
DAY 2: Historical Prospective on MPI and 
OpenMP Programming 

Multi-threaded Programming, Tuning and Optimization on Multi-core 
MPP Platforms 
15-17 February 2011 
CSCS, Manno 
 

Multi-threading Feb 2011 



MPI/OpenMP Hybrid Parallelism 
for Multi-core Processors 

Multi-threading Feb 2011 



Purpose of this course 

•  This course concentrates on multi-threaded programming on Cray XE6 systems 
•  The purpose is to give an overview of multi-threaded programming for people 

who are familiar with MPI programming and are thinking of producing MPI/
OpenMP hybrid code 

•  … to think about why you might want to take this approach 
–  Are you likely to gain anything by taking this approach ? 
–  Is it likely to be portable and future-proof 

•  … to get you to think about your application before doing any coding 
•  … to give you a brief understanding of multi-socket multi-core node architectures 
•  … to give you some basic information about the operating system (CNL, a 

flavour of Linux) 
•  … to point out some potential problems that you might encounter 
•  … to describe the performance issues that you need to be aware of 
•  … to show you that there are tools available to help you in your task 
•  … to describe the threaded libraries provided on Cray XE6 machines 

Multi-threading Feb 2011 3 



Multi-threading Feb 2011 4 

Historical Overview 



… The First Digital Computers … 

Multi-threading Feb 2011 5 

Zuse	  Z3	  (Germany)	  
Colossus	  (UK)	  

ENIAC	  (USA)	   CSIRAC	  (Australia)	  



… Some Programming Languages … 

•  Fortran was the first high-level programming language 
–  … and it still appears to be the most common in HPC 

•  The first Fortran compiler was created in 1957 
•  … a set of other programming languages which are still in use such as Lisp … 
•  Then followed a number of other programming languages such as Algol, Pascal 

and a language called BCPL which gave rise to … 
•  … C which was created in 1973 in Bell labs, and which in turn led to … 
•  … C++ which was created as “C with classes” in 1980 

•  We are using programming languages that have been in use for 30, 40 or even 
50 years 

•  Are our parallel programming models likely to be as robust ? 

Multi-threading Feb 2011 6 



… Parallelism Enters the Game … 

•  People were thinking about parallelism in the 1960s 
–  Amdahl’s law was stated in 1967 

o  If P is the part of a program that can be parallelised, and this part can be sped up N times, 
then the overall speedup of the code is given by 

•  The programming language Algol-68 was designed with a number of constructs 
to help in concurrent programming and parallelism 

•  The supercomputer world began to use vector computers which were helped by 
the use of vectorising compilers 

•  Parallelism appeared in languages such as ILTRAN, Tranquil and Algol-68 
•  OCCAM was devised for parallel transputers 

Multi-threading Feb 2011 7 

! 

Speedup =
1

(1" P) + P
N



… Parallel Supercomputers Arrived … 

•  Supercomputers 
–  CDC-6600 is often credited as being the first supercomputer in 1964 

o  It could operate at over 10 Mflop/s 
v  That’s similar power to an iPhone 

•  The next generation were Parallel Vector Computers 
–  ILLIAC IV, Cray-1 

•  By the 1990s we were moving towards the era of Massively Parallel Processing 
machines 

–  Intel Paragon, Cray T3D/T3E 
•  The MPPs were complemented by large shared memory machines such as the 

SGI Origin series 

Multi-threading Feb 2011 8 



… Programming Models Evolve for Parallelism … 

•  PVM (parallel virtual machine) was developed as the first widely-used message 
passing model and library 

•  Compiler directives had been in use to help vectorisation and now spread … 
•  … compiler directives were used for shared memory parallelism on a variety of 

machines 
•  Compiler directives also made their way in to distributed memory programming 

with High Performance Fortran (mid 1990s) 
–  Poor initial performance led most people to abandon HPF as soon as it was created 
–  Experience on Earth Simulator showed that it could be a successful programming 

paradigm 

Multi-threading Feb 2011 9 



… Distributed Memory and Shared Memory … 

•  Ultimately, distributed memory programming was too complex for a compiler to 
convert a standard sequential source code into a distributed memory version 

–  Although HPF tried to do this with directives 
o  XcalableMP is a similar modern attempt to produce a HPF-like set of directives 

•  Programming a distributed memory computer was therefore to be achieved 
through message passing 

–  Explicit messages introduced by the code developer, not by a compiler 
•  With the right kind of architecture it was possible to convert a sequential code 

into a parallel code that could be run on a shared memory machine 
–  Although for performance you should “think parallel” when designing your application 

•  Programming for shared memory machines developed to use compiler directives 
•  For shared memory programming, each vendor produced their own set of 

directives 
–  Not portable 
–  Similar to the multitude of compiler directives in existence today for specific compiler 

optimisations (IVDEP etc.) 

Multi-threading Feb 2011 10 



… Standardisation of Programming Models … 

•  Finally … the distributed memory message passing model settled on MPI as the 
de facto standard 

•  Shared memory programming centred around a standard developed by the 
OpenMP forum 

•  Both have now been around for about 15 years 
•  These have been the dominant models for over 10 years 
•  Other programming languages and programming models may take over in due 

time, but MPI and OpenMP will be around for a while yet … 

Multi-threading Feb 2011 11 



Multi-threading Feb 2011 12 

Why MPI/OpenMP ? 



The Need for MPI on Distributed Memory Clusters 

•  Large problems need lots of memory and processing power which is only 
available on distributed memory machines 

•  In order to combine this memory and processing power to be used by a single 
tightly-coupled application we need to have a programming model which can 
unify these separate processing elements 

–  This was the reason that message passing models with libraries such as PVM evolved 
•  Currently the most ubiquitous programming model is message passing, and the 

most widely used method of carrying this out is using MPI 
•  MPI can be used for most of the explicit parallelism on modern HPC systems 

Multi-threading Feb 2011 13 

•  But what about the programming model within an individual node of a distributed 
memory machine … 



Historical usage of MPI/OpenMP 

•  MPI-OpenMP hybrid programming is not new 
•  It was used to parallelise some codes on the early IBM pseries p690 systems 

–  These machines were shipped with a quite weak “colony” interconnect 
–  CSCS had a 256 processor IBM p690 system between 2002 and 2007 

•  There are a number of codes are in use today that benefitted from this work 
–  The most prominent example is CPMD 

•  Several publications were made 
–  E.g. Mixed-mode parallelization (OpenMP-MPI) of the gyrokinetic toroidal code GTC to 

study microturbulence in fusion plasmas 
o  Ethier, Stephane; Lin, Zhihong 

–  Recently the GTC developers have revisited MPI/OpenMP hybrid programming 
making use of the new TASK model 

Multi-threading Feb 2011 14 



Simple cases where MPI/OpenMP might help 

•  If you have only partially parallelised your algorithm using MPI 
–  E.g. 3D Grid-based problem using domain decomposition only in 2D 

o  For strong scaling this leads to long thin domains for each MPI process 
o  The same number of nodes using MPI/OpenMP hybrid might scale better 

–  If there are a hierarchy of elements in your problem and you have only parallelised 
over the outer ones 

•  Where your problem size is limited by memory per process on a node 
–  For example you might currently have to leave some cores idle on a node in order to 

increase the memory available per process 
•  Where compute time is dominated by halo exchanges or similar communication 

mechanism 
•  When your limiting factor is scalability and you wish to reduce your time to 

solution by running on more processors 
–  In many cases you won’t be faster than an MPI application whilst it is still in its scaling 

range 
–  You might be able to scale more than with the MPI application though … 

… in these cases and more, we can take advantage of the changes in architecture 
of the nodes that make up our modern HPC clusters … 

Multi-threading Feb 2011 15 



Alternatives to MPI that you might wish to consider 

•  PGAS – partitioned global address space languages 
–  These languages attempt to unify two concepts 

o  the simplicity of allowing data to be globally visible from any processor 
v  Ease of use and productivity enhancement 

o  explicitly showing in the code where data is on a remote processor 
v  Making it clear to the programmer where expensive “communication” operations take place 

–  UPC [Unified Parallel C] provides a global view of some C data structures 
–  Co-array Fortran 

o  This has now been voted into the official Fortran standard 

•  Global Arrays toolkit 
–  This is a popular API and library for taking a global view of some data structures 
–  It is particularly popular in the computational chemistry community 

o  NWChem is written on top of the GA toolkit 

Multi-threading Feb 2011 16 



So why are we talking here about MPI ? 

•  MPI is ubiquitous 
–  Available on clusters everywhere 

o  Version provided with Linux 
o  Vendor tuned libraries provided for high-end systems 
o  Open-source libraries available (OpenMP, MPICH) 

•  Most codes are already written using MPI 
–  Familiar interface for most people involved in computational science 

•  Has allowed scalability up to hundreds of thousands of cores 
•  Is still the de facto standard distributed programming model 
•  Is where most of the effort into improving distributed memory parallel 

programming models/interfaces is going 

Multi-threading Feb 2011 17 



What MPI Provides 

•  The MPI standard defines an Application Programmer Interface to a set of library 
functions for message passing communication 

•  From MPI-2 a job launch mechanism mpiexec is described, but this is a 
suggestion and is not normally used 

–  Most implementations use mpirun or some specialised job launcher 
o  E.g. srun for the Slurm batch system, aprun for Cray, poe for IBM 

Multi-threading Feb 2011 18 

•  The method of compiling and linking an MPI application 
–  Typically this might be mpicc, mpif90, mpiCC etc. for MPICH and OpenMPI 

implementations, but this is not portable 
o  E.g. cc/ftn for Cray, mpxlc/mpxlf90 for IBM 

•  The environment variables to control runtime execution 
•  Details of the implementation 

–  It does provide advice to implementors and users 

… but the MPI standard does not specify … 

It is only the API that provides portability. 



Alternatives to OpenMP that you might consider … 

•  Combining your MPI with Pthreads or other threading models 
•  Using Intel Thread Building Blocks on a node 

–  C++ only 
•  Using a low level model for kernels such as OpenCL 

–  OpenCL can target standard CPUs as well as GPUs and other accelerators 
•  Using Intel Array Building Blocks 

–  Current version 1.0Beta3 
–  Grew out of a combination of earlier products/efforts 

o  Intel Ct 
o  Rapidmind 
o  Cilk 

–  C++ only 

Multi-threading Feb 2011 19 



PThreads 

•  An alternative model for combining threads with message passing is to use the 
POSIX Threads interface and library Pthreads 

•  Most OpenMP implementations are built on top of Pthreads !! 
•  Pthreads provides the ability to dynamically create threads which are launched 

to run a specific task 
•  Pthreads provides finer grained control than OpenMP 
•  The disadvantages of Pthreads compared to OpenMP are 

–  There is no Fortran interface in the standard 
o  Although IBM did produce a Fortran interface for their XLF compiler 

–  You have to manage (re-create) any worksharing yourself 
–  It is a low level interface 

o  As MPI is often referred to as a low level interface this might not be a problem 
–  You will typically take many more lines of coding using Pthreads than OpenMP 

o  OpenMP is normally a more productive way of coding for numerical codes 

Multi-threading Feb 2011 20 



Intel Thread Building Blocks 

•  Intel Thread Building Blocks (TBB) is a C++ template library that adds parallel 
programming for C++ programmers. 

–  Not applicable to Fortran or C codes 
•  “Extends” C++ by adding a set of parallel keywords 

–  These “extensions” are not actually real changes to the languages 
–  As a template library, any standard-conforming C++ compiler can use TBB 

•  Algorithms can be parallelised in a number of ways 
–  parallel_for, parallel_reduce, parallel_while etc. 

•  TBB adds containers, locks, a task scheduler etc. 
•  TBB was built out of positive user experiences from OpenMP, and the desire to 

provide an object-oriented, template based approach to parallelism in C++ 

Multi-threading Feb 2011 21 



So why are we talking here about OpenMP ? 

•  OpenMP is ubiquitous 
–  Available with almost all compilers 

o  gcc provides OpenMP support 
o  Vendor tuned implementations available 

•  Easy interface available for incremental parallelism 
•  Is the best fit for data-parallel codes 
•  Is being updated to incorporate methods for modern programming methods and 

technologies 
–  Task parallel features were added in OpenMP 3.0 
–  Current roadmap suggests that accelerator directives will be added in OpenMP 4.0 

Multi-threading Feb 2011 22 



Quotes from TBB website FAQ 

•  Note – Intel not only provides TBB but it also has many members, directors and 
officers of the OpenMP forum 

•  Here are some suggestions or tips provided on the TBB website 
–  “Everyone should use OpenMP as much as they can. It is easy to use, it is standard, it 

is supported by all major compilers, and it exploits parallelism well.” 
–  “OpenMP [is] the standard way to do parallelism in C and Fortran.” 
–  “Use OpenMP if the parallelism is primarily for bounded loops over built-in types, or if 

it is flat do-loop centric parallelism. … It can be very challenging to match OpenMP 
performance with TBB for such problems. It is seldom worth the effort to bother – just 
use OpenMP.” 

–  “Should I expect TBB to outperform OpenMP and MPI? 
No, TBB may offer a competitive alternative but in general TBB exists to help where 
OpenMP cannot, and to be far easier to program than MPI.” 

–  ”OpenMP and MPI continue to be good choices in High Performance Computing 
applications; TBB has been designed to be more conducive to application 
parallelization on client platforms such as laptops and desktops, going beyond data 
parallelism …” 

•  TBB might be a good choice for C++ programmers if their code does not fit the 
standard data-parallel model 

•  Note also that TBB and OpenMP can coexist 

Multi-threading Feb 2011 23 



The Components of OpenMP 

•  The OpenMP standard defines 
–  Compiler directives for describing how to parallelise code 

o  This is what people normally think about when referring to OpenMP 
–  An API of runtime library routines to incorporate into your Fortran or C/C++ code for 

more fine grained control 
o  An OpenMP enabled code might not need to use any of these 

–  A set of environment variables to determine the runtime behaviour of your application 
o  Most people will at least use the environment variable OMP_NUM_THREADS 

•  An effective OpenMP implementation requires 
–  A compiler that can understand the directives and generate a thread-enabled program 

o  Most Fortran and C/C++ compilers can understand OpenMP (but check which version of 
OpenMP they support) 

–  An OpenMP runtime library 
–  System software that can launch a multi-threaded application on a multi-core system 

o  In particular a threaded operating system and tools for mapping processes and threads to 
multi-core machines 

Multi-threading Feb 2011 24 



Quick note on GPU accelerator programming 

•  Coding in OpenMP in order to exploit parallelism on standard multi-core CPUs 
can deliver advantages – it is worthwhile doing for this reason alone 

•  OpenMP can also begin a natural progression towards directive-based 
accelerator programming on GPUs 

•  There are currently directive-based approaches to GPU accelerator 
programming from PGI and CAPS/HMPP 

•  A set of directives for accelerator programming are scheduled to be included in 
the OpenMP 4.0 standard 

–  Current plan (as of June 2010) is that a draft standard be available by SC11 
(November 2011) 

–  Main authors of proposal include PGI and Cray 

Multi-threading Feb 2011 25 


