ETH CSCS “0
Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich Swiss National Supercomputlng Centre

DAY 2: Historical Prospective on MPI and
OpenMP Programming

Multi-threaded Programming, Tuning and Optimization on Multi-core
MPP Platforms

15-17 February 2011
CSCS, Manno

Multi-threading Feb 2011

ETH ._. CSCS 3%

Swiss National Supercomputing Centre \‘

MPI/OpenMP Hybrid Parallelism
for Multi-core Processors

Multi-threading Feb 2011

Purpose of this course

« This course concentrates on multi-threaded programming on Cray XE6 systems

 The purpose is to give an overview of multi-threaded programming for people
who are familiar with MPI| programming and are thinking of producing MPI/
OpenMP hybrid code
« ... to think about why you might want to take this approach
— Are you likely to gain anything by taking this approach ?
— Is it likely to be portable and future-proof

« ... to get you to think about your application before doing any coding

« ... togive you a brief understanding of multi-socket multi-core node architectures

« ... to give you some basic information about the operating system (CNL, a
flavour of Linux)

« ... 1o point out some potential problems that you might encounter

« ... to describe the performance issues that you need to be aware of

« ... to show you that there are tools available to help you in your task

« ... to describe the threaded libraries provided on Cray XE6 machines

m Multi-threading Feb 2011 o oo g 3

Historical Overview

ETH
Eidgendssische Technische Hochschule Ziirich Multi-th reading Feb 2011 CSCS \“‘0 4

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre -

... The First Digital Computers ...

ENIAC (USA) CSIRAC (Australia)

ETH : : CSCS &
Eidgendssische Technische Hochschule Ziirich M u|t|—th read|ng Feb 201 1 AN ’ 5
Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre -

... 9o0me Programming Languages ...

« Fortran was the first high-level programming language
— ... and it still appears to be the most common in HPC

» The first Fortran compiler was created in 1957
* ... aset of other programming languages which are still in use such as Lisp ...

« Then followed a number of other programming languages such as Algol, Pascal
and a language called BCPL which gave rise to ...

« ... C which was created in 1973 in Bell labs, and which in turn led to ...
o ... C++ which was created as “C with classes” in 1980

« We are using programming languages that have been in use for 30, 40 or even
50 years

» Are our parallel programming models likely to be as robust ?

ETH
Eidgendssische Techn ische Hochschule Ziirich Multi-threading Feb 2011 CSCS

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre

<@, .
e

... Parallelism Enters the Game ...

« People were thinking about parallelism in the 1960s

— Amdahl’s law was stated in 1967

o If Pis the part of a program that can be parallelised, and this part can be sped up N times,
then the overall speedup of the code is given by

1
(1-P)+y

Speedup =

« The programming language Algol-68 was designed with a number of constructs
to help in concurrent programming and parallelism

* The supercomputer world began to use vector computers which were helped by
the use of vectorising compilers

« Parallelism appeared in languages such as ILTRAN, Tranquil and Algol-68
« OCCAM was devised for parallel transputers

ETH &
Eidgendssische Technische Hochschule Ziirich I\/Iulti-threading Feb 2011 CSCS \“‘ 7

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

... Parallel Supercomputers Arrived ...

Supercomputers

— CDC-6600 is often credited as being the first supercomputer in 1964

o It could operate at over 10 Mflop/s
¢ That's similar power to an iPhone

The next generation were Parallel Vector Computers

— ILLIAC IV, Cray-1
By the 1990s we were moving towards the era of Massively Parallel Processing
machines

— Intel Paragon, Cray T3D/T3E

The MPPs were complemented by large shared memory machines such as the
SGI Origin series

ETH &
idgendssische Technische Hochschule Ziirich Multi-th reading Feb 2011 CSCS \“‘ 8

B
Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

... Programming Models Evolve for Parallelism ...

« PVM (parallel virtual machine) was developed as the first widely-used message
passing model and library

« Compiler directives had been in use to help vectorisation and now spread ...
» ... compiler directives were used for shared memory parallelism on a variety of
machines

« Compiler directives also made their way in to distributed memory programming
with High Performance Fortran (mid 1990s)
— Poor initial performance led most people to abandon HPF as soon as it was created

— Experience on Earth Simulator showed that it could be a successful programming
paradigm

ETH &
Eidgendssische Technische Hochschule Ziirich I\/Iulti-threading Feb 2011 CSCS \“‘ 9

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \'

... Distributed Memory and Shared Memory ...

« Ultimately, distributed memory programming was too complex for a compiler to
convert a standard sequential source code into a distributed memory version

— Although HPF tried to do this with directives
o XcalableMP is a similar modern attempt to produce a HPF-like set of directives

* Programming a distributed memory computer was therefore to be achieved
through message passing
— Explicit messages introduced by the code developer, not by a compiler
« With the right kind of architecture it was possible to convert a sequential code
into a parallel code that could be run on a shared memory machine
— Although for performance you should “think parallel” when designing your application
* Programming for shared memory machines developed to use compiler directives
* For shared memory programming, each vendor produced their own set of
directives
— Not portable

— Similar to the multitude of compiler directives in existence today for specific compiler
optimisations (IVDEP etc.)

ETH &
Eidgendssische Technische Hochschule Ziirich Multi-threading Feb 2011 CSCS \“‘ 10

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \'

... Otandardisation of Programming Models ...

« Finally ... the distributed memory message passing model settled on MPI as the
de facto standard

« Shared memory programming centred around a standard developed by the
OpenMP forum

 Both have now been around for about 15 years

« These have been the dominant models for over 10 years

« Other programming languages and programming models may take over in due
time, but MP1 and OpenMP will be around for a while yet ...

ETH >
= CSCS 5%

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

Why MPI/OpenMP ?

ETH
Eidgendssische Technische Hochschule Ziirich Multi-th reading Feb 2011 CSCS \“" 12

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre -«

The Need for MPI on Distributed Memory Clusters

« Large problems need lots of memory and processing power which is only
available on distributed memory machines

* In order to combine this memory and processing power to be used by a single
tightly-coupled application we need to have a programming model which can
unify these separate processing elements

— This was the reason that message passing models with libraries such as PVM evolved

« Currently the most ubiquitous programming model is message passing, and the
most widely used method of carrying this out is using MPI

 MPI can be used for most of the explicit parallelism on modern HPC systems

« But what about the programming model within an individual node of a distributed
memory machine ...

ETH
Eidgendssische Techn ische Hochschule Ziirich Multi-threading Feb 2011 CSCS

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre

2 3
\\0‘0

Historical usage of MPI/OpenMP

MPI-OpenMP hybrid programming is not new
It was used to parallelise some codes on the early IBM pseries p690 systems

— These machines were shipped with a quite weak “colony” interconnect
— CSCS had a 256 processor IBM p690 system between 2002 and 2007

There are a number of codes are in use today that benefitted from this work
— The most prominent example is CPMD

Several publications were made
— E.g. Mixed-mode parallelization (OpenMP-MPI) of the gyrokinetic toroidal code GTC to
study microturbulence in fusion plasmas
o Ethier, Stephane; Lin, Zhihong
— Recently the GTC developers have revisited MPI/OpenMP hybrid programming
making use of the new TASK model

ETH N2
Eidgendssische Technische Hochschule Ziirich Multi-th I"eading Feb 2011 CSCS \“‘ 14

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

Simple cases where MPI/OpenMP might help

If you have only partially parallelised your algorithm using MPI
— E.g. 3D Grid-based problem using domain decomposition only in 2D
o For strong scaling this leads to long thin domains for each MPI process
o The same number of nodes using MP1/OpenMP hybrid might scale better
— If there are a hierarchy of elements in your problem and you have only parallelised
over the outer ones
 Where your problem size is limited by memory per process on a node
— For example you might currently have to leave some cores idle on a node in order to
increase the memory available per process

 Where compute time is dominated by halo exchanges or similar communication
mechanism

* When your limiting factor is scalability and you wish to reduce your time to
solution by running on more processors

— In many cases you won’t be faster than an MPI application whilst it is still in its scaling
range

— You might be able to scale more than with the MPI application though ...

... in these cases and more, we can take advantage of the changes in architecture
of the nodes that make up our modern HPC clusters ...

ETH &
Eidgendssische Technische Hochschule Ziirich Multi-th I’eading Feb 2011 CSCS \“‘ 15

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

Alternatives to MPI that you might wish to consider

 PGAS - partitioned global address space languages

— These languages attempt to unify two concepts

o the simplicity of allowing data to be globally visible from any processor
% Ease of use and productivity enhancement

o explicitly showing in the code where data is on a remote processor
% Making it clear to the programmer where expensive “communication” operations take place

— UPC [Unified Parallel C] provides a global view of some C data structures
— Co-array Fortran
o This has now been voted into the official Fortran standard
* Global Arrays toolkit
— This is a popular APl and library for taking a global view of some data structures

— Itis particularly popular in the computational chemistry community
o NWChem is written on top of the GA toolkit

ETH
Eidgendssische Technische Hochschule Ziirich Multi-th reading Feb 2011 CSCS \"‘ 16

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

So why are we talking here about MPI 7?

MPI is ubiquitous

— Available on clusters everywhere
o Version provided with Linux
o Vendor tuned libraries provided for high-end systems
o Open-source libraries available (OpenMP, MPICH)

 Most codes are already written using MPI

— Familiar interface for most people involved in computational science
« Has allowed scalability up to hundreds of thousands of cores
« Is still the de facto standard distributed programming model

* |Is where most of the effort into improving distributed memory parallel
programming models/interfaces is going

ETH N2
Eidgendssische Technische Hochschule Ziirich Multi-th I"eading Feb 2011 CSCS \“‘ 17

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

What MPI Provides

« The MPI standard defines an Application Programmer Interface to a set of library
functions for message passing communication

 From MPI-2 a job launch mechanism mpiexec is described, but this is a
suggestion and is not normally used

— Most implementations use mpirun or some specialised job launcher
o E.g. srun for the Slurm batch system, aprun for Cray, poe for IBM

... but the MPI standard does not specify ...

« The method of compiling and linking an MPI application

— Typically this might be mpicc, mpif90, mpiccC etc. for MPICH and OpenMPI
implementations, but this is not portable
o E.g.cc/ftn for Cray, mpxlc/mpx1£90 for IBM

* The environment variables to control runtime execution

» Details of the implementation
— It does provide advice to implementors and users

It is only the API that provides portability.

ETH N4
Eidgendssische Technische Hochschule Ziirich Multi-threading Feb 2011 CSCS \“‘ 18

Swiss Federal Institute o f Technology Zurich Swiss National Supercomputing Centre \‘

Alternatives to OpenMP that you might consider ...

« Combining your MPI with Pthreads or other threading models
« Using Intel Thread Building Blocks on a node
— C++only
« Using a low level model for kernels such as OpenCL
— OpenCL can target standard CPUs as well as GPUs and other accelerators
* Using Intel Array Building Blocks
— Current version 1.0Beta3
— Grew out of a combination of earlier products/efforts

o Intel Ct
o Rapidmind
o Cilk
— C++only
ETH
Eidgendssische Technische Hochschule Ziirich Multi-threading Feb 2011 CSCS \““ 19

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

PThreads

« An alternative model for combining threads with message passing is to use the
POSIX Threads interface and library Pthreads

* Most OpenMP implementations are built on top of Pthreads !!

« Pthreads provides the ability to dynamically create threads which are launched
to run a specific task

« Pthreads provides finer grained control than OpenMP

* The disadvantages of Pthreads compared to OpenMP are
— There is no Fortran interface in the standard
o Although IBM did produce a Fortran interface for their XLF compiler
— You have to manage (re-create) any worksharing yourself
— ltis a low level interface
o As MPI is often referred to as a low level interface this might not be a problem

— You will typically take many more lines of coding using Pthreads than OpenMP
o OpenMP is normally a more productive way of coding for numerical codes

ETH
Eidgendssische Technische Hochschule Ziirich Multi-th I"eading Feb 2011 CSCS \“‘ 20

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

Intel Thread Building Blocks

Intel Thread Building Blocks (TBB) is a C++ template library that adds parallel
programming for C++ programmers.

— Not applicable to Fortran or C codes
« “Extends” C++ by adding a set of parallel keywords

— These “extensions” are not actually real changes to the languages

— As a template library, any standard-conforming C++ compiler can use TBB
« Algorithms can be parallelised in a number of ways

— parallel for, parallel reduce, parallel while efc.
« TBB adds containers, locks, a task scheduler etc.

« TBB was built out of positive user experiences from OpenMP, and the desire to
provide an object-oriented, template based approach to parallelism in C++

ETH &
Eidgendssische Technische Hochschule Ziirich Multi-thl’eading Feb 2011 CSCS \“‘ 21

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

So why are we talking here about OpenMP ?

OpenMP is ubiquitous

— Available with almost all compilers
o gcc provides OpenMP support
o Vendor tuned implementations available

« Easy interface available for incremental parallelism
» |s the best fit for data-parallel codes
* Is being updated to incorporate methods for modern programming methods and
technologies
— Task parallel features were added in OpenMP 3.0
— Current roadmap suggests that accelerator directives will be added in OpenMP 4.0

ETH
Eidgendssische Technische Hochschule Ziirich Multi-th I"eading Feb 2011 CSCS \““ 22

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre \‘

Quotes from TBB website FAQ

* Note — Intel not only provides TBB but it also has many members, directors and
officers of the OpenMP forum

« Here are some suggestions or tips provided on the TBB website

— “Everyone should use OpenMP as much as they can. It is easy to use, it is standard, it
is supported by all major compilers, and it exploits parallelism well.”

— “OpenMP [is] the standard way to do parallelism in C and Fortran.”

— “Use OpenMP if the parallelism is primarily for bounded loops over built-in types, or if
it is flat do-loop centric parallelism. ... It can be very challenging to match OpenMP
performance with TBB for such problems. It is seldom worth the effort to bother — just
use OpenMP.”

— “Should | expect TBB to outperform OpenMP and MPI?
No, TBB may offer a competitive alternative but in general TBB exists to help where
OpenMP cannot, and to be far easier to program than MPI.”

— "OpenMP and MPI continue to be good choices in High Performance Computing
applications; TBB has been designed to be more conducive to application
parallelization on client platforms such as laptops and desktops, going beyond data
parallelism ...”

« TBB might be a good choice for C++ programmers if their code does not fit the
standard data-parallel model

* Note also that TBB and OpenMP can coexist

ETH N4
Eidgendssische Technische Hochschule Ziirich Multi-threading Feb 2011 CSCS \“‘ 23

Swiss Federal Institute of Technology Zurich Swiss National Supercomputing Centre < @

The Components of OpenMP

 The OpenMP standard defines

— Compiler directives for describing how to parallelise code
o This is what people normally think about when referring to OpenMP

— An API of runtime library routines to incorporate into your Fortran or C/C++ code for

more fine grained control

o An OpenMP enabled code might not need to use any of these

— A set of environment variables to determine the runtime behaviour of your application
o Most people will at least use the environment variable OMP_NUM_THREADS

* An effective OpenMP implementation requires
— A compiler that can understand the directives and generate a thread-enabled program
o Most Fortran and C/C++ compilers can understand OpenMP (but check which version of
OpenMP they support)
— An OpenMP runtime library
— System software that can launch a multi-threaded application on a multi-core system

o In particular a threaded operating system and tools for mapping processes and threads to
multi-core machines

ETH y
CSCS 35 2

Eidgendssische Technische Hochschule Ziirich i- i
s Federsd Institite of eck nolosy Zafich Multi threadmg Feb 2011 Swiss National Supercomputing Centre \‘

Swiss Federal Institute of Technology Zurich

Quick note on GPU accelerator programming

* Coding in OpenMP in order to exploit parallelism on standard multi-core CPUs
can deliver advantages — it is worthwhile doing for this reason alone

« OpenMP can also begin a natural progression towards directive-based
accelerator programming on GPUs

« There are currently directive-based approaches to GPU accelerator
programming from PGl and CAPS/HMPP

« A set of directives for accelerator programming are scheduled to be included in
the OpenMP 4.0 standard
— Current plan (as of June 2010) is that a draft standard be available by SC11
(November 2011)

— Main authors of proposal include PGl and Cray

ETH cscs s

Eidgendssische Technische Hochschule Ziirich MUlti-threading Feb 201 1 X . . \“ 25
Swiss Federal Insti itute of Tec hnology Zurich Swiss National Supercomputing Centre \‘

