
A Simple Asynchronous I/O Server

National Supercomputing Service
Swiss National Supercomputing Centre

What is an asynchronous I/O server?

  In a ‘normal’ parallel application, I/O is
handled the by same MPI tasks that handle
computation.
–  Typically ntasksio <= ntaskscompute

  Problem: Even if you parallelize your I/O, you
still could slow down your computations a lot.
–  “Overlap communications and computations”
–  “Overlap computation and I/O”.

Why use async IO? Save time!

Compute I/O Compute I/O Compute I/O

Typically: Compute tasks are IO tasks and I/O blocks computing

Time saved!

Compute Compute Compute
I/O I/O I/O Idle Idle Idle

Idle

With asynchronous I/O, compute tasks and IO tasks are separate

Idea: I/O tasks are idle until compute tasks send them data.
 Compute tasks send data and continue
 I/O tasks process and write data

Outline of an AsyncIO server

  Initialize MPI.
  Split communicators.
  Set up inter-communicator.
  Send data from compute tasks to I/O tasks

through inter-communicator.
  I/O Routine waits for messages, buffers data,

creates file, writes to disk.

Setting up communicators
CALL MPI_INIT(ierr)

CALL MPI_COMM_DUP(MPI_COMM_WORLD, globalComm, ierr)

! Determine which ranks are compute tasks and which are I/O tasks
! If compute task, set color = 1
! If I/O task, set color = 0
! Assign one task per node to be an I/O task, round robin if necessary

CALL MPI_COMM_SPLIT(globalComm, color, myrank, splitComm, ierr)

IF(compute_task)THEN
 CALL MPI_COMM_DUP(splitComm, computeComm, ierr)

IF(io_task)THEN
 CALL MPI_COMM_DUP(splitComm, ioServeComm, ierr)

Global Comm

Compute
Comm

IO
Comm

Intercomm

File System

Setting up intercommunicator

! Create an intercommunicator between the compute comm and the IO comm.
! This allows us to send data from the compute world to the I/O world using
! MPI sends and receives.

IF(compute_task)THEN
 CALL MPI_INTERCOMM_CREATE(computeComm, 0, globalComm,
 io_start, 0, interComm, ierr)

IF(io_task)THEN
 CALL MPI_INTERCOMM_CREATE(ioservComm, 0, globalComm,
 comp_start, 0, interComm, ierr)

! Assign compute tasks to I/O tasks. Thus 12 compute tasks assigned to 4 I/O
! tasks means each I/O task receives data from 3 compute tasks.

Basic job control loop

WHILE(notDone)

 IF(compute_task) DO_WORK()

 IF(io_task) DO_IO()

END WHILE

Compute tasks will do some work for every iteration.

I/O tasks will wait in DO_IO() until signaled to write a file.

IO Server

SUBROUTINE DO_IO()

! Send my data to the I/O server, note non-blocking send
IF(compute_task)THEN

 CALL MPI_ISEND(….,my_task_data…., myIORank, …., interComm, …)
 RETURN

END IF

! Check to see if any data has arrived, if not, then wait.
! The probe function will proceed as soon as the first message is ready

CALL MPI_PROBE(MPI_ANY_SOURCE, MPI_ANY_TAG, interComm, …)

! Use netCDF/HDF5/ADIOS API to create a file, file variables, and metadata

status = ParallelFileCreate(ioServeComm, ….)

IO Server
! Loop over the number of compute tasks that I have to get messages from
DO I = 1, numComputeTasksToRecieve

 CALL MPI_RECV(buffer, … MPI_ANY_SOURCE, MPI_ANY_TAG,
 interComm, statuses, …)
 ! Get the rank in the compute world that sent the data
 rcvRank = statuses(MPI_SOURCE)

 ! Use rcvRank to figure out offsets and counts to place local data into global
 ! Data structure in file, e.g.

 starts(:) = (/ix,iy,1/)
 counts(:) = (/nx,ny,nz/)

 status = ParallelPutToFile(filePtr, varid, data, start=starts, count=counts)
END DO

Final Thoughts

  For good performance, make sure you are
using collective operations.
–  Don’t forget striping if you’re on Lustre!

  For robustness, need to check to make sure
that you’ve finished writing one file before you
try to start writing another.
–  Could happen if compute time is less than I/O

time.
  Questions?

