



# DAY 2: Introduction to Cray MPP Systems with Multi-core Processors

Multi-threaded Programming, Tuning and Optimization on Multi-core MPP Platforms 15-17 February 2011 CSCS, Manno

# The Cray XE6 Architecture



Roberto Ansaloni roberto.ansaloni@cray.com

~course02/slides/day1/XE6Arch.pdf







# Agenda

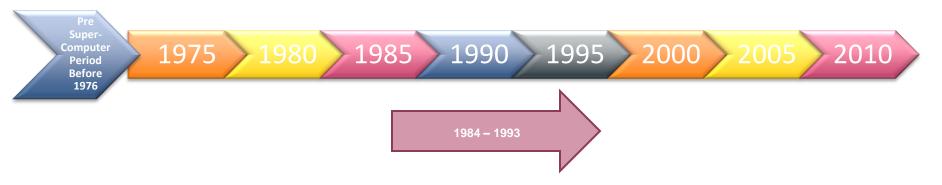
- Cray MPP product line
- Cray XE6 architecture
  - Cray XE6 node
  - Cray XE6 configurations, topology
- Cray XE6 scalable software
  - Service and compute nodes
  - CNL, Lustre, MPI
- Cray XE6 configuration
  - Cray XE6 blades, cages, cabinets
  - CSCS palu configuration
- Application launching process







# The Cray MPP History



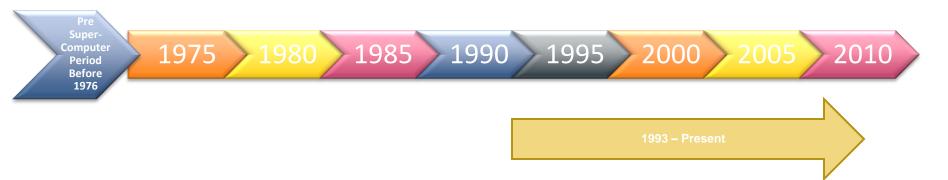







# **Beginning of the MPP**




- Thinking Machines founded in 1984.
  - "The Connection Machine" contained 10,000s of very weak processors.
- Several other companies founded and failed.
- Not clear how to program these machines.
- Intel Paragon (1993)







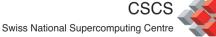
# The Cray MPP product line



- In 1993 Cray launched the Cray MPP product line
  - Powerful processor: DEC Alpha
  - Custom 3D Torus interconnect
  - Microkernel-based compute node OS








# The Early Cray MPP systems



- Cray T3D (1993):
  - DEC Alpha EV4, UNICOS MAX (Mach based)
  - Relying on a Cray Y-MP front-end running UNICOS for all I/O and most system services.
- Cray T3E (1995):
  - DEC Alpha EV5/EV56, UNICOS/mk(Chorus based), self-hosted
  - A 1480-processor T3E-1200 was the first supercomputer to achieve a performance of more than 1 teraflops running a computational science application, in 1998.









- First MPI specification presented at Supercomputing 1994.
- IBM introduces the SP2 in 1995
- Community was really starting to figure out how to program MPPs.
- IBM Blue Gene Delivered ~ 2004.
- First Cray XT3 system delivered in 2004.
  - First Cray XT3 system in Europe delivered to CSCS in 2005.







# The Cray recipe for a good MPP

- 1. Select Best Microprocessor
- 2. Surround it with a balanced or "bandwidth rich" environment
- 3. "Scale" the System
  - Eliminate Operating System Interference (OS Jitter)
  - Design in Reliability and Resiliency
  - Provide Scalable System Management
  - Provide Scalable I/O
  - Provide Scalable Programming and Performance Tools
  - System Service Life (provide an upgrade path)









# The Cray XE6 Node Architecture







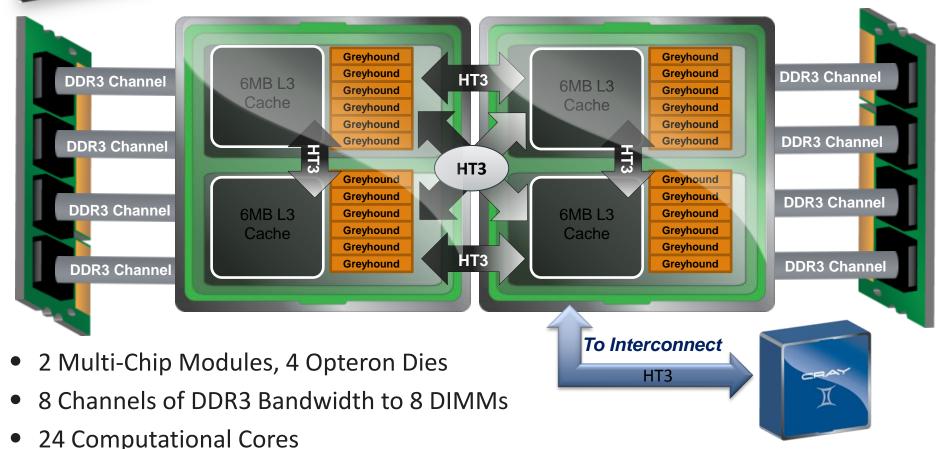


# Cray XE6 Compute Node

- Built around the Gemini Interconnect
- Each Gemini ASIC provides 2 NICs enabling it to connect 2 dual-socket nodes

AMD

| Node Char                       |                                  |     |
|---------------------------------|----------------------------------|-----|
| Number of Cores                 | 24 (Magny Cours)                 | AMD |
| Peak Performance<br>MC-12 (2.2) | 211 Gflops/sec                   |     |
| Memory Size                     | 32 GB per node<br>64 GB per node |     |
| Memory<br>Bandwidth (Peak)      | 83.5 GB/sec                      |     |










### Cray XE6 Node Details: 24-core Magny-Cours



- Dies are fully connected with HT3
- Snoop Filter Feature Allows 4 Die SMP to scale well







# AMD Magny-Cours Data Caches (G34 MCM)

Conway et al. "Cache Hierarchy and Memory Subsystem of the AMD Opteron Processor," IEEE Micro, pp. 16-29, March/April, 2010

- L1 Data Cache
  - 64KB, 64B cacheline, 2-way associative
  - Load-to-use latency: 3 clock cycles
- L2 Cache
  - 512KB, 64B cacheline , 16-way associative
  - Load-to-use latency: 12 clock cycles
  - Victim / Copy-Back from L1
  - Hits are invalidated from L2 and placed into L1
- L3 Cache, shared
  - 6 MB per die, 64B cacheline, 16-way associative
  - Victim / Copy-Back from L2
  - Hits can be removed or stay on L3 if needed by other threads







# The Cray Gemini Interconnect









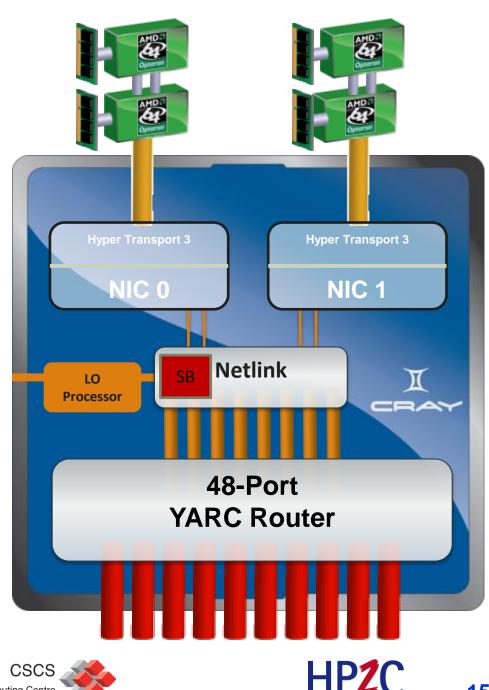
# **Cray Network Evolution**



### SeaStar (Cray XT)

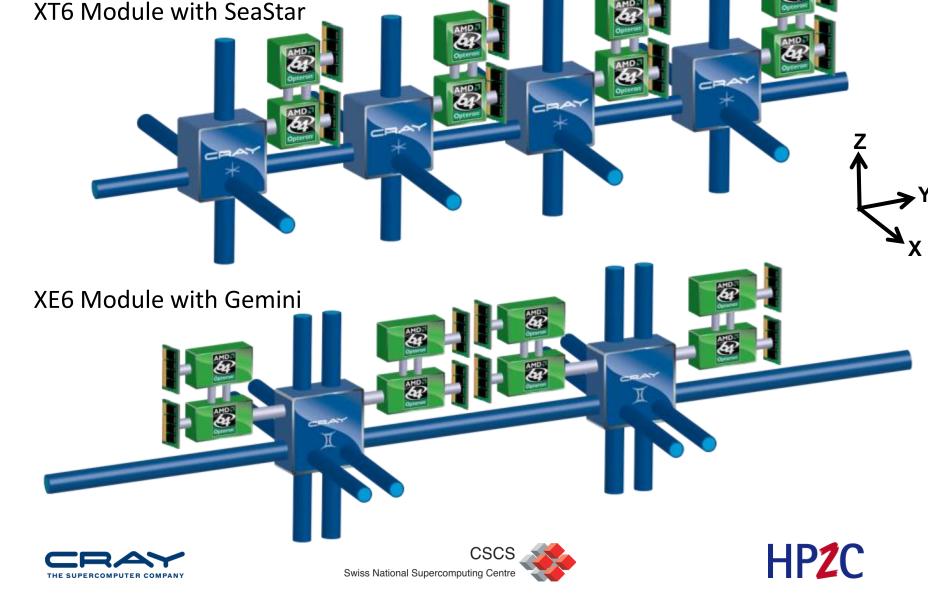
- Built for scalability to 250K+ cores
- Very effective routing and low contention switch




#### Gemini (Cray XE)

- 100x improvement in message throughput
- 3x improvement in latency
- PGAS Support, Global Address Space
  - Scalability to 1M+ cores




# **Cray Gemini**

- 3D Torus network
- Supports 2 Nodes per ASIC
- 168 GB/sec routing capacity
- Scales to over 100,000 network endpoints
  - Link Level Reliability and Adaptive Routing
  - Advanced Resiliency Features
- Provides global address space
- Advanced NIC designed to efficiently support
  - MPI
  - One-sided MPI, SHMEM
  - FORTRAN 2008 with coarrays, UPC
  - Global Atomics





# **Gemini vs SeaStar – Topology**



# **Gemini MPI Features**

- FMA (Fast Memory Access)
  - Mechanism for most MPI transfers
  - Supports tens of millions of MPI requests per second
- BTE (Block Transfer Engine)
  - DMA offload engine , supports asynchronous block transfers between local and remote memory, in either direction
- Gemini provides low-overhead OS-bypass features for short transfers
  - MPI latency around 1.4us in current release
  - NIC provides for many millions of MPI messages per second 20 times better than Seastar
- Much improved injection bandwidth 6 GB/s user data injection with HT3 link







# **Gemini Advanced Features**

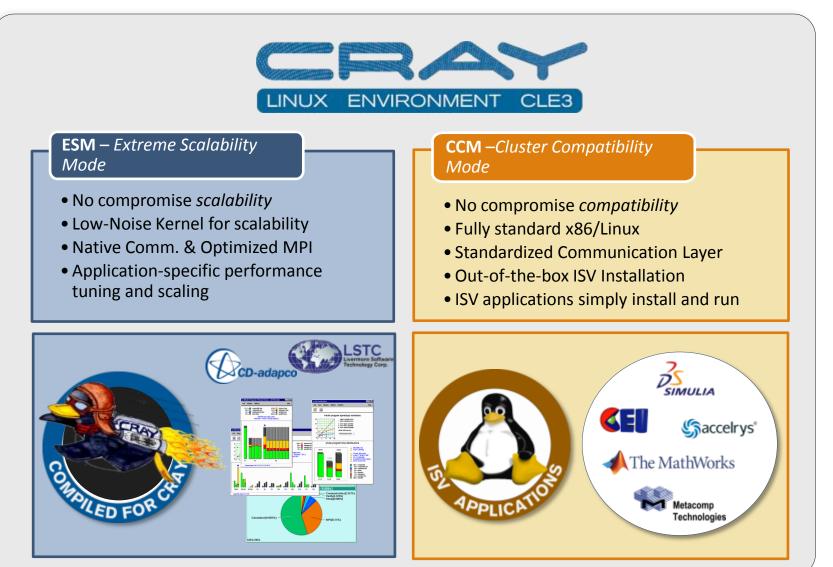
- Globally addressable memory provides efficient support for UPC, FORTRAN 2008 with Coarrays, Shmem and Global Arrays
  - Much improved one-sided communication mechanism with hardware support
  - Cray compiler targets this capability directly
- Pipelined global loads and stores
  - Allows for fast irregular communication patterns
- Atomic memory operations
  - AMOs provide a faster synchronization method for barriers
  - Provides fast synchronization needed for one-sided communication models







# Scalable Software Architecture

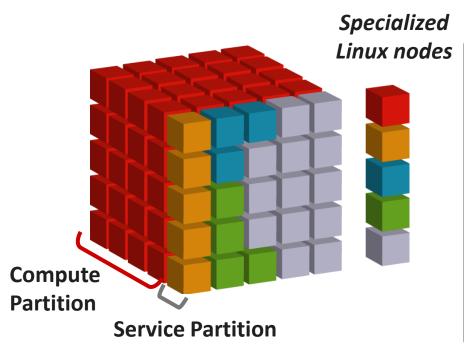









#### CLE3, An Adaptive Linux OS designed specifically for HPC










## Scalable Software Architecture: CLE



Microkernel on Compute nodes, full featured Linux on Service nodes.

Service PEs specialize by function

Software Architecture eliminates OS "Jitter"

Software Architecture enables reproducible run times

run times

Software Architecture enables reproducible

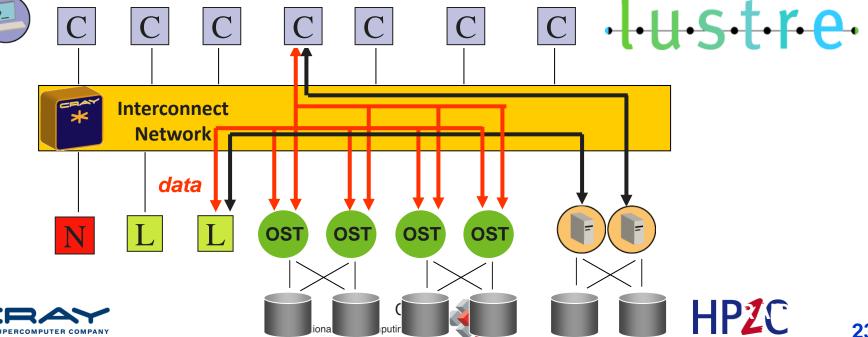




CSCS

# **Service nodes**

- Overview
  - Run full Linux (SuSe SLES), 2 nodes per service blade
- Boot node
  - first XE6 node to be booted: boots all other components
- SDB node
  - hosts MySQL database
  - processors, allocation, accounting, PBS information
- Login nodes
  - User login and code preparation activities: compile, launch
  - Partition allocation: ALPS (Application Level Placement Scheduler)





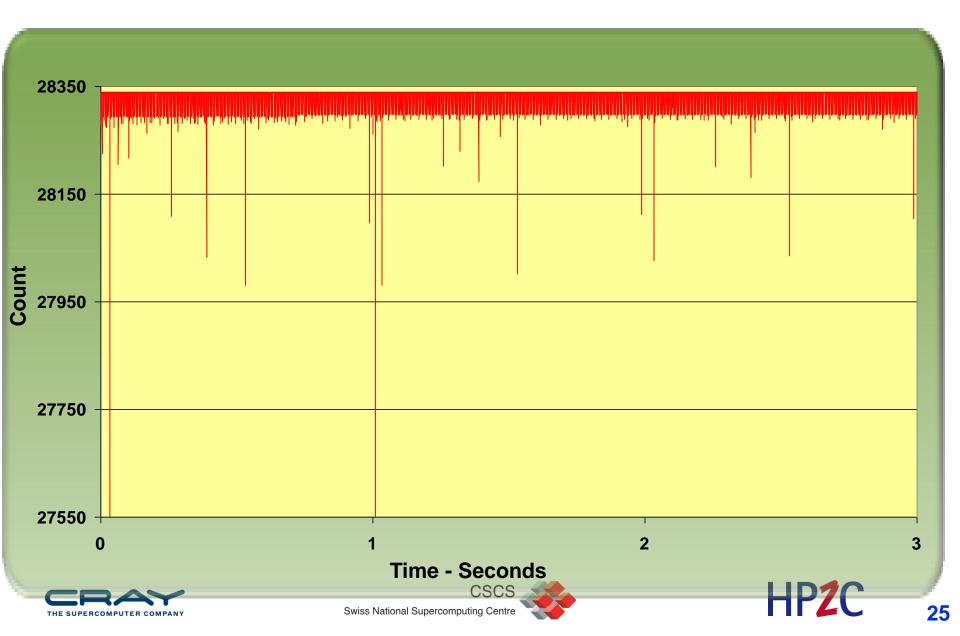



# I/O nodes

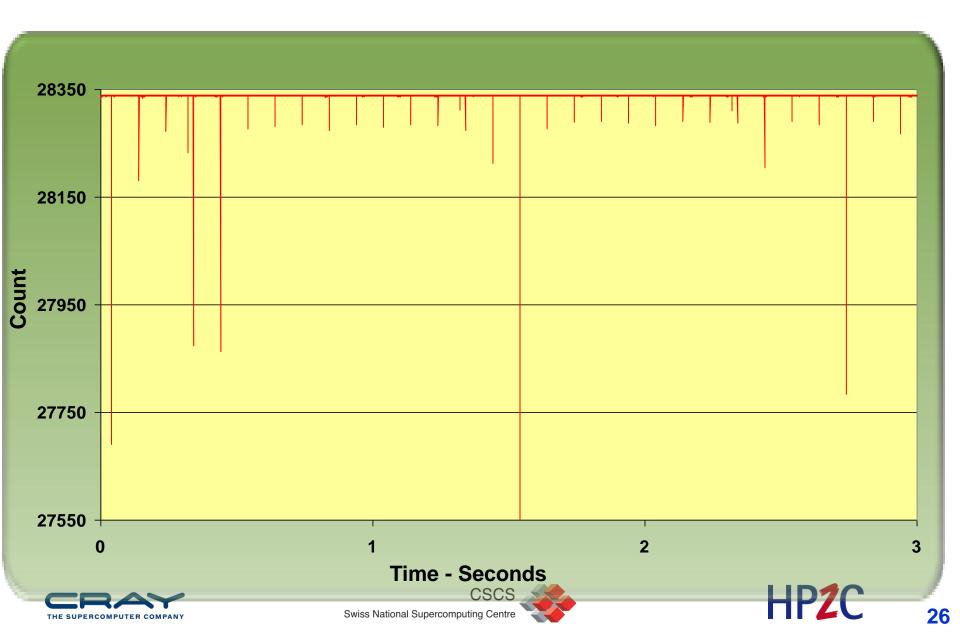
- I/O nodes
  - Run Lustre processes (OST, metadata server)
- Lustre terminology:
  - OST: Object Storage Target, software interface to back-end storage volumes
  - OSS: Object Storage Server, I/O node that host OSTs
  - MDS: Metadata server, handles namespace operations



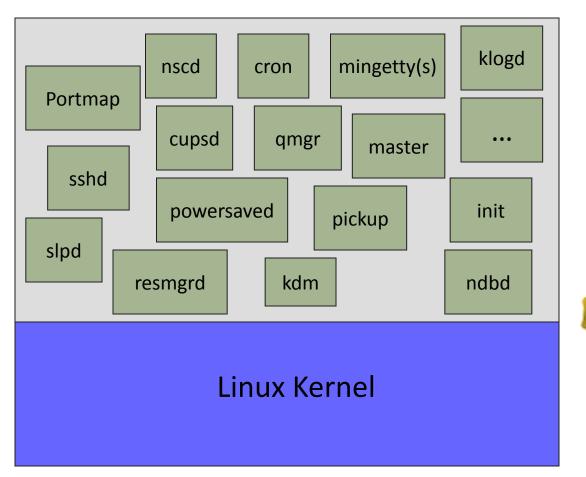
# **Compute nodes**


- Configuration
  - 4 compute nodes per compute blade
  - Each compute node has 2 Opteron sockets
  - Each socket hosts a 12-core Magny-Cours MCM
- Runs Cray Linux Environment (CLE)
  - Linux-based operating system
  - designed to run large, complex applications and scale efficiently to hundreds of thousands of processor cores









### FTQ Plot of Stock SuSE (most daemons removed)

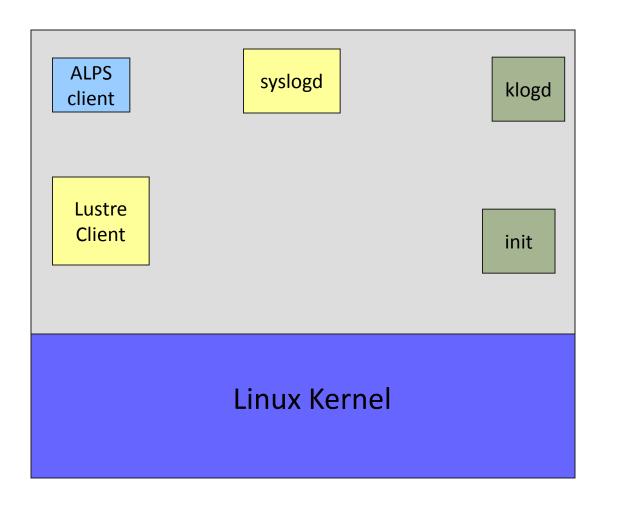


### **FTQ plot of CNL**



# **Trimming OS – Standard Linux Server**












## Linux on a Diet – CNL



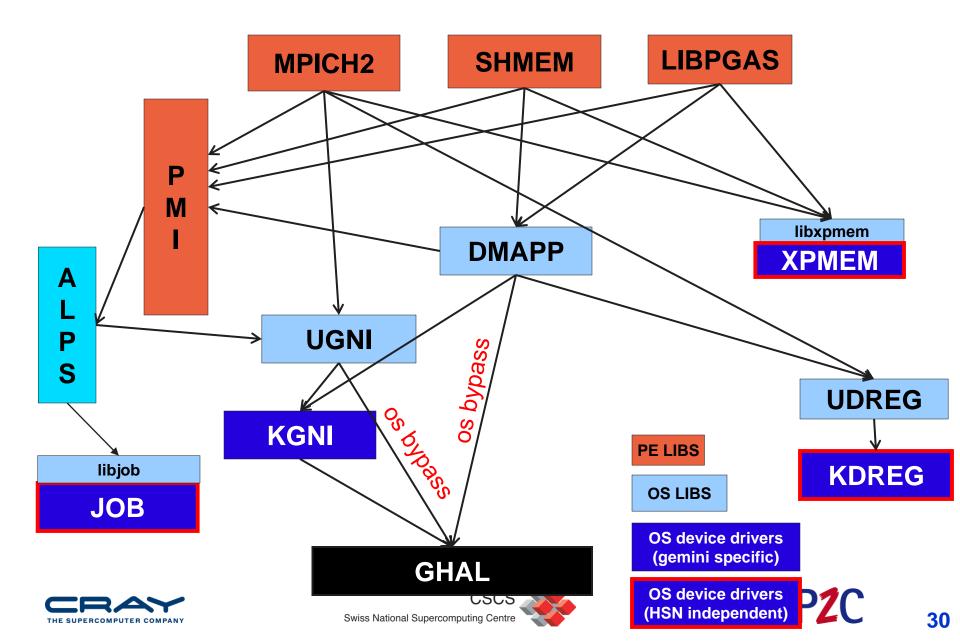








# **Gemini Software**


- Cray MPI uses MPICH2 distribution from Argonne
  - CH3 device Nemesis: multi-method device with a highly optimized shared memory sub-method
- MPI device for Gemini based on
  - User level Gemini Network Interface (uGNI)
  - Distributed Memory Applications (DMAPP) library
- FMA
  - In general used for small transfers
  - FMA transfers are lower latency
- BTE
  - BTE transfers take longer to start but can transfer large amount of data without CPU involvement







### **MPICH2 in Gemini Software Stack**



# **MPICH2 GNI Netmod Message Protocols**

- Eager Protocol
  - For a message that can fit in a GNI SMSG mailbox (E0)
  - For a message that can't fit into a mailbox but is less than MPICH\_GNI\_MAX\_EAGER\_MSG\_SIZE in length (E1)
- Rendezvous protocol (LMT: Large Message Transfer)
  - RDMA Get protocol up to 512 KB size messages by default
  - RDMA Put protocol above 512 KB
- Several MPICH environment variables available
  - Described on mpi man page
  - More on this later...







# **ALPS**

- ALPS (Application Level Placement Scheduler)
  - Handles the execution of applications on compute nodes
  - aprun is ALPS application launcher
  - The algorithm used by ALPS to allocate compute nodes for the applications is configurable at ALPS startup
- Compute Node allocation
  - Nodes are allocated in configurable topology aware sequence, according to 3D torus dimensions
  - Max dimension is the "outer" dimension
  - Smallest dimension will change most quickly
  - On rosa (10x12x16) this means: X first, then Y, then Z







# The Cray XE6 Configuration









# **XE6 configuration details**

- A XE6 cabinet contains 3 cages
- A cage contains 8 blades
- A blade contains
  - 4 dual-processor sockets
  - 1 Gemini interconnects






# **Cray XE6 Compute Blade**

- 8 Magny Cours Sockets
- 96 Compute Cores
- 32 DDR3 Memory DIMMS
- 32 DDR3 Memory channels
- 2 Gemini ASICs
- LO Blade management processor







# **XE6 Topology Tutorial**

#### Class 0 Topology (CSCS palu, XE6m is a bit different)

For a system of up to 3 cabinets, with 1 to 9 chassis, the topology is a full 3D Torus of size 3N x 4 x 8, where N is the number of chassis.

#### **Class 1 Topology**

For a system that is a single row of 4 or more and up to 16 cabinets, the topology is a full 3D Torus of size N x 12 x 8, where N is the number of cabinets.

#### Class 2 Topology (CSCS rosa)

For systems comprised of two rows, the topology is a full 3D torus of size N x 12 x 16, where N is the number of cabinets in a row (total 2 x N cabinets). This class covers configurations from 16 (N=8) to 48 (N=24) cabinets.

#### Class 3 Topology (ORNL JaguarPF)

For larger, multi-row systems, with an even number of rows, the topology is a full 3D torus of size N x (4 x number of rows) x 24. This class covers configurations from 48 (4 rows, 12 cabinets per row) to 576 (12 rows, 48 cabinets per row) cabinets.







# **CSCS** Palu system

- Cabinets: 2 cabinets
- Topology: 1 x 6 x 16
- Compute
  - 175 nodes
  - 2x12-core (Magny-Cours) @ 2.1 GHz
  - Memory 32 GB/node, 1.3GB/core
  - Peak/node: 202 Gflop/s
  - Peak total: 35 Tflop/s
- Service
  - 4+ blades (17 nodes)
  - 6-core 2.2 GHz
  - Memory 16GB/node










# Palu: XE6m 2 Cabinets, Class 1 Topology, 1x6x16



Y: along the blades within the cabinet 2 per blade 6 in total for the 3 chassis

2

Y

2

2

#### <---8---->

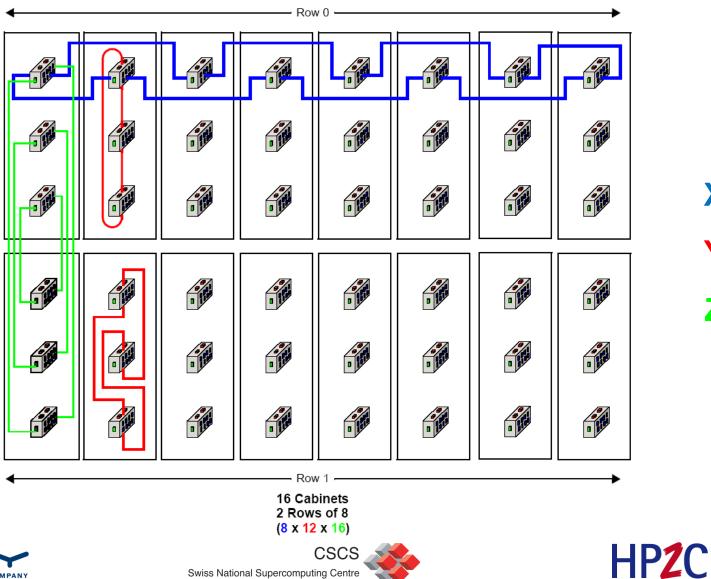
Z: across the blades 8 per chassis 16 in total for the 2 cabs





# **CSCS Rosa system**

- Cabinets: 20 cabinets, 2 rows
- Topology: 10 x 12 x 16
- Compute
  - 461 blades (1844 nodes, 22128cores)
  - 2x6-core (Istanbul) @ 2.4 GHz
  - Memory 16 GB/node, 1.3GB/core
  - Peak/node: 115 Gflop/s
  - Peak total: 212 Tflop/s
- Service
  - 19 blades (38 nodes)
  - Dual-core 2.6 GHz
  - Memory 8GB/node








HP7(

# Rosa: 20 Cabinets, Class 2 Topology, 10 x 12 x 16



X Y Ζ







# **Class 3: ORNL JaguarPF**

| Peak Performance | 2.33 Petaflops    |  |  |  |
|------------------|-------------------|--|--|--|
| System Memory    | 300 Terabytes     |  |  |  |
| Disk Space       | 10.7 Petabytes    |  |  |  |
| Interconnect     | 3D Torus 25x32x24 |  |  |  |
| Processor Cores  | 224,256           |  |  |  |







-

E

# **Nodes description: xtprocadmin -A**

| NID  | (HEX) | NODENAME   | TYPE    | ARCH | OS        | CORES | AVAILMEM | PAGESZ | CLOCKMHZ |
|------|-------|------------|---------|------|-----------|-------|----------|--------|----------|
| 0    | 0x0   | c0-0c0s0n0 | service | xt   | (service) | 2     | 8000     | 4096   | 2600     |
| 3    | 0x3   | c0-0c0s0n3 | service | xt   | (service) | 2     | 8000     | 4096   | 2600     |
| 4    | 0x4   | c0-0c0s1n0 | service | xt   | (service) | 2     | 8000     | 4096   | 2600     |
| 7    | 0x7   | c0-0c0s1n3 | service | xt   | (service) | 2     | 8000     | 4096   | 2600     |
| 8    | 0x8   | c0-0c0s2n0 | service | xt   | (service) | 2     | 8000     | 4096   | 2600     |
| 11   | 0xb   | c0-0c0s2n3 | service | xt   | (service) | 2     | 8000     | 4096   | 2600     |
| 12   | 0xc   | c0-0c0s3n0 | service | xt   | (service) | 2     | 8000     | 4096   | 2600     |
| 15   | 0xf   | c0-0c0s3n3 | service | xt   | (service) | 2     | 8000     | 4096   | 2600     |
| 16   | 0x10  | c0-0c0s4n0 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 17   | 0x11  | c0-0c0s4n1 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 18   | 0x12  | c0-0c0s4n2 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 19   | 0x13  | c0-0c0s4n3 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
|      |       |            |         |      |           |       |          |        |          |
|      |       |            |         |      |           |       |          |        |          |
| 2520 | 0x9d8 | c9-1c2s6n0 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 2521 | 0x9d9 | c9-1c2s6n1 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 2522 | 0x9da | c9-1c2s6n2 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 2523 | 0x9db | c9-1c2s6n3 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 2524 | 0x9dc | c9-1c2s7n0 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 2525 | 0x9dd | c9-1c2s7n1 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 2526 | 0x9de | c9-1c2s7n2 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
| 2527 | 0x9df | c9-1c2s7n3 | compute | xt   | CNL       | 8     | 16000    | 4096   | 2400     |
|      |       |            |         |      |           |       |          |        |          |







### xtnodestat

|      |           |          |          |          |          | cabine   | et       | cage      |          |          | _       |
|------|-----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|---------|
|      | C0-0      | C0-1     | C1-0     | C1-1     | C2-0     |          | C3-0     | C3-1/     | C4-0     | C4-1     |         |
| n3   | aaaaaaaa  | aaaaaaaa | SaaaaSaa | aaaSaaaS | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa  | aaaaaaaa | aaaaaaa  |         |
| n2   | aaaaaaaa  | aaaaaaaa | aaaa aa  | aaa aaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa  | aaaaaaaa | aaaaaaa  |         |
| n1   | aaaaaaaa  | aaaaaaaa | aaaa aa  | aaa aaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa  | aaaaaaaa | aaaaaaa  |         |
| c2n0 | aaaaaaaa  | aaaaaaaa | SaaaaSaa | aaaSaaaS | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa  | aaaaaaaa | aaaaaaa  |         |
| n3   | aaaaaaaa  | SaaaSaaa | SaaaSaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa  | aaaaaaaa | aaaaaaa  |         |
| n2   | aaaaaaaa  | aaa aaa  | aaa aaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa  | aaaaaaaa | aaaaaaa  |         |
| n1   | aaaaaaaa  | aaa aaa  | aaa aaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa  | aaaaaaaa | aaaaaaa  |         |
| c1n0 | aaaaaaaa  | SaaaSaaa | SaaaSaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa  | aaaaaaaa | aaaaaaa  | Blades  |
| n3   | SSSSaaaa  | aaSaaaSa | SSSaaaaa | SSaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaaa | aaaaaaaa | aaaaaaaa |         |
| n2   | aaaa      | aa aaa a | aaaaa    | aaaaaa   | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaaa | aaaaaaaa | aaaaaaaa | / slots |
| n1   | aaaa      | aa aaa a | aaaaa    | aaaaaa   | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaaa | aaaaaaaa | aaaaaaa  |         |
| c0n0 | SSSSaaaa  | aaSaaaSa | SSSaaaaa | SSaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaaa | aaaaaaaa | aaaaaaa  |         |
|      | s01234567 | 01234567 | 01234567 | 01234567 | 01234567 | 01234567 | 01234567 | 01234567  | 01234567 | 01234567 |         |
|      |           |          |          |          |          |          |          |           |          |          |         |
|      | C5-0      | C5-1     | C6-0     | C6-1     | C7-0     | C7-1     | C8-0     | C8-1      | C9-0     | C9-1     |         |
| n3   | aaaaaaaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa  | aaaaaaaa | aaaaaaa  |         |
| n2   | aaaaaaaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaa  | aaaaaaaa  | aaaaaaa  | aaaaaaa  |         |
| n1   | aaaaaaaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaa  | aaaaaaaa  | aaaaaaa  | aaaaaaa  |         |
| c2n0 | aaaaaaaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaa  | aaaaaaaa  | aaaaaaa  | aaaaaaa  |         |
| n3   | aaaaaaaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaa  | aaaaaaaa  | aaaaaaa  | aaaaaaa  |         |
| n2   |           | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaa  | aaaaaaaa  | aaaaaaa  | aaaaaaa  |         |
| nl   |           |          |          |          |          |          |          | aaaaaaaa  |          |          |         |
| c1n0 | aaaaaaaa  | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaaa | aaaaaaa  | aaaaaaaa  | aaaaaaa  | aaaaaaa  |         |
| n3   |           |          |          |          |          |          |          | aaaaaaaa  |          |          |         |
| n2   |           |          |          |          |          |          |          | aaaaaaaa  |          |          |         |
| n1   |           |          |          |          |          |          |          | aaaaaaaa  |          |          |         |
| c0n0 | aaaaaaaa  |          |          |          |          |          |          |           |          |          |         |
|      | s01234567 | 01234567 | 01234567 | 01234567 | 01234567 | 01234567 | 01234567 | 01234567  | 01234567 | 01234567 |         |







# **Short interactive session**

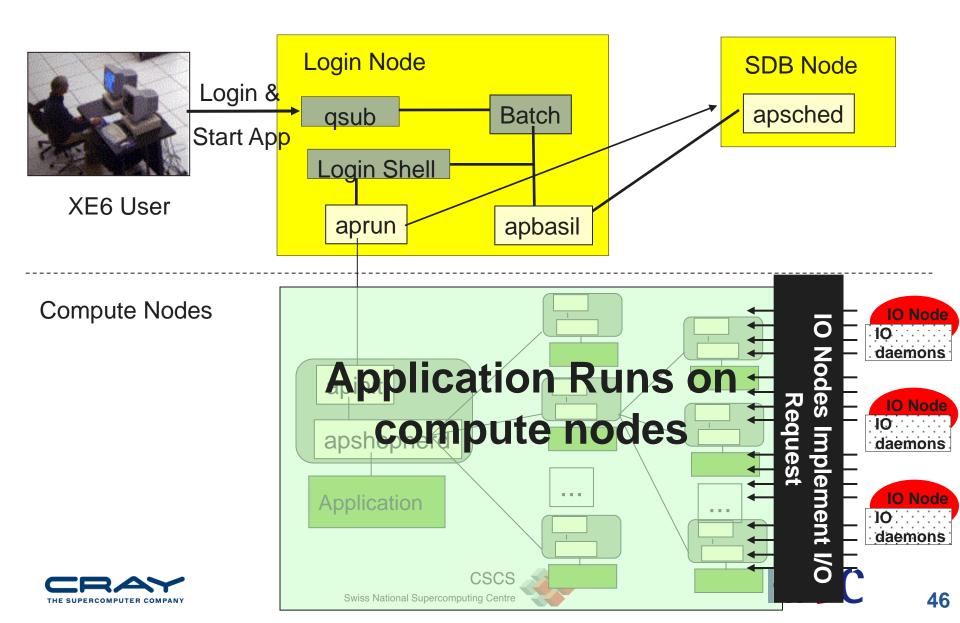
- xtprocadmin
  - List the node configuration
- xtnodestat
  - List the applications and the node partitions
- apstat
  - Status of applications
- cnselect
  - Provides a list of nodes querying the sdb database







# The application launching process










## **Job Launch**

