
DAY 2: Parallel Programming with MPI and
OpenMP

Multi-threading Feb 2011 1

Multi-threading Feb 2011 2

Preparing MPI Code for OpenMP

Simple Changes to your Code and Job

•  In the most simple of cases you need only change your MPI initialisation routine
–  MPI_Init is replaced by MPI_Init_thread!
–  MPI_Init_thread has two additional parameters for the level of thread support

required, and for the level of thread support provided by the library implementation
•  You are then free to add OpenMP directives and runtime calls as long as you

stick to the level of thread safety you specified in the call to MPI_Init_thread

Multi-threading Feb 2011 3

C:	
 	
 int MPI_Init_thread(int *argc, char ***argv, int
required, int *provided)!
	

Fortran:	
 	
 MPI_Init_Thread(required, provided, ierror)!

!Integer : required, provided, ierror!
	

required	
 specifies	
 the	
 requested	
 level	
 of	
 thread	
 support,	
 and	
 the	
 actual	

level	
 of	
 support	
 is	
 then	
 returned	
 into	
 provided!
	

The 4 Options for Thread Support

User Guarantees to the MPI Library
1.  MPI_THREAD_SINGLE

o  Only one thread will execute
o  Standard MPI-only application

2.  MPI_THREAD_FUNNELED
o  Only the Master Thread will make

calls to the MPI library
o  The thread that calls

MPI_Init_thread is henceforth the
master thread

o  A thread can determine whether it is
the master thread by a call to the
routine MPI_Is_thread_main

3.  MPI_THREAD_SERIALIZED
o  Only one thread at a time will make

calls to the MPI library, but all
threads are eligible to make such
calls as long as they do not do so at
the same time

Multi-threading Feb 2011 4

The MPI Library is responsible for
Thread Safety

1.  MPI_THREAD_MULTIPLE
o  Any thread may call the MPI

library at any time
o  The MPI library is responsible

for thread safety within that
library, and for any libraries that
it in turn uses

o  Codes that rely on the level of
MPI_THREAD_MULTIPLE may
run significantly slower than the
case where one of the other
options has been chosen

o  You might need to link in a
separate library in order to get
this level of support (e.g. Cray
MPI libraries are separate)

In	
 most	
 cases	
 MPI_THREAD_FUNNELED	
 provides	
 the	
 best	
 choice	
 for	
 hybrid	
 programs	

Hybrid programming on Cray systems

•  In order to select a thread level higher than MPI_THREAD_SINGLE on Cray
systems you also need to set the environment variable
MPICH_MAX_THREAD_SAFETY

–  If you do not set this variable then “provided” will return MPI_THREAD_SINGLE
•  The maximum value of this variable with the default MPI library is

MPI_THREAD_SERIALIZED
•  If you need MPI_THREAD_MULTIPLE then you need to add “-lmpich_threadm”

to your link line

Multi-threading Feb 2011 5

Thread	
 level	
 Environment	
 se1ng	
 (export/setenv)	
 Library	

MPI_THREAD_SINGLE	
 export	
 MPICH_MAX_THREAD_SAFETY=single	

MPI_THREAD_FUNNELED	
 export	
 MPICH_MAX_THREAD_SAFETY=funneled	

MPI_THREAD_SERIALIZED	
 export	
 MPICH_MAX_THREAD_SAFETY=serialized	

	

MPI_THREAD_MULTIPLE	
 export	
 MPICH_MAX_THREAD_SAFETY=mulQple	
 -­‐lmpich_threadm	

Changing Job Launch for MPI/OpenMP

•  Check with your batch system how to launch a hybrid job
–  Set the correct number of processes per node and find out how to specify space for

OpenMP Threads
•  Set OMP_NUM_THREADS in your batch script
•  You may have to repeat information on the mpirun/aprun/srun line
•  Find out whether your job launcher has special options to enable cpu and

memory affinity
–  If these are not available then it may be worth your time looking at using the Linux

system call sched_setaffinity within your code to bind processes/threads to
processor cores

–  On the Cray you should look at the “-cc” option to aprun!

Multi-threading Feb 2011 6

Multi-threading Feb 2011 7

What architecture are we targeting ?

Processors have become Multi-core

•  HPC Processors
–  IBM Power7 processor – 8 cores per processor

–  Intel Nehalem-EX – 8 cores per processor

–  AMD Magny-Cours – 12 cores per processor
o  Actually 2 x 6-core processors internally
o  Next generation Interlagos will be 16 cores per processor

–  IBM BlueGene/Q – will have 16 cores per processor

–  Fujitsu Sparc VIIIfx (for RIKEN next generation supercomputer [NGSC]) – will have 8
cores per processor

Multi-threading Feb 2011 8

Some processors have become Multi-threaded

•  HPC Processors
–  IBM Power7 processor – 8 cores per processor

o  Power7 supports up to 4 hardware threads
–  Intel Nehalem-EX – 8 cores per processor

o  Intel Nehalem processors support 2 hardware threads
–  AMD Magny-Cours – 12 cores per processor

o  Actually 2 x 6-core processors internally
o  Next generation Interlagos will be 16 cores per processor

v  Actually it will be 8 modules, each of which have 2 cores that share the floating point SIMD unit

–  IBM BlueGene/Q – will have 16 cores per processor
o  BG/Q PowerPC processor supports up to 4 hardware threads

–  Fujitsu Sparc VIIIfx (for RIKEN next generation supercomputer [NGSC]) – will have 8
cores per processor

•  Hardware support for multi-threading (SMT – symmetric multi-threading) doesn’t
add any functional units to the processor

–  It allows the processor to do useful work if on thread is stalled due to some I/O
–  It allows better hiding of memory latency

•  Note that hardware threads are not the same as operating system threads, each
hardware thread could be a separate process

Multi-threading Feb 2011 9

Many nodes have become Multi-core, multi-socket

•  HPC Nodes
–  BlueGene/Q node will be one multi-core processor
–  Fujitsu RIKEN NGSC node will be one multi-core processor
–  Some nodes that are made up of a multi-core chip and accelerator may have only one

multi-core x86 processor
–  All other nodes are likely to be multi-socket and multi-core
–  Cray XE6 nodes are multi-core, multi-socket

Multi-threading Feb 2011 10

Multi-threading Feb 2011 11

OpenMP Parallelisation Strategies

Examples of pure OpenMP

•  Introduction yesterday given by Matthew Cordery showed a taster of OpenMP
•  The best place to look is the OpenMP 3.0 specification!

–  Contains hundreds of examples
–  Available from http://www.openmp.org/

Multi-threading Feb 2011 12

The basics of running a parallel OpenMP job

•  The simplest form of parallelism in
OpenMP is to introduce a parallel
region

•  Parallel regions are initiated using
“!$omp Parallel” or
“#pragma omp parallel”

•  All code within a parallel region is
executed unless other work sharing
or tasking constructs are
encountered

•  Once you have changed your code,
you simply need to

–  Compile the code
o  Check your compiler for what flags

you need (if any) to recognise
OpenMP directives

–  Set the OMP_NUM_THREADS
environment variable

–  Run your application

Multi-threading Feb 2011 13

Program OMP1!
Use omp_lib!
Implicit None!
Integer :: threadnum!
!$omp parallel!
Write(6,’(“I am thread num “,I3)’) &!
 & omp_get_thread_num()!
!$omp end parallel!
End Program OMP1!
!

I am thread num 1!
I am thread num 0!
I am thread num 2!
I am thread num 3!
!

Parallel regions and shared or private data

•  For anything more simple than “Hello World” you need to give consideration to
whether data is to be private or shared within a parallel region

•  The declaration of data visibility is done when the parallel region is declared
•  Private data can only be viewed by one thread and is undefined upon entry to a

parallel region
–  Typically temporary and scratch variables will be private
–  Loop counters need to be private

•  Shared data can be viewed by all threads
–  Most data in your program will typically be shared if you are using parallel work

sharing constructs at anything other than the very highest level
•  There are other options for data such as firstprivate and lastprivate as well as

declarations for threadprivate copies of data and reduction variables

Multi-threading Feb 2011 14

Fine-grained Loop-level Work sharing

•  This is the simplest model of
execution

•  You introduce “!$omp parallel do” or
“#pragma omp parallel for” directives
in front of individual loops in order to
parallelise your code

•  You can then incrementally
parallelise your code without
worrying about the unparallelised
part

–  This can help in developing bug-free
code

–  … but you will normally not get good
performance this way

•  Beware of parallelising loops in this
way unless you know where your
data will reside

Multi-threading Feb 2011 15

Program OMP2!
Implicit None!
Integer :: I!
Real :: a(100), b(100), c(100)!
Integer :: threadnum!
!$omp parallel do private(i) shared(a,b,c)!
Do i=1, 100!
 a(i)=0.0!
 b(i)=1.0!
 c(i)=2.0!
End Do!
!$omp end parallel do!
!$omp parallel do private(i) shared(a,b,c)!
Do i=1, 100!
 a(i)=b(i)+c(i)!
End Do!
!$omp end parallel do!
Write(6,’(“I am no longer in a parallel
region”)’)!
!$omp parallel do private(i) shared(a,b,c)!
Do i=1,100!
 c(i)=a(i)-b(i)!
End Do!
!$omp end parallel do!
End Program OMP2!

!

Coarse-grained approach

•  Here you take a larger piece of code
for your parallel region

•  You introduce “!$omp do” or
“#pragma omp for” directives in front
of individual loops within your
parallel region

•  You deal with other pieces of code
as required

–  !$omp master or !$omp single
–  Replicated work

•  Requires more effort than fine-
grained but is still not complicated

•  Can give better performance than
fine grained

Multi-threading Feb 2011 16

Program OMP2!
Implicit None!
Integer :: I!
Real :: a(100), b(100), c(100)!
Integer :: threadnum!
!$omp parallel private(i) shared(a,b,c)!
!$omp do!
Do i=1, 100!
 a(i)=0.0!
 b(i)=1.0!
 c(i)=2.0!
End Do!
!$omp end do!
!$omp do!
Do i=1, 100!
 a(i)=b(i)+c(i)!
End Do!
!$omp end do!
!$omp master!
Write(6,’(“I am **still** in a parallel region”)’)!
!$omp end master!
!$omp do!
Do i=1,100!
 c(i)=a(i)-b(i)!
End Do!
!$omp end do!
!$omp end parallel!
End Program OMP2!

!

Other work sharing options

•  The COLLAPSE addition to the DO/for directive allows you to improve load
balancing by collapsing loop iterations from multiple loops

–  Normally a DO/for directive only applies to the immediately following loop
–  With collapse you specify how many loops in a nest you wish to collapse
–  Pay attention to memory locality issues with your collapsed loops

•  Fortran has a set a WORKSHARE construct that allows you to parallelise over
parts of your code written using Fortran90 array syntax

–  In practice these are rarely used as most Fortran programmers still use Do loops
•  For a fixed number of set tasks it is possible to use the SECTIONS constructs

–  The fact that a set number of sections are defined in such a region makes this too
restrictive for most people

•  Nested loop parallelism
–  Some people have shown success with nested parallelism
–  The collapse clause can be used in some circumstances where nested loop

parallelism appeared to be attractive

Multi-threading Feb 2011 17

Collapse Clause

Multi-threading Feb 2011 18

Program Test_collapse!
Use omp_lib!
Implicit None!
Integer, Parameter :: wp=Kind(0.0D0)!
Integer, Parameter :: arr_size=1000!
Real(wp), Dimension(:,:), Allocatable :: a, b, c!
Integer :: i, j, k!
Integer :: count!
Allocate(a(arr_size,arr_size),b(arr_size,arr_size),&!
 &c(arr_size,arr_size))!
a=0.0_wp!
b=0.0_wp!
c=0.0_wp!
!$omp parallel private(i,j,k) shared(a,b,c) private(count)!
count=0!
!$omp do!
Do i=1, omp_get_num_threads()+1!
 Do j=1,arr_size!
 Do k=1,arr_size!
 c(i,j)=c(i,j)+a(i,k)*b(k,j)!
 count=count+1!
 End Do!
 End Do!
End Do!
!$omp end do!
!$ print *, "I am thread ",omp_get_thread_num()," and I did
",count," iterations"!
!$omp end parallel!
Write(6,'("Final val = ",E15.8)') c(arr_size,arr_size)!
End Program Test_collapse!

!

Program Test_collapse!
Use omp_lib!
Implicit None!
Integer, Parameter :: wp=Kind(0.0D0)!
Integer, Parameter :: arr_size=1000!
Real(wp), Dimension(:,:), Allocatable :: a, b, c!
Integer :: i, j, k!
Integer :: count!
Allocate(a(arr_size,arr_size),b(arr_size,arr_size),&!
 &c(arr_size,arr_size))!
a=0.0_wp!
b=0.0_wp!
c=0.0_wp!
!$omp parallel private(i,j,k) shared(a,b,c) private(count)!
count=0!
!$omp do collapse(3)!
Do i=1, omp_get_num_threads()+1!
 Do j=1,arr_size!
 Do k=1,arr_size!
 c(i,j)=c(i,j)+a(i,k)*b(k,j)!
 count=count+1!
 End Do!
 End Do!
End Do!
!$omp end do!
!$ print *, "I am thread ",omp_get_thread_num()," and I did
",count," iterations"!
!$omp end parallel!
Write(6,'("Final val = ",E15.8)') c(arr_size,arr_size)!
End Program Test_collapse!

!

I am thread 0 and I did 2000000 iterations!
I am thread 2 and I did 1000000 iterations!
I am thread 1 and I did 2000000 iterations!
I am thread 3 and I did 0 iterations!
Final val = 0.00000000E+00!

!

I am thread 2 and I did 1250000 iterations!
I am thread 1 and I did 1250000 iterations!
I am thread 0 and I did 1250000 iterations!
I am thread 3 and I did 1250000 iterations!
Final val = 0.00000000E+00!

!

The Task Model

•  More dynamic model for separate
task execution

•  More powerful than the SECTIONS
worksharing construct

•  Tasks are spawned off as “!$omp
task” or “#pragma omp task” is
encountered

•  Threads execute tasks in an
undefined order

–  You can’t rely on tasks being run in
the order that you create them

•  Tasks can be explicitly waited for by
the use of TASKWAIT

… the task model shows good potential
for overlapping computation and
communication …

… or overlapping I/O with either of these
…

Multi-threading Feb 2011 19

Program Test_task!
Use omp_lib!
Implicit None!
Integer :: i!
Integer :: count!
!$omp parallel private(i)!
!$omp master!
Do i=1, omp_get_num_threads()+3!
 !$omp task!
 Write(6,'("I am a task, do you like tasks ?")')!
 !$omp task!
 Write(6,'("I am a subtask, you must like
me !")')!
 !$omp end task!
 !$omp end task!
End Do!
!$omp end master!
!$omp end parallel!
End Program Test_task!

!

I am a task, do you like tasks ?!
I am a task, do you like tasks ?!
I am a task, do you like tasks ?!
I am a task, do you like tasks ?!
I am a subtask, you must like me !!
I am a subtask, you must like me !!
I am a subtask, you must like me !!
I am a subtask, you must like me !!
I am a task, do you like tasks ?!
I am a task, do you like tasks ?!
I am a task, do you like tasks ?!
I am a subtask, you must like me !!
I am a subtask, you must like me !!
I am a subtask, you must like me !!
!

Multi-threading Feb 2011 20

Multi-socket, multi-core nodes

Architecture of a Multi-core Multi-socket Node

•  A multi-socket node consists of a
number of multi-core processors and
a global memory that all processors
can access

•  From an application point of view a
single process or thread sees the
memory and interconnect as shared
resources

•  In order to allocate memory, a single
thread doesn’t need to know where
the memory is coming from

•  For a single-socket multi-core node
this should present no problems

–  But some single-socket processors
are actually multiple processors fused
o  E.g. AMD Magny-Cours

Multi-threading Feb 2011 21

MulQ-­‐core	
 Processors	

Memory	

For multi-socket multi-core nodes, we cannot treat the memory in this way

NUMA – Non-Uniform Memory Access

•  Local memory accesses
have higher bandwidth and
lower latency than remote
accesses

•  If all memory accesses from
all cores are to one memory
then the effective memory
bandwidth is reduced across
all processes/threads

•  If all accesses are to remote
memory then “memory
bandwidth” will actually be
dominated by inter-socket
bandwidth

Multi-threading Feb 2011 22

MulQ-­‐core	
 Socket	

Memory	

Processor	

Cores	

MulQ-­‐core	
 socket	

Memory	

Fast	
 local	

memory	
 access	

Inter-­‐socket	

communica3on	

Connec3on	
 to	

inter-­‐node	

interconnect	

Example two-socket node

Specific Example – A Cray XT5 node

•  The memory bandwidth to
local memory is 12.8 GB/s

–  If all accesses are to local
memory then theoretical
peak node bandwidth is
25.6 GB/s

•  The inter-socket bandwidth is
8 GB/s

–  If all memory accesses are
to remote memory then
theoretical peak node
bandwidth is reduced to 8
GB/s

•  The latency to local memory
is also much lower than to
remote memory

Multi-threading Feb 2011 23

AMD	
 Opteron	

Memory	

Processor	

Cores	

AMD	
 Opteron	

Memory	

Memory	

bandwidth	

Is	
 12.8	
 GB/s	

Hypertransport	

Bandwidth	
 is	
 8	
 GB/s	

Speed	
 to	

SeaStar	

Network	

is	
 2	
 GB/s	

Memory	

bandwidth	

Is	
 12.8	
 GB/s	

•  For a Cray XE6 node this becomes 4 NUMA entities per node
–  There are 2 sockets, each of which has 2 NUMA nodes within it

Caches Hierarchies and Locality

•  Since accessing main memory is slow,
modern processors provide fast local
memory (cache) to speed up memory
accesses

–  Caches are only effective for data that is
being reused

•  Data that has been used recently may
have a high likelihood of being used
again (temporal locality)

–  Recently used data sits in the cache in case
it is required again soon

•  Data is fetched from main memory to the
cache in blocks called cache lines as
there is a high likelihood that data
nearby will be used together (spatial
locality)

–  Often an algorithm will step through adjacent
locations in memory

•  There may be multiple levels of cache,
each with different characteristics

–  Most modern processors have 3 levels of
cache

–  Third level cache (L3 cache) is often shared
amongst several processor cores

Multi-threading Feb 2011 24

Processor	
 Core	

Registers	

L1	
 Cache	

L2	
 Cache	

L3	
 Cache	

Very	
 High	
 bandwidth	

Low	
 latency	

High	
 bandwidth	

Medium	
 latency	

Good	
 bandwidth	

Good	
 latency	

Adequate	
 bandwidth	

High	
 latency	

Main	
 Memory	

Other	
 processor	
 cores	

Sharing	
 L3	
 Cache	

Cache Coherence

•  As caches are local copies of global memory, multiple cores can hold a copy of
the same data in their caches

–  For separate MPI processes with distinct memory address spaces multiple cores are
not likely to hold copies of the same user data
o  Unless data is copied during process migration from one core to another

v  This can be avoided by using cpu affinity

–  For OpenMP codes where multiple threads share the same address space this could
lead to problems

•  Before accessing memory, a processor core will check its own cache and the
cache of the other socket to ensure consistency between cache and memory

–  This is referred to as cache-coherency
•  Ensuring that a node is cache coherent does not mean that problems associated

with multiple copies of data are completely removed
–  Data held in processor registers are not covered by coherence

o  This lack of coherence can lead to a race condition

Multi-threading Feb 2011 25

Cache coherence amongst multiple cores

•  Assume a model with two processors each
with one level of cache

•  Both processors have taken a copy of the
same data from main memory

•  If one of them wants to write to this data,
then the local copy will be affected, but the
main memory does not change

–  The reason for having fast cache is to
avoid slower main memory accesses

•  On a cache coherent system, the rest of the
node needs to be told about the update

–  The other processor’s cache needs to be
told that its data is “bad” and that it needs a
fresh copy

–  On a multi-processor system other cores
need to be aware that main memory is now
“tainted” and does not have the most up-to-
date copy of this data

–  Then the new data can be written into the
local copy held in cache

•  If CPU 2 wishes to read from or write to the
data it needs to get a fresh copy

Multi-threading Feb 2011 26

Example	
 with	
 two	
 single-­‐core	
 sockets	
 Memory	

Cache	

CPU	

Cache	

CPU	

Copies	
 of	
 same	

data	
 held	
 in	
 cache	

Memory	

Cache	

CPU	

Cache	

CPU	

First	
 CPU	
 writes	
 to	

data	
 held	
 in	
 cache	

Memory	

Cache	

CPU	

Cache	

CPU	

Data	
 in	
 other	
 cache	
 is	

declared	
 as	
 “dirty”	

and	
 no	
 longer	
 valid	

First	
 CPU	
 wants	

to	
 write	
 some	

data	
 Invalidate	
 cache	
 line	

Cache-coherent NUMA node

•  Each compute node typically
has several gigabytes of
memory directly attached

•  An processor core can access
the other socket’s memory by
crossing the inter-socket link
between the two processors

•  Accessing remote memory is
slower than accessing local
memory, so this is referred to
as a Non-uniform memory
access (NUMA) node

•  A node that has NUMA
characteristics and that
guarantees cache-coherence
is referred to as a cache-
coherent NUMA node

Multi-threading Feb 2011 27

MulQ-­‐core	

processor	

Local	
 Memory	

MulQ-­‐core	

processor	

Remote	
 Memory	

Fast	
 access	
 to	

local	
 memory	
 Slower	
 access	
 to	

remote	
 memory	

Super-scalar out-of-order pipelined with SIMD

•  Most modern server processor core can issue multiple instructions per clock
cycle such as a load, a floating point instruction and an integer operation

–  A super-scalar processor issues multiple instructions per cycle
•  Most modern server processor cores can issue instructions out-of-order if the

next instruction in line to be issued is stalled
–  E.g. If you are waiting to load variable A from memory, and the processor wants to use

A for a floating-point calculation, then the processor will issue subsequent instructions
if there are no dependencies

•  Typically an instruction such as floating-point multiply will take several clock
cycles to complete. A pipelined processor can feed new data into the floating-
point unit each clock cycle rather than stalling on completion of each operation

–  This is like feeding new material into a factory production line
•  The SIMD unit (SSE on x86 cores or AltiVec/”double Hummer” on Power

processor cores) provide small vector units for enhanced floating point
performance

–  If you are not using the SIMD units then you will get worse performance

Multi-threading Feb 2011 28

Do We Need to Add Threading as Well ?

•  Advantages from “pure” MPI
–  No need to worry about cache-coherence and race conditions
–  You have to think about every explicit data transfer

o  You are concerned about the performance impact of every data transfer!

•  Disadvantages of “pure” MPI
–  You aren’t able to take advantage of memory speed data transfers
–  You need to make calls to MPI library for all explicit copies of data
–  MPI calls can have a large overhead

•  Advantages of threading
–  Reduce the communications overhead
–  Reduced memory usage due to operating system process overheads
–  Reduced memory usage due to replicated data
–  Potential to overlap communication and computation
–  Potential to get better load balance

Multi-threading Feb 2011 29

Multi-threading Feb 2011 30

The Linux operating system

Operating system memory allocation - affinity

•  CPU affinity is the pinning of a process or thread to a particular core
–  If the operating system interrupts the task, it doesn’t migrate it to another core, but

waits until the core is free again
o  For most HPC scenarios where only one application is running on a node, these interruptions

are short
•  Memory affinity is the allocation of memory as close as possible to the core on

which the task that requested the memory is running
–  It is not actually the allocation but the touching of the memory (reading/writing) that is

important
o  This is referred to as a “first touch” policy

•  Both CPU affinity and memory affinity are important if we are to maximise
memory bandwidth on NUMA nodes

–  If memory affinity is not enabled then bandwidth will be reduced as we go off-socket to
access remote memory

–  If CPU affinity is not enabled then allocating memory locally is of no use when the task
that requested the memory might no longer be running on the same socket

•  By default a NUMA-aware Linux kernel will try to use a “first touch” policy for
allocating memory

•  Tools and libraries are available to enforce CPU affinity
–  Some batch job launchers such as Slurm’s srun and Cray’s aprun can use CPU

affinity by default
–  OpenMP has support for CPU affinity

Multi-threading Feb 2011 31

Memory affinity bandwidth change
•  To demonstrate memory bandwidth

changes we use the stream benchmark
with 3 memory allocation policies

•  First the default with cpu and memory
affinity and each OpenMP thread using
first-touch on its own memory

•  Second we use a criss-cross pattern
where a thread on a different socket
touches the data to have it allocated on
the remote memory

•  Third we use the method where all of
the memory is first touched by the
master thread

–  For datasets that can fit in the local
memory of one socket all the data will
be allocated together

–  Many people who are implementing
OpenMP in their code do not take the
trouble to put OpenMP directives into
the routines where memory is first
touched
o  Be sure to put OpenMP directives

around your first-touch routines before
you out any other directives into your
code – otherwise you might complain
about the poor performance!

Multi-threading Feb 2011 32

Memory	
 Memory	

Memory Affinity

Memory	
 Memory	

“Inverse” Affinity

Memory	
 Memory	

First-touch on thread 0

Benchmark data – Intel Nehalem

•  Intel Nehalem-EX 2-socket x 6-core processors running at 2.0 GHz
–  Machine in early testing, was not possible to use tools to obtain CPU affinity

o  Relying on Linux default to place threads appropriately
o  Benchmarks were run many, many, many, many, many, many, many, many, many … times and best

numbers taken in each case

Multi-threading Feb 2011 33

Numbers	
 are	

aggregate	

bandwidth	
 in	
 GB/s	

Memory	

Affinity	

“Inverse”	

Affinity	

Thread	
 0	

First-­‐touch	

Copy	
 19.4	
 15.9	
 13.4	

Scale	
 19.4	
 15.9	
 13.4	

Add	
 24.8	
 19.7	
 16.2	

Triad	
 24.8	
 19.7	
 16.2	

Benchmark data – AMD Istanbul

•  AMD Opteron Istanbul 2-socket x 6-core processors running at 2.6 GHz
–  This is a small version of the Cray XT5 at CSCS
–  Cray’s “aprun” will enforce thread cpu affinity by default

Multi-threading Feb 2011 34

Numbers	
 are	

aggregate	
 bandwidth	

in	
 GB/s	

Memory	

Affinity	

“Inverse”	

Affinity	

Thread	
 0	

First-­‐touch	

Copy	
 20.1	
 6.9	
 9.5	

Scale	
 13.4	
 6.7	
 6.7	

Add	
 14.6	
 7.3	
 7.3	

Triad	
 14.7	
 7.3	
 7.3	

Benchmark data – AMD Magny-Cours

Multi-threading Feb 2011 35

Numbers	
 are	

aggregate	
 bandwidth	

in	
 GB/s	

Memory	

Affinity	

“Inverse”	

Affinity	

Thread	
 0	

First-­‐touch	

Copy	
 47.5	
 19.3	
 10.4	

Scale	
 33.6	
 15.2	
 6.5	

Add	
 36.5	
 15.4	
 6.8	

Triad	
 36.5	
 15.4	
 6.8	

•  AMD Opteron Magny-Cours 2-socket x 12-core processors running at 2.1 GHz
–  This is the Cray XE6 at CSCS
–  Cray’s “aprun” will enforce thread cpu affinity by default
–  The hardware of the Magny-Cours means that this is effectively 4-sockets x 6-cores

•  For the thread-0 first-touch, the memory from only one of the 4 mini-sockets is
available, meaning that only one quarter of the real memory bandwidth is available !!

Thread 1
Thread 2

Thread 3 Thread 4

Global	
 Address	
 Space	

Operating System Separation of Processes

•  Operating systems provide a
separate address space for each
process

•  One process cannot see the
memory of another process

•  Need to use kernel level routines
to enable message passing

–  This will typically involve multiple
copies of data being taken

–  For on-node communication this
means unnecessary waste of
memory bandwidth

•  Multiple threads launched from
the same thread share the same
address space

Multi-threading Feb 2011 36

Stack	

Heap	

Text	

Process	
 2	

Stack	

Heap	

Text	

Process	
 1	

Communication Mechanism for Message Passing

•  In order for on-node communication to take place between two communicating
processes, the message may need to be buffered

–  There might be multiple memory copies needed in order to transfer data
•  Since on-node communication is effectively just a memory copy between MPI

processes, any extra buffering will consume memory bandwidth and slow down
the communication

•  Some libraries exist to minimise the transfers by taking advantage of special
kernel features

–  E.g. XPMEM developed for SGI and now used by Cray
–  KNEM to be exploited by OpenMPI 1.5

•  OpenMP threads are able to avoid these problems by directly reading memory
on the same node

Multi-threading Feb 2011 37

Copy example MPI processes vs. OpenMP Threads

•  Speed of simple MPI example vs. simple OpenMP example
•  We use two kernels that do the same thing … copy a piece of data from one

process/thread to another on different sockets of the same system
–  The OpenMP implementation is about 2-4 times faster on an AMD Istanbul and

Magny-cours based Cray system

Multi-threading Feb 2011 38

If(my_rank<half_world)Then!
 neighbour=my_rank+half_world!
Else!
 neighbour=my_rank-half_world!
End If!
…!
Do i=1,full_arr_size!
 recvarray(i,my_rank)=sendarray(i,neighbour)!
End Do!
!

If(my_rank<half_world)Then!
 neighbour=my_rank+half_world!
Else!
 neighbour=my_rank-half_world!
End If!
…!
Call MPI_Sendrecv(sendarray,full_arr_size,MPI_DOUBLE_PRECISION,neighbour,msg_tag,&!
 &recvarray,full_arr_size,MPI_DOUBLE_PRECISION,neighbour,msg_tag,&!
 &MPI_COMM_WORLD,status,ierror)!
!
!

Process Memory Model

•  The memory of an individual process consists of sections of space for data, text,
heap and stack

–  Each of these is a separate mapping that consumes valuable memory
•  Separate MPI processes will require buffer space allocated for MPI

communications
–  These may be configurable through environment variables, but some space will be

needed for each type
•  In addition there are some MPI memory requirements which grow with the

number of MPI ranks
–  An implementation that exhibits such behaviour is ultimately not scalable

•  Other libraries that might be used by your application might require extra buffer
space to be allocated for them

Multi-threading Feb 2011 39

Process Memory Requirements MPI vs. OpenMP

•  Separate processes need separate address and memory space
–  POSIX fork takes a duplication of everything except the process ID

•  There are much more lightweight memory requirements for OpenMP threads
–  Only one copy of variables exists between threads when new threads are created

•  Only one copy of MPI buffers etc. exists per process, and therefore only one
copy exists shared between all threads launched from a process

•  Using MPI/OpenMP hybrid programming reduces the memory requirement
overhead from multiple processes

… in addition we may be able to benefit from reduced memory requirements
within the application when using MPI/OpenMP hybrid programming …

Multi-threading Feb 2011 40

Halo regions and replicated data in MPI

•  Halo regions are local copies of
remote data that are needed for
computations

–  Halo regions need to be copied
fequently

•  Using OpenMP parallelism
reduces the size of halos region
copies that need to be stored

•  Other data structures than these
might also lead to a benefit of
MPI/OpenMP applications from
reduced memory requirements

•  Reducing halo region sizes also
reduces communication
requirements

Multi-threading Feb 2011 41

MPI	
 Processes	

OpenMP	
 Threads	

Saved	
 storage	
 !!!	

Amdahl’s law only tells part of the tale

•  Amdahl’s law for strong scaling
–  This states the ultimate limiting factor of parallel scaling is the part that cannot be

parallelised
–  It only looks at parts of an application being either perfectly parallelisable or serial

•  In reality scaling is a complex mix of components including
–  Computation: this is the part where we are trying to get linear scaling

o  Might already be efficiently parallelised in MPI code

–  Memory bandwidth limitations: the proportion of data that might need to be read for a
given set of computations might increase with decreasing workload per task,

–  Communications: the amount of communication might not decrease linearly with the
workload per task
o  OpenMP might be able to reduce this problem

–  Parallel processing overheads: some communication overheads may be fixed or not
decrease significantly with decreasing workload per task
o  Some communications might be reduced here

–  I/O and other serial parts of the code

Multi-threading Feb 2011 42

Example of domain decomposition on a 2D grid

Multi-threading Feb 2011 43

Idealised 2D grid layout:

Increasing the number of processors
by 4 leads to each processor having

•  one quarter the number of grid
points to compute
•  one half the number of halo
points to communicate

Serial parts of the code do not change.

The same amount of total data needs
to be output at each time step.

P processors, each with …
MxN Grid points
2M+2N Halo points

4P processors, each with …
(M/2)x(N/2) Grid points
M+N Halo points

Using	
 4	
 OpenMP	
 threads	
 rather	
 than	
 4	
 MPI	
 processes	
 keeps	
 the	
 halo	
 region	
 constant	

Idealised scalability for a 2D Grid-based problem

Multi-threading Feb 2011 44

Computation: Scales O(P) for P processors Minor scaling problem – issues of
halo memory bandwidth, vector
lengths, efficiency of software
pipeline etc.

Communication: Scales O(√P) for P processors Major scaling problem – the halo
region decreases slowly as you
increase the number of
processors

I/O and serial parts: No scaling Limiting factor in scaling– the
same amount of work is carried
out, or total data is output at each
time step

Reduced Communication of Halos and Updates

•  Example: 8x8x8 cube with 1 element halo becomes a 10x10x10 cube (50%
halo)

–  This grows to a 16x16x16 cube and halo of 18x18x18 on 8 cores (30% halo)
–  … and then potentially on to a cube of 32x32x32 and halo of 34x34x34 on 64 cores [4

x Interlagos] (%17 halo)
•  An example of a wider halo is in the COSMO-2 numerical weather prediction

simulations
–  These are run 8 times per day on 1000 processors
–  An individual process has typically a 20x10 (2D distribution) of grid points [extended

by 60 atmospheric levels]
–  With a halo width of 3 elements this give a grid+halo of 26x16 (50% halo)
–  This would be a cube with 40x20 grid points and 46x26 grid+halo on 4 cores (33%

halo)
–  … and then a grid of 80x80points and 86x86 grid+halo on 32 cores (13.5% halo)

•  Replication of data is not restricted only to structured grids, but extends to most
areas of computational science that do not rely on map-reduce methods

Multi-threading Feb 2011 45

Stop-start Mechanisms in MPI

•  The standard model of MPI communication is to have a stop-start mechanism
–  Compute, communicate, compute, communicate … etc.

•  Communication using point to point might be done asynchronously, but
collectives (under MPI-2) are definitely blocking

•  If a large part of an application is concerned with communication then this will
form a bottleneck at runtime

Multi-threading Feb 2011 46

Asynchronous Implementations in MPI Libraries

•  To an application programmer, the use of asynchronous point-to-point
communications appears to offer a good opportunity for overlapping computation
and communication

•  The internals of most MPI implementations are not designed to really overlap
communication with other activities

–  Common implementations such as MPICH etc. are not threaded
–  Most MPI implementations aren’t thread-enabled and so communications only

typically take place when an MPI call takes place
–  OpenMPI has introduced threading support in its internals

•  Asynchronous transfers typically rely on interconnect hardware being able to do
transfers using RDMA

•  If communication does not take place immediately when the call is made it may
have to wait until the MPI_Wait call (or some other MPI call)

Multi-threading Feb 2011 47

Multi-threading Feb 2011 48

The Dangers of OpenMP !!!

Warning - It’s not as simple as it first appears…

•  To write an MPI code you need to work on the whole code, distributing the data
and the work completely

•  With OpenMP you can develop the code incrementally, but you must work on the
whole application in order to get speedup

•  OpenMP parallelism is not just about adding a few directives
–  You don’t have to think as deeply as with MPI in order to get your code working
–  You do have to think as deeply as with MPI if you want to get your code performing

•  There are many performance issues that need to be considered … (more later)

Multi-threading Feb 2011 49

A common problem – race conditions
•  Race conditions occur when two

threads both want to update the same
piece of data

–  Related to cache coherency, but this
time it’s dangerous

–  Is concerned with data read into
processor registers
o  Once data is in a register it can no

longer be looked after by cache
coherency protocols

•  One thread reads in a piece of data
and updates it in one of its registers

•  The second thread reads the data and
updates it in one of its registers

•  The first thread writes back the new
data

•  The second thread writes back its new
data

•  Both updates have not been
accounted for !!!!

•  In OpenMP, you need to use the
atomic or critical directives
wherever there is a risk of a race
condition

Multi-threading Feb 2011 50

4	
 5	
 4	

The first thread writes back its copy

4	
 5	
 5	

The second thread writes back its copy

4	
 2	
 2	

The first thread adds 2 to its copy

+	
 2	
 =	
 4	

4	
 5	
 2	

The second thread adds 3 to its copy

+	
 3	
 =	
 7	

2	
 2	
 2	

Both threads read a copy of the variable

2	

Actual calculations
taking place

Final result is 5, but it should be 7

Contention - Cache Thrashing, False Sharing

•  Cache coherency protocols update
data based on cache lines

•  Even if two threads want to write to
different data elements in an array, if
they share the same cache line then
cache coherency protocols will mark
the other cache line as dirty

•  In the best case false sharing leads
to serialisation of work

•  In the worst case it can lead to
slowdown of parallel code compared
to the serial version

Multi-threading Feb 2011 51

Proc	
 1	
 only	
 wants	
 to	

write	
 to	
 the	
 purple	

elements	

Proc	
 2	
 only	
 wants	
 to	

write	
 to	
 the	
 green	

elements	

Proc	
 1	
 writes	

Proc	
 1	
 writes	

Proc	
 1	
 reloads	

Proc	
 1’s	
 cache	

line	
 is	
 invalid	
 Proc	
 2	
 writes	

Proc21	
 reloads	

Proc	
 2’s	
 cache	

line	
 is	
 invalid	

Proc	
 2	
 writes	

Proc	
 2	
 reloads	

Proc	
 2’s	
 cache	

line	
 is	
 invalid	

Thread creation overhead and synchronisation

•  Creation and destruction of threads is an overhead that takes time
•  In theory each entry and exit of a parallel region could lead to thread creation

and destruction
–  in most OpenMP implementations threads are not destroyed at the end of a parallel

region but are merely put to sleep
•  In any case, entering and exiting a parallel region requires barriers to be called

between a team of threads
–  This is often what is referred to as thread creation/destruction overhead

•  Staying within a parallel region, and having multiple worksharing constructs
within it reduces the overhead associated with entering and exiting parallel
regions

•  The best performance might be produced by duplicating work across multiple
threads for some trivial activities

–  You would probably do this duplication in MPI as well in most cases, rather than have
one process calculate a value and then issue a MPI_Bcast

•  For best performance avoid unnecessary synchronisation and consider using
NOWAIT with DO/for loops wherever possible

Multi-threading Feb 2011 52

User-level thinking with distributed and shared memory

•  One of the most difficult problems encountered with MPI programmers moving to
OpenMP is that it appears to be easy

•  MPI coding forces you to think about every data transfer – OpenMP lets you use data
transfers in memory and so you don’t need to think as carefully

•  Consider some of the “invisible” performance problems that you might encounter and
try to avoid them

–  Think about your whole application
–  Consider memory locality
–  Make sure that you initialise your data with the thread that will mainly use those memory

locations
–  Be careful where you put your directives

o  Placing a directive immediately before a DO/for loop forces it to be the loop that is parallelised
v  This can inhibit compiler optimisations

•  If you have a lot of MPI traffic make sure that you use the simplest threading model
that will suffice

–  Normally you should be able to get away with MPI_THREAD_FUNNELED
•  Try to make parallel regions as large as possible
•  Use a NOWAIT clause wherever possible – but beware that this no longer implies a

flush!
–  Nowait is at the beginning of a “#pragma omp parallel for” statement, but at the end of the “!

$omp end do”

Multi-threading Feb 2011 53

