
DAY 3: Cray Math Software

Multi-threaded Programming, Tuning and
Optimization on Multi-core MPP Platforms
15-17 February 2011
CSCS, Manno

Cray Scientific Libraries :
Usage, hybrid modes,
advanced performance

Adrian Tate

Technical Lead of Scientific Libraires

Cray Inc. and Cray Switzerland

1. Introduce libsci and explain usage

2. Work through the threaded and hybrid library model

3. Show XT5, XT6 and XE6 performance results

4. Hints on obtaining best performance for all libraries

5. Show you how you can get your cases specialized

6. Describe the future of libraries

Goals of this talk

• Overview

 Libsci overview history

 Auto-tuning framework

 Contents

 General usage

• Threaded BLAS implementation

• Threaded LAPACK implementation

• ScaLAPACK and hybrid mode Scalapack.

• CASK – tuning PETSc and Trilinos.

• CASE – Cray Adaptive Simplified Eigensolver

• CRAFFT – Cray Adaptive FFT

• The future of libraries

Most descriptions will refer to an example program we can try in the lab

Structure of the Talk

Historical Perspective on Libraries

• Scientific libraries were the first ever productivity feature

• Popular code regions were encapsulated in subroutines

• Programmers of early machine did not need to waste time

• An advantage was that the routine could be tuned heavily

• The performance advantages became increasingly important

• Standards were written for the simplest operations (BLAS1,
BLAS2, BLAS3).

4

History of Cray Supercomputers

1976 1982 1985 1988 1991

Cray-1 Cray-XMP Cray-2 Cray-YMP Cray-C90 Cray-T3D

1993

1994 1995 2001 2003 2005

Cray-T90 Cray-T3E Cray-SV1 Cray-X1 Cray-XT3 Cray-XT5

2008

hardware trends

1976 1982 1985 1988 1991

Cray-1 Cray-XMP Cray-2 Cray-YMP Cray-C90 Cray-T90

1993

1994 1995 2001 2003 2005

Cray-T3D Cray-T3E Cray-SV1 Cray-X1 Cray-XT3 Cray-XT5

2008

Single Vector Pipe
No data cache

One –few processors

Multiple Pipe
small data cache

Several processors

Massively parallel
Data caches

Distributed memory

Massively parallel, vector, scalar,
x86,CISC, GPU, FPGA, multi-core

hardware trends

1976 1982 1985 1988 1991

Cray-1 Cray-XMP Cray-2 Cray-YMP Cray-C90 Cray-T90

1993

1994 1995 2001 2003 2005

Cray-T3D Cray-T3E Cray-SV1 Cray-X1 Cray-XT3 Cray-XT5

2008

Single Vector Pipe
No data cache

One –few processors

Multiple Pipe
small data cache

Several processors

Massively parallel
Data caches

Distributed memory

Massively parallel, vector, scalar,
x86,CISC, GPU, FPGA, multi-core

BLAS1 LINPACK BLAS2 BLAS3 LAPACK

FFTWScaLAPACK ATLASPETSc Trilinos

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

average #cores in top20

Clearly…

1. Libraries must exhibit multiple layers of parallelism

1. MPP parallelism

2. On-node threading parallelism

3. SIMD vectorization

4. Accelerator parallelism

2. Despite that libraries must hide the complexity of the system

Less obvious :

1. Libraries must be adaptive and / or auto-tuned

2. The definitions of library APIs must be extended

9

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
2

0
0

0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

1
6

0
0

0

1
8

0
0

0

2
0

0
0

0

2
2

0
0

0

2
4

0
0

0

2
6

0
0

0

2
8

0
0

0

3
0

0
0

0

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

Matrix Dimension

opt1 - low
density
opt1 - high
density
opt2 - low
density
opt2 - high
density

Performance of 2 tuned SpMV kernels
relative to BASE case

12/1/2010Slid

e

Opt 2 : K loop unrolled by 2, no prefetching

Opt 1 : prefetch 4 cachelines, 4 iterations ahead of time, no unrolling

• Adaptation is corresponding concept to auto-tuning

• Given a set of good kernels and a range of input values

 Map the best or very good kernel onto each combination
of input values

 Need a switching function such that

for any set of testing parameters we obtain the best kernel

Adaptation

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

kernel1

kernel2

kernel3

best

Adaptation, Auto-tuning and Specialization

12

Runtime

Performance

model
Calling

problem

Specialization

inputs

Blocksize

threads

dimensions

Specialized

kernel library

Offline - autotuning

runtime

Table lookup

for best

kernel under

calling

conditions

Reference

kernel

Parameterized

transformations

Perform Search

CrayATF is the world’s first generalized tuning
framework

list parameters

Populate with

values

Construct SO

Construct SF

Construct ST

XML input

heuristics

SO -> so

Template

kernel

Directive Parser

Derive

expressions

Apply

transformations

k

Deduce

concurrency

Query machine

and resources

Construct batch

interface

Submit jobs (1 per

thread)

Make

input

file

Exec

code

spin

Make

input

file

Exec

code

spin

Make

input

file

Exec

code

spin

Done
?

Compile test

program

e

Construct

Next Group

Loop over sO

Loop sO

Record best performers

Create table

of performers

Copy performers

into poly-code

Prune

performance table

Create hash

function from each

t in T

Create adaptive

switching in

polycode

Adaptive
tuned
library

execs

kernels

Configure

build

Search over

tests sT

Construct

search data

structures

Create threadpool

Copy template

?

?

What this framework allows

• Better optimizations

 CASK, BLAS

• Better flexibility

 We can tune for highly specialized cases and adapt to them
in the libraries

• Easier transitions to new architectures

 We can re-run the framework when a new platform arrives

• Potential for more powerful tuning tools to users (later)

15

Cray Scientific Libraries

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CRAFFT – Cray Adaptive FFT

CASE – Cray Simple Adaptive Eigensolver

16

Cray Scientific Libraries - Tunings

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

17

Tuned for
interconnect

Tuned for
Processor

Cray Scientific Libraries – autotuning focus

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

18

Auto-tuned and
adaptiveAdaptive

Cray Scientific Libraries – tuning focus

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

19

Tuned for
Hybrid

Tuned for
network

Tuned for
threading

General usage information

• There are many libsci libraries on the systems

• One for each of

 Compiler (intel, cray, gnu, pathscale, pgi)

 Single thread, multiple thread

 Target (istanbul, mc12)

• Best way to use libsci is to ignore all of this

• Load the xtpe-module

 module load xtpe-mc12 / xtpe-istanbul / xtpe-mc8

• Cray’s compiler drivers will link the library automatically

• PETSc, Trilinos, fftw, acml all have their own module

20

Adding another library

• Perhaps you want to link another library such as ACML

• This can be done. If the library is provided by Cray, then load
the module. The link will be performed with the libraries in the
correct order.

• If the library is not provided by Cray and has no module, add it
to the link line.

 Items you add to the explicit link will be in the correct place

• Note, to get explicit BLAS from ACML but scalapack from libsci

 Load acml module. Explicit calls to BLAS in code resolve
from ACML

 BLAS calls from the scalapack code will be resolved from
libsci (no way around this)

21

• I recommend adding options to the linker to make sure you have the
correct library loaded.

• -Wl adds a command to the linker from the driver

• You can ask for the linker to tell you where an object was resolved from
using the –y option.

• E.g. –Wl, -ydgemm_

• Will return :

cc -L./ -o mmulator blas_test.o netlib_dgemm.o -Wl,-ydgemm_

blas_test.o: reference to dgemm_

/opt/xt-libsci/10.4.9/cray/lib/libsci.a(dgemm.o): definition
of dgemm_

Making sure you have the right library

• Threading capabilities in previous libsci versions were poor

 Used PTHREADS (more explicit affinity etc)

 Required explicit linking to a _mp version of libsci

 Was a source of concern for some applications that need
hybrid performance and interoperability with openMP

• LibSci 10.4.2 February 2010

 OpenMP-aware LibSci

 Allows calling of BLAS inside or outside parallel region

 Single library supported (there is still a single thread lib)

• Usage – load the xtpe module for your system (mc12)

GOTO_NUM_THREADS outmoded – use OMP_NUM_THREADS

OpenMP BLAS

OpenMP LibSci

• Allows seamless calling of the BLAS within or without a parallel
region

e.g. OMP_NUM_THREADS = 12

call dgemm(…) threaded dgemm is used with 12 threads

!$OMP PARALLEL DO

do

call dgemm(…) single thread dgemm is used

end do

24

Other situations

• OMP_NUM_THREADS controls both types of parallelism

• Library sets buffers based on OMP_NUM_THREADS on first call

• The side effect to this model it is not possible to have ‘split-
parallelism’

• Changing dynamically OMP_SET_NUM_THREADS is not
possible!

• We are working on a more flexible scheme for release early
2011

25

0

20

40

60

80

100

120
G

FL
O

P
s

Dimension (square)

Libsci DGEMM efficiency

1thread

3threads

6threads

9threads

12threads

0

10

20

30

40

50

60

70

80

90

1 3 6 9 12

G
FL

O
P

S

threads

XT5 DGEMM M=N=K=10000, square and low-rank

rank200

square

0

50

100

150

200

1 3 6 9 12 18 24

G
FL

O
P

s

threads

XT6 (MC12) DGEMM performance square v low-rank

rank200

square

0

50

100

150

200

9 12 16 18 20 22 24

XT6 (MC12) DGEMM performance M=N=20000

rank200

square

0

20

40

60

80

100

120

140

160

6 9 12 16 18 20 22 24

G
FL

O
P

s

Axis Title

XT6 DGEMM for increasing rank update

K=200

K=500

K=1000

K=3000

BLAS2 and BLAS1 performance

• Memory-bound code doesn’t thread well.

• But, you can still obtain a little speed-up because you use more
memory channels when you use threads.

• Some of the BLAS2 can exhibit some speed-up with threading

• In the lab : benchmark the times for DDOT – can we observe
any speed-up using openMP?

30

Usage

 module load xtpe-mc12

 No need to explicit link

 Add –Wl,-ydgemm_ to link line

 Set OMP_NUM_THREADS in job script

 Run with aprun –n 1 –d12 ./exec (for 12 threads)

31

• LAPACK is the very popular linear algebra library for on-node

• Cray’s implementation of LAPACK is tuned.

• LAPACK is threaded in the same way as BLAS

• In some routines, the threading is at a higher level than the
BLAS updates (LU, Cholesky, QR, some eigensolvers)

• Usage is exactly the same as with the BLAS

• In the lab, benchmark a call to dgetrf and show the threaded
performance

Threaded LAPACK

33

0

20

40

60

80

100

120

1 2 4 6 8 12 16 20 24

G
FL

O
P

S

threads

Threaded LAPACK DGETRF GFLOPS numbers for various thread
counts

-cc none

-cc cpu

• ScaLAPACK is the near-standard parallel linear algebra library

• Uses distributed memory BLAS, PBLAS

• Uses BLACS for communication

• Using scalapack across nodes and threaded BLAS within nodes
is the simplest way to obtain hybrid MPP + thread functionality

• Cray have tuned ScaLAPACK on previous machines, and we are
doing so now on XE6.

ScaLAPACK

0

100000

200000

300000

400000

4 8 16 32 64 128 256 512

M
FL

O
P

S

Cores

XT6 (MC12)QR Factorization; M=N=10k

LIBSCI QR Factorization

STOCK QR Factorization

0

20000

40000

60000

80000

100000

120000

140000

4 8 16 32 64 128 256 512

M
FL

O
P

S

XT6 (MC12)LU Factorization; M=N=10k

LIBSCI LU Factorization

STOCK LU Factorization

ScaLAPACK

0

5

10

15

20

25

30

35

40

4 8 16 32 64 128 256 512

Se
co

n
d

s

Cores

XT6 (MC12)Eigenvalue Routines; M=N=5k

Custom QR Iteration

Custom Divide and Conquer

Custom Bisection

Stock QR Iteration

Stock Divide and Conquer

Stock Bisection

Tuning ScaLAPACK for XE6

• Cray has a strong track record of tuning parallel linear algebra
for older systems – T3E, X1

• Used shmem to replace key communication schemes

• On XE, use many of the same techniques and some new ones

 Focusing on the LU, Cholesky, divide and conquer
eigensolver, tridiagonal reduction

 Using more asynchronous commuinications in
factorizations

 Replacing MPI with co-array fortran and shmem

37

38

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000

G
FL

O
P

S

of Cores

PDGESV Performance N=65536

libsci 10.4.9

Prototype

39

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000

G
FL

O
P

S

of Cores

PDGESV Performance N=131072

libsci 10.4.9

prototype

• Use the number of scalpack grid points you want to
correspond to the number of MPI ranks you want

• Rely on the BLAS to operate with the number of threads you
desire

• Use OMP_NUM_THREADS and the aprun options to set the
number of threads you need for on-node parallelism

• Set the threads per node from libsci BLAS with
OMP_NUM_THREADS

• Use aprun options –n and –d for nodes and threads

Using ScaLAPACK in hybrid mode on XE6

In the examples

• The example calls the scalapack cholesky factorization

• It is easy to run in hybrid mode

• The number of mpi ranks is the number of scalapack / BLACS
grid points, (in this example that is hard-coded)

• Set the threads per node using OMP_NUM_THREADS and
using aprun option –d

41

Iterative Refinement Toolkit

• Mixed precision can yield a big win on x86 machines.

• SSE (and AVX) units issue double the number of single precision operations
per cycle.

• On CPU, single precision is always 2x as fast as double

• Accelerators sometimes have a bigger ratio

 Cell – 10x

 Older NVIDIA cards – 7x

 New NVIDIA cards (2x)

 Newer AMD cards (> 2x)

• IRT is a suite of tools to help exploit single precision

 A library for direct solvers

 An automatic framework to use mixed precision under the

 A domain-specific language and preprocessor to convert codes to use
mixed precision without active code change

42

• Various tools for solves linear systems in mixed precision
• Obtaining solutions accurate to double precision

 For well conditioned problems
• Serial and Parallel versions of LU, Cholesky, and QR
• 2 usage methods

 IRT Benchmark routines
 Uses IRT 'under-the-covers' without changing your code

 Simply set an environment variable
 Useful when you cannot alter source code

 Advanced IRT API
 If greater control of the iterative refinement process is required

 Allows
 condition number estimation
 error bounds return
 minimization of either forward or backward error
 'fall back' to full precision if the condition number is too high
 max number of iterations can be altered by users

43

Iterative Refinement Toolkit - Library

Decide if you want to use advanced API or benchmark API

benchmark API :
setenv IRT_USE_SOLVERS 1

advanced API :

1. locate the factor and solve in your code (LAPACK or ScaLAPACK)

2. Replace factor and solve with a call to IRT routine

 e.g. dgesv -> irt_lu_real_serial

 e.g. pzgesv -> irt_lu_complex_parallel

 e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments

 Forward error convergence for most accurate solution

 Condition number estimate

 “fall-back” to full precision if condition number too high

44

IRT library usage

IRT usage with ScaLAPACK

0

20000

40000

60000

80000

100000

120000

140000

160000

4 8 16 32 64 128 256 512

Se
co

n
d

s
PDGESV on MC8

pdgesv

pdgesv_w_irt

0

20000

40000

60000

80000

100000

120000

140000

160000

4 8 16 32 64 128 256 512

M
FL

O
P

S
PDGESV on MC12

pdgesv_with_irt

pdgesv

• A domain-specific language for the expression of mixed
precision

• Allows the user to denote a factor/solve region and a set of
inputs outputs

• MXP will convert the code to a mixed-precision equivalent.

• 2 modes

 1. Iterative mode for iterative solvers (define inputs and
outputs and main loop in MXP

 2. Direct mode for direct solvers. Factor and solve loops
are replaced with an iterative refinement scheme

IRT – Mixed Precision Preprocessor (MXP)

Pseudo-example Mode=iterative

!$MXP mode = iterative, matrix = A

Double precision, allocatable :: A(: , :)

allocate (A(M,N))

!$MXP loop, output = x

Do

operations on matrix A

calculate residual

exit criteria

End

Double precision, allocatable :: A(: , :)

Real, allocatable A_lp(: , :)

Allocate(A(M, N), A_lp(M, N))

Do

operations on matrix A_lp

calculate residual in X_lp

exit criteria (same)

End

X = X_lp

48

Pseudo-example mode=direct

!$MXP mode = direct, matrix = A, rhs = x

Double precision, allocatable :: A(: , :), x (:)

allocate (A(M,N), x (N))

!$MXP factorization

Factorization of matrix A

!$MXP end_factorization

!$MXP solve

Solve of matrix A

!$MXP end_solve

Double precision, allocatable :: A(: , :)

real, allocatable :: A_lp(:,:)

allocate (A(M, N) , X(N), A_lp(M, N), X_lp(N))

b32 = b64

L32U32 = A32

x32 = b32 (A32) ^-1

x64 = x32

do

i = i + 1

r64_i = b32 - A32x32

r32 = r64

z32 = r32 (L32U32)^-1

x_i+1 = x_i + z_i

end do

deallocate(A32, X32)

49

In the examples

• The ScaLAPACK example can be made to work with IRT’s
automatic interface

• After you have done the scalapack example, then set
IRT_USE_SOLVERS and repeat the experiment

• You only need to re-run, not recompile or relink

• If you write a simple LAPACK code to show threading in lapack,
you can do the same thing.

• Those very interested can call directly e.g. irt_real_parallel

50

• Serial CRAFFT is largely a productivity enhancer

• Some FFT developers have problems such as

 Which library choice to use?

 How to use complicated interfaces (e.g., FFTW)

• Standard FFT practice

 Do a plan stage

 Do an execute

• CRAFFT is designed with simple-to-use interfaces
 Planning and execution stage can be combined into one

function call
 Underneath the interfaces, CRAFFT calls the appropriate

FFT kernel

Cray Adaptive FFT (CRAFFT)

51

1. Load module fftw/3.2.0 or higher.

2. Add a Fortran statement “use crafft”

3. call crafft_init()

4. Call crafft transform using none, some or all optional
arguments (as shown in red)

In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

in-place, explicit memory management

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)

out-of-place, explicit memory management :
crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the
CRAFFT_PLANNING environment variable and the do_exe optional argument,
please see the intro_crafft man page.

52

CRAFFT usage

• Parallel CRAFFT is meant as a performance improvement to FFTW2 distributed
transforms

 Uses FFTW3 for the serial transform

 Uses ALLTOALLV where possible

 Uses a more adaptive communication scheme based on input

• Can provide impressive performance improvements over FFTW2

• Currently implemented

 complex-complex

 Real-complex and complex-real

 3-d and 2-d

 In-place and out-of-place

 1 data distribution scheme but looking to support more (please tell us)

• Just released :

 C language support for serial and parallel

53

Parallel CRAFFT

1. Add “use crafft” to Fortran code

2. Initialize CRAFFT using crafft_init

3. Assume MPI initialized and data distributed (see manpage)

4. Call crafft, e.g. (optional arguments in red)

2-d complex-complex, in-place, internal mem management :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

2-d complex-complex, in-place with no internal memory :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

2-d complex-complex, out-of-place, internal mem manager :

call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

2-d complex-complex, out-of-place, no internal memory :

crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. Also see 3d equivalent :

man crafft_pz2z3d
54

parallel CRAFFT usage

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

G
fl

o
p

s

Sizes

2D FFT/fwd on 32 cores

crafft/transp

crafft/normal

fftw2/transp

fftw/normal

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

32^3 64^3 128^3 256^3 512^3 1024^3

G
fl

o
p

s

Sizes

3D FFT/fwd on 32 cores

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

32 64 128 256 512

G
fl

o
p

s

Cores #

3D FFT/fwd scalability
size = n3, n = 1024

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

0

10

20

30

40

50

60

70

G
fl

o
p

s

Sizes

2D C2R FFT on 32 MC12 cores

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

0.00

100.00

200.00

300.00

400.00

500.00

600.00

32 64 128 256 512

G
fl

o
p

s

Cores #

3D R2C FFT scalability
size = n3, n = 1024

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

Parallel CRAFFT results -

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

G
fl

o
p

s

Sizes

2D R2C FFT on 32 MC12 cores

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

G
fl

o
p

s

Sizes

2D FFT on 32 MC12 cores

crafft/transp

crafft/normal

fftw2/transp

fftw/normal

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

32 64 128 256 512

G
fl

o
p

s

Cores #

2D C2R FFT scalability

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

0

2

4

6

8

10

12

14

16

18

32^3 64^3 128^3 256^3 512^3 1024^3

G
fl

o
p

s

Sizes

3D FFT/fwd on 32 MC12 cores

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

64

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

8192 16384 32768 65536 131072

G
FL

O
P

S

Transform size

CRAFFT on XE6 - 2048 cores

CRAFFT

fftw2

CRAFFT examples

• We have an example program that calls parallel CRAFFT

• It is simple to run on XE6

• You can write similar from scratch after looking at it

• Or, modify to perform a different transform type

65

• At one time Cray provided both

 Custom sparse direct solvers

 Custom sparse iterative solvers

• There has been an evolution towards using standardized
frameworks such as Trilinos & PETSc

• Today, we attempt to provide that same performance boost
while maintaining productivity

• CASK library – optimizes sparse matrix operations on Cray
computers whilst being invisible to the user

 Cray Trilinos distribution

 Cray PETSc distribution

Sparse

• Serial and Parallel versions of sparse iterative linear solvers

 Suites of iterative solvers
 CG, GMRES, BiCG, QMR, etc.

 Suites of preconditioning methods
 IC, ILU, diagonal block (ILU/IC), Additive Schwartz, Jacobi, SOR

 Support block sparse matrix data format for better
performance

 Interface to external packages (ScaLAPACK, SuperLU_DIST)

 Fortran and C support

 Newton-type nonlinear solvers

• Extremely large user community in US and Europe

• http://www-unix.mcs.anl.gov/petsc/petsc-as

67

PETSc (Portable, Extensible Toolkit for
Scientific Computation)

http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as

• Cray provides

 Hypre: scalable parallel preconditioners

 ParMetis: parallel graph partitioning package

 MUMPS: parallel multifrontal sparse direct solver

 SuperLU: sequential version of SuperLU_DIST

• To use Cray-PETSc, load the appropriate module :

module load petsc

(or) module load petsc-complex

(no need to load a compiler specific module)

• Treat the Cray distribution as your local PETSc installation

PETSc is not threaded!

68

Usage and External Packages

• The Trilinos Project http://trilinos.sandia.gov/

“an effort to develop algorithms and enabling technologies
within an object-oriented software framework for the solution
of large-scale, complex multi-physics engineering and scientific
problems”

• A unique design feature of Trilinos is its focus on packages.

• Very large user-base and growing rapidly. Important to DOE.

• Cray’s optimized Trilinos released on January 21 2010

 Includes 50+ trilinos packages

 Optimized via CASK

 Any code that uses Epetra objects can access the
optimizations

• Usage :

module load trilinos
69

Trilinos

• CASK is a product developed at Cray using the
Cray Auto-tuning Framework (Cray ATF)

• Uses ATF auto-tuning, specialization and Adaptation concepts

• Offline :

 ATF program builds many thousands of sparse kernel

 Testing program defines matrix categories based on density, dimension
etc

 Each kernel variant is tested against each matrix class

 Performance table is built and adaptive library constructed

• Runtime

 Scan matrix at very low cost

 Map user’s calling sequence to nearest table match

 Assign best kernel to the calling sequence

 Optimized kernel used in iterative solver execution

Cray Adaptive Sparse Kernel (CASK)

70

Support Model

• Highly portable

• User controlled

Large-scale application

• Highly portable

• User controlled

PETSc / Trilinos / Hypre

• XT4 & XT5
specific / tuned

• Invisible to
User

CASK

All systems

Cray only

71

0

50000

100000

150000

200000

0 200 400 600 800 1000 1200 1400 1600 1800

M
Fl

o
p

s

of PEs

PETSc Strong Scalability on MC12 XT6

PETSc-3.1 PETSC-3.1 CASK

0

50000

100000

150000

200000

0 200 400 600 800 1000 1200

M
Fl

o
p

s

of PEs

PETSc Strong Scalability on MC8 XT6

PETSc-3.1 PETSC-3.1 CASK

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300

M
Fl

o
p

s

of PEs

PETSc Strong Scalability on Shanghai XT5

PETSc-3.1 PETSC-3.1 CASK

0

20000

40000

60000

80000

0 50 100 150 200 250 300

M
Fl

o
p

s

of PEs

PETSc Weak Scalability on Shanghai XT5
N=65,536-16,777,216

PETSc-3.1 PETSC-3.1 CASK

0

50000

100000

150000

200000

250000

300000

350000

0 500 1000 1500 2000

M
Fl

o
p

s

of PEs

PETSc Weak Scalability on MC12 XT6
N=65,536-67,108,864

PETSc-3.1 PETSc-3.1 CASK

0

100000

200000

300000

400000

0 200 400 600 800 1000 1200

M
Fl

o
p

s

oF PEs

PETSc Weak Scalability on MC8 XT6
N=65,536-67,108,864

PETSc-3.1 PETSc-3.1 CASK

CASK and PETSc: Single Node XT5 (60 matrices)

Speedup on Parallel SpMV on 8 cores, 60 different matrices

1

1.1

1.2

1.3

1.4

0 10 20 30 40 50 60

Sp
e

e
d

-u
p

CASK + PETSc XT5 single node (60 matrices)

75

0

500

1000

1500

2000

M
Fl

o
p

s

Matrix Name

Trilinos + CASK on Instanbul, single node

• MC12 is the first entirely automated CASK

• ATF used for all stages

 Codegen

 Testing, search

 Execution

 Automation of adaptive lirbrary

• Released September 2010

CASK on MC12 and XE6

77

0

100000

200000

300000

400000

500000

600000

700000

0 500 1000 1500 2000 2500 3000 3500

M
FL

O
P

S

of Cores

PETSC PCCG Solver performance
2D Laplacian Grid (N=1M-128M)

PETSc-CASK PETSc

CASK in examples

• We have an example program to help show how CASK can be
used to speed up petsc and trilinos.

• Compile the program using the Cray Petsc distribution

• Compile the program using the local CASK-free PETSc.

• Compare the performance

78

CASE – Cray Adaptive Simplified Eigensolver

• Eigensolvers are extremely complicated to use

• Often require quite complicated callign sequences

• Also often require complicated work array set-up

• CASE is a simplified interface into the existing eigensolers

• CASE is also an adaptive framework to use a faster eigensolver

79

CASE details

• real and complex, serial and parallel wrappers for eigensolvers

• Very simple overloaded/generic interfaces

 Use a fortran module (‘use case’ in fortran file)

 Use a C++ header (c users)

• Creates all work arrays for you

• Deduces form the arugments that you pass what type of
functionality you require, and calls the best eigensolver for the
problem you want

• Can also get adaptive eigensolver by setting
CASE_USE_FASTEST

80

• GPU and hybrid library execution

• BLAS, LAPACK, FFT, Sparse MV

• BLAS is tuned via the auto-tuning framework

• LAPACK is tuned to avoid as much of the communications cost
as possible

• FFT is tuned assuming that the

• If you want to obtain accelerated library codes, add –lsci_acc
to the link (likely a xtpe-accel module will be available), then
relink.

• Later I will show some examples of BLAS tuning via the ATF

LibSci_acc - Cray scientific Library for
Accelerators

The future of LibSci

• Work with the code developers (you) to make applications
scale to the next level

• Prepared to go outside of the bounds of what library vendors
normally provide

 Specialization model, and auto-specialization with training
runs

 Kernel auto-tuning using a framework for advanced users

• Highly optimized hyrbid libraries for CPU and Accelerator

82

1. specialization

• Scientific Libraries are tuned in the general sense

• Tuned in general – reasonably good general purpose
performance, plus tunings of popular sizes

• Problem : nobody uses ‘popular sizes’

• Knowing the specifics of a calling problem is extremely useful
in applying the best tunings

83

2. Application Training runs

• A near-future approach towards highly specialized libraries is
the use of a training model

• A framework derived from ATF is used and offers the general
entry points to the user

• The first time an application runs on t

84

3. Application Auto-tuning

• A tool such as ATF could be available to the user so that he can
auto-tune his own application

• We have some anecdotal evidence that the auto-tuning
approach can be used outside of numerical libraries

• This then does not only apply to the libraries

85

1. Compile a program that calls dgemm (or use blas_test.c and example0.c)

2. Show that you are picking up dgemm from the correct libsci

3. Run with multi-threading libsci on different numbers of threads and report times

4. Write a simple dgemm and compare against libsci (or #include <example1.c>)

5. Write a blocked matmul and compare against the simplest (or use exercise2.c

6. Write a blocked matmul that calls dgemm, comare again (or use exercise3.c)

7. Add rudimentary threading to it – report the times. (example4.c)

8. Note that in the last example, dgemm is called within a loop, what is happening

9. What is the ideal block-size for our simple tuned dgemm?

10. Write a simple test of scalapack LU or Cholesky or QR (or use example5.f)

11. Run on multiple nodes, one scalapack grid point per core

12. Run on multiple nodes, one gridpoint per node, using the threaded BLAS

13. What is the ideal configuration?

14. Compile the CASK example. CASK-PETSC/PETSC/src/ksp/ksp/examples/tutorials/ex2.c

15. Run against the non-tuned PETSc in these folders

16. Run the CASK example against Cray libsci and note performance difference .

17. Change the run-time options to get better performance

18. Try the CRAFFT example programs. (example7.c)

Exercises (please use PGI compiler for all)

	Day_3_Session_5-6
	libraries-hybrid.pdf

