The Portable Extensible Toolkit for Scientific computing Day 2: Performance, scalability, and hard problems

Jed Brown

CSCS 2010-05-11

Jed Brown (ETH Zürich)

Outline

Algorithms (continued from yesterday) Hydrostatic Ice Driven cavity

- 2 Application Integration
- Performance and Scalability Memory hierarchy Profiling

Requests

- Tell me if you do not understand
- Tell me if an example does not work
- · Suggest better wording, figures, organization
- Follow up:
 - Configuration issues, private: petsc-maint@mcs.anl.gov
 - Public questions: petsc-users@mcs.anl.gov

Hydrostatic equations for ice sheet flow

- Valid in the limit $w_x \ll u_z$, independent of basal friction
- Eliminate *p* and *w* by incompressibility:

3D elliptic system for u = (u, v)

$$-\nabla \cdot \left[\eta \begin{pmatrix} 4u_x + 2v_y & u_y + v_x & u_z \\ u_y + v_x & 2u_x + 4v_y & v_z \end{pmatrix}\right] + \rho g \nabla s = 0$$

$$\eta(\gamma) = \frac{B}{2} (\varepsilon^2 + \gamma)^{\frac{1-n}{2n}}, \qquad \mathfrak{n} \approx 3$$
$$\gamma = u_x^2 + v_y^2 + u_x v_y + \frac{1}{4} (u_y + v_x)^2 + \frac{1}{4} u_z^2 + \frac{1}{4} v_z^2$$

and slip boundary $\sigma \cdot n = \beta^2 u$ where

$$\begin{split} \beta^2(\gamma_b) &= \beta_0^2 (\varepsilon_b^2 + \gamma_b)^{\frac{m-1}{2}}, \qquad 0 < \mathfrak{m} \leq 1\\ \gamma_b &= \frac{1}{2} (u^2 + v^2) \end{split}$$

• Q₁ FEM: src/snes/examples/tutorials/ex48.c

Jed Brown (ETH Zürich)

Some Multigrid Options

- -dmmg_grid_sequencce: [FALSE]
 Solve nonlinear problems on coarse grids to get initial guess
- -pc_mg_galerkin: [FALSE] Use Galerkin process to compute coarser operators
- -pc_mg_type: [FULL] (choose one of) MULTIPLICATIVE ADDITIVE FULL KASKADE
- -mg_coarse_{ksp,pc}_* control the coarse-level solver
- -mg_levels_{ksp,pc}_* control the smoothers on levels
- -mg_levels_3_{ksp,pc}_*
 control the smoother on specific level
- These also work with ML's algebraic multigrid.

What is this doing?

- mpiexec -n 4 ./ex48 -M 16 -P 2 -da refine hierarchy x 1,8,8 -da_refine_hierarchy_y 2,1,1 -da_refine_hierarchy_z 2,1,1 -dmmg_grid_sequence 1 -dmmg_view -log_summary -ksp_converged_reason -ksp_gmres_modifiedgramschmidt -ksp_monitor -ksp_rtol 1e-2 -pc_mg_type multiplicative -mq_coarse_pc_type lu -mq_levels_0_pc_type lu -mg_coarse_pc_factor_mat_solver_package mumps -mg_levels_0_pc_factor_mat_solver_package mumps -mq_levels_1_sub_pc_type cholesky -snes_converged_reason -snes_monitor -snes_stol 1e-12 -thi_L 80e3 -thi_alpha 0.05 -thi_friction_m 0.3 -thi hom x -thi nlevels 4
- What happens if you remove -dmmg_grid_sequence?
- What about solving with block Jacobi, ASM, or algebraic multigrid?

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Driven Cavity

Solution Components

vorticity:

temperature: T

- Velocity-vorticity formulation
- Flow driven by lid and/or bouyancy
- Logically regular grid
 - Parallelized with DA
- Finite difference discretization
- Authored by David Keyes

Driven Cavity Application Context

```
/* Collocated at each node */
typedef struct {
    PetscScalar u,v,omega,temp;
} Field:
```

```
typedef struct {
    /* physical parameters */
    PassiveReal lidvelocity,prandtl,grashof;
    /* color plots of the solution */
    PetscTruth draw_contours;
} AppCtx;
```

Driven Cavity Residual Evaluation

```
DrivenCavityFunction (SNES snes, Vec X, Vec F, void *ptr) {

AppCtx *user = (AppCtx *) ptr;

/* local starting and ending grid points */

PetscInt istart, iend, jstart, jend;

PetscScalar *f; /* local vector data */

PetscReal grashof = user->grashof;

PetscReal prandtl = user->prandtl;

PetscErrorCode ierr;
```

```
/* Code to communicate nonlocal ghost point data */
VecGetArray(F, &f);
/* Code to compute local function components */
VecRestoreArray(F, &f);
return 0;
```

}

• • = • • = •

Better Driven Cavity Residual Evaluation

```
PetscErrorCode DrivenCavityFuncLocal(DALocalInfo *info,
                       Field **x, Field **f, void *ctx) {
  /* Handle boundaries */
  /* Compute over the interior points */
  for (i = info \rightarrow vs; i < info \rightarrow vs + info \rightarrow vm; i + +)
    for (i = info \rightarrow xs; i < info \rightarrow xs+info \rightarrow xm; i++) {
      /* convective coefficients for upwinding */
      /* U velocity */
      u
                   = x[i][i].u;
                   = (2.0 * u - x[i][i-1].u - x[i][i+1].u) * hydhx;
      UXX
                = (2.0 * u - x[i-1][i] \cdot u - x[i+1][i] \cdot u) * hxdhy;
      uvv
      upw = 0.5 * (x[i+1][i].omega-x[i-1][i].omega) * hx
      f[i][i].u = uxx + uyy - upw;
      /* V velocity, Omega, Temperature */
}}}
```

\$PETSC_DIR/src/snes/examples/tutorials/ex19.c

Running the driven cavity

- ./ex19 -lidvelocity 100 -grashof 1e2 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- ./ex19 -lidvelocity 100 -grashof 1e4 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- ./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- Uh oh, we have convergence problems
- Run with -snes_monitor_convergence
- Does -dmmg_grid_sequence help?

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Running the driven cavity

- ./ex19 -lidvelocity 100 -grashof 1e2 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- ./ex19 -lidvelocity 100 -grashof 1e4 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- ./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- Uh oh, we have convergence problems
- Run with -snes_monitor_convergence
- Does -dmmg_grid_sequence help?

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Why isn't SNES converging?

- The Jacobian is wrong (maybe only in parallel)
 - Check with -snes_type test and -snes_mf_operator -pc_type lu
- The linear system is not solved accurately enough
 - Check with -pc_type lu
 - Check -ksp_monitor_true_residual, try right preconditioning
- The Jacobian is singular with inconsistent right side
 - Use MatNullSpace to inform the KSP of a known null space
 - Use a different Krylov method or preconditioner
- The nonlinearity is just really strong
 - Run with -info or -snes_ls_monitor (petsc-dev) to see line search
 - Try using trust region instead of line search -snes_type tr
 - Try grid sequencing if possible
 - Use a continuation

▶ < 프 > < 프 > · · 프

Globalizing the lid-driven cavity

Pseudotransient continuation continuation (Ψtc)

- Do linearly implicit backward-Euler steps, driven by steady-state residual
- Clever way to adjust step sizes to retain quadratic convergence it terminal phase
- Implemented in src/snes/examples/tutorials/ex27.c
- \$ make runex27
- Make the method linearly implicit: -snes_max_it 1
 - Compare required number of linear iterations
- Try increasing -lidvelocity, -grashof, and problem size
- Coffey, Kelley, and Keyes, *Pseudotransient continuation and differential algebraic equations*, SIAM J. Sci. Comp, 2003.

Application Integration

- Be willing to experiment with algorithms
 - No optimality without interplay between physics and algorithmics
- Adopt flexible, extensible programming
 - Algorithms and data structures not hardwired
- Be willing to play with the real code
 - Toy models are rarely helpful
- If possible, profile before integration
 - Automatic in PETSc

Incorporating PETSc into existing codes

- PETSc does not seize main (), does not control output
- Propogates errors from underlying packages, flexible error handling
- Nothing special about MPI_COMM_WORLD
- Can wrap existing data structures/algorithms
 - MatShell, PCShell, full implementations
 - VecCreateMPIWithArray()
 - MatCreateSeqAIJWithArrays()
 - Use an existing semi-implicit solver as a preconditioner
 - Usually worthwhile to use native PETSc data structures unless you have a good reason not to
- Uniform interfaces across languages: C, C++, Fortran 77/90, Python
- Do not have to use high level interfaces
 - but PETSc can offer more if you do, like MFFD and SNES Test

Integration Stages

- Version Control
 - · It is impossible to overemphasize
- Initialization
 - Linking to PETSc
- Profiling
 - Profile before changing
 - Also incorporate command line processing
- Linear Algebra
 - First PETSc data structures
- Solvers
 - Very easy after linear algebra is integrated

Initialization

• Call PetscInitialize()

- Setup static data and services
- Setup MPI if it is not already
- Can set PETSC_COMM_WORLD to use your communicator (can always use subcommunicators for each object)

• **Call** PetscFinalize()

- Calculates logging summary
- Can check for leaks/unused options
- Shutdown and release resources
- Can only initialize PETSc once

Matrix Memory Preallocation

- PETSc sparse matrices are dynamic data structures
 - can add additional nonzeros freely
- Dynamically adding many nonzeros
 - requires additional memory allocations
 - requires copies
 - can kill performance
- Memory preallocation provides
 - the freedom of dynamic data structures
 - good performance
- · Easiest solution is to replicate the assembly code
 - · Remove computation, but preserve the indexing code
 - Store set of columns for each row
- Call preallocation routines for all datatypes
 - MatSeqAIJSetPreallocation()
 - MatMPIBAIJSetPreallocation()
 - Only the relevant data will be used

Sequential Sparse Matrices

MatSeqAIJPreallocation(Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row

nnz(i): expected number of nonzeros in row i

Parallel Sparse Matrix

- Each process locally owns a submatrix of contiguous global rows
- Each submatrix consists of diagonal and off-diagonal parts

• MatGetOwnershipRange (Mat A, int *start, int *end) start: first locally owned row of global matrix end-1: last locally owned row of global matrix

Jed Brown (ETH Zürich)

Parallel Sparse Matrices

dnz: expected number of nonzeros in any row in the diagonal block

dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion

onnz(i): expected number of nonzeros in row i in the offdiagonal portion

Verifying Preallocation

- Use runtime option -info
- Output:

```
[proc #] Matrix size: %d X %d; storage space:
%d unneeded, %d used
[proc #] Number of mallocs during MatSetValues( )
is %d
```

```
[merlin] mpirun ex2 -log_info
[0]MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56; storage space:
[0] 310 unneeded, 250 used
[0]MatAssemblyEnd_SeqAIJ:Number of mallocs during MatSetValues() is 0
[0]MatAssemblyEnd_SeqAIJ:Most nonzeros in any row is 5
[0]Mat_AIJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
[0]Mat_AIJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
Norm of error 0.000156044 iterations 6
[0]PetscFinalize:PETSc successfully ended!
```

(日)

Block and symmetric formats

BAIJ

- · Like AIJ, but uses static block size
- Preallocation is like AIJ, but just one index per block

SBAIJ

- Only stores upper triangular part
- Preallocation needs number of nonzeros in upper triangular parts of on- and off-diagonal blocks
- MatSetValuesBlocked()
 - · Better performance with blocked formats
 - Also works with scalar formats, if MatSetBlockSize() was called
 - Variants MatSetValuesBlockedLocal(), MatSetValuesBlockedStencil()
 - Change matrix format at runtime, don't need to touch assembly code

Linear Solvers

Krylov Methods

- Using PETSc linear algebra, just add:
 - KSPSetOperators(KSP ksp, Mat A, Mat M, MatStructure flag)
 - KSPSolve(KSP ksp, Vec b, Vec x)
- Can access subobjects
 - KSPGetPC(KSP ksp, PC *pc)
- Preconditioners must obey PETSc interface
 - Basically just the KSP interface
- Can change solver dynamically from the command line, -ksp_type

Nonlinear Solvers

Newton and Picard Methods

• Using PETSc linear algebra, just add:

- SNESSetFunction(SNES snes, Vec r, residualFunc, void *ctx)
- SNESSetJacobian(SNES snes, Mat A, Mat M, jacFunc, void *ctx)
- SNESSolve(SNES snes, Vec b, Vec x)
- Can access subobjects
 - SNESGetKSP(SNES snes, KSP *ksp)
- Can customize subobjects from the cmd line
 - Set the subdomain preconditioner to ILU with -sub_pc_type ilu

Bottlenecks of (Jacobian-free) Newton-Krylov

- Matrix assembly
 - integration/fluxes: FPU
 - insertion: memory/branching
- Preconditioner setup
 - coarse level operators
 - overlapping subdomains
 - (incomplete) factorization
- Preconditioner application
 - triangular solves/relaxation: memory
 - coarse levels: network latency
- Matrix multiplication
 - Sparse storage: memory
 - Matrix-free: FPU

Globalization

Intel Clowertown

- 75 Gflop/s
- 21 GB/s bandwidth
- thread + instruction level parallelism
- vector instructions (SSE)

- 17 Gflop/s
- 21 GB/s bandwidth
- thread + instruction level parallelism
- vector instructions (SSE)

◆□▶ ◆圖▶ ◆厘▶ ◆厘≯

Hardware capabilities

Floating point unit

Recent Intel: each core can issue

- 1 packed add (latency 3)
- 1 packed mult (latency 5)
- One can include a read
- Out of Order execution
- Peak: 10 Gflop/s (double)

Memory

- $\bullet~\sim$ 250 cycle latency
- 5.3 GB/s bandwidth
- 1 double load / 3.7 cycles
- Pay by the cache line (32/64 B)
- L2 cache: \sim 10 cycle latency

(Oliker et al. Multi-core Optimization of Sparse Matrix Vector Multiplication, 2008)

Jed Brown (ETH Zürich)

CSCS 2010-05-11 30 / 45

ъ

< ロ ト < 同

Sparse Mat-Vec performance model

Compressed Sparse Row format (AIJ)

For $m \times n$ matrix with *N* nonzeros

- ai row starts, length m+1
- aj column indices, length N, range [0, n-1)

aa nonzero entries, length N, scalar values

$$y \leftarrow y + Ax \qquad for (i=0; i < m; i++) \\ for (j=ai[i]; j < ai[i+1]; j++) \\ y[i] += aa[j] * x[aj[j]];$$

- One add and one multiply per inner loop
- Scalar aa[j] and integer aj[j] only used once
- Must load aj[j] to read from x, may not reuse cache well

Memory Bandwidth

• Stream Triad benchmark (GB/s): $w \leftarrow \alpha x + y$

Threads per Node	Cray XT5		BlueGene/P	
	Total	Per Core	Total	Per Core
1	8448	8448	2266	2266
2	10112	5056	4529	2264
4	10715	2679	8903	2226
6	10482	1747	-	-

• Sparse matrix-vector product: 6 bytes per flop

Machine	Peak MFlop/s	Bandwidth (GB/s)		Ideal MFlop/s
	per core	Required	Measured	
Blue Gene/P	3,400	20.4	2.2	367
XT5	10,400	62.4	1.7	292

Optimizing Sparse Mat-Vec

- Order unknows so that vector reuses cache (Reverse Cuthill-McKee)
 - Optimal: (2 flops)(bandwidth) sizeof(Scalar)+sizeof(Int)

 - Usually improves strength of ILU and SOR
- Coalesce indices for adjacent rows with same nonzero pattern (Inodes)
 - Optimal: (2 flops)(bandwidth) sizeof(Scalar)+sizeof(Int)/i
 - Can do block SOR (much stronger than scalar SOR)
 - Default in PETSc, turn off with -mat no inode
 - Requires ordering unknowns so that fields are interlaced, this is (much) better for memory use anyway
- Use explicit blocking, hold one index per block (BAIJ format)
 - Optimal: (2 flops)(bandwidth) sizeof(Scalar)+sizeof(Int)/b²
 - Block SOR and factorization
 - Symbolic factorization works with blocks (much cheaper)
 - Very regular memory access, unrolled dense kernels
 - Faster insertion: MatSetValuesBlocked()

御 と く き と く き とう

Optimizing unassembled Sparse Mat-Vec

High order spatial discretizations do more work per node

- Dense tensor product kernel (like small BLAS3)
- Cubic (Q₃) elements in 3D can achieve > 60% of peak FPU (compare to < 6% for assembled operators on multicore)
- Can store Jacobian information at quadrature points (usually pays off for *Q*₂ and higher in 3D)
- Spectral methods
- Often still need an assembled operator for preconditioning
- Boundary element methods
 - Dense kernels
 - Fast Multipole Method (FMM)

Profiling

- Use -log_summary for a performance profile
 - Event timing
 - Event flops
 - Memory usage
 - MPI messages
- Call PetscLogStagePush() and PetscLogStagePop()
 - User can add new stages
- Call PetscLogEventBegin() and PetscLogEventEnd()
 - User can add new events
- Call ${\tt PetscLogFlops}$ () to include your flops

Reading -log_summary

•	Max	Max/Min	Avg	Total
Time (sec):	1.548e+02	1.00122	1.547e+02	
Objects:	1.028e+03	1.00000	1.028e+03	
Flops:	1.519e+10	1.01953	1.505e+10	1.204e+11
Flops/sec:	9.814e+07	1.01829	9.727e+07	7.782e+08
MPI Messages:	8.854e+03	1.00556	8.819e+03	7.055e+04
MPI Message Lengths:	1.936e+08	1.00950	2.185e+04	1.541e+09
MPI Reductions:	2.799e+03	1.00000		

- Also a summary per stage
- Memory usage per stage (based on when it was allocated)
- Time, messages, reductions, balance, flops per event per stage
- Always send -log_summary when asking performance questions on mailing list

Communication Costs

- Reductions: usually part of Krylov method, latency limited
 - VecDot
 - VecMDot
 - VecNorm
 - MatAssemblyBegin
 - Change algorithm (e.g. IBCGS)
- Point-to-point (nearest neighbor), latency or bandwidth
 - VecScatter
 - MatMult
 - PCApply
 - MatAssembly
 - SNESFunctionEval
 - SNESJacobianEval
 - · Compute subdomain boundary fluxes redundantly
 - Ghost exchange for all fields at once
 - Better partition

Scalability definitions

- Strong scalability
 - Fixed problem size
 - execution time *T* inversely proportional to number of processors *p*

Weak scalability

- Fixed problem size per processor
- execution time constant as problem size increases

Multigrid advice

- Rapid coarsening is essential for weak scalability
 - Push the algorithm towards "multilevel domain decomposition"
- Energy minimizing interpolants
 - Similar to exotic Schwarz methods, see Dohrmann and Widlund 2008, 2009
 - Closely related to FETI-DP/BDDC coarse spaces
- Interpolation operators must be compatible with physics (e.g. inf-sup conditions)
- Ordering of unknowns can make incomplete factorization behave similar to line smoothers
- Nonlinear multigrid (FAS) is worth trying if pointwise or block residuals are cheap, or globalization is especially challenging
- Monotone multigrid (Kornhuber) for variational inequalities
- Boundary conditions in subdomain problems ("optimized Schwarz")

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

A C D

Relaxation

-pc_fieldsplit_type

[additive,multiplicative,symmetric_multiplicative]

- Gauss-Seidel inspired, works when fields are loosely coupled
- Factorization

pc_fieldsplit_type [schur]
$$\begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix} \begin{bmatrix} A & B \\ S \end{bmatrix}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?

Jed Brown (ETH Zürich)

PETSc day 2

Coupled approach to multiphysics

- Smooth all components together
 - Block SOR is the most popular
 - Vanka smoothers for indefinite problems
- Interpolate in a compatible way
- Scaling between fields is critical
- First-order upwind for transport
- Coarse space and subdomain problems should be compatible with • inf-sup condition
- Open research area

Anisotropy and Heterogeneity

Anisotropy

- Semi-coarsening
- Line smoothers
- Order unknowns so that incomplete factorization "includes" a line smoother

Heterogeneity

- Make coarse grids align
- Strong smoothers
- Energy-minimizing interpolants •

Splitting

Physics-based preconditioners (semi-implicit method)

Shallow water with stiff gravity wave

h is hydrostatic pressure, u is velocity, \sqrt{gh} is fast wave speed

$$h_t - (uh)_x = 0$$

 $(uh)_t + (u^2h + \frac{1}{2}gh^2)_x = 0$

Semi-implicit method

Suppress spatial discretization, discretize in time, implicitly for the terms contributing to the gravity wave

$$\frac{h^{n+1} - h^n}{\Delta t} + (uh)_x^{n+1} = 0$$

$$\frac{(uh)^{n+1} - (uh)^n}{\Delta t} + (u^2 h)_x^n + gh^n h_x^{n+1} = 0$$

Splitting

Delta form

Preconditioner should work like the Newton step

$$-F(x)\mapsto \delta x$$

Recast semi-implicit method in delta form

$$\frac{\delta h}{\Delta t} + (\delta uh)_x = -F_0$$
$$\frac{\delta uh}{\Delta t} + gh^n (\delta h)_x = -F_1$$

• Eliminate δuh

$$\frac{\delta h}{\Delta t} - \Delta t (gh^n (\delta h)_x)_x = -F_0 + (\Delta t F_1)_x$$

• Solve for δh , then evaluate

$$\delta uh = -\Delta t [gh^n (\delta h)_x - F_1]$$

- Fully implicit solver
 - Is nonlinearly consistent (no splitting error)
 - Can be high-order in time •

Jed Brown (ETH Zürich)

References

- Knoll and Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, JCP, 2004.
- Elman et. al., A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, JCP, 2008.
- Wan, Chan, and Smith, *An energy-minimizing interpolation for robust multigrid methods*, SIAM J. Sci. Comp, 2000.
- Gropp, Kaushik, Keyes, Smith, *Performance Modeling and Tuning of an Unstructured Mesh CFD Application*, Supercomputing, 2000.