
File Systems for HPC Machines

Parallel I/O

Course Outline – Background Knowledge

•  Why I/O and data storage are important
•  Introduction to I/O hardware
•  File systems
•  Lustre specifics
•  Data formats and data provenance

2 Parallel I/O

Course Outline – Parallel I/O

•  MPI-IO
–  The foundation for most other parallel libraries

•  HDF5
–  A portable data format widely used in HPC

•  NetCDF
–  Portable data format commonly used in climate simulations

•  ADIOS
–  A library that builds on other data formats

Parallel I/O 3

Data and I/O in Applications

•  Checkpoint/restart files
–  Must use full precision of simulation data
–  Amount of data needed for restart will determine frequency of

output
•  Input of initialisation data

–  Normally not parallel
•  Output of data for analysis

–  Might be output in reduced precision
–  Might store only a subset of full resolution

•  Output of data for job monitoring
–  Typically from process 0
–  Normally ASCII

Parallel I/O 4

Recap –why I/O is such a problem

Parallel I/O 5

•  Limiting factor for many data intensive applications
•  Speed of I/O subsystems for writing data is not keeping up with increases in speed of

compute engines

Idealised 2D grid layout for data
decomposition with halos:

Increasing the number of processors
by 4 leads to each processor having

•  one quarter the number of grid
points to compute
•  one half the number of halo
points to communicate

The same amount of total data
needs to be output at each time
step. P processors, each with …

MxN Grid points
2M+2N Halo points

4P processors, each with …
(M/2)x(N/2) Grid points
M+N Halo points

I/O reaches a scaling limit

Parallel I/O 6

Computation: Scales O(P) for P processors Minor scaling problem – issues of
halo memory bandwidth, vector
lengths, efficiency of software
pipeline etc.

Communication: Scales O(√P) for P processors Major scaling problem – the halo
region decreases slowly as you
increase the number of
processors

I/O (mainly “O”): No scaling Limiting factor in scaling– the
same amount of total data is
output at each time step

Scalability Limitation of I/O

•  I/O subsystems are typically very slow compared to other
parts of a supercomputer
–  You can easily saturate the bandwidth

•  Once the bandwidth is saturated scaling in I/O stops
–  Adding more compute nodes increases aggregate memory

bandwidth and flops/s, but not I/O

•  I/O scaling is a problem independent of the method used
–  Structured grid with domain decomposition, particle methods,

unstructured grids

Parallel I/O 7

Storing Data

•  Long-term data storage can be expensive
–  Storage systems need to have good I/O bandwidth to read back the

data
•  Only a few restart files are normally stored
•  Most data is for analysis
•  Storing data in reduced precision saves space

–  If the simulation can output in reduced precision then this also saves
on bandwidth

–  Providing sufficient servers for the compute power required for
compression is typically more economical than buying large
amounts of data storage

•  Data should be compressed before storage
–  … and reduced precision data can be compressed more than full

precision data

Parallel I/O 8

Scientific decisions to be made:

•  Which output fields from a simulation are needed, which can be ignored?
–  Re-examine output request before each simulation

•  Can output frequency be reduced without compromising the scientific analysis?
•  Can you store less data in general from the simulation ?

–  Grid based domain decomposition
•  Can some fields be on reduced resolution grid?
•  Can you store a subset of the grid?

–  Particle simulations
•  Can you store a subset of particles?

•  Can you reduce the precision of variables
–  Do you need double precision or is single precision enough for analysis
–  Can you pack data even further?

•  E.g. NetCDF offers a reduced precision called NC_SHORT (16 bit)?

Parallel I/O 9

These questions require a scientific value judgement, but could
reduce the data storage or I/O requirements substantially

The case for reduced precision (packing)

•  Packing data is an efficient method to
decrease data volumes at the cost of
less precision

•  Packed data is already employed in
some communities

–  E.g. For weather and climate, the GRIB format
is already a packed (16-bit) format, and packing
is supported in NetCDF

•  In NetCDF it is easy to use packed data
–  NCO tools have support functions to pack data
–  Many tools support packed data format

•  Packed data compresses much better
with lossless compression algorithms
compared to non-packed data

•  It should be easy to carry out data
packing in parallel during a simulation

Parallel I/O 10

Packed	 Data	

1.  For	 a	 data	 set	 in	 single	 precision,	 find	 the	 minimum	
min	 and	 maximum	 max	 of	 the	 whole	 data	 set.	

2.  Store	 the	 offset	 min	 and	 range	 (max-‐min)	 of	 the	
dataset	 in	 single	 precision	

3.  For	 each	 element	 Y	 of	 the	 dataset,	 store	 a	 16-‐bit	
integer	 X	 to	 represent	 its	 posiAon	 within	 the	 range	

Each	 reduced	 precision	 element	 Yreduced	 of	 the	 data	 can	
then	 be	 recovered	 from	 the	 formula:-‐	

Yreduced=offset + (X/65535) * range

The case for lossless compression

•  Lossless compression reduces data volumes without losing
precision

–  No scientific judgement is required
•  When uncompressed, the data is back to its original form

–  Standard LZ compression algorithms are widely used (e.g. gzip)
•  It is relatively free

–  Some compute time is required to compress/uncompress
•  Lossless compression reduces bandwidth requirements for data

transfer to longer-term storage
•  It might not be straightforward to introduce lossless compression

with parallel file I/O from within your application
–  Most lossless compression will be carried out with tools (e.g. gzip) after the

simulation has output the data
–  Using compression in parallel HDF5 for example is not yet supported

Parallel I/O 11

Compression example

•  Testing of packing (ncpdq) and compression (gzip –fast) of a
10 Gigabyte high-resolution COSMO NetCDF output file on Ela

Parallel I/O 12

Single	 precision	 (32-‐
bit)	 data	

Packed	 (16-‐bit)	 data	

Compressed	 file	 –	
3.5	 GB	

Compressed	 packed	
file	 –	 0.7	 GB	

Packed	 file	 –	 5.2	 GB	

Original	 file	 –	 10.5	 GB	

70	 secs	

280	 secs	

135	 secs	

Note	 that	 in	 this	
case	 packing	
followed	 by	

compression	 is	
faster	 than	 plain	
compression	

HPC Systems

•  Machines consist of three main components
–  Compute nodes
–  High-speed interconnect
–  I/O infrastructure

•  Most optimisation work on HPC applications is carried
out on
1.  Single node performance
2.  Network performance
3.  … and I/O only when it becomes a real problem

Parallel I/O 13

Storage Hardware

•  Modern storage hardware at
CSCS consists of
–  Disk drives to provide storage

•  Optionally SSDs for fast
storage

–  Disk controllers to manage the
disks

–  File servers to offer applications
access to the disks through a
file system

–  Network infrastructure to
connect the components

–  Tape backup systems for
failover or long-term storage

•  CSCS uses tape as a backup
of the /users file system and as
a failover for the /project file
system

Parallel I/O 14

Disk Drives and SSDs

•  Disk drives come in several
varieties
–  Fibre channel disks

•  Fast, expensive, low capacity
–  Often used for metadata

operations
–  SATA disks

•  Slow, cheap, high capacity
–  SAS disks

•  SAS controllers with SATA drives
are being mentioned as a potential
replacement for standard SATA

•  Solid state drives are gaining
acceptance
–  NAND based flash

•  Fast, expensive, low capacity
–  Huge number of IOPs

Parallel I/O 15

RAID Arrays

•  For reliability, disks are collected together to form RAID
arrays
–  RAID – Redundant Array of Independent Disks

•  RAID arrays provide protection against disk failures and
data corruption

•  Typical RAID attached to HPC systems is RAID 5 or
RAID 6
–  Newer systems use RAID 6

•  RAID array configurations try to find a compromise
between reliability, speed and volume of storage

•  A RAID array typically delivers much lower bandwidth
than the aggregate possible from the disks in the array

Parallel I/O 16

N.B.	 	 RAID	 0	 does	 not	 provide	 protecLon,	 it	 is	 only	 a	 mechanism	 for	 improved	 performance	

RAID 5

•  A RAID 5 array consists of N
+1 disks
–  Each N blocks of data have 1

extra block for parity
–  The parity blocks are

distributed across the disks
–  N+1 Terabytes of raw disk

storage provide N Terabytes
of usable storage

–  RAID 5 arrays are typically
described in terms of being a
N+1 array

•  For example 4 disks would
provide a 3+1 array
designating 3 blocks of data
to 1 block of parity

Parallel I/O 17

RAID 6

•  A RAID 6 array consists of N+2
disks
–  Each N blocks of data have 2

extra block for parity
–  The parity blocks are distributed

across the disks
–  N+2 Terabytes of raw disk

storage provide N Terabytes of
usable storage

–  RAID 6 arrays are typically
described in terms of being a N
+1+1 or an N+2 array

•  For example 5 disks would
provide a 3+2 array designating
3 blocks of data to 2 blocks of
doubly distributed parity

•  The /scratch file systems on
Rosa and Palu use 8+2 RAID 6

Parallel I/O 18

Multiple RAID arrays and LUNs

•  On a typical parallel file system there are hundreds or
thousands of disks
–  Palu /scratch file system uses 280 2-Terabyte disks
–  Rosa /scratch file system uses 800 512-Megabyte disks

•  These disks are partitioned into RAID arrays
•  The RAID arrays are then described as logical units

(LUNs), and software will then see each LUN as if it were
a single disk

•  Palu’s /scratch file system has 28 LUNs
–  Each LUN is a 8+1+1 RAID 6 array

•  Rosa’s /scratch file system has 80 LUNs

Parallel I/O 19

RAID Rebuild

•  If a disk fails in a LUN, the LUN can continue to be used
–  In RAID 5 there is no parity check if a disk is down
–  In RAID 6 data corruption and recovery can still be carried out

•  When a disk fails, the system will rebuild the missing disk from the remaining
sector

•  Disk rebuild is a slow process
–  The larger the individual disk drive, the longer the rebuild

•  During the rebuild the remaining disks are in use
–  Still in use by the filesystem itself
–  Heavy read activity occurs on the remaining disks as the data is read to reconstruct the

failed disk
•  RAID rebuild issues have led to research into alternatives to RAID infrastructure

for use in high performance file systems
•  For a /scratch file system it would be preferable to have a larger number of

smaller disks
–  More disks means more potential bandwidth
–  Smaller disks mean quicker rebuild times
–  … but we tend to be offered only larger disks

•  As in all aspects of modern HPC we rely on commodity components

Parallel I/O 20

Disk Controllers

•  Provision of access to the collection
of disks in a file system is through a
disk controller

•  High performance disk controllers
control the RAID arrays in a file
system

•  Disk controllers organise the RAID
arrays and present them to the
outside world as LUNs

•  Disk controller infrastructure also
includes disk enclosures

•  Modern disk controllers can each
control hundreds of disks and deliver
up to 10 GB/s of I/O bandwidth to
those disks

–  Palu uses a single DDN SFA10K
controller for its /scratch file system

•  Total peak sustained write ~8 GB/s
–  Rosa uses 5 LSI 7900 disk controllers

for its /scratch file system
•  Total peak sustained write ~14 GB/s

Parallel I/O 21

File Servers

•  The storage hardware is presented to the application as
a file system, which is mounted from a number of file
servers

•  File servers are typically standard server nodes with
connectivity to the disk controller hardware
–  Often they are simple x86 based servers

•  On the Cray XT3/4/5 systems the file servers are nodes
on the Cray 3D-Torus

•  The file servers are where the file system server
software runs

Parallel I/O 22

Internal and External File Systems on the Cray XT/E

•  The Cray XT3/4/5 systems had the file
systems mounted with internal file servers

–  The file servers were nodes on the Cray machine
itself

–  The only supported file systems were Lustre and
remote NFS mounted file systems

•  The Cray XT5/6 and Cray XE6 systems
support file systems that are mounted with
external file servers

–  The file servers are remote nodes
–  The file servers are reachable from the compute

nodes through router nodes on the Cray
–  The Cray XE6 Palu has an external Lustre /scratch

file system
–  Additional DVS servers on the Cray provide fast

access to other file systems
•  The Cray XE6 Palu has reasonably fast access

to the GPFS based file system /project

Parallel I/O 23

Network Connectivity

•  In order to get data from your
application to the storage devices, the
data has to be transmitted over
networks

•  The data first has to travel from the
compute node to the server

–  On a Cray it passes across the high-speed
network of the Torus

•  On a Cray internal file system this is the
only network

•  For external file systems we typically
use Infiniband

•  For a Cray XE6 external file system the
data has to pass over two networks

–  First internally through the Torus to a
router node

–  Then across a PCI-express bus and onto
the Infiniband network

Parallel I/O 24

File Systems for HPC

•  There are a number of vendors who supply file systems for
HPC

•  The most commonly used file systems in large HPC
installations
–  Several vendors supply and support Lustre
–  GPFS from IBM
–  PanFS from Panasas

•  A number of other file systems are available for distributed
storage
–  Ceph
–  Fraunhofer Parallel File System
–  Parallel Virtual File System

•  CSCS uses GPFS for its global file systems such as /project
and /users, and Lustre for the /scratch file systems on the
Cray

Parallel I/O 25

Design Criteria for Parallel File Systems

•  Parallel file systems for HPC are designed to handle
large volumes of data

•  It is expected that users of these file systems write data
in large blocks at a time

•  Small file writes are not optimised, and may be slow

Parallel I/O 26

GPFS Overview

•  The General Parallel File System (GPFS) is a high
performance file system from IBM

•  GPFS delivers high resiliency and failover as well as
high performance
–  GPFS can be upgraded live without needing to take the file

system out of service
–  GPFS has maximum redundancy to avoid file system failures
–  GPFS has a distributed metadata model to avoid a single point

of failure
•  GPFS hides most of the complexity of the file system

from the user
•  GPFS is used at CSCS for the central file systems (/

project, /users, /apps and /store)

Parallel I/O 27

Lustre Overview

•  Lustre is a high performance file system
that is used on most of the world’s
fastest computers

•  Lustre was designed to deliver high
scalability in numbers of clients and
performance in terms of high sustained
bandwidth
–  Many resiliency features were not included

in the earlier versions
•  Lustre allows users to exercise a great

degree of control on the mapping of their
files onto the underlying hardware
–  The mapping or striping of files onto the

underlying hardware is exploited by Cray’s
MPI library to give fast MPI-IO performance

Parallel I/O 28

Common Features of Parallel File Systems

•  Most file systems adhere to POSIX standards for I/O
–  GPFS and Lustre are POSIX compliant

•  Parallel file systems separate metadata and data storage
•  Parallel file systems spread data from an individual file

across multiple RAID arrays
–  Writing to a single file can deliver the full performance of the file

system hardware
•  Very important for parallel I/O libraries

Parallel I/O 29

Metadata and Data

•  Parallel file systems such as GPFS and Lustre separate
information in a file into Metadata and Data

•  Metadata is information about the file itself
–  Filename, where it is in the file system heirarchy
–  Timestamps, permissions, locks

•  The data for the file is then separated from the metadata

Parallel I/O 30

Compare	 this	 to	 searching	 for	 journal	 papers	 in	 a	 database.	
 Metadata	 such	 as	 journal,	 data,	 authors,	 Ltle,	 citaLon	 count	 etc.	 are	 searchable	
in	 the	 database	 without	 needing	 to	 see	 the	 actual	 paper	 itself	
 The	 data	 (text)	 is	 then	 only	 accessed	 when	 the	 journal	 paper	 is	 required	

N.B.	 In	 this	 case	 much	 of	 the	 metadata	 is	 also	 normally	 present	 in	 the	 journal	 paper	 itself	

Multiple Data Servers

•  In large parallel file systems multiple servers are used to
look after the disks

•  Each server will be responsible for several RAID arrays
•  Each RAID array may have multiple servers that can

read/write to it
–  Typically one server is the primary server, with other servers

acting only in the case of primary server failure

•  Using multiple servers increases the bandwidth potential
of the file system and improves reliability if failover is
enabled

Parallel I/O 31

Hardware Bottlenecks

•  At each stage of the data transfer there are a number of
potential bottlenecks
–  Interconnect bottleneck to the metadata or data servers
–  Number of file servers that are responsible for a particular file
–  Capacity of individual servers
–  Number of disk controllers used by each file
–  Capacity of each disk controller
–  Number of RAID arrays used by each file
–  Speed of each RAID array

Parallel I/O 32

Contention on Networks

•  The networks are shared resources
–  Shared by multiple users
–  Shared by MPI traffic and file system

traffic
–  Shared by multiple processes on a node

•  Contention can occur at several
stages on networks

•  For example on a Cray XE6
–  Network injection bandwidth of a

compute node is ~ 5 GB/s
–  Link bandwidth on the Torus is

approximately 10 GB/s
–  The router nodes can receive data at ~

5 GB/s
–  The router nodes use PCI-express and

QDR Infiniband to access the external
file servers

–  The file servers use QDR Infiniband to
talk to the disk controller

Parallel I/O 33

Cray	 XE6	
Compute	 Nodes	

File	 System	 Servers	 	

5	 GB/s	

5	 GB/s	

5	 GB/s	

10	 GB/s	

4	 GB/s	

Cray	 XE6	 2D	 Torus	

Contention on the Data Targets

•  The data targets can have contention when multiple
writes try to access the same RAID arrays
–  This could be multiple writes from the same process
–  Could be multiple writes from multiple processes

•  From one job, multiple jobs or multiple users

•  It is important to not just use a few RAID arrays if I/O
bandwidth is the main bottleneck

Parallel I/O 34

Contention for Metadata Operations

•  File metadata operations can also be a bottleneck
•  Repeatedly opening and closing files can put a strain on

the file system
–  Even for parallel I/O libraries, each process needs to issue a

metadata operation to get its own file handle in order to work on
the file

•  On the Cray XT5, poor usage patterns from some
applications with metadata operations have led to
dramatic slowdowns of the whole file system

Parallel I/O 35

Deep Dive Lustre

•  The Lustre file system is the most widely used file
system for HPC

•  Lustre was designed to have very good parallel I/O
performance from the standpoint of sustained bandwidth

•  Lustre was designed to be highly scalable and to be able
to serve thousands of clients

Parallel I/O 36

Lustre History and Future

•  Lustre began development in 1999
•  First Lustre release was in 2003
•  Current version being shipped with most systems is Lustre

1.8.X
•  Lustre was originally developed by Cluster File Systems

–  … who were bought by Sun Microsystems in 2007
–  … who were bought by Oracle in 2009

•  In April 2010 Oracle announced that future development of
Oracle would only be supported on their hardware

•  … but since Lustre was released under the GNU public
licence, a consortium of companies and groups continue
development themselves
–  Whamcloud, Xyratex, OpenSFS etc.

Parallel I/O 37

Lustre Data Layout

•  Lustre implements a separation
of data and metadata

•  The metadata is stored on a
Metadata Target (MDT)

•  The data is stored on a number
of Object Storage Targets
(OSTs)

•  A Metadata Server (MDS)
serves all file system requests
for metadata, and it looks after
the MDT

•  A number of Object Storage
Servers (OSS) each look after
several OSTs and serve
requests for data on those OSTs

Parallel I/O 38

MDT	

OST	 0	

OST	 1	

OST	 2	

OST	 3	

OST	 4	

OST	 5	

OST	 6	

OST	 7	

DISK	 Controllers	

MDS	 OSS	 0	 OSS	 1	

Striping in Lustre

•  Lustre allows the user to have explicit control over the how a file is
striped over the OSTs

•  A default is configured by the system adminstrator
–  On Rosa the default is 4 OSTs per file, 1 Mbyte stripes
–  On Palu the default is 8 OSTs per file, 1 Mbyte stripes

•  When data is written to a file, it is split into chunks equivalent to the
stripe size

•  Chunks are then sent to the different OSTs to improve disk
bandwidth

•  The file system tries to balance the load across all OSTs, but
through dynamic file deletion and creation there is usually some
imbalance

•  Note that small files will typically be only have real data on 1 OST
–  E.g. files less than one megabyte on Rosa and Palu /scratch file systems

Parallel I/O 39

Striping Example

•  A 12MB file “File 1” is
configured with a stripe
count of 3, and a stripe size
of 1MB
–  The file system assigns

OSTs 3, 4 and 6 to the file
•  A 8 MB file “File 2” is

configured with a stripe
count of 2 and a stripe size
of 2 MB
–  The file system assigns

OSTs 6 and 7 to the file
•  Note that both files are

being striped onto OST 6

Parallel I/O 40

MDT	

OST	 0	

OST	 1	

OST	 2	

OST	 3	

OST	 4	

OST	 5	

OST	 6	

OST	 7	

File	 1	

File	 2	

Understanding the File System Layout

•  lfs df gives you information about the Lustre file system to which
you have access

–  Number of OSTs
–  Size of OSTs
–  Usage of individual OSTs

•  The “-h” option gives output in a more readable format
–  The default is to report numbers in bytes

Parallel I/O 41

zsh$ lfs df -h!
UUID bytes Used Available Use% Mounted on!
scratch-MDT0000_UUID 976.1G 5.0G 915.3G 0% /scratch/rosa[MDT:0]!
scratch-OST0000_UUID 3.6T 2.4T 1.0T 66% /scratch/rosa[OST:0]!
scratch-OST0001_UUID 3.6T 2.4T 998.7G 67% /scratch/rosa[OST:1]!
scratch-OST0002_UUID 3.6T 2.3T 1.0T 65% /scratch/rosa[OST:2]!
scratch-OST0003_UUID 3.6T 2.4T 1.0T 65% /scratch/rosa[OST:3]!
scratch-OST0004_UUID 3.6T 2.3T 1.1T 64% /scratch/rosa[OST:4]!
scratch-OST0005_UUID 3.6T 2.3T 1.1T 65% /scratch/rosa[OST:5]!
scratch-OST0006_UUID 3.6T 2.3T 1.1T 65% /scratch/rosa[OST:6]!
scratch-OST0007_UUID 3.6T 2.3T 1.1T 65% /scratch/rosa[OST:7]!
scratch-OST0008_UUID 3.6T 2.4T 1.0T 66% /scratch/rosa[OST:8]!
.!
.!
.!
scratch-OST004b_UUID 3.6T 2.5T 956.3G 68% /scratch/rosa[OST:75]!
scratch-OST004c_UUID 3.6T 2.3T 1.1T 64% /scratch/rosa[OST:76]!
scratch-OST004d_UUID 3.6T 2.3T 1.1T 63% /scratch/rosa[OST:77]!
scratch-OST004e_UUID 3.6T 2.3T 1.1T 63% /scratch/rosa[OST:78]!
scratch-OST004f_UUID 3.6T 2.4T 1005.5G 67% /scratch/rosa[OST:79]!

filesystem summary: 286.2T 188.6T 83.1T 65% /scratch/rosa!

lfs df [-i|-h]!

The	 MDT	 is	 always	 first	 and	 will	 normally	
have	 very	 liYle	 usage	

Reports	 for	 individual	 OSTs	 will	 show	 any	
imbalance	 in	 the	 system	 (here	 5%	
difference	 between	 OST	 75	 and	 OST	 77)	

The	 status	 of	 the	 whole	 file	 system	 is	
reported	 at	 the	 end	

Default Striping

•  lfs getstripe tells you the
status of striping of a
given file or directory

•  If you issue “lfs getstripe”
on a directory you will get
output about all files
contained in that directory

•  Adding the –v flag gives
information about stripe
size

Parallel I/O 42

lfs getstripe file!

zsh$ lfs getstripe -v myfile !
OBDS:!
0: scratch-OST0000_UUID ACTIVE!
1: scratch-OST0001_UUID ACTIVE!
2: scratch-OST0002_UUID ACTIVE!
3: scratch-OST0003_UUID ACTIVE!
4: scratch-OST0004_UUID ACTIVE!
5: scratch-OST0005_UUID ACTIVE!
6: scratch-OST0006_UUID ACTIVE!
7: scratch-OST0007_UUID ACTIVE!
8: scratch-OST0008_UUID ACTIVE!
9: scratch-OST0009_UUID ACTIVE!
myfile!
lmm_magic: 0x0BD10BD0!
lmm_object_gr: 0!
lmm_object_id: 0x6bc8517!
lmm_stripe_count: 8!
lmm_stripe_size: 1048576!
lmm_stripe_pattern: 1!
 obdidx objid objid group!
 1 46301377 0x2c280c1 0!
 2 46255933 0x2c1cf3d 0!
 3 45929151 0x2bcd2bf 0!
 4 46453416 0x2c4d2a8 0!
 5 46000715 0x2bdea4b 0!
 6 46200177 0x2c0f571 0!
 7 46004652 0x2bdf9ac 0!
 8 46333367 0x2c2fdb7 0!

Control of Striping

•  lfs setstripe is used to define the striping of a directory or file
•  The <stripesize>must be a multiple of 64 Kbytes
•  You cannot change the striping of an existing file
•  If the file does not exist it will be created (as a file)
•  Setting the <firststripe> is only really useful if the file has just

one stripe
–  Or it will fit on one stripe because it will be smaller than <stripesize>

•  Setting the striping on a directory then affects all future files
and subdirectories created within it

Parallel I/O 43

lfs setstripe -s <stripesize> -c <stripecount> -i <firststripe> file!

Optimising for Striping

•  Different usage characteristics of the file system can
benefit from different striping strategies

•  Typically if you want to us a parallel I/O library to write a
single file then you want to stripe everywhere

•  When writing to a set of individual files it may be best to
stripe on a small number of OSTs

•  In most cases it is best to try different striping strategies
and see what works best

Parallel I/O 44

Parallel I/O 45

PRACTICAL	

File Write Example

This example uses a simple MPI code that writes a 1 Gigabyte file per process.
The files are contained in the directory

 /project/csstaff/IO_Course/simplewrite!
The source code is in the file writedata.f90 and there are precompiled executables for Palu and Rosa

Parallel I/O 46

$ mkdir $SCRATCH/testwrite!
$ cd $SCRATCH/testwrite!
$ cp /project/csstaff/IO_Course/simplewrite/writedata_palu .!

On	 Palu,	 make	 a	 directory	 under	 /scratch	 and	 copy	 the	 executable:	

Now	 start	 an	 interacLve	 session	 on	 a	 compute	 node	 and	 run	 the	 executable:	

$ salloc -N 1 --time=00:10:00!
salloc: Granted job allocation XXXX!
$ aprun -n 1 ./writedata_palu!
Writing file took YYYYYY seconds!
Bandwidth was ZZZZZZ MB/s!

Repeat	 the	 run	 to	 confirm	 the	 Lmings	 (typically	 I/O	 results	 are	 much	 more	 variable	 than	 other	 benchmarks)	

Repeat	 the	 run	 with	 different	 numbers	 of	 processes	 (e.g.	 1	 to	 16	 in	 powers	 of	 2)	

Don’t	 forget	 to	 exit	 the	 interacLve	 session	 when	 you	 have	 finished	

File Write Analysis

1.  What is the bandwidth on 1 process
2.  How does the bandwidth vary with the number of

processes ?
3.  What is the maximum bandwidth you achieve ?
4.  Where are your bottlenecks ?
5.  Optional: Repeat the exercise on Rosa
6.  What can you do to improve bandwidth?

Parallel I/O 47

The	 maximum	 sustained	 write	 bandwidth	 that	 we	 have	 seen	 on	 the	 Palu	 /scratch	 file	 system	 is	 ~8	 GB/s	
The	 maximum	 sustained	 write	 bandwidth	 that	 we	 have	 seen	 on	 the	 Rosa	 /scratch	 file	 system	 is	 ~14	 GB/s	

