
DAY 2: Cray Programming Environment
for MPI and OpenMP Code Development

Multi-threaded Programming, Tuning and
Optimization on Multi-core MPP Platforms
15-17 February 2011
CSCS, Manno

The Cray
Programming
Environment

Roberto Ansaloni

roberto.ansaloni@cray.com

~course02/slides/day1/CrayPE.pdf

mailto:roberto.ansaloni@cray.com

• Programming Environment Overview

 Modules

• Compilers

 PGI, Cray, GNU, Intel, Pathscale

• Programming considerations

• MPI Communications

• Running an application

Agenda

2

Programming
Environment
Overview

Cray XE6 programming environment overview

• Several compilers available

 PGI, Cray, GNU, Intel, (Pathscale)

• Optimized libraries

 More on this tomorrow...

• Aprun command to launch jobs; similar to mpirun command

• PBSPro batch system by default

 On CSCS palu SLURM is installed

• Performance tools: CrayPat, Apprentice2

4

Cray XE6 programming environment is SIMPLE

• Edit and compile the program (no need to specify include files or
libraries)

$ vi mysrc.f90

$ ftn –o myexe mysrc.f90

• Edit the batch job file (myjob.job) (SLURM batch)
#SBATCH –-job-name=“myjob”

#SBATCH –-nodes=10

aprun –n 240 ./myexe

• Run the job
$ qsub myjob.job

5

The module tool on the Cray XE6

• How can we get appropriate Compiler and Libraries to work with?

• module tool used on XE6 to handle different versions of packages

(compiler, tools,...):

e.g.: module load compiler1

e.g.: module swap compiler1 compiler2

e.g.: module load perftools

• taking care of changing of PATH, MANPATH, LM_LICENSE_FILE,....
environment.

• users should not set those environment variable in their shell
startup files, makefiles,....

• keep things flexible to other package versions

6

Cray XE6 PE: module list

palu> module list

Currently Loaded Modulefiles:

1) modules

2) nodestat/2.2-1.0301.22648.3.3.gem

3) sdb/1.0-1.0301.22744.3.24.gem

4) MySQL/5.0.64-1.0301.2899.20.4.gem

5) lustre-cray_gem_s/1.8.2_2.6.27.48_0.1.1_1.0301.5475.7.1-1.0301.23312.0.0

6) udreg/1.3-1.0301.2236.3.6.gem

7) ugni/2.0-1.0301.2365.3.6.gem

8) gni-headers/2.0-1.0301.2497.4.1.gem

9) dmapp/2.2-1.0301.2427.3.8.gem

10) xpmem/0.1-2.0301.22550.3.6.gem

11) slurm

12) Base-opts/1.0.2-1.0301.21771.3.3.gem

 No pre-loaded programming environment module

 Should load a specific module to produce code optimized

for the AMD Magny-Cours processor (xtpe-mc12)

7

Cray XE6 PE: module avail

palu> module avail cce

cce/7.2.4 cce/7.2.5 cce/7.2.6 cce/7.2.7

cce/7.2.8(default) cce/7.3.0.145

 Which modules are available ?

8

Useful module commands

• Basic: load PGI compiler and Magny-Cours specific

module load PrgEnv-pgi

module load xtpe-mc12

• Change environment (GNU)

module swap PrgEnv-pgi PrgEnv-gnu

• Load Cray environment and use a specific version of the compiler

module swap PrgEnv-pgi PrgEnv-cray

module swap cce cce/7.3.0.145

• Load the new MPICH2 environment

module unload xt-mpt

module load xt-mpich2

9

Compilers

Compiler drivers to create CLE executables

• When the PrgEnv is loaded the compiler drivers are also loaded
 the compiler drivers also take care of loading appropriate

libraries (-lmpich, -lsci, -lacml, -lpapi)

• Available drivers (also for linking of MPI applications):
 Fortran 90/95 programs: ftn
 Fortran 77 programs: f77
 C programs: cc
 C++ programs: CC

• Cross compiling environment
 Compiling on a Linux service node
 Generating an executable for a CLE compute node
 Do not use standard compler names (pgf90, gcc, mpicc,...)

unless you want a Linux executable for the service node

11

• Overall Options

 -Mlist creates a listing file

 -Minfo info about optimizations performed

 -Mneginfo why certain optimizations are not performed

• Preprocessor Options

 -Mpreprocess runs the preprocessor on Fortran files

• Optimisation Options

 -fast chooses generally optimal flags for the target platform

 -Mipa=fast,inline Inter Procedural Analysis

 -Minline=levels:n number of levels of inlining

PGI programming environment (PrgEnv-pgi)

12

• Language Options

 -Mfree process Fortran source using freeform specifications

 -Mnomain useful for using the ftn driver to link programs with

the main program written in C or C++ and one or more

subroutines written in Fortran

 -i8, -r8 treat INTEGER and REAL variables as 64-bit

 -Mbyteswapio big-endian files in Fortran; XE6 is little endian

• Parallelization Options

 -mp recognize OpenMP directives

 -Mconcur automatic parallelization

PGI programming environment

man pages: pgf90, pgcc, pgCC

PGI User‘s Guide (Chapter 2) http://www.pgroup.com/doc/pgiug.pdf

13

http://www.pgroup.com/doc/pgiug.pdf
http://www.pgroup.com/doc/pgiug.pdf

• Cray has a long tradition of high performance compilers

 Vectorization for vector architectures

• In 2008 decided to move forward with Cray X86 compiler

 Vector is back ? (SSE, AVX…)

 CCE 7.0 released in December 2008

 CCE 7.3 about to be released

• Still young but interesting…

 FORTRAN 2008 Coarray support

 Strongly supported by Cray

Cray Compiler Environment (CCE): (PrgEnv-cray)

14

• Overall Options

 -ra creates a listing file with optimization info

• Preprocessor Options

 -eZ runs the preprocessor on Fortran files

 -F enables macro expansion throughout the source file

• Optimisation Options

 -O2 optimal flags [enabled by default]

 -O3 aggressive optimization

 -O ipa<n> inlining, n=0-5

Cray compiler flags

15

• Language Options

 -f free process Fortran source using freeform

 -s real64 treat REAL variables as 64-bit

 -s integer64 treat INTEGER variables as 64-bit

 -hbyteswapio big-endian files in Fortran
XE6 is little endian (this is a link time option)

• Parallelization Options

 -O omp Recognize OpenMP directives [default]

 -O thread<n> n=0-3, aggressive parallelization, default n=2

Cray compiler flags

man pages: crayftn, intro_directives, intro_pragmas, assign
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray%20Fortran%20Reference%20Manual

16

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=S-3901-71;idx=books_search;this_sort=;q=3901;type=books;title=Cray Fortran Reference Manual

• Assigns options for library file open processing

assign [assign options] assign_object

• Interesting assign options

 -R removes all assign options for assign_object

 -N <numcon> specifies foreign numeric conversion

swap_endian the endianess of data is swapped during
unformatted input and output.

• assign object used to specify the object of assign options

 f:<filename> applies to filename

 u:<unit> applies to Fortran unit number

 g:su applies to all Fortran sequential unform. files

Cray programming environment: assign

17

• Explicit usage of assign

 Can control which files are byte-swapped
export FILENV=.assign

assign -R

assign -N swap_endian f:aof

aprun a.out

• Link the application with -hbyteswapio

 All unformatted Fortran I/O are byte-swapped

 This is equivalent to set
assign -N swap_endian g:su

assign -N swap_endian g:du

How to handle byte-swapped files with CCE

18

• Displays the explanation for an error message: compile, run time

• Compiler error
cft90: llvm/lib/VMCore/Instructions.cpp:328: void

llvm::CallInst::init(llvm::Value*, llvm::Value* const*, unsigned int):

Assertion `(i >= FTy->getNumParams() || FTy->getParamType(i) == Params[i]-

>getType()) && "Calling a function with a bad signature!"' failed.

ftn-2116 crayftn: INTERNAL

rosa> explain ftn-2116

Internal : "Program" was terminated due to receipt of signal signal.

The process spawned by the command to run the specified program was

terminated by a system signal. See the signal(2) man page for more

information about this signal.

This message does not indicate a problem with your code, and you may be able

to change your program so that this error does not occur.

Please notify your product support representative with the text of this

message, the source code being compiled, the version of the compiler, and the

Command line options in effect.

Cray programming environment: explain

19

• I/O runtime error
Open IOSTAT=5016

rosa> explain lib-5016

An EOF or EOD has been encountered unexpectedly.

The file terminated unexpectedly, perhaps without the proper end-of-file

record or end-of-data control information. The file specification may be

incorrect, or the file may be corrupted.

Ensure that the file specification is correct. If the file is corrupted,

create the data again, if possible.

See the man pages for assign(1) and asgcmd(1).

The error class is UNRECOVERABLE (issued by the run time library).

Cray programming environment: explain

20

• Overall Options

 -LIST:=ON creates a listing file

 -LNO:simd_verbose=ON info about vectorizations

• Preprocessor Options

 -cpp -ftpp runs the preprocessor on C or FORTRAN files

• Optimisation Options

 -O3 –OPT:Ofast chooses generally optimal flags

 -Ofast aggressive optimization

 -ipa Inter Procedural Analysis

Pathscale programming env (PrgEnv-pathscale)

21

• Language Options

 -freeform process Fortran source using free form
specifications

 -i8, -r8 treat INTEGER and REAL variables as 64-bit

 -byteswapio big-endian files in Fortran; XE6 is little endian

• Parallelization Options

 -mp recognize OpenMP directives

 -apo automatic parallelization

Pathscale programming environment

man pages: eko, pathf90, pathcc

22

Feature PGI Pathscale Cray

Listing -Mlist -LIST:=ON -ra

Diagnostic -Minfo -Mneginfo -LNO:simd_verbose=ON (produced by -ra)

Free format -Mfree -freeform -f free

Preprocessing -Mpreprocess -cpp -ftpp -eZ -F

Suggested Optimization -fast -O3 –OPT:Ofast (default)

Aggressive Optimization -Mipa=fast,inline -Ofast -O3, fp3

Variables size -r8 –i8 -r8 -i8 -s real64 –s integer64

Byte swap -byteswapio -byteswapio -h byteswapio

OpenMP recognition -mp=nonuma -mp (default)

Automatic parallelization -Mconcur -apo -h autothread

Cray XE compilers Rosetta Stone

23

• GNU (PrgEnv-gnu)
 Suggested options: -O3 –ffast-math –funroll-loops

 Compiler feedback: -ftree-vectorizer-verbose=2

 OpenMP: -fopenmp

 Man pages: gcc, gfortran, g++

• Intel (PrgEnv-intel)
 Suggested options: -O3

 Aggressive options: -ffast-math -funroll-loops -msse3 -ftree-vectorize

 OpenMP: -openmp=on

 An extra control thread is spawn: issues when pinning threads to cores

 Man pages: ifort, icc

Other programming environments

24

Some Programming
Considerations

Memory allocation

• Linux provides some environment variables to control how malloc

behaves (Equivalent to using the mallopt system call)

• MALLOC_MMAP_MAX_

 Number of 'internal' non heap, mmap regions (default 64)

 Using MMAP regions turns out to be very costly compared to using the heap

 They exist to allow a program to return unused memory back to the system

more easily so it may be used by other processes on the node: no need for it

on the XE6

 Suggested value: export MALLOC_MMAP_MAX_=0

26

Memory allocation

• MALLOC_TRIM_THRESHOLD_

 Amount of free space at the top of the heap after a free() that needs to

exist before malloc will return the memory to the OS

 Returning memory to the OS is costly. The default setting of 128 KBytes is

much too low for a node with 4 GBytes of memory and one application.

 Suggested value:

export MALLOC_TRIM_THRESHOLD_=536870912

27

Huge pages - description

• The AMD Opteron supports multiple page sizes

 The base page size is 4 Kbytes; the default huge page size is 2 Mbytes.

 Use HUGETLB_DEFAULT_PAGE_SIZE to modify huge page size

 Available sizes: 128KB, 512KB, 2MB, 8MB,16MB, 64MB.

• Huge pages can provide better performance by reducing the

number of TLB misses and by enforcing larger sequential physical

memory inside each page

• Useful man pages: aprun, intro_hugepages

28

Huge pages

• Memory fragmentation issue: the number of huge pages

available on a node declines over time: this is affected by all

applications that have run on the node since it was last booted.

• Huge pages are important in PGAS codes to determine remote

memory mapping

29

Huge pages - howto

• Link with the correct library: -lhugetlbfs

• Activate the library at run time: export HUGETLB_MORECORE=yes

• Launch the program wirh aprun preallocating huge pages

 request <size> MBytes per PE -m<size>h (advisory mode)

 request <size> MBytes per PE -m<size>hs (required mode)

 What if the request can’t be satisfied ? Slow or crash ?

• Example: aprun -m700hs -N2 -n8 ./my_app

 Requires 1400 MBytes of huge page memory on each node

30

MPI
Communications
on the Cray XE6

• Several environment variables are available to control MPI
features (man mpi or intro_mpi)

• MPICH_ENV_DISPLAY

 If set, causes rank 0 to display all MPICH environment
variables

• MPICH_CPUMASK_DISPLAY

 If set, causes each MPI rank in the job to display its CPU
affinity bitmask

• MPICH_MAX_THREAD_SAFETY

 Specifies thread-safety level

 MPI_THREAD_MULTIPLE requires a specific library:
link to -lmpich_threadm

MPICH2 environment variables

32

• Eager Protocol

 For a message that can fit in a GNI SMSG mailbox (E0)

 For a message that can’t fit into a mailbox but is less than
MPICH_GNI_MAX_EAGER_MSG_SIZE in length (E1)

• Rendezvous protocol (LMT)

 RDMA Get protocol – up to 512 KB size messages by defalt

 RDMA Put protocol – above 512 KB

MPICH2 GNI Netmod Message Protocols

33

• Protocol for messages that can fit into a GNI SMSG mailbox

• The default varies with job size, although this can be tuned by
the user to some extent

ranks in job maximum bytes of user data

<= 1024

>1024 &&

<=16384

> 16384

984

472

216

Maximum message size for E0 varies with Job Size

34

• Can be used to control the maximum size message that can go
through the private SMSG mailbox protocol (E0 eager path).

• Default varies with job size.

• Maximum size is 1024 bytes. Minimum is 80 bytes.

• If you are trying to demonstrate an MPI_Alltoall at very high
count, with smallest possible memory usage, may be good to
set this as low as possible.

• If you know your app has a scalable communication pattern,
and the performance drops at one of the edges shown on the
table, you may want to set this environment variable.

• Pre-posting receives for this protocol avoids a potential extra
memcpy at the receiver.

MPICH_GNI_MAX_VSHORT_MSG_SIZE

35

• Default is 8192 bytes

• Maximum size message that go through the eager (E1)
protocol

• May help for applications sending medium size messages

• Maximum allowable setting is 131072 bytes

• Pre-posting receives can avoid potential double memcpy at the
receiver.

• Note that a 40-byte Nemesis header is included in account for
the message size.

MPICH_GNI_MAX_EAGER_MSG_SIZE

36

• Default is now 1024 bytes

• Controls the threshold at which the GNI netmod switches from
using FMA for RDMA read/write operations to using the BTE.

• Since BTE is managed in the kernel, BTE initiated RDMA
requests can progress even if the applications isn’t in MPI.

• But using the BTE may lead to more interrupts being generated

MPICH_GNI_RDMA_THRESHOLD

37

• Default is enabled. To disable
export MPICH_GNI_NDREG_LAZYMEM=disabled

• Controls whether or not to use a lazy memory deregistration
policy inside UDREG. Memory registration is expensive so this
is usually a good idea.

• Only important for those applications using the LMT (large
message transfer) path, i.e. messages greater than
MPICH_GNI_MAX_EAGER_MSG_SIZE.

• Disabling may be a workaround for some UDREG issues

• However, disabling results in a significant drop in measured
bandwidth for large transfers ~40-50 %.

MPICH_GNI_NDREG_LAZYMEM

38

• Enabled by default

• Normally want to leave enabled so mailbox resources
(memory, NIC resources) are allocated only when the
application needs them

• If application does all-to-all or many-to-one/few, may as well
disable dynamic connections. This will result in significant
startup/shutdown costs though.

• Recent bugs have been worked around by disabling dynamic
connections.

• Syntax for disabling:
export MPICH_GNI_DYNAMIC_CONN=disabled

MPICH_GNI_DYNAMIC_CONN

39

• With MPT 5.1 switched to using Seastar-style algorithm where
for short transfers/rank: use MPI_Gather(v)/MPI_Bcast rather
than ANL algorithm

• Switchover from Cray algorithm to ANL algorithm can be
controlled by the MPICH_ALLGATHER_VSHORT_MSG and
MPICH_ALLGATHERV_VSHORT_MSG environment variables.
By default enabled for transfers/rank of 1024 bytes or less

• The Cray algorithm can be deactivated by setting

export MPICH_COLL_OPT_OFF=mpi_allgather
export MPICH_COLL_OPT_OFF=mpi_allgatherv

MPI_Allgather / MPI_Allgatherv

ANL = Argonne National Lab, birthplace of MPICH2

40

• Optimizations added in MPT 5.1

• Switchover from ANL’s implementation of Bruck algorithm
(IEEE TPDS, Nov. 1997) is controllable via the
MPICH_ALLTOALL_SHORT_MSG environment variable.
Defaults are

• New algorithm can be disabled by
export MPICH_COLL_OPT_OFF=mpi_alltoall

MPI_Alltoall

Limit (in bytes) for using Bruckranks in

communicator

<= 512

>512 &&

<=1024

> 1024

2048

1024

128

41

• The ANL smp-aware MPI_Allreduce/MPI_Reduce algorithms
can cause issues with bitwise reproducibility. To address this
Cray MPICH2 has two new environment variables starting with
MPT 5.1 -

• MPI_ALLREDUCE_NO_SMP

 disables use of smp-aware MPI_Allreduce

• MPI_REDUCE_NO_SMP

 disables use of smp-aware MPI_Reduce

MPI_Allreduce/MPI_Reduce

42

• Starting with MPT 5.1, all ANL algorithms except for binomial
tree are disabled since the others perform poorly for
communicators with 512 or more ranks

• To force the tree algorithm to be used for all cases set the
MPICH_BCAST_ONLY_TREE environment variable to 0, i.e.

export MPICH_BCAST_ONLY_TREE=0

MPI_Bcast

43

• Default is 8192 bytes

• Specifies threshold at which the Nemesis shared memory
channel switches to a single-copy, XPMEM based protocol for
intra-node messages

MPICH_SMP_SINGLE_COPY_SIZE

44

• In MPT 5.1 the default is enabled

• Specifies whether or not to use a XPMEM-based single-copy
protocol for intra-node messaes of size
MPICH_SMP_SINGLE_COPY_SIZE bytes or larger

• May need to set this environment variable if

 Finding XPMEM is kernel OOPses (check the console on
the SMW)

 Sometimes helps if hitting UDREG problems. XPMEM goes
kind of crazy with Linux mmu notifiers and causes lots of
UDREG invalidations (at least the way MPICH2 uses
XPMEM).

MPICH_SMP_SINGLE_COPY_OFF

45

I/O on the Cray XE6

The Storage Environment

Cray XE Supercomputer

Lustre

high performance

parallel filesystem

Compute nodes

Login nodes

Lustre OSS

Lustre MDS

Network

47

Cray XE I/O architecture

• All I/O is offloaded to service nodes

• Lustre

 High performance parallel I/O file system

 Direct data transfer between compute nodes and files

• DVS

 Virtualization service

 Allows compute nodes to access NFS mounted on service
node

 Applications must execute on file systems mounted on
compute nodes

• No local disks

• /tmp is a MEMORY file system, on each login node

48

Cray XT I/O architecture

Compute NodesLogin Nodes

aprun

sh

Application

Sysio layer

NFS file

systems

/root

/ufs

/home

/archive

System Interconnect

Lustre

layer

SIO Node

DVS

OSS Node

OST OST

OSS Node

OST OST...

/tmp

49

Lustre

• A scalable cluster file system for Linux

 Developed by Cluster File Systems, Inc.

 Name derives from “Linux Cluster”

 The Lustre file system consists of software subsystems, storage, and an
associated network

• MDS – metadata server
 Handles information about files and directories

• OSS – Object Storage Server

 The hardware entity
 The server node
 Support multiple OSTs

• OST – Object Storage Target

 The software entity
 This is the software interface to the backend volume

50

Lustre File Striping

• Stripes defines the number of OSTs to write the file across
 Can be set on a per file or directory basis

• CRAY recommends that the default be set to
 not striping across all OSTs, but
 set default stripe count of one to four

• But not always the best for application performance.
As a general rule of thumbs :
 If you have one large file: stripe over all OSTs
 If you have a large number of files (~2 times #OSTs): turn off

striping

51

• lfs is a lustre utility that can be used to create a file with a
specific striping pattern, displays file striping patterns, and find
file locations

• The most used options are :

 setstripe

 getstripe

 df

• For help execute lfs without any arguments
$ lfs

lfs > help

Available commands are:

setstripe

find

getstripe

check

……….

Lustre lfs command

52

• For maximum aggregate performance: Keep all OSTs occupied

• Many clients, many files: Don’t stripe

 If number of clients and/or number of files >> number of OSTs:
Better to put each object (file) on only a single OST.

• Many clients, one file: Do stripe

 When multiple processes are all accessing one large file:
Better to stripe that single file over all of the available OSTs.

• Some clients, few large files: Do stripe

 When a few processes access large files in large chunks:
Stripe over enough OSTs to keep the OSTs busy on both write
and read paths.

Lustre striping hints

53

Running an
application on the
Cray XE6

• ALPS : Application Level Placement Scheduler

• aprun is the ALPS application launcher

 It must be used to run application on the XT compute
nodes

 If aprun is not used, the application is launched on the
login node (and likely fails)

 aprun man page contains several useful examples

• aprun has (at least) 3 important parameters to control:

 The total number of MPI tasks (PEs): -n

 The number of MPI tasks per node: -N

 The number of OpenMP threads: -d

Running an application on the Cray XE

55

• Assuming a XE6 system (24 cores per node)

• Pure MPI application, using all the available cores in a node

$ aprun –n <npes>

• Pure MPI application, using only 1 core per node

 npes MPI tasks, 24*npes cores allocated, npes nodes allocated

 Can be done to increase the available memory for the MPI tasks

$ aprun –N 1 –n <npes>

• Hybrid MPI/OpenMP application, 4 MPI ranks per node

 npes MPI tasks, 6 OpenMP threads each

 need to set OMP_NUM_THREADS
$ export OMP_NUM_THREADS=6

$ aprun –N 4 –d 6 –n <npes>

Running an application on the Cray XE6

56

• CPU affinity options enable to bind a PE or thread to a
particular CPU or a subset of CPUs on a node

• CNL can dynamically distribute work by allowing PEs and
threads to migrate from one CPU to another within a node

• In some cases, moving PEs or threads from CPU to CPU
increases cache and translation lookaside buffer (TLB) misses
and therefore reduces performance

• aprun CPU affinity option:

 -cc cpu_list | keyword

 suggested (default) settings: -cc cpu

 The cpu keyword (the default) binds each PE to a CPU
within the assigned NUMA node

aprun CPU Affinity control

57

• Pathscale compiler provide its own control of cpu affinity: this
should be disabled to avoid interference with ALPS

 export PSC_OMP_AFFINITY=FALSE

aprun CPU Affinity control (Pathscale)

58

• Cray XE6 systems use dual-socket 24-core compute nodes

 Each die (6 cores) is considered a NUMA-node

• Remote-NUMA-node memory references, can adversely affect
performance.

• aprun memory affinity options:

 -S pes_per_numa_node #PEs to allocate per NUMA node

 -sl list_of_numa_nodes list of NUMA nodes to use [0,3]

 -sn numa_nodes_per_node #NUMA nodes to consider

 -ss strict memory containment per NUMA node; a PE can
allocate only the memory local to its assigned NUMA node

Further aprun affinity control

59

Running an application on the Cray XT - MPMD

• aprun supports MPMD – Multiple Program Multiple Data

• Launching several executables on the same MPI_COMM_WORLD

$ aprun –n 128 exe1 : -n 64 exe2 : -n 64 exe3

60

Core specialization

• System ‘noise’ on compute nodes may significantly degrade
scalability for some applications

• Core Specialization can mitigate this problem

 1 core per node will be dedicated for system work (service core)

 As many system interrupts as possible will be forced to execute
on the service core

 The application will not run on the service core

• Use aprun-r to get core specialization

$ aprun –r –n 100 a.out

• apcount provided to compute total number of cores required

$ qsub -l mppwidth=$(apcount -r 1 1024 24)job

aprun -n 1024 -r 1 a.out

61

Running a batch application with SLURM

• The number of required nodes can be specified in the job header

• The job is submitted by the qsub command

• At the end of the exection output and error files are returned to
submission directory

• Environment variables are
inherited

• The job starts in the directory
from which the job has been
submitted

Hybrid MPI + OpenMP

#!/bin/bash

#SBATCH –-job-name=“hybrid”

#SBATCH –-time=00:10:00

#SBATCH –-nodes=8

export OMP_NUM_THREADS=6

aprun –n32 –d6 a.out

62

Starting an interactive session with SLURM

• An interactive job can be started by the SLURM salloc command

• Example: allocate 8 nodes

$ salloc –N 8

Further SLURM info available from CSCS web page: www.cscs.ch
User Entry Point / How to Run a Batch Job / Palu - Cray XE6

63

Watching a launched job on the Cray XE

• xtnodestat

 Shows XE nodes allocation and aprun processes

 Both interactive and PBS

• apstat

 Shows aprun processes status

 apstat overview

 apstat –a[apid]info about all the applications or a specific one

 apstat –n info about the status of the nodes

• Batch qstat command

 shows batch jobs

64

• Cray docs site

http://docs.cray.com

• Starting point for Cray XE info

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap;f=xe_sitemap

• Twitter ?!?

http://twitter.com/craydocs

Documentation

65

http://docs.cray.com/
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap;f=xe_sitemap
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap;f=xe_sitemap
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap;f=xe_sitemap
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap;f=xe_sitemap
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=SiteMap;f=xe_sitemap
http://twitter.com/craydocs

Thank you !

66

	Day_2_Session_4
	CrayPE.pdf

