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1. Introduce libsci and explain usage

2. Work through the threaded and hybrid library model

3. Show XT5, XT6 and XE6 performance results

4. Hints on obtaining best performance for all libraries

5. Show you how you can get your cases specialized

6. Describe the future of libraries 

Goals of this talk



• Overview

 Libsci overview history

 Auto-tuning framework

 Contents

 General usage

• Threaded BLAS implementation

• Threaded LAPACK implementation

• ScaLAPACK and hybrid mode Scalapack.

• CASK – tuning PETSc and Trilinos. 

• CASE – Cray Adaptive Simplified Eigensolver

• CRAFFT – Cray Adaptive FFT 

• The future of libraries 

Most descriptions will refer to an example program we can try in the lab

Structure of the Talk



Historical Perspective on Libraries

• Scientific libraries were the first ever productivity feature

• Popular code regions were encapsulated in subroutines

• Programmers of early machine did not need to waste time

• An advantage was that the routine could be tuned heavily

• The performance advantages became increasingly important

• Standards were written for the simplest operations (BLAS1, 
BLAS2, BLAS3). 
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Clearly…

1. Libraries must exhibit multiple layers of parallelism

1. MPP parallelism

2. On-node threading parallelism

3. SIMD vectorization

4. Accelerator parallelism

2. Despite that libraries must hide the complexity of the system

Less obvious : 

1. Libraries must be adaptive and / or auto-tuned

2. The definitions of library APIs must be extended
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• Adaptation is corresponding concept to auto-tuning

• Given a set of good kernels and a range of input values

 Map the best or very good kernel onto each combination 
of input values

 Need a switching function such that 

for any set of testing parameters we obtain the best kernel

Adaptation
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Adaptation, Auto-tuning and Specialization
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CrayATF is the world’s first generalized tuning 
framework
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What this framework allows

• Better optimizations

 CASK, BLAS

• Better flexibility

 We can tune for highly specialized cases and adapt to them 
in the libraries

• Easier transitions to new architectures

 We can re-run the framework when a new platform arrives

• Potential for more powerful tuning tools to users (later)
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Cray Scientific Libraries
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IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CRAFFT – Cray Adaptive FFT

CASE – Cray Simple Adaptive Eigensolver
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Cray Scientific Libraries - Tunings
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Cray Scientific Libraries – autotuning focus
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Cray Scientific Libraries – tuning focus
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General usage information 

• There are many libsci libraries on the systems

• One for each of 

 Compiler (intel, cray, gnu, pathscale, pgi )

 Single thread, multiple thread

 Target (istanbul, mc12 )

• Best way to use libsci is to ignore all of this

• Load the xtpe-module

 module load xtpe-mc12 / xtpe-istanbul / xtpe-mc8 

• Cray’s compiler drivers will link the library automatically

• PETSc, Trilinos, fftw, acml all have their own module

20



Adding another library 

• Perhaps you want to link another library such as ACML

• This can be done. If the library is provided by Cray, then load 
the module. The link will be performed with the libraries in the 
correct order. 

• If the library is not provided by Cray and has no module, add it 
to the link line. 

 Items you add to the explicit link will be in the correct place

• Note, to get explicit BLAS from ACML but scalapack from libsci

 Load acml module. Explicit calls to BLAS in code resolve 
from ACML

 BLAS calls from the scalapack code will be resolved from 
libsci (no way around this)

21



• I recommend adding options to the linker to make sure you have the 
correct library loaded. 

• -Wl adds a command to the linker from the driver

• You can ask for the linker to tell you where an object was resolved from 
using the –y option.

• E.g. –Wl, -ydgemm_ 

• Will return : 

cc -L./ -o mmulator blas_test.o netlib_dgemm.o -Wl,-ydgemm_

blas_test.o: reference to dgemm_

/opt/xt-libsci/10.4.9/cray/lib/libsci.a(dgemm.o): definition 
of dgemm_

Making sure you have the right library



• Threading capabilities in previous libsci versions were poor

 Used PTHREADS (more explicit affinity etc)

 Required explicit linking to a _mp version of libsci

 Was a source of concern for some applications that need 
hybrid performance and interoperability with openMP

• LibSci 10.4.2 February 2010

 OpenMP-aware LibSci

 Allows calling of BLAS inside or outside parallel region

 Single library supported (there is still a single thread lib)

• Usage – load the xtpe module for your system (mc12)

GOTO_NUM_THREADS outmoded – use OMP_NUM_THREADS

OpenMP BLAS



OpenMP LibSci

• Allows seamless calling of the BLAS within or without a parallel 
region

e.g. OMP_NUM_THREADS = 12

call dgemm(…)   threaded dgemm is used with 12 threads

!$OMP PARALLEL DO   

do 

call dgemm(…)   single thread dgemm is used

end do

24



Other situations

• OMP_NUM_THREADS controls both types of parallelism

• Library sets buffers based on OMP_NUM_THREADS on first call

• The side effect to this model it is not possible to have ‘split-
parallelism’

• Changing dynamically OMP_SET_NUM_THREADS is not 
possible!

• We are working on a more flexible scheme for release early 
2011

25
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BLAS2 and BLAS1 performance

• Memory-bound code doesn’t thread well. 

• But, you can still obtain a little speed-up because you use more 
memory channels when you use threads. 

• Some of the BLAS2 can exhibit some speed-up with threading

• In the lab : benchmark the times for DDOT – can we observe 
any speed-up using openMP?

30



Usage

 module load xtpe-mc12

 No need to explicit link

 Add –Wl,-ydgemm_ to link line

 Set OMP_NUM_THREADS in job script

 Run with aprun –n 1 –d12 ./exec ( for 12 threads )

31



• LAPACK is the very popular linear algebra library for on-node

• Cray’s implementation of LAPACK is tuned. 

• LAPACK is threaded in the same way as BLAS

• In some routines, the threading is at a higher level than the 
BLAS updates (LU, Cholesky, QR, some eigensolvers)

• Usage is exactly the same as with the BLAS

• In the lab, benchmark a call to dgetrf and show the threaded 
performance

Threaded LAPACK
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• ScaLAPACK is the near-standard parallel linear algebra library

• Uses distributed memory BLAS, PBLAS

• Uses BLACS for communication

• Using scalapack across nodes and threaded BLAS within nodes 
is the simplest way to obtain hybrid MPP + thread functionality

• Cray have tuned ScaLAPACK on previous machines, and we are 
doing so now on XE6.

ScaLAPACK
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ScaLAPACK
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Tuning ScaLAPACK for XE6

• Cray has a strong track record of tuning parallel linear algebra 
for older systems – T3E, X1

• Used shmem to replace key communication schemes

• On XE, use many of the same techniques and some new ones

 Focusing on the LU, Cholesky, divide and conquer 
eigensolver, tridiagonal reduction

 Using more asynchronous commuinications in 
factorizations

 Replacing MPI with co-array fortran and shmem
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• Use the number of scalpack grid points you want to 
correspond to the number of MPI ranks you want

• Rely on the BLAS to operate with the number of threads you 
desire

• Use OMP_NUM_THREADS and the aprun options to set the 
number of threads you need for on-node parallelism

• Set the threads per node from libsci BLAS with 
OMP_NUM_THREADS

• Use  aprun options –n and –d for nodes and threads

Using ScaLAPACK in hybrid mode on XE6



In the examples

• The example calls the scalapack cholesky factorization

• It is easy to run in hybrid mode

• The number of mpi ranks is the number of scalapack / BLACS 
grid points, (in this example that is hard-coded)

• Set the threads per node using OMP_NUM_THREADS and 
using aprun option –d

41



Iterative Refinement Toolkit

• Mixed precision can yield a big win on x86 machines. 

• SSE (and AVX) units issue double the number of single precision operations 
per cycle.

• On CPU, single precision is always 2x as fast as double

• Accelerators sometimes have a bigger ratio

 Cell – 10x

 Older NVIDIA cards – 7x

 New NVIDIA cards (2x )

 Newer AMD cards ( > 2x ) 

• IRT is a suite of tools to help exploit single precision

 A library for direct solvers

 An automatic framework to use mixed precision under the 

 A domain-specific language and preprocessor to convert codes to use 
mixed precision without active code change

42



• Various tools for solves linear systems in mixed precision
• Obtaining solutions accurate to double precision 

 For well conditioned problems
• Serial and Parallel versions of LU, Cholesky, and QR
• 2 usage methods

 IRT Benchmark routines
 Uses IRT 'under-the-covers' without changing your code

 Simply set an environment variable 
 Useful when you cannot alter source code

 Advanced IRT API
 If greater control of the iterative refinement process is required

 Allows
 condition number estimation 
 error bounds return
 minimization of either forward or backward error
 'fall back' to full precision if the condition number is too high
 max number of iterations can be altered by users

43

Iterative Refinement Toolkit - Library



Decide if you want to use advanced API or benchmark API

benchmark API :
setenv IRT_USE_SOLVERS 1

advanced API :

1. locate the factor and solve in your code (LAPACK or ScaLAPACK)

2. Replace factor and solve with a call to IRT routine 

 e.g. dgesv -> irt_lu_real_serial

 e.g. pzgesv -> irt_lu_complex_parallel

 e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments

 Forward error convergence for most accurate solution

 Condition number estimate

 “fall-back” to full precision if condition number too high

44
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IRT usage with ScaLAPACK
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• A domain-specific language for the expression of mixed 
precision

• Allows the user to denote a factor/solve region and a set of 
inputs outputs

• MXP will convert the code to a mixed-precision equivalent. 

• 2 modes 

 1. Iterative mode for iterative solvers (define inputs and 
outputs and main loop in MXP

 2. Direct mode  for direct solvers. Factor and solve loops 
are replaced with an iterative refinement scheme

IRT – Mixed Precision Preprocessor (MXP)



Pseudo-example Mode=iterative

!$MXP mode = iterative, matrix = A

Double precision, allocatable :: A( : , : )

allocate (A(M,N))

!$MXP loop, output = x

Do 

operations on matrix A

calculate residual 

exit criteria

End

Double precision, allocatable :: A( : , : )

Real, allocatable A_lp( : , : )  

Allocate( A( M, N), A_lp( M, N ) ) 

Do 

operations on matrix A_lp

calculate residual in X_lp

exit criteria (same) 

End

X = X_lp

48



Pseudo-example mode=direct

!$MXP mode = direct, matrix = A, rhs = x

Double precision, allocatable :: A( : , : ), x (: ) 

allocate (A(M,N), x (N) )

!$MXP factorization

Factorization of matrix A

!$MXP end_factorization

!$MXP solve

Solve of matrix A

!$MXP end_solve

Double precision, allocatable :: A( : , : )

real, allocatable :: A_lp(:,:)

allocate ( A( M, N ) , X(N),  A_lp(M, N), X_lp(N ) )

b32 = b64               

L32U32 = A32            

x32 = b32 ( A32 ) ^-1     

x64 = x32                   

do                          

i = i + 1                

r64_i = b32 - A32x32

r32 = r64             

z32 = r32 ( L32U32)^-1  

x_i+1 = x_i + z_i

end do

deallocate(A32, X32)

49



In the examples

• The ScaLAPACK example can be made to work with IRT’s 
automatic interface

• After you have done the scalapack example, then set 
IRT_USE_SOLVERS and repeat the experiment

• You only need to re-run, not recompile or relink

• If you write a simple LAPACK code to show threading in lapack, 
you can do the same thing. 

• Those very interested can call directly e.g. irt_real_parallel

50



• Serial CRAFFT is largely a productivity enhancer

• Some FFT developers have problems such as

 Which library choice to use?

 How to use complicated interfaces (e.g., FFTW)

• Standard FFT practice

 Do a plan stage

 Do an execute

• CRAFFT is designed with simple-to-use interfaces
 Planning and execution stage can be combined into one 

function call
 Underneath the interfaces, CRAFFT calls the appropriate 

FFT kernel

Cray Adaptive FFT (CRAFFT)

51



1. Load module fftw/3.2.0 or higher.

2. Add a Fortran statement “use crafft”

3. call crafft_init()

4. Call crafft transform using none, some or all optional 
arguments (as shown in red)

In-place, implicit memory management : 

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

in-place, explicit memory management

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work) 

out-of-place, explicit memory management : 
crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the 
CRAFFT_PLANNING environment variable and the do_exe optional argument, 
please see the intro_crafft man page. 
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• Parallel CRAFFT is meant as a performance improvement to FFTW2 distributed 
transforms

 Uses FFTW3 for the serial transform

 Uses ALLTOALLV where possible

 Uses a more adaptive communication scheme based on input

• Can provide impressive performance improvements over FFTW2 

• Currently implemented

 complex-complex 

 Real-complex and complex-real

 3-d and 2-d

 In-place and out-of-place

 1 data distribution scheme but looking to support more (please tell us)

• Just released : 

 C language support for serial and parallel

53

Parallel CRAFFT



1. Add “use crafft” to Fortran code

2. Initialize CRAFFT using crafft_init

3. Assume MPI initialized and data distributed (see manpage)

4. Call crafft, e.g. (optional arguments in red)

2-d complex-complex, in-place, internal mem management : 

call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

2-d complex-complex, in-place with no internal memory :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

2-d complex-complex, out-of-place, internal mem manager :

call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

2-d complex-complex, out-of-place, no internal memory :

crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. Also see 3d equivalent : 

man crafft_pz2z3d
54
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Parallel CRAFFT results -
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CRAFFT examples

• We have an example program that calls parallel CRAFFT

• It is simple to run on XE6

• You can write similar from scratch after looking at it

• Or, modify to perform a different transform type
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• At one time Cray provided both 

 Custom sparse direct solvers

 Custom sparse iterative solvers

• There has been an evolution towards using standardized 
frameworks such as Trilinos & PETSc

• Today, we attempt to provide that same performance boost 
while maintaining productivity

• CASK library – optimizes sparse matrix operations on Cray 
computers whilst being invisible to the user

 Cray Trilinos distribution

 Cray PETSc distribution

Sparse



• Serial and Parallel versions of sparse iterative linear solvers

 Suites of iterative solvers
 CG, GMRES, BiCG, QMR, etc.

 Suites of preconditioning methods
 IC, ILU, diagonal block (ILU/IC), Additive Schwartz, Jacobi, SOR

 Support block sparse matrix data format for better 
performance 

 Interface to external packages (ScaLAPACK, SuperLU_DIST)

 Fortran and C support

 Newton-type nonlinear solvers

• Extremely large user community in US and Europe

• http://www-unix.mcs.anl.gov/petsc/petsc-as
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PETSc (Portable, Extensible Toolkit for
Scientific Computation)

http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as


• Cray provides

 Hypre: scalable parallel preconditioners

 ParMetis: parallel graph partitioning package

 MUMPS: parallel multifrontal sparse direct solver

 SuperLU: sequential version of SuperLU_DIST

• To use Cray-PETSc, load the appropriate module : 

module load petsc

(or ) module load petsc-complex 

(no need to load a compiler specific module)

• Treat the Cray distribution as your local PETSc installation

PETSc is not threaded!
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• The Trilinos Project http://trilinos.sandia.gov/

“an effort to develop algorithms and enabling technologies 
within an object-oriented software framework for the solution 
of large-scale, complex multi-physics engineering and scientific 
problems”

• A unique design feature of Trilinos is its focus on packages.

• Very large user-base and growing rapidly. Important to DOE.

• Cray’s optimized Trilinos released on January 21 2010

 Includes 50+ trilinos packages

 Optimized via CASK

 Any code that uses Epetra objects can access the 
optimizations

• Usage : 

module load trilinos
69
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• CASK is a product developed at Cray using the
Cray Auto-tuning Framework (Cray ATF)

• Uses ATF auto-tuning, specialization and Adaptation concepts

• Offline : 

 ATF program builds many thousands of sparse kernel

 Testing program defines matrix categories based on density, dimension 
etc

 Each kernel variant is tested against each matrix class

 Performance table is built and adaptive library constructed

• Runtime

 Scan matrix at very low cost

 Map user’s calling sequence to nearest table match

 Assign best kernel to the calling sequence

 Optimized kernel used in iterative solver execution

Cray Adaptive Sparse Kernel (CASK)
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Support Model 

• Highly portable

• User controlled

Large-scale application

• Highly portable

• User controlled

PETSc / Trilinos / Hypre

• XT4 & XT5 
specific / tuned

• Invisible to 
User

CASK

All systems

Cray only
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CASK and PETSc: Single Node XT5 (60 matrices)

Speedup on Parallel SpMV on 8 cores, 60 different matrices
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• MC12 is the first entirely automated CASK

• ATF used for all stages

 Codegen

 Testing, search

 Execution

 Automation of adaptive lirbrary

• Released September 2010

CASK on MC12 and XE6
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CASK in examples

• We have an example program to help show how CASK can be 
used to speed up petsc and trilinos. 

• Compile the program using the Cray Petsc distribution

• Compile the program using the local CASK-free PETSc. 

• Compare the performance
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CASE – Cray Adaptive Simplified Eigensolver

• Eigensolvers are extremely complicated to use

• Often require quite complicated callign sequences

• Also often require complicated work array set-up

• CASE is a simplified interface into the existing eigensolers

• CASE is also an adaptive framework to use a faster eigensolver
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CASE details

• real and complex, serial and parallel wrappers for eigensolvers

• Very simple overloaded/generic interfaces

 Use a fortran module (‘use case’ in fortran file)

 Use a C++ header (c users)

• Creates all work arrays for you

• Deduces form the arugments that you pass what type of 
functionality you require, and calls the best eigensolver for the 
problem you want

• Can also get adaptive eigensolver by setting 
CASE_USE_FASTEST
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• GPU and hybrid library execution

• BLAS, LAPACK, FFT, Sparse MV

• BLAS is tuned via the auto-tuning framework

• LAPACK is tuned to avoid as much of the communications cost 
as possible

• FFT is tuned assuming that the 

• If you want to obtain accelerated library codes, add –lsci_acc
to the link (likely a xtpe-accel module will be available), then 
relink. 

• Later I will show some examples of BLAS tuning via the ATF

LibSci_acc - Cray scientific Library for 
Accelerators



The future of LibSci

• Work with the code developers (you) to make applications 
scale to the next level

• Prepared to go outside of the bounds of what library vendors 
normally provide

 Specialization model, and auto-specialization with training 
runs

 Kernel auto-tuning using a framework for advanced users

• Highly optimized hyrbid libraries for CPU and Accelerator
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1. specialization

• Scientific Libraries are tuned in the general sense

• Tuned in general – reasonably good general purpose 
performance, plus tunings of popular sizes

• Problem : nobody uses ‘popular sizes’

• Knowing the specifics of a calling problem is extremely useful 
in applying the best tunings
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2. Application Training runs

• A near-future approach towards highly specialized libraries is 
the use of a training model

• A framework derived from ATF is used and offers the general 
entry points to the user

• The first time an application runs on t
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3. Application Auto-tuning

• A tool such as ATF could be available to the user so that he can 
auto-tune his own application

• We have some anecdotal evidence that the auto-tuning 
approach can be used outside of numerical libraries

• This then does not only apply to the libraries
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1. Compile a program that calls dgemm ( or use blas_test.c and example0.c ) 

2. Show that you are picking up dgemm from the correct libsci

3. Run with multi-threading libsci on different numbers of threads and report times

4. Write a simple dgemm and compare against libsci ( or #include <example1.c> )

5. Write a blocked matmul and compare against the simplest (or use exercise2.c

6. Write a blocked matmul that calls dgemm, comare again ( or use exercise3.c ) 

7. Add rudimentary threading to it – report the times. ( example4.c) 

8. Note that in the last example, dgemm is called within a loop, what is happening

9. What is the ideal block-size for our simple tuned dgemm?

10. Write a simple test of scalapack LU or Cholesky or QR ( or use example5.f ) 

11. Run on multiple nodes, one scalapack grid point per core

12. Run on multiple nodes, one gridpoint per node, using the threaded BLAS

13. What is the ideal configuration?

14. Compile the CASK example. CASK-PETSC/PETSC/src/ksp/ksp/examples/tutorials/ex2.c

15. Run against the non-tuned PETSc in these folders

16. Run the CASK example against Cray libsci and note performance difference . 

17. Change the run-time options to get better performance

18. Try the CRAFFT example programs. ( example7.c ) 

Exercises (please use PGI compiler for all )
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