
Parallel I/O using netCDF

National Supercomputing Service
CSCS

Agenda

  Introduction to netCDF
–  What is it? Who uses it?
–  Steps in creating and writing a serial netCDF file

  What is parallel netCDF?
  How to write a file in parallel using netCDF.
  Performance tuning
  Post processing
  Not going to go in depth into what netCDF can

do, e.g.
–  Writing time-dependent data or user defined types.

What is netCDF?

  Network Common Data Format
  Originally developed for the earth science

community as a means of sharing data and/or
model output.

  Set of libraries, an API, and data formats for
creating files with

  Array data (vectors, arrays, time series of arrays, etc)
  Metadata (variables, units, data ranges, how file was

produced, etc)

  Fortran 77/90, C/C++ interface

What is netCDF?

  The metadata is crucial in that it describes the
data that the file contains.
–  netCDF has a self-describing data format.

  Typical file contains
–  Variables, e.g. scalars,vectors,arrays

  Char, byte, short, int, float, double, use defined types
–  Dimensions

  Name and length that describe axes of variables

–  Attributes, e.g. units, range, scaling factors, etc.

What is netCDF?

  One of the main advantages of netCDF is its
portability.
–  Internal libraries handle data representation so

that issues like endianness do not have to be
explicitly handled by the user.

–  Classic netCDF uses XDR (eXternal Data
Representation)

–  Parallel netCDF (netCDF4) uses HDF5 on top of
MPI-IO.

Example:

> ncdump –h test.nc!
netcdf test {!
dimensions:!

!nX = 1142 ;!
!nY = 765 ;!
!nZ = 90 ;!

variables:!
!double T(nZ, nY, nX) ;!
! !T:units = "Celsius" ;!
! !T:valid_range = 0.f, 1.f ;!

}

The ncdump utility can be used to view header information only (-h) or
the entire file

Who uses it?

  Climatology (e.g. CESM, MITgcm)
  Meteorology (e.g. WRF)
  Oceanography (e.g. POP)
  GIS (geographic information systems)
  Visualization applications
  Not limited to use in earth science!

3rd Party Software that uses netCDF

  GMT (Generic Mapping Tool)
  NCL (NCAR command language/graphics)
  Python/Perl/Ruby/Java
  Matlab
  Ensight
  IDL
  Mathematica
  Many others…..

Basic netCDF template

  The creation and parsing of netCDF files
follow a simple template:
–  Open/Create
–  Read/define dimensions
–  Define variables
–  Read/define attributes
–  Read/Write data
–  Close

program simple_xy_wr
use netcdf ! #include “netcdf.h” for C
implicit none
character (len = *), parameter :: FILE_NAME = "simple_xy.nc"
integer, parameter :: NDIMS = 2
integer, parameter :: NX = 4, NY = 3
integer :: ncid, varid, dimids(NDIMS)
integer :: data_out(NX, NY)
integer :: x, y, stat, x_dimid, y_dimid

Do y = 1, NY
 do x = 1, NX
 data_out(x,y) = (y - 1) * NX + (x – 1)
 end do

end do

stat = nf90_create(FILE_NAME, NF90_CLOBBER, ncid) ! F77: nf_... C: nc_...
stat = nf90_def_dim(ncid, "x", NX, x_dimid)
stat = nf90_def_dim(ncid, "y", NY, y_dimid)

! The dimids array is used to pass the IDs of the dimensions of
! the variables.
dimids = (/ x_dimid, y_dimid /)

stat = nf90_def_var(ncid, "data", NF90_INT, dimids, varid)
stat = nf90_enddef(ncid)
stat = nf90_put_var(ncid, varid, data_out)
stat = nf90_close(ncid)

end program simple_xy_wr

Fortran write example

Compiling and linking netCDF

  Choose a programming environment
–  > module load PrgEnv-pgi

  Load netCDF module
–  > module load netcdf
–  Paths to netCDF include files and libraries

included in ftn/cc wrappers
  Compile and link

–  > ftn –o simple_xy simple_xy.f90

user@ela3:~> ncdump simple_xy.nc
netcdf simple_xy {
dimensions:

 x = 3 ;
 y = 4 ;

variables:
 int data(x, y) ;

data:

 data =
 0, 1, 2, 3,
 4, 5, 6, 7,
 8, 9, 10, 11 ;
}

Example output

#include <stdlib.h>
#include <stdio.h>
#include <netcdf.h>
#define FILE_NAME "simple_xy.nc"
#define NDIMS 2
#define NX 3
#define NY 4

int main() {
int ncid, x_dimid, y_dimid, varid; int dimids[NDIMS];
int data_out[NX][NY];
int x, y, retval;

for (x = 0; x < NX; x++)
 for (y = 0; y < NY; y++)
 data_out[x][y] = x * NY + y;

retval = nc_create(FILE_NAME, NC_CLOBBER, &ncid);
retval = nc_def_dim(ncid, "x", NX, &x_dimid);
retval = nc_def_dim(ncid, "y", NY, &y_dimid);

dimids[0] = x_dimid;
dimids[1] = y_dimid;

retval = nc_def_var(ncid, "data", NC_INT, NDIMS, dimids, &varid);
retval = nc_enddef(ncid);
retval = nc_put_var_int(ncid, varid, &data_out[0][0]);
retval = nc_close(ncid);
return 0;
}

C write example

program simple_xy_rd
use netcdf
implicit none
character (len = *), parameter :: FILE_NAME = "simple_xy.nc"
integer, parameter :: NX = 3, NY = 4
 integer :: data_in(NY, NX)
integer :: ncid, varid
integer :: x, y, istat

istat = nf90_open(FILE_NAME, NF90_NOWRITE, ncid)
istat = nf90_inq_varid(ncid, "data", varid)
istat = nf90_get_var(ncid, varid, data_in)
istat = nf90_close(ncid)

! Do calculations with datta

end program simple_xy_rd

Fortran read example

Why do we need parallel I/O???

  Imagine a 24 hour simulation on 16 cores.
–  1% of run time is serial I/O.

  You get the compute part of your code to
scale to 1024 cores.

  64x speedup in compute: I/O is 39% of run time.
  32x speedup in compute: I/O is 24% of run time.

  Parallel I/O is needed to
–  Spend more time doing science
–  Not waste resources

Parallel netCDF

  Parallel I/O in netCDF is supported internally
by using HDF5 to write data in parallel using
MPI-IO.
–  Requires MPI-2
–  HDF5 must be built with –enable-parallel
–  Once it’s built upon MPI-IO, HDF5 can take

advantage of MPI-IO’s collective buffering
capabilities.

–  By ensuring a sufficient number of OSTs are
available via striping, file contention is reduced
and high throughput can be achieved.

Parallel netCDF

  Parallel netCDF only introduces a few
changes to the current standard.
–  Open/Create functions that take communicators

as an argument.
–  Optional parameters or functions that allow

performance tuning.

Compiling and linking parallel netCDF

  Choose a programming environment
–  > module load PrgEnv-pgi

  Load parallel netCDF module
–  > module load netcdf-hdf5parallel
–  Paths to netCDF include files and libraries

included in ftn/cc wrappers
  Compile and link

–  > ftn –o simple_xy simple_xy.f90

Create/Open for parallel access

  Fortran 77
–  nf_create_par
–  nf_open_par

  C
–  nc_create_par
–  nc_open_par

  F90
–  nf90_create
–  nf90_open

  C++
–  Interface exists but is considered experimental

Create/Open for parallel access

  The previous routines require an MPI
communicator as an argument, e.g.
–  int nc_create_par(const char *path, int
cmode, MPI_Comm comm, MPI_Info info, int
ncidp);

–  int nc_open_par(const char *path, int
mode, MPI_Comm comm, MPI_Info info, int
*ncidp);

–  F77 functions looks the same. F90 serial and parallel
versions are the same (no_par suffix), they just require
optional arguments for MPI_Comm and MPI_Info

Create/open mode

  For parallel access, the mode must also include the
flag
–  F77: NF_NETCDF4
–  F90: NF90_NETCDF4
–  C : NC_NETCDF4

  This allows for parallel I/O using the HDF5 library.
(Otherwise, you end up using the pNetCDF library…
which you don’t get unless you compile it.)

  Mode flags can be concatenated, e.g.
–  mode_flag = NC_NOCLOBBER || NC_NETCDF4;
–  mode_flag = IOR(NF90_NOCLOBBER,

 NF90_NETCDF4)

Defining dimensions,variables,attributes

  Proceed as normal
  Some performance tuning can be done at this

point through the definition of variables. We’ll
return to this.

Parallel write I

  You may recall that in doing a serial write,
one just passes the entire data set to be
written to a put command, e.g.
–  stat = nf90_put_var(ncid, varid, vec)

  In doing a parallel write, each process only
has a subset of the data to be written, e.g.
–  Proc 0: vec(1:n)
–  Proc 1: vec(n+1:2n)
–  ...
–  Proc M: vec(Mn+1,N)

Parallel write II

•  In order to collect these subsets of the data in
memory into a coherent order in the file, one
needs to provide more information to the
put_var() command
•  start(:)
•  count(:)
•  stride(:)
•  imap(:)

•  All of this applicable to a parallel read (get).

Parallel write III

  start = a vector of integers specifying the
index in the file data to begin writing, e.g. in
our previous example
–  Proc 0: starts = 1
–  Proc 1: starts = n+1
–  For an n-dim array, need n-dim vector of starts.

Memory

File

Parallel write IV

  count = A vector of integers specifying the
number of indices selected along each
dimension.
–  Proc 0: counts = n
–  Proc 1: counts = n
–  …

Parallel write V

  stride = A vector of integers that specifies
the sampling interval along each dimension of
the netCDF variable.
–  Default = 1, if unspecified
–  There are performance implications for non-

stride-1 writes.

Memory

File

Parallel write VI

  imap = A vector of integers that specifies the
mapping between the dimensions of a
netCDF variable and the in-memory structure
of the internal data array.

–  A(2,3) -> map = (1,2)
–  A(3,2) -> map = (1,3)

  You could do this in other ways (e.g. sending
transpose(A) in Fortran, and it would probably
be faster

program simple_xy_wr
use netcdf
implicit none
character (len = *), parameter :: FILE_NAME = "simple_xy.nc"
integer, parameter :: NDIMS = 2
integer, parameter :: NX = 8, NY = 8
integer :: flag, ncid, varid, dimids(NDIMS)
integer :: data_out(0:NX+1,0:NY+1) ! Data local to processor, note 1 element halo
integer :: x, y, stat, x_dimid, y_dimid, xRank, yRank, starts(2), counts(2)

! MPI stuff, getting xRank, yRank

stat = nf90_create(FILE_NAME, IOR(NF90_CLOBBER,NF90_NETCDF4), ncid, &
 MPI_COMM_WORLD, MPI_INFO_NULL)

stat = nf90_def_dim(ncid, "x", NX, x_dimid)
stat = nf90_def_dim(ncid, "y", NY, y_dimid)
dimids = (/ y_dimid, x_dimid /)
stat = nf90_def_var(ncid, "data", NF90_INT, dimids, varid)
stat = nf90_enddef(ncid)
starts = (/ xRank*NX + 1, yRank*NY + 1 /)
counts = (/ NX, NY /)
stat = nf90_put_var(ncid, varid, data_out(1:NX,1:NY),start=starts,count=counts)

stat = nf90_close(ncid)

end program simple_xy_wr

Fortran 2D parallel write ignoring halo

Performance Tuning

Independent/Collective operations

  The default access for netCDF operations
(e.g. writing) is independent.
–  Any processor can begin its operation at any time.

  One can get a performance boost by telling
netCDF to perform an operation on a variable
collectively.
–  All processors perform the same operation at the

same time.
–  Takes advantage of collective calls in MPI-IO, e.g.

MPI_FILE_WRITE_ALL

Independent/Collective operations

  The access pattern can be changed, on a per
variable basis, through the following routine (C
version)

  nc_var_par_access(ncid,varid,access)
–  Where varid is the netCDF ID tag of the variable that

you want to alter the access to, and
–  access = nc_independent (default) or
nc_collective

  The access pattern can be changed back and
forth for any variable.

Don’t forget Lustre!

  If you’re doing parallel reads/writes, don’t
forget to set the stripe count and possibly the
striping buffer size, if necessary.

  netCDF does not handle this for you.

Parallel write example:

  1142x765x90 array, 8-byte reals (629 Mb)
  Stripe count = 80 (max for rosa)
  Asynchronus I/O server (128 compute tasks sending

to N I/O tasks)
  Collective option on

I/O tasks write time (s) MB/s
8 .27 2356.8
4 .47 1300.3
2 .90 706.23

3.34x speed up

Disabling autofilling

  During write operations, when you create a
variable, and just after then end of the
definition section, netCDF will initialize the file
variable with a default value.

  This may create substantial overhead, as you
will be performing a write twice, once when
you create the variable, and once when you
actually write your data to disk.

Disabling autofilling

  You can disable autofilling (or enable filling) through
the following routine (C version) :

 nc_set_fill(ncid, fillmode, old_mode)
–  ncid = netCDF file pointer
–  fillmode = NC_FILL (default)
–  fillmode = NC_NOFILL
–  old_mode = what the previous mode was

  Can also do this on a per variable basis with
 nc_def_var_fill()

Chunking

  By default, file variable access is contiguous.
  However, it is possible to read/write fixed-sized pieces, or

chunks.
  Chunks are related to the physical storage of the data on

the disk, not to the logical relationship of data points
within the array.

Chunking

  In some cases (large arrays, compressed
variables, non-contiguous access) chunked
storage can provide faster access to subsets
of the data.

  When using compression, compression
applies to each chunk separately.

  Different variables may have different
chunking parameters (chunking is set during
variable definition)

Chunking

  Chunked storage may, or may not, offer a
performance benefit. A number of factors
including the chunk size, the application’s
data access pattern, and HDF5’s caching with
chunked storage all influence the
performance.

  Chunking is set in nc_def_var.
–  Set storage = NC_CHUNKED
–  Set chunksizes = int vector, each entry

describing chunk length in each dimension

Chunking recommendations

  No hard rules, must test.
  Always avoid using a small chunk size
  If the system where the application is running

has sufficient memory and the access pattern
is contiguous or nearly contiguous, using a
single chunk sized to exactly match the array
variable can be an excellent choice.

Chunking recommendations

  If chunk size < array variable size
–  Set n = ceil(d/N)
–  Do not set n = floor(d/N)
–  n = number of elements in a given chunk

dimension.
–  d = dimension of array variable
–  N = natural integer.

Postprocessing of netCDF files
A very limited tour

NCO – netCDF Operators

  A dozen stand alone command line programs
for processing and manipulating netCDF files.
–  Derive new data
–  Average (ensemble average of files!)
–  Extract hyperslabs
–  Manipulate metadata
–  etc

  Module nco available on rosa
  nco.sourceforge.net

NCL – NCAR Command Language

  Interpreted language
for scientific data
analysis and
visualization (many
many functions)

  Reads/writes netCDF/
HDF/GRIB

  On some CSCS
machines

  www.ncl.ucar.edu

MATLAB

  MATLAB includes several high level functions
for reading and writing netCDF files, e.g.
–  vardata = ncread(filename,varname)

  Also provides an interface to the lower level
netCDF functions, e.g.
–  netcdf.putVar(ncid,varid,data)

  www.mathworks.com/help/techdoc/
ref/netcdf.html

PyNGL and PyNIO

  PyNGL and PyNIO provide
Python interfaces to most of
the graphics and file I/O
functionality exiting in NCL
(NCAR command language)

  www.pyngl.ucar.edu

GMT – Generic Mapping Tool

  Mostly a visualization
package can do netCDF
manipulation.

  Really superb graphics
capabilities, designed to
put out PostScript files for
publication.

  www.soest.hawaii.edu/gmt

Summary

  Parallel netCDF provides an easy-to-use
interface to write files in parallel.

  Files are portable and interface with many
other codes, such as visualization tools.

  Can get good performance using collective
writing.

  Parallel library exists on rosa and palu.

