
MPI-IO

/project/csstaff/IO_Course!

Parallel I/O

MPI-IO – the Basics

•  MPI-IO provides a low-level interface to carrying out
parallel I/O

•  MPI-IO defines how to access a file system to store data
–  There is no metadata stored about the file

•  There are no tools to analyse what kind of data is stored in the file

•  The MPI-IO API has a large number of routines
–  The MPI 2.2 standard has 64 pages for the I/O section

•  Much of this is explanation of the routines
–  There are over 50 routines in the I/O section of the standard

•  This does not include some other routines that are mainly included
in the standard to provide support for MPI-IO

Parallel I/O 2

Compiling and Running

•  As MPI-IO is part of MPI, you simply compile and link as you would
any normal MPI program
–  On the Cray:-

•  ftn -O2 mycode.f90 -o myprog!
•  cc -O2 mycode.c -o myprog!

•  As MPI-IO is part of the MPI standard, man pages for all routines
are available on the Cray systems

•  To run the examples grab a node from the batch system and launch
the job with aprun

Parallel I/O 3

$ cp ./myprog $SCRATCH !
$ cd $SCRATCH!
$ salloc -N 1 --time=00:20:00!
salloc: Granted job allocation XXXX!
$ aprun -n 24 ./myprog!

Opening a File –the API

•  MPI_File_open is a collective call to open a file
–  The collective is defined on the communicator

•  Typically you might use MPI_COMM_WORLD as a communicator
•  To open a file just on one process use MPI_COMM_SELF as the communicator

•  All processes must call MPI_File_open with the same filename and
amode parameters

–  Actually processes may use different names for the filename as long as it actually
references the same file

•  If no specifics are needed for info then MPI_INFO_NULL can be used
•  The file handle fh is then used in all subsequent file operations

4 Parallel I/O

int MPI_File_open(MPI_Comm comm, char *filename, int amode, MPI_Info info, MPI_File *fh)!

MPI_File_open(comm, filename, amode, info, fh, ierr)	

Character(*) :: filename!
Integer :: comm, amode, info, fh, ierr!

File Access Modes

•  A number of access modes are supported for MPI files
•  The amode argument to MPI_File_open defines the access mode for the

file
•  Multiple access modes can be combined by

–  Using addition or the IOR function in Fortran
•  i.e. MPI_MODE_CREATE+MPI_MODE_EXCL+MPI_MODE_WRONLY

–  Using the or (|) operator in C
•  i.e. MPI_MODE_CREATE|MPI_MODE_EXCL|MPI_MODE_WRONLY

Parallel I/O 5

 MPI_MODE_RDONLY ! !open for read only!
 MPI_MODE_RDWR ! !open for reading and writing!
 MPI_MODE_WRONLY ! !open for write only!
 MPI_MODE_CREATE ! !create the file if it does not exist!
 MPI_MODE_EXCL ! !generate an error if creating a file that already exists!
 MPI_MODE_DELETE_ON_CLOSE !delete the file on MPI_File_close is called!
 MPI_MODE_APPEND ! !set initial position of all file pointers to end of file!

 MPI_MODE_UNIQUE_OPEN!

 MPI_MODE_SEQUENTIAL !

Closing a file – the API

Parallel I/O 6

•  MPI_File_close is a collective call to close a file
–  The collective is defined on the same communicator use to open the file

•  All outstanding operations are synced on the file before it is closed
•  If the file was opened with the access mode MPI_MODE_DELETE_ON_CLOSE

then the file will be deleted before the call returns

int MPI_File_close(MPI_File *fh)!

MPI_File_close(fh, ierr)	

Integer :: fh, ierr!

Displacements, Elementary Datatypes and Offsets

•  The displacement of a position within a file is the number of bytes
from the beginning of the file

•  An etype or elementary datatype is an MPI datatype (predefined or
a derived datatype)
–  The etype is used to set file views and for file access operations (reads and

writes)
•  An offset is a position in the file given in terms of multiples of etypes

–  Actually it is a multiple of etypes from the beginning of the current view
•  On file open the view begins at the start of the file
•  On file open the etype is a byte

Parallel I/O 7

etype	 is	 1	 byte	

displacement	 is	 12,	 offset	 is	 12	

Simple Independent Writing in a File – the API

•  The routine MPI_File_write_at can be used to write data into a file
independently by each process

•  Each process specifies an explicit offset to write in the file
–  The offset is calculated in multiples of the size of the etype

•  count elements of type datatype are then written from memory
buffer buf into the file at the point determined by the offset!

Parallel I/O 8

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int count,!
MPI_Datatype datatype, MPI_Status *status)!

MPI_File_write_at(fh, offset, buf, count, datatype, status, ierr)	

Integer :: fh, count, datatype, ierr!
Integer :: status(MPI_STATUS_SIZE)!
Integer(Kind=MPI_OFFSET_KIND) :: offset!
<type> :: buf(*)!

Independent file write example

Parallel I/O 9

buf	

offset	 is	 12	

offset=12;!
MPI_File_write_at(fh, offset, buf, 2, MPI_INT, &status);!

offset=12!
Call MPI_File_write_at(fh, offset, buf, 2, MPI_INTEGER, status, ierr)	

count	 is	 2	

Exercise 1

•  Take a skeleton MPI code from /project/csstaff/IO_Course/MPI-
IO/skeletons

•  Add instructions to open and close a file
–  Use file creation and read/write access modes
–  Collectively open the file on all processes

•  Use MPI_File_write_at to write the Integer value of each
rank into the file at a displacement of rank Integers into the file
–  Check that the file was written correctly using the following command

which will display the integer values in the file
•  od -i <filename>!

Parallel I/O 10

prompt$ od -i myfile.dat!
0000000 0 1 2 3!
0000020 4 5 6 7!
0000040 8 9 10 11!
0000060 12 13 14 15!
0000100 16 17 18 19!
0000120 20 21 22 23!
0000140!

File Views

•  You can define a view of the file in order to make it
natural for you to deal with your data

•  The view is defined in terms of a displacement into the
file and an etype, filetype and data representation

Parallel I/O 11

Setting a File View – the API

•  The routine MPI_File_set_view is used to change the view for a process
•  Each process specifies an explicit disp that determines where it sees the file

beginning
–  The value of disp is in bytes

•  etype defines the new basic type of the file view, and filetype must be etype or
some type derived from multiple copies of etype

•  datarep can be one of “native”, “internal” or “external32”
–  “external32” is a data representation that is supposed to be portable across acrhitectures

•  Many MPI libraries don’t implement “external32”!

Parallel I/O 12

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype, MPI_Datatype
filetype, char *datarep, MPI_Info info)!

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, ierr)	

Integer :: fh, etype, filetype, info, ierr!
Integer(Kind=MPI_OFFSET_KIND) :: disp!
Character(*) :: datarep!

Set View and Independent File Write Example

Parallel I/O 13

buf	

offset	 is	 1	

disp=8;!
MPI_File_set_view(fh, disp, MPI_INT, MPI_INT, “native”, MPI_INFO_NULL);!
offset=1;!
MPI_File_write_at(fh, offset, buf, 2, MPI_INT, &status);!

disp=8!
Call MPI_File_set_view(fh, disp, MPI_INTEGER, MPI_INTEGER, “native”, MPI_INFO_NULL, ierror)!
offset=1!
Call MPI_File_write_at(fh, offset, buf, 2, MPI_INTEGER, status, ierr)	

count	 is	 2	

displacement	 is	 8	

Exercise 2

•  Take your code from exercise 1 and modify it to set
the file view in terms of Integers
–  First use a displacement of 0 and use an offset when writing

to put the data into the file
–  Then use an appropriate displacement in setting the view so

that you can write the data with 0 offset

•  Check your results with od

Parallel I/O 14

Routines for Reading and Writing Without Offsets

•  Routines are also provided so that you can write into the file
without using explicit offsets

•  In these cases you set the view prior to carrying out the write
so that the view begins where you wish to write the data

•  Note that for all of these write routines there are
corresponding routines for reading data from existing files

Parallel I/O 15

int MPI_File_write(MPI_File fh, void *buf, int count, MPI_Datatype datatype, MPI_Status
*status)!

MPI_File_write(fh, buf, count, datatype, status, ierr)	

Integer :: fh, count, datatype, ierr!
Integer :: status(MPI_STATUS_SIZE)!
<type> :: buf(*)!

Independent or Collective Data Accesses

•  The routines that we have seen so far all provide for
independent writing of data
–  Each process accesses the file independently of the other

processes in the communicator
•  There are also corresponding routines that provide for

collective writing of data
–  Each of these calls is a collective communication

•  For large data accesses, collective data accesses can offer
good performance improvements
–  The underlying MPI library can aggregate data and implement

optimisations tuned to the file system
•  The collective routines have the same APIs as the

independent routines except that the name of the routine ends
in “_all”
–  Independent: MPI_File_write_at!
–  Collective: MPI_File_write_at_all!

Parallel I/O 16

Exercise 3

•  Modify your code to carry out a collective write
without an explicit offset

•  Check your results with “od”

Parallel I/O 17

Writing Structured Data in Slabs

•  One section of the MPI user defined types in MPI 2 is
specifically designed to improve data access for MPI-IO

•  MPI-2 introduced the idea of a subarray for data from a
structured grid distributed on a set of processes
–  Typically the domain decomposition defines a small cuboid

inside a larger cuboid
•  Possibly including Halo regions

•  By defining a subarray type, we can use a collective call
to write our data into one file

Parallel I/O 18

Using Subarray Types

•  By using subarray types we can construct patterns of how to put
data from one process into the file

•  An individual process can define a datatype to map data in memory
into non-contiguous patterns in the file

•  The API for how to define subarrays is not in the 64 pages of MPI-IO
routines, as it is just a type definition routine

Parallel I/O 19

Process	 0	 Process	 1	 Process	 2	 Process	 3	

Defining Subarrays – the API

Parallel I/O 20

int MPI_Type_create_subarray(int ndims, int sizes[], int subsizes[], int starts[], int
order, MPI_Datatype basetype, MPI_Datatype *subarraytype)!

MPI_Type_create_subarray(ndims, sizes, subsizes, starts, order,
basetype, subarraytype, ierr)	

Integer :: dims, order, basetype, subarraytype, ierr!
Integer(:) :: sizes, subsizes, starts!

•  The routine MPI_Type_create_subarray defines a new type
•  The subarraytype is based on the original datatype basetype
•  The creation of the subarray requires you to define the dimensions of the full

array as well as the dimensions of the subarray that a particular process holds!
•  The starts array specifies the offset into the full array for where the subarray

begins
•  The order argument specifies whether the ordering is row-major

(MPI_ORDER_C) or column-major (MPI_ORDER_FORTRAN)
–  Use the one appropriate for your programming language

Subarray Constructor Example

Parallel I/O 21

Process	 0	 Process	 1	 Process	 2	 Process	 3	

Integer :: ranknum(4)!
.!
.!
.!
sizes=(/ 3, 4 /)!
subsizes=(/ 1, 4 /)!
starts=(/ wrank, 0 /)!
Call MPI_Type_create_subarray(2,sizes,subsizes,starts,MPI_ORDER_FORTRAN,MPI_INTEGER,subarray,ierror)!
Call MPI_Type_commit(subarray,ierror)!
ranknum(:)=wrank!
displacement=0!
Call MPI_File_set_view(fh,displacement,MPI_INTEGER, subarray, "native", MPI_INFO_NULL, ierror)!
Call MPI_File_write_all(fh,ranknum,4,MPI_INTEGER,status,ierror)!

Conceptually,	 the	 full	 array	 is	 2D	
with	 one	 element	 from	 each	 column	
on	 each	 processor	

We	 map	 the	 data	 into	 the	 file	 so	 that	 it	 is	 in	 column-‐major	 order	

Exercise 4

•  Change your code to use a subarray type to write
an array of 8 elements, so that each number is rank
elements apart in the file

•  Check your results with “od”
•  For 3 processes the output should look as shown
•  Verify that it works with any number of processes

Parallel I/O 22

prompt$ od -i myfile.dat!
0000000 0 1 2 0!
0000020 1 2 0 1!
0000040 2 0 1 2!
0000060 0 1 2 0!
0000100 1 2 0 1!
0000120 2 0 1 2!
0000140!

Domain Decomposition Example

•  In this example a
process holds the data
for a small 2D grid
inside a larger 2D grid

•  We can define a
subarray so that this
data is also mapped on
the file in a linear
fashion

•  This can be extended to
3 or more dimensions

Parallel I/O 23

MPI Collective Writes and Optimisations

•  When writing in collective mode, the MPI library carries out a
number of optimisations
–  It uses fewer processes to actually do the writing

•  Typically one per node
–  It aggregates data in appropriate chunks before writing

Parallel I/O 24

Process	 0	
Data	

Process	 1	
Data	

Process	 2	
Data	

Process	 3	
Data	

Process	 0	
Aggregate	 Data	

Process	 2	
Aggregate	 Data	

To	 disk	 To	 disk	

Exercise 5

•  Change your code to use a 2 x 2 data array and subarray to
write 4 elements in a numranks x 4 global array

•  The file should have 2 elements on one row and 2 on the
row below

•  The code will only run with even numbers of elements
•  Check your results with “od”

–  Adjust the output width by adding the output flag “-v -width=
<4*numranks>”

•  For 4 processes the output should look as shown below

Parallel I/O 25

prompt$ od -v -width=16 -i myfile.dat!
0000000 0 0 2 2!
0000020 0 0 2 2!
0000040 1 1 3 3!
0000060 1 1 3 3!

Using Hints to Improve Performance

•  The info flag when opening a file can be used to pass optimisation
hints to the MPI library
–  The hints are provided in (key,value) pairs

•  Several predefined hints are reserved in the MPI standard and are
available in most MPI libraries

•  Selecting appropriate hints can improve performance
•  On the Cray systems, the hints in use for a file can be seen by

setting the following environment variable
–  export MPICH_MPIIO_HINTS_DISPLAY=1

•  The Cray implementation allows you to set hints on files using the
environment variable MPICH_MPIIO_HINTS
–  This avoids the need to use the MPI routines to set the info flag at file open

time
•  e.g. export MPICH_MPIIO_HINTS=“*:cb_buffer_size=67108864”

Parallel I/O 26

Useful Hints to set for Performance

Parallel I/O 27

Hint	 name	 Usage	

cb_buffer_size! The	 amount	 of	 buffer	 space	 reserved	 for	 aggregaDng	 messages	 before	
wriDng	 data	 to	 the	 file	 system	 (default	 is	 16MB)	

cb_nodes! The	 number	 of	 nodes	 to	 use	 for	 aggregaDng	 data	

cb_config_list! A	 hint	 as	 to	 how	 to	 select	 the	 nodes	 for	 aggregaDon	

romio_cb_read,
romio_cb_write!

Flags	 to	 say	 whether	 to	 disable,	 enable	 or	 use	 heurisDcs	 for	 deciding	
whether	 to	 aggregate	 for	 collecDve	 reads	 and	 writes	

striping_factor! The	 number	 of	 Lustre	 stripes	 to	 assign	 to	 a	 file	

striping_unit! The	 size	 (in	 bytes)	 of	 the	 Lustre	 stripes	 to	 use	 for	 a	 file	

Several	 of	 the	 hints	 related	 to	 collecDve	 buffering	 on	 the	 Cray	 require	 that	 the	
environment	 variable	 MPICH_MPIIO_CB_ALIGN	 be	 changed	

See	 the	 mpi man	 page	 on	 the	 Cray	 systems	 for	 more	 details	

Exercise 6

•  Take a copy of the Fortran code in /project/csstaff/
IO_Course/MPI-IO/examples/
mpiio_large_grid.f90 and compile it
–  ftn -O2 mpiio_large_grid.f90 -o mpiio_large_grid!

•  Grab 192 cores and launch the job
–  Use salloc -n 192 --time=00:20:00 to get access to the

cores
•  Introduce some timing and bandwidth measurement routines
•  Use the MPICH_MPIIO_HINTS environment variable to

change the striping pattern of the file it creates to see if you
can make it go faster

•  Do any of the other hints make a difference ?

Parallel I/O 28

