, 4 and 6 to the file 
•  A 8 MB file “File 2” is 

configured with a stripe 
count of 2 and a stripe size 
of 2 MB 
–  The file system assigns 

OSTs 6 and 7 to the file 
•  Note that both files are 

being striped onto OST 6 
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MDT	  

OST	  0	  

OST	  1	  

OST	  2	  

OST	  3	  

OST	  4	  

OST	  5	  

OST	  6	  

OST	  7	  

File	  1	  

File	  2	  



Understanding the File System Layout 

•  lfs df gives you information about the Lustre file system to which 
you have access 

–  Number of OSTs 
–  Size of OSTs 
–  Usage of individual OSTs 

•  The “-h” option gives output in a more readable format 
–  The default is to report numbers in bytes 
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zsh$ lfs df -h!
UUID                     bytes      Used Available  Use% Mounted on!
scratch-MDT0000_UUID    976.1G      5.0G    915.3G    0% /scratch/rosa[MDT:0]!
scratch-OST0000_UUID      3.6T      2.4T      1.0T   66% /scratch/rosa[OST:0]!
scratch-OST0001_UUID      3.6T      2.4T    998.7G   67% /scratch/rosa[OST:1]!
scratch-OST0002_UUID      3.6T      2.3T      1.0T   65% /scratch/rosa[OST:2]!
scratch-OST0003_UUID      3.6T      2.4T      1.0T   65% /scratch/rosa[OST:3]!
scratch-OST0004_UUID      3.6T      2.3T      1.1T   64% /scratch/rosa[OST:4]!
scratch-OST0005_UUID      3.6T      2.3T      1.1T   65% /scratch/rosa[OST:5]!
scratch-OST0006_UUID      3.6T      2.3T      1.1T   65% /scratch/rosa[OST:6]!
scratch-OST0007_UUID      3.6T      2.3T      1.1T   65% /scratch/rosa[OST:7]!
scratch-OST0008_UUID      3.6T      2.4T      1.0T   66% /scratch/rosa[OST:8]!
.!
.!
.!
scratch-OST004b_UUID      3.6T      2.5T    956.3G   68% /scratch/rosa[OST:75]!
scratch-OST004c_UUID      3.6T      2.3T      1.1T   64% /scratch/rosa[OST:76]!
scratch-OST004d_UUID      3.6T      2.3T      1.1T   63% /scratch/rosa[OST:77]!
scratch-OST004e_UUID      3.6T      2.3T      1.1T   63% /scratch/rosa[OST:78]!
scratch-OST004f_UUID      3.6T      2.4T   1005.5G   67% /scratch/rosa[OST:79]!

filesystem summary:     286.2T    188.6T     83.1T   65% /scratch/rosa!

lfs df [-i|-h]!

The	  MDT	  is	  always	  first	  and	  will	  normally	  
have	  very	  liYle	  usage	  

Reports	  for	  individual	  OSTs	  will	  show	  any	  
imbalance	  in	  the	  system	  (here	  5%	  
difference	  between	  OST	  75	  and	  OST	  77)	  

The	  status	  of	  the	  whole	  file	  system	  is	  
reported	  at	  the	  end	  



Default Striping 

•  lfs getstripe tells you the 
status of striping of a 
given file or directory 

•  If you issue “lfs getstripe” 
on a directory you will get 
output about all files 
contained in that directory 

•  Adding the –v flag gives 
information about stripe 
size 
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lfs getstripe file!

zsh$ lfs getstripe -v myfile                   !
OBDS:!
0: scratch-OST0000_UUID ACTIVE!
1: scratch-OST0001_UUID ACTIVE!
2: scratch-OST0002_UUID ACTIVE!
3: scratch-OST0003_UUID ACTIVE!
4: scratch-OST0004_UUID ACTIVE!
5: scratch-OST0005_UUID ACTIVE!
6: scratch-OST0006_UUID ACTIVE!
7: scratch-OST0007_UUID ACTIVE!
8: scratch-OST0008_UUID ACTIVE!
9: scratch-OST0009_UUID ACTIVE!
myfile!
lmm_magic:          0x0BD10BD0!
lmm_object_gr:      0!
lmm_object_id:      0x6bc8517!
lmm_stripe_count:   8!
lmm_stripe_size:    1048576!
lmm_stripe_pattern: 1!
        obdidx           objid          objid            group!
             1        46301377      0x2c280c1                0!
             2        46255933      0x2c1cf3d                0!
             3        45929151      0x2bcd2bf                0!
             4        46453416      0x2c4d2a8                0!
             5        46000715      0x2bdea4b                0!
             6        46200177      0x2c0f571                0!
             7        46004652      0x2bdf9ac                0!
             8        46333367      0x2c2fdb7                0!



Control of Striping 

•  lfs setstripe is used to define the striping of a directory or file 
•  The <stripesize>must be a multiple of 64 Kbytes 
•  You cannot change the striping of an existing file 
•  If the file does not exist it will be created (as a file) 
•  Setting the <firststripe> is only really useful if the file has just 

one stripe 
–  Or it will fit on one stripe because it will be smaller than <stripesize> 

•  Setting the striping on a directory then affects all future files 
and subdirectories created within it 
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lfs setstripe -s <stripesize> -c <stripecount> -i <firststripe> file!



Optimising for Striping 

•  Different usage characteristics of the file system can 
benefit from different striping strategies 

•  Typically if you want to us a parallel I/O library to write a 
single file then you want to stripe everywhere 

•  When writing to a set of individual files it may be best to 
stripe on a small number of OSTs 

•  In most cases it is best to try different striping strategies 
and see what works best 
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PRACTICAL	  



File Write Example 

This example uses a simple MPI code that writes a 1 Gigabyte file per process. 
The files are contained in the directory 

 /project/csstaff/IO_Course/simplewrite!
The source code is in the file writedata.f90 and there are precompiled executables for Palu and Rosa 

Parallel I/O 46 

$ mkdir $SCRATCH/testwrite!
$ cd $SCRATCH/testwrite!
$ cp /project/csstaff/IO_Course/simplewrite/writedata_palu .!

On	  Palu,	  make	  a	  directory	  under	  /scratch	  and	  copy	  the	  executable:	  

Now	  start	  an	  interacLve	  session	  on	  a	  compute	  node	  and	  run	  the	  executable:	  

$ salloc -N 1 --time=00:10:00!
salloc: Granted job allocation XXXX!
$ aprun -n 1 ./writedata_palu!
Writing file took      YYYYYY seconds!
Bandwidth was   ZZZZZZ MB/s!

Repeat	  the	  run	  to	  confirm	  the	  Lmings	  (typically	  I/O	  results	  are	  much	  more	  variable	  than	  other	  benchmarks)	  

Repeat	  the	  run	  with	  different	  numbers	  of	  processes	  (e.g.	  1	  to	  16	  in	  powers	  of	  2)	  

Don’t	  forget	  to	  exit	  the	  interacLve	  session	  when	  you	  have	  finished	  



File Write Analysis 

1.  What is the bandwidth on 1 process 
2.  How does the bandwidth vary with the number of 

processes ? 
3.  What is the maximum bandwidth you achieve ? 
4.  Where are your bottlenecks ? 
5.  Optional: Repeat the exercise on Rosa 
6.  What can you do to improve bandwidth? 
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The	  maximum	  sustained	  write	  bandwidth	  that	  we	  have	  seen	  on	  the	  Palu	  /scratch	  file	  system	  is	  ~8	  GB/s	  
The	  maximum	  sustained	  write	  bandwidth	  that	  we	  have	  seen	  on	  the	  Rosa	  /scratch	  file	  system	  is	  ~14	  GB/s	  


