
DAY 1: Introduction to OpenMP

Multi-threaded Programming, Tuning and
Optimization on Multi-core MPP Platforms
15-17 February 2011
CSCS, Manno

Introductory Course on OpenMP
Programming

CSCS, National Supercomputing Service

Agenda

•  Basic information
–  Intro to programming model.
–  Directives for work parallelization and synchronization.

•  Hands-on Lab
–  Writing compiling and executing simple OpenMP programs.
–  Identifying and resolving common issues.

Agenda

•  Advanced topics
–  Data-scoping constructs
–  Constructs introduced in OpenMP 3.0

•  Hands-on Lab
–  Experiments using data-scoping constructs
–  Examples with OpenMP 3.0 directives.

What is OpenMP?

•  OpenMP = Open Multi-Parallelism
•  It is an API to explicitly direct multi-threaded shared-

memory parallelism.
•  Comprised of three primary API components

–  Compiler directives
–  Run-time library routines
–  Environment variables

How is OpenMP not MPI?

MPI	
 is	
 an	
 API	
 for	
 controlling	
 distributed-­‐memory	
 parallelism	
 on	
 mul5-­‐processor	
 architectures.	
 	

	

Each	
 processor	
 has	
 it’s	
 own	
 unique	
 memory	
 	

	

Informa5on	
 is	
 passed	
 between	
 memory	
 loca5ons	
 through	
 the	
 interconnect	
 via	
 the	
 MPI	
 API.	

Interconnect	

Mem	

Proc0	

Mem	

Proc1	

Mem	

Proc2	

Mem	

…	

Mem	

…	

Mem	

ProcN	

OpenMP

Memory	

Proc0	
 Proc1	
 Proc2	
 …	
 …	
 ProcN	

A	
 process,	
 such	
 as	
 an	
 MPI	
 task,	
 owns	
 a	
 lot	
 of	
 state	
 informa5on	
 about	
 the	
 process,	

including	
 the	
 memory,	
 file	
 handles,	
 etc.	
 Threads,	
 launched	
 by	
 the	
 process,	
 share	
 the	

state	
 informa5on,	
 including	
 memory,	
 	
 of	
 the	
 launching	
 process	
 and	
 so	
 are	

considered	
 light	
 weight.	

	

Since	
 memory	
 references	
 amongst	
 a	
 team	
 of	
 threads	
 are	
 shared:	
 OpenMP	
 requires	

that	
 the	
 programmer	
 ensures	
 that	
 memory	
 references	
 are	
 handled	
 correctly.	
 	

	

It	
 is	
 possible,	
 for	
 both	
 paradigms	
 to	
 be	
 used	
 in	
 one	
 applica5on	
 to	
 improve	
 either	

speed,	
 or	
 scaling,	
 or	
 both.	
 This	
 is	
 the	
 so	
 called	
 hybrid	
 parallel	
 programming	
 model.	

Why use OpenMP?

•  Exploit more parallelism to increase scaling and
performance
–  SMPD parallelism

•  E.g. MPI tasks on one spatial dimension, OpenMP threads on
another.

–  Functional parallelism
•  Threads executing different tasks, perhaps on the same data,

perhaps not.
–  Improve load balance via new OpenMP constructs that enable

work stealing.

Creating parallelism

Fork-and-join model

•  OpenMP programs begin as a single process, the master
thread, until they reach a parallel region, which then
spawns a team of threads.

F	

O	

R	

K	
 master	

thread	

parallel	

region	

J	

O	

I	

N	

F	

O	

R	

K	

J	

O	

I	

N	

Parallel regions

•  Threads are created with the parallel directive.
•  NB: Directives are comments (in Fortran) or pragmas (in

C/C++). Thus, you can create portable code that works
with or without OpenMP depending on the architecture or
your available compilers.

Fortran example

•  Outside of parallel region, there is only 1 thread (master).
•  Inside of parallel region there are N threads (will see how to

set this later)
•  All threads share X, id is private to each thread.
•  There is an implicit barrier at the end of the parallel region

double precision :: x(1000)!
integer id,n!
integer omp_get_thread_id!
integer omp_get_num_threads!
!
!$omp parallel private(id)!
!

!id = omp_get_thread_id()!
!n = omp_get_num_threads()!
!call foo(id, x)!

!
!$omp end parallel!

Fortran example

•  In the previous example, we also saw two functions from
the run time library
–  omp_get_thread_num()

•  Returns unique thread id number for each thread in the team.
–  omp_get_num_threads()

•  Returns the number of threads in the team.

•  There are more (over 20) but these are the two most
common, if they are used at all.

C example

double x[1000];!
!
#pragma omp parallel!
{!

!int id = omp_get_thread_id()!
!int n = omp_get_num_threads()!
!foo(id, x);!

}!

Synchronization 1

•  Synchronization is used to impose order constraints and
to protect shared data.
–  Master
–  Single
–  Critical
–  Barrier

•  Will see a others later

master directive

•  In this example, all threads are assigned a thread ID
number (0-12, say).

•  Because of the master directive, only the master
thread (id=0) prints out a message.

!$omp parallel private(id)!
!

!id = omp_get_thread_id()!
!
!$omp master!

!print *, ‘myid = ‘, id!
!$omp end master!
!
!$omp end parallel!

single directive

•  Again, all threads are assigned a thread ID number.
•  Because of the single directive, only one thread prints out a

message.
•  Which thread executes the single section may change from

one execution to the next.
•  The optional nowait directive overrides the implicit barrier in

a directive.

!$omp parallel private(id)!
!

!id = omp_get_thread_id()!
!
!$omp single!

!print *, ‘myid = ‘, id!
!$omp end single [nowait]!
!
!$omp end parallel!

critical directive

•  All threads will print their id number.
•  Within the critical section, only one thread out of the

team will be executing at any time.
•  Thus, for six threads, there will be six print statements but

they will not necessarily be ordered by id number.

!$omp parallel private(id)!
!

!id = omp_get_thread_id()!
!
!$omp critical!

!print *, ‘myid = ‘, id!
!$omp end critical!
!
!$omp end parallel!

barrier directive

•  The barrier directive requires that all threads in the team
arrive at the barrier before execution continues.

•  In this example, the function foo1 may perform some action,
e.g. on shared data, that may affect other threads in the
function foo2. Thus, all threads execute foo1, stop at the
barrier and then continue on to foo2.

!$omp parallel!
!

!call foo1()!
!
!$omp barrier!

!!
!call foo2()!

!
!$omp end parallel!

atomic directive

•  The atomic protects memory locations from being
updated by more than one thread.

n = 0!
!$omp parallel!
!
!$omp atomic!
 n = n + 1!
!
!$omp end parallel!

Warning

•  In general, try to avoid the use of synchronization
directives, especially barriers, as they may cause
significant performance degradation.

•  If possible, try to re-factor your algorithm to avoid using
them. Consider using temporary variables in OpenMP
sections to accomplish this.

Data scoping

Private/Shared Data
•  In parallel regions, four types of data attributes can exist

–  shared (default)!
•  Accessible by all threads

–  private!
•  Accessible only by the current thread
•  NB: Loop counters are automatically private

•  Also
–  none!
–  firstprivate

•  The default can be changed using the default directive
 !$omp parallel default(private)!

!$omp parallel default(shared)!

Private/Shared data

•  Individual variables in parallel regions can be declared private or
shared!

!$omp parallel private(x0,y0)!
!x0 = xarray(…)!
!y0 = yarray(…)!
!f(…) = foo1(x0,y0)!

!$omp end parallel!

•  Here,	
 x0,	
 and	
 y0 are	
 private	
 variables,	
 taken	
 from	
 the	
 shared	
 arrays	
 x(),	

and	
 y()	
 that	
 are	
 used	
 to	
 compute	
 some	
 variable	
 that	
 is	
 stored	
 in	
 the	

shared	
 array	
 f().	

•  It	
 is	
 also	
 possible	
 to	
 directly	
 specify	
 that	
 variables	
 be	
 shared.	

!$omp parallel private(x0,y0) shared(xarray,yarray,f)!
!x0 = xarray(…)!
!y0 = yarray(…)!
!f(…) = foo1(x0,y0)!

!$omp end parallel!

firstprivate!

•  The firstprivate directive allows you to set private
variables to the value of their original prior to entry into the
parallel or worksharing construct.

A = 1!
B = 2!
!$omp parallel private(A) firstprivate(B)!

!….!
!$omp end parallel!

•  In	
 this	
 example,	
 A	
 has	
 an	
 undefined	
 value	
 on	
 entry	
 into	
 the	
 parallel	

region	
 while	
 B	
 has	
 the	
 value	
 specified	
 in	
 the	
 previous	
 parallel	

region.	

•  This	
 can	
 be	
 costly	
 for	
 large	
 data	
 structures.	

lastprivate!

•  Upon exiting worksharing constructs (do loops or sections), it
may be useful to store the last value of a private variable do it
can be used in the serial section.

A = 1!
B = 2!
!$omp parallel firstprivate(B)!
!$omp do lastprivate(A)!
do i = 1, 1000!

!A = i!
end do!
!$omp end do!
!$omp end parallel!

•  In	
 this	
 example,	
 upon	
 exi5ng	
 the	
 do	
 loop,	
 A=1000.	
 	
 	

Loop Worksharing
(do/for)

DO I = 1, N!
!a(i) = b(i) + c(i)!

END DO!

•  The	
 OpenMP	
 worksharing	
 construct	
 do (in	
 Fortran)	
 or	
 for (in	
 C/C++)	

enables	
 the	
 programmer	
 to	
 distribute	
 the	
 work	
 of	
 loops	
 across	
 threads.	

!$omp parallel!
!$omp do!
DO I = 1, N!

!a(i) = b(i) + c(i)!
END DO!
!$omp end do [nowait]!
!$omp end parallel!

•  In	
 this	
 example,	
 OpenMP	
 determines,	
 by	
 default,	
 	
 the	
 amount	
 of	

work	
 to	
 give	
 to	
 each	
 thread	
 by	
 dividing	
 N	
 by	
 the	
 number	
 of	
 threads.	

We	
 will	
 see	
 later	
 how	
 to	
 change	
 this	
 behavior.	

•  Mo5va5ng	
 example	

Loop worksharing

•  For convenience, the two statements can be combined

!$omp parallel do!
DO I = 1, N!

!a(i) = b(i) + c(i)!
END DO!
!$omp end parallel do!

Reductions

•  Very often, a programmer needs to compute a variable
that is the sum of other data, e.g.

Real :: x(M), avg!
Avg = 0.0!
DO I = 1, N!

!avg = avg + x(i)!
END DO!
Avg = avg / FLOAT(M)!

•  This	
 opera5on	
 is	
 called	
 a	
 reduc5on	
 and	
 there	
 is	

support	
 in	
 OpenMP	
 for	
 parallelizing	
 this	
 sort	
 of	

thing	
 rather	
 trivially.	

reduction directive

•  In this example, the avg variable is automatically
declared private and initialized to zero.

•  The general form of the reduction directive is

Real :: x(M), avg!
!$omp parallel do reduction(+:avg)!
DO I = 1, N!

!avg = avg + x(i)!
END DO!
!$omp end parallel do!

reduction(operator:variable)!

Reductions
•  Some of the most common reduction operators and initial values are

as follows

Operator	
 Ini5al	
 value	

+	
 0	

*	
 1	

-­‐	
 0	

Operator	
 Ini5al	
 value	

&	
 ~0	

|	
 0	

^	
 0	

&&	
 1	

||	
 0	

C/C++	
 Only	

Operator	
 Ini5al	
 value	

MIN	
 Largest	
 pos.	
 number	

MAX	
 Most	
 nega5ve	
 number	

.AND.	
 .TRUE.	

.OR.	
 .FALSE.	

.NEQV.	
 .FALSE.	

.IEOR.	
 0	

.IOR.	
 0	

.IAND.	
 All	
 bits	
 on	

.EQV.	
 .TRUE.	

Fortran	
 Only	

order directive

•  Some expressions in do/for loops need to be executed
sequentially because the results are order dependent, e.g.

DO I = 1, N!
!a(i) = 2 * a(i-1)!

END DO!

•  In	
 order	
 to	
 parallelize	
 this	
 loop,	
 it	
 is	
 mandatory	
 to	
 use	
 the	

ordered direc5ve	

!$omp do ordered !
DO I = 1, N!
!$omp ordered!

!a(i) = 2 * a(i-1)!
!$omp end ordered!
END DO!
!$omp end do!

Let	
 OpenMP	
 know	
 an	
 ordered	

statement	
 is	
 coming	
 later	

Scheduling

•  When a do-loop is parallelized and its iterations
distributed over the different threads, the most simple
way of doing this is by giving to each thread the same
number of iterations.
–  not always the best choice, since the computational cost of the

iterations may not be equal for all of them.
–  different ways of distributing the iterations exist, this is called

scheduling.

schedule directive

•  The schedule directive allows you to specify the
chunking method for parallelization of do or parallel
do loops. Work is assigned to threads in a different
manner depending on the scheduling type or chunk size
used.
–  static (default)!
–  dynamic!
–  guided!
–  runtime!

schedule directive

•  The schedule clause accepts two parameters.
–  The first one, type, specifies the way in which the work is

distributed over the threads.
–  The second one,chunk, is an optional parameter specifying the

size of the work given to each thread: its precise meaning
depends on the type of scheduling used.

!$omp parallel do schedule(type[, chunk])!
DO I = 1, N!

!a(i) = b(i) + c(i)!
END DO!
!$omp end parallel do!

schedule directive

–  static (default)!
•  work is distributed in equal sized blocks. If the chunk size is

specified, that is the unit of work and blocks are assigned to threads
in a round-robin fashion.

–  dynamic!
•  work is assigned to threads one at a time. If the chunk size is not

specified, the chunk size is one.
•  Faster threads get more work, slower threads less.

–  guided!
–  runtime!

schedule directive

–  guided!
•  Similar to dynamic but each block of work is a fixed fraction of the

preceding amount, decreasing to chunk_size (1, if not set)
•  Fewer chunks = less synchronization = faster?

–  runtime!
•  Allows scheduling to be determined at run time.
•  Method and chunk size specified by the environment variable
OMP_SCHEDULE, e.g.

–  setenv OMP_SCHEDULE “guided, 25”!

Sections

•  Sections are a means of distributing independent blocks
of work to different threads.

•  For example, you may have three functions that do not
update any common data

…!
call foo1(…)!
call foo2(…)!
call foo3(…)!
…!

Section directive

•  Using sections, each of these functions can be excuted
by different threads

!$omp parallel!
!$omp sections [options]!
!$omp section!
call foo1(…) !thread 1!
!$omp section!
call foo2(…) !thread 2!
!$omp section!
call foo3(…) !thread 3!
!$omp end sections[nowait]!
!$omp end parallel!

Sections

•  May be the only way to parallelize a region.
•  If you don’t have enough sections, some threads my be

idle.
–  Still may be useful and provide a performance boost if you can’t

thread your blocks or functions.

•  Can also use !$omp parallel sections shortcut.

Workshare (Fortran only)

•  In Fortran, the following can be parallelized using the
workshare directive
–  forall!
–  where!
–  Array notation expression

•  e.g. A = B + C, where A, B, and C are arrays.
–  Transformational array functions

•  e.g. matmul, dot_product, sum, maxval, minval, etc.

workshare example

real(8) :: a(1000), b(1000)!
!$omp parallel!
!$omp workshare!
!
forall(i=1:1000)!
 b(i) = 10*I!
end forall!
!
a = a + b!
!
!$omp end workshare[nowait]!
!$omp end parallel!

Useful links

•  OpenMP Consortium
–  Summary of Fortran Syntax (PDF)
–  Summary of C/C++ Syntax (PDF)

LAB 1

45

OpenMP 3.0

46

OpenMP 3.0 features

•  OMP_STACKSIZE
•  Loop collapsing
•  Nested parallelism
•  Tasks

OMP_STACKSIZE

•  omp_stacksize size!
•  New environment variable that controls the stack size for

threads.
–  Valid sizes are size, sizeB, sizeK, sizeM, sizeG bytes.
–  If B, K, M, G not specified, size is in kilobytes(K).

Collapse(n)

•  New clause for do/for constructs
•  Specifies how many loops in a nested loop should be

collapsed into one large iteration space.

!$omp parallel do collapse(2)!
DO J = 1, M!
DO I = 1, N!

!a(i,j) = b(i,j) + c(i,j)!
END DO!
END DO!
!$omp end parallel do!

Nested Parallelism

•  It is possible to nest parallel sections within other parallel
sections

!$omp parallel!
 print *, ‘hello’!
!$omp parallel!

!print *, ‘hi’!
!$omp end parallel!
!$omp end parallel !

•  Can	
 be	
 useful,	
 say,	
 if	
 individual	
 loops	
 have	
 small	
 counts	

which	
 would	
 make	
 them	
 inefficient	
 to	
 process	
 in	

parallel.	

Nested parallelism

•  Nested parallelism needs to be enabled by either
–  Setting an environment variable

•  setenv OMP_NESTED TRUE!
•  export OMP_NESTED=TRU!

–  Using the OpenMP run-time library function
•  call omp_set_nested(.true.)!

•  Can query to see if nesting is enabled
–  omp_get_nested()!

Nested parallelism

•  Unfortunately, nested parallelism is not currently
implemented by all vendors.
–  Fortran

•  PGI NO
•  Cray YES, need to set omp_set_max_active_levels()
•  Intel YES

–  The situation should be true for their C/C++ products.

Tasks

•  Why task parallelism? Gives us an elegant way of
dealing with
–  Unbounded loops
–  Recursive algorithms
–  Producer/consumer algorithms
–  etc

Example: list traversal

•  Awkward
•  Poor performance (note single directive)

Void traverseList(List list)!
{!

!ListElement elem;!
#pragma omp parallel private(elem)!

!for(elem=list->first; elem; elem=elem->next)!
! !#pragma omp single nowait!
! ! !foo(elem);!

}!

Example: tree traversal

•  Too many parallel sections and synchronizations.

Void traverseTree(Tree *tree)!
{!
#pragma omp parallel sections!
{!
#pragma omp section!

!if(tree->right)!
! !traverseTree(tree->left);!

#pragma omp section!
!if(tree->left)!
! !traverseTree(tree->right);!

}!
!
foo(tree);!
}!

Tasks

•  Tasks are work units which may execute immediately or
be deferred.

•  Tasks are composed of
–  Code blocks to execute
–  A data environment

•  Initialized when the work unit is created
–  Internal control variables

Task directive

•  !$omp task / !$omp end task!
•  #pragma omp task!
•  Can be nested inside

–  Parallel regions
–  Other tasks
–  Inside worksharing constructs

Example with tasks

•  What is the scope of elem?

void traverseList(List list)!
{!

!ListElement elem;!
!for(elem=list->first; elem; elem=elem->next)!
! !#pragma omp task!
! ! !foo(elem);!

}!

Scoping for tasks

•  shared(list)!
•  private(list)!
•  firstprivate(list)!

–  Data is copied at creation

•  default(shared|none)!
•  Global variables are shared
•  Otherwise

–  firstprivate!
–  shared if specified

Example with tasks

•  Elem is firstprivate!
•  How can you guarantee that traversal is finished?

void traverseList(List list)!
{!

!ListElement elem;!
!for(elem=list->first; elem; elem=elem->next)!
! !#pragma omp task!
! ! !foo(elem);!

}!

Synchronizing tasks

•  Barriers (explicit or implicit)
–  All tasks created by any thread of the current team are

guaranteed to be completed at barrier exit.
–  Taskwait

•  !$omp taskwait
–  Encountering task waits until child (only direct children!) tasks

complete.

Example

void traverseList(List list)!
{!

!ListElement elem;!
!for(elem=list->first; elem; elem=elem->next)!
! !#pragma omp task!
! ! !foo(elem);!

#pragma omp taskwait!
}!

LAB 2

63

