
Parallel I/O using netCDF

National Supercomputing Service
CSCS

Agenda

  Introduction to netCDF
–  What is it? Who uses it?
–  Steps in creating and writing a serial netCDF file

  What is parallel netCDF?
  How to write a file in parallel using netCDF.
  Performance tuning
  Post processing
  Not going to go in depth into what netCDF can

do, e.g.
–  Writing time-dependent data or user defined types.

What is netCDF?

  Network Common Data Format
  Originally developed for the earth science

community as a means of sharing data and/or
model output.

  Set of libraries, an API, and data formats for
creating files with

  Array data (vectors, arrays, time series of arrays, etc)
  Metadata (variables, units, data ranges, how file was

produced, etc)

  Fortran 77/90, C/C++ interface

What is netCDF?

  The metadata is crucial in that it describes the
data that the file contains.
–  netCDF has a self-describing data format.

  Typical file contains
–  Variables, e.g. scalars,vectors,arrays

  Char, byte, short, int, float, double, use defined types
–  Dimensions

  Name and length that describe axes of variables

–  Attributes, e.g. units, range, scaling factors, etc.

What is netCDF?

  One of the main advantages of netCDF is its
portability.
–  Internal libraries handle data representation so

that issues like endianness do not have to be
explicitly handled by the user.

–  Classic netCDF uses XDR (eXternal Data
Representation)

–  Parallel netCDF (netCDF4) uses HDF5 on top of
MPI-IO.

Example:

> ncdump –h test.nc!
netcdf test {!
dimensions:!

!nX = 1142 ;!
!nY = 765 ;!
!nZ = 90 ;!

variables:!
!double T(nZ, nY, nX) ;!
! !T:units = "Celsius" ;!
! !T:valid_range = 0.f, 1.f ;!

}

The ncdump utility can be used to view header information only (-h) or
the entire file

Who uses it?

  Climatology (e.g. CESM, MITgcm)
  Meteorology (e.g. WRF)
  Oceanography (e.g. POP)
  GIS (geographic information systems)
  Visualization applications
  Not limited to use in earth science!

3rd Party Software that uses netCDF

  GMT (Generic Mapping Tool)
  NCL (NCAR command language/graphics)
  Python/Perl/Ruby/Java
  Matlab
  Ensight
  IDL
  Mathematica
  Many others…..

Basic netCDF template

  The creation and parsing of netCDF files
follow a simple template:
–  Open/Create
–  Read/define dimensions
–  Define variables
–  Read/define attributes
–  Read/Write data
–  Close

program simple_xy_wr
use netcdf ! #include “netcdf.h” for C
implicit none
character (len = *), parameter :: FILE_NAME = "simple_xy.nc"
integer, parameter :: NDIMS = 2
integer, parameter :: NX = 4, NY = 3
integer :: ncid, varid, dimids(NDIMS)
integer :: data_out(NX, NY)
integer :: x, y, stat, x_dimid, y_dimid

Do y = 1, NY
 do x = 1, NX
 data_out(x,y) = (y - 1) * NX + (x – 1)
 end do

end do

stat = nf90_create(FILE_NAME, NF90_CLOBBER, ncid) ! F77: nf_... C: nc_...
stat = nf90_def_dim(ncid, "x", NX, x_dimid)
stat = nf90_def_dim(ncid, "y", NY, y_dimid)

! The dimids array is used to pass the IDs of the dimensions of
! the variables.
dimids = (/ x_dimid, y_dimid /)

stat = nf90_def_var(ncid, "data", NF90_INT, dimids, varid)
stat = nf90_enddef(ncid)
stat = nf90_put_var(ncid, varid, data_out)
stat = nf90_close(ncid)

end program simple_xy_wr

Fortran write example

Compiling and linking netCDF

  Choose a programming environment
–  > module load PrgEnv-pgi

  Load netCDF module
–  > module load netcdf
–  Paths to netCDF include files and libraries

included in ftn/cc wrappers
  Compile and link

–  > ftn –o simple_xy simple_xy.f90

user@ela3:~> ncdump simple_xy.nc
netcdf simple_xy {
dimensions:

 x = 3 ;
 y = 4 ;

variables:
 int data(x, y) ;

data:

 data =
 0, 1, 2, 3,
 4, 5, 6, 7,
 8, 9, 10, 11 ;
}

Example output

#include <stdlib.h>
#include <stdio.h>
#include <netcdf.h>
#define FILE_NAME "simple_xy.nc"
#define NDIMS 2
#define NX 3
#define NY 4

int main() {
int ncid, x_dimid, y_dimid, varid; int dimids[NDIMS];
int data_out[NX][NY];
int x, y, retval;

for (x = 0; x < NX; x++)
 for (y = 0; y < NY; y++)
 data_out[x][y] = x * NY + y;

retval = nc_create(FILE_NAME, NC_CLOBBER, &ncid);
retval = nc_def_dim(ncid, "x", NX, &x_dimid);
retval = nc_def_dim(ncid, "y", NY, &y_dimid);

dimids[0] = x_dimid;
dimids[1] = y_dimid;

retval = nc_def_var(ncid, "data", NC_INT, NDIMS, dimids, &varid);
retval = nc_enddef(ncid);
retval = nc_put_var_int(ncid, varid, &data_out[0][0]);
retval = nc_close(ncid);
return 0;
}

C write example

program simple_xy_rd
use netcdf
implicit none
character (len = *), parameter :: FILE_NAME = "simple_xy.nc"
integer, parameter :: NX = 3, NY = 4
 integer :: data_in(NY, NX)
integer :: ncid, varid
integer :: x, y, istat

istat = nf90_open(FILE_NAME, NF90_NOWRITE, ncid)
istat = nf90_inq_varid(ncid, "data", varid)
istat = nf90_get_var(ncid, varid, data_in)
istat = nf90_close(ncid)

! Do calculations with datta

end program simple_xy_rd

Fortran read example

Why do we need parallel I/O???

  Imagine a 24 hour simulation on 16 cores.
–  1% of run time is serial I/O.

  You get the compute part of your code to
scale to 1024 cores.

  64x speedup in compute: I/O is 39% of run time.
  32x speedup in compute: I/O is 24% of run time.

  Parallel I/O is needed to
–  Spend more time doing science
–  Not waste resources

Parallel netCDF

  Parallel I/O in netCDF is supported internally
by using HDF5 to write data in parallel using
MPI-IO.
–  Requires MPI-2
–  HDF5 must be built with –enable-parallel
–  Once it’s built upon MPI-IO, HDF5 can take

advantage of MPI-IO’s collective buffering
capabilities.

–  By ensuring a sufficient number of OSTs are
available via striping, file contention is reduced
and high throughput can be achieved.

Parallel netCDF

  Parallel netCDF only introduces a few
changes to the current standard.
–  Open/Create functions that take communicators

as an argument.
–  Optional parameters or functions that allow

performance tuning.

Compiling and linking parallel netCDF

  Choose a programming environment
–  > module load PrgEnv-pgi

  Load parallel netCDF module
–  > module load netcdf-hdf5parallel
–  Paths to netCDF include files and libraries

included in ftn/cc wrappers
  Compile and link

–  > ftn –o simple_xy simple_xy.f90

Create/Open for parallel access

  Fortran 77
–  nf_create_par
–  nf_open_par

  C
–  nc_create_par
–  nc_open_par

  F90
–  nf90_create
–  nf90_open

  C++
–  Interface exists but is considered experimental

Create/Open for parallel access

  The previous routines require an MPI
communicator as an argument, e.g.
–  int nc_create_par(const char *path, int
cmode, MPI_Comm comm, MPI_Info info, int
ncidp);

–  int nc_open_par(const char *path, int
mode, MPI_Comm comm, MPI_Info info, int
*ncidp);

–  F77 functions looks the same. F90 serial and parallel
versions are the same (no_par suffix), they just require
optional arguments for MPI_Comm and MPI_Info

Create/open mode

  For parallel access, the mode must also include the
flag
–  F77: NF_NETCDF4
–  F90: NF90_NETCDF4
–  C : NC_NETCDF4

  This allows for parallel I/O using the HDF5 library.
(Otherwise, you end up using the pNetCDF library…
which you don’t get unless you compile it.)

  Mode flags can be concatenated, e.g.
–  mode_flag = NC_NOCLOBBER || NC_NETCDF4;
–  mode_flag = IOR(NF90_NOCLOBBER,

 NF90_NETCDF4)

Defining dimensions,variables,attributes

  Proceed as normal
  Some performance tuning can be done at this

point through the definition of variables. We’ll
return to this.

Parallel write I

  You may recall that in doing a serial write,
one just passes the entire data set to be
written to a put command, e.g.
–  stat = nf90_put_var(ncid, varid, vec)

  In doing a parallel write, each process only
has a subset of the data to be written, e.g.
–  Proc 0: vec(1:n)
–  Proc 1: vec(n+1:2n)
–  ...
–  Proc M: vec(Mn+1,N)

Parallel write II

•  In order to collect these subsets of the data in
memory into a coherent order in the file, one
needs to provide more information to the
put_var() command
•  start(:)
•  count(:)
•  stride(:)
•  imap(:)

•  All of this applicable to a parallel read (get).

Parallel write III

  start = a vector of integers specifying the
index in the file data to begin writing, e.g. in
our previous example
–  Proc 0: starts = 1
–  Proc 1: starts = n+1
–  For an n-dim array, need n-dim vector of starts.

Memory

File

Parallel write IV

  count = A vector of integers specifying the
number of indices selected along each
dimension.
–  Proc 0: counts = n
–  Proc 1: counts = n
–  …

Parallel write V

  stride = A vector of integers that specifies
the sampling interval along each dimension of
the netCDF variable.
–  Default = 1, if unspecified
–  There are performance implications for non-

stride-1 writes.

Memory

File

Parallel write VI

  imap = A vector of integers that specifies the
mapping between the dimensions of a
netCDF variable and the in-memory structure
of the internal data array.

–  A(2,3) -> map = (1,2)
–  A(3,2) -> map = (1,3)

  You could do this in other ways (e.g. sending
transpose(A) in Fortran, and it would probably
be faster

program simple_xy_wr
use netcdf
implicit none
character (len = *), parameter :: FILE_NAME = "simple_xy.nc"
integer, parameter :: NDIMS = 2
integer, parameter :: NX = 8, NY = 8
integer :: flag, ncid, varid, dimids(NDIMS)
integer :: data_out(0:NX+1,0:NY+1) ! Data local to processor, note 1 element halo
integer :: x, y, stat, x_dimid, y_dimid, xRank, yRank, starts(2), counts(2)

! MPI stuff, getting xRank, yRank

stat = nf90_create(FILE_NAME, IOR(NF90_CLOBBER,NF90_NETCDF4), ncid, &
 MPI_COMM_WORLD, MPI_INFO_NULL)

stat = nf90_def_dim(ncid, "x", NX, x_dimid)
stat = nf90_def_dim(ncid, "y", NY, y_dimid)
dimids = (/ y_dimid, x_dimid /)
stat = nf90_def_var(ncid, "data", NF90_INT, dimids, varid)
stat = nf90_enddef(ncid)
starts = (/ xRank*NX + 1, yRank*NY + 1 /)
counts = (/ NX, NY /)
stat = nf90_put_var(ncid, varid, data_out(1:NX,1:NY),start=starts,count=counts)

stat = nf90_close(ncid)

end program simple_xy_wr

Fortran 2D parallel write ignoring halo

Performance Tuning

Independent/Collective operations

  The default access for netCDF operations
(e.g. writing) is independent.
–  Any processor can begin its operation at any time.

  One can get a performance boost by telling
netCDF to perform an operation on a variable
collectively.
–  All processors perform the same operation at the

same time.
–  Takes advantage of collective calls in MPI-IO, e.g.

MPI_FILE_WRITE_ALL

Independent/Collective operations

  The access pattern can be changed, on a per
variable basis, through the following routine (C
version)

  nc_var_par_access(ncid,varid,access)
–  Where varid is the netCDF ID tag of the variable that

you want to alter the access to, and
–  access = nc_independent (default) or
nc_collective

  The access pattern can be changed back and
forth for any variable.

Don’t forget Lustre!

  If you’re doing parallel reads/writes, don’t
forget to set the stripe count and possibly the
striping buffer size, if necessary.

  netCDF does not handle this for you.

Parallel write example:

  1142x765x90 array, 8-byte reals (629 Mb)
  Stripe count = 80 (max for rosa)
  Asynchronus I/O server (128 compute tasks sending

to N I/O tasks)
  Collective option on

I/O tasks write time (s) MB/s
8 .27 2356.8
4 .47 1300.3
2 .90 706.23

3.34x speed up

Disabling autofilling

  During write operations, when you create a
variable, and just after then end of the
definition section, netCDF will initialize the file
variable with a default value.

  This may create substantial overhead, as you
will be performing a write twice, once when
you create the variable, and once when you
actually write your data to disk.

Disabling autofilling

  You can disable autofilling (or enable filling) through
the following routine (C version) :

 nc_set_fill(ncid, fillmode, old_mode)
–  ncid = netCDF file pointer
–  fillmode = NC_FILL (default)
–  fillmode = NC_NOFILL
–  old_mode = what the previous mode was

  Can also do this on a per variable basis with
 nc_def_var_fill()

Chunking

  By default, file variable access is contiguous.
  However, it is possible to read/write fixed-sized pieces, or

chunks.
  Chunks are related to the physical storage of the data on

the disk, not to the logical relationship of data points
within the array.

Chunking

  In some cases (large arrays, compressed
variables, non-contiguous access) chunked
storage can provide faster access to subsets
of the data.

  When using compression, compression
applies to each chunk separately.

  Different variables may have different
chunking parameters (chunking is set during
variable definition)

Chunking

  Chunked storage may, or may not, offer a
performance benefit. A number of factors
including the chunk size, the application’s
data access pattern, and HDF5’s caching with
chunked storage all influence the
performance.

  Chunking is set in nc_def_var.
–  Set storage = NC_CHUNKED
–  Set chunksizes = int vector, each entry

describing chunk length in each dimension

Chunking recommendations

  No hard rules, must test.
  Always avoid using a small chunk size
  If the system where the application is running

has sufficient memory and the access pattern
is contiguous or nearly contiguous, using a
single chunk sized to exactly match the array
variable can be an excellent choice.

Chunking recommendations

  If chunk size < array variable size
–  Set n = ceil(d/N)
–  Do not set n = floor(d/N)
–  n = number of elements in a given chunk

dimension.
–  d = dimension of array variable
–  N = natural integer.

Postprocessing of netCDF files
A very limited tour

NCO – netCDF Operators

  A dozen stand alone command line programs
for processing and manipulating netCDF files.
–  Derive new data
–  Average (ensemble average of files!)
–  Extract hyperslabs
–  Manipulate metadata
–  etc

  Module nco available on rosa
  nco.sourceforge.net

NCL – NCAR Command Language

  Interpreted language
for scientific data
analysis and
visualization (many
many functions)

  Reads/writes netCDF/
HDF/GRIB

  On some CSCS
machines

  www.ncl.ucar.edu

MATLAB

  MATLAB includes several high level functions
for reading and writing netCDF files, e.g.
–  vardata = ncread(filename,varname)

  Also provides an interface to the lower level
netCDF functions, e.g.
–  netcdf.putVar(ncid,varid,data)

  www.mathworks.com/help/techdoc/
ref/netcdf.html

PyNGL and PyNIO

  PyNGL and PyNIO provide
Python interfaces to most of
the graphics and file I/O
functionality exiting in NCL
(NCAR command language)

  www.pyngl.ucar.edu

GMT – Generic Mapping Tool

  Mostly a visualization
package can do netCDF
manipulation.

  Really superb graphics
capabilities, designed to
put out PostScript files for
publication.

  www.soest.hawaii.edu/gmt

Summary

  Parallel netCDF provides an easy-to-use
interface to write files in parallel.

  Files are portable and interface with many
other codes, such as visualization tools.

  Can get good performance using collective
writing.

  Parallel library exists on rosa and palu.

