
Debugging Tools 

Multi-threaded Programming, Tuning and 
Optimization on Multi-core MPP Platforms  
February 15-17, 2011 
CSCS Manno 



Potential Errors in Multithreaded Codes (1) 

•  Data Race Condition 
–  Two or more threads accessing and updating same memory 

location 
–  Unintended and unsynchronized access to shared variable 

resulting in unexpected behavior 

2 

Time	  

Thread 1 reads (x) 

Thread 2 reads (x) 

Thread 1 modifies (x) Thread 1 writes  (x) 

Thread 3 reads (x) 

Thread 1 updates and writes  (x) 



Potential Errors in Multithreaded Codes (2) 

•  Deadlocks 
–  Threads waiting on a resource that never becomes available 

3 

Time	  

Thread	  A	  

Thread	  B	  

Lock	  
Resource	  #	  

1	  

Lock	  
Resource	  #	  

2	  

Thread	  A	  

Wait	  for	  
Resource	  #	  

2	  

Wait	  for	  
Resource	  #	  

1	  
Thread	  B	  



Deadlock Examples 

4 

!$OMP PARALLEL DEFAULT(SHARED) 
  
!$OMP CRITICAL 
      DO I = 1, 10 
        X= X + 1 
!$OMP   BARRIER 
        Y= Y + I*I 
      END DO 
!$OMP END CRITICAL 
  
!$OMP END PARALLEL 

#pragma omp parallel 
   myid = omp_get_thread_num(); 
   if (myid %2) { 
      // do some odd work 
      #pragma omp barrier 
      // do more work 
   } 
   else { 
      // do some even work 
      #pragma omp barrier 
      // do more work 
   } 
} 



How To Avoid Deadlocks 

•  Using Barrier in for selected number of threads 

•  Avoid the lock functions as much as possible 

•  Avoid nesting of locks  

5 



Potential Errors in Multithreaded Codes (3) 

•  Livelock 
–  Infinite loop conditions for certain loops (traditional loop errors)   

•  Memory issues 
–  Stack overflows due to replication of private data items 
–  Memory leaks 

6 



Debugging 

What is going on inside 
your application ? 

 A debugger will follow 
the program through execution so 
you can watch your program execute 
step by step and view the contents of 
memory : 

  * Let you examine the program 
execution step by step 
  * Make the program stops on 
specified places or on specified 
conditions 
  * Give information about current 
variables’ values, the memory and 
stack 

7 

[Re]-‐run	  	  
	  (No	  recompilaAon	  	  

Is	  needed	  )	  

Analyse	  
Insert	  	  

Breakpoints	  



Important Debugging Concepts 

•  Stopping and watching a program execution at a certain 
point 
–  Breakpoints 
–  Watchpoints 

•  Stepping and continuing to control program execution  
–  Single step lines of code 
–  Single step assembler instructions 
–  Resume program execution  

•  Examining the stack 
–  Backtracing  

8 



Debugging Considerations Unique to OpenMP 

•  Challenges 
–  Nondeterministic failures 
–  Reproducibility and predictability of bugs  
–  Compiler transformation manifests complex bugs 
–  Memory analysis for data scoping constructs 

•  Use multi-threading feature of a debugger to: 
–  Identify exactly when the failure occur (thread level) 
–  Review program execution and memory contents 
–  Inspect core files after a crash 

9 



Debugging Tools Available on CSCS Platforms 

•  Two tools available at the moment 
–  Totalview (for hybrid MPI+OpenMP applications) 

•  module avail xt-totalview  
–  gdb  

•  module avail gdb 

•  Must compile with the -g compiler flag 

•  For failures or crashes that occur after long execution times 
–  Cray Fast Track Debugging (compile with -gFast)—only available for 

Cray compilers 
–  For further info: http://docs.cray.com/books/S-9401-0909//

S-9401-0909.pdf   

10 



Other Tools to Aid Multi-threaded Programming 

•  Debugging tools 
–  Allinea DDT (MPI + OpenMP) 
–  Debugger from different compiler vendors 
–  … 

•  Correctness tools 
–  Intel Inspector 
–  Rogue Wave ThreadSpotter  
–  … 

11 



Further Info 

•  Debugging and Performance Analysis Tools available at 
CSCS http://www.cscs.ch/145.0.html   

•  Craydocs http://docs.cray.com/ 
•  Totalview tools (deubugger, memory scape and replay engine) 

http://www.totalviewtech.com/home/  
•  Allinea DDT http://www.allinea.com/products/ddt/  
•  Acumem ThreadSpotter and SlowSpotter  

http://www.acumem.com  
•  Eclipse Parallel Tools Platform  

http://www.eclipse.org/ptp/  
•  Intel Parallel Inspector  

http://software.intel.com/en-us/articles/intel-parallel-inspector/  

12 



1

Totalview 
● TotalView is a debugger with support 

for Fortran, C, C++, MPI, OpenMP and 
threads.

● TotalView is an interactive tool that lets 
you debug serial, multiprocessor and 
multithreaded programs. It can be 
executed either as a graphical user 
interface (by using the totalview 
executable) or from a command-line 
interface (by using the totalviewcli 
executable). Totalview provides source-
level debugging of Fortran and Fortran 
90, C, and C++ codes. It can be used to 
debug parallel programs based on MPI. 
It also has facilities for multi-process 
thread-based parallel programs such as 
OpenMP. 



Multi-threading programming
02/2011 2

Breakpoints 



Multi-threading programming
02/2011 3

Root window 

Host name

Action Point 

ID number

Expand - Collapse

Toggle
Process 

Status

TotalView 

Thread ID #

Rank #

(if MPI program)

Hierarchical/

Linear Toggle



Multi-threading programming
02/2011 4

Action points 



Multi-threading programming
02/2011 5

Examining data 



Multi-threading programming
02/2011 6

Viewing data across processes 



Multi-threading programming
02/2011 7

Memory usage 



Multi-threading programming
02/2011 8

Memory leaks 



Multi-threading programming
02/2011 9

 Demo : Totalview



Multi-threading programming
02/2011 10

Getting started (1) 



Multi-threading programming
02/2011 11

Getting started (2) 



Multi-threading programming
02/2011 12

Launching Totalview (1) 

Root 
window

Lists process and thread 
information

Process
window

Displays stack trace, stack 
frame, and source code for the 
selected thread in a process

Process 
group 
window

Displays process groups for 
multiprocess programs

Variable 
window

Displays address, data type, and 
value of local variable, register, 
or global variable 



Multi-threading programming
02/2011 13

Launching Totalview (2) 



Multi-threading programming
02/2011 14

Inserting Breakpoints



Multi-threading programming
02/2011 15

Viewing data across processes and threads



Multi-threading programming
02/2011 16

Restarting and exiting Totalview 



Multi-threading programming
02/2011 17

Frequently used GDB commands 
General Commands

● help [name] : Show information 
about GDB command

● run [<args>] : runs selected 
program with arguments <args>

● attach <pid> : attach gdb to a 
running process

● Kill : kills the process being 
debugged

● Quit : quits the gdb program

Stepping and Continuing

● c[ontinue] : continue execution 
(after a stop)

● s[tep] : step one line, entering 
called functions

● n[ext] : step one line, without 
entering functions

Breakpoint commands

● b[reak] [<where>] : sets breakpoints.  <where> 
can be a function name, a line number or a hex 
address

●
[r]watch <expr> : sets a watchpoint, which will 
break

● when <expr> is written to [or read]

● info break[points] : prints out a listing of all 
breakpoints

● d[elete] [<nums>]  : deletes breakpoints

Commands for looking around

● list [<where>] : prints out source code at <where>

●
backtrace [<n>] : prints a backtrace <n> levels 
deep

● info [<what>] : prints out info on <what>

●
p[rint] [<expr>] : prints out <expr>

●
d[isplay] : prints value of expression each time the 
program stops.



Multi-threading programming
02/2011 18

 Demo : GDB



Multi-threading programming
02/2011 19

Getting started 



Multi-threading programming
02/2011 20

Launching GDB 



Multi-threading programming
02/2011 21

Inserting Breakpoints 



Multi-threading programming
02/2011 22

Viewing data across threads (1)



Multi-threading programming
02/2011 23

Viewing data across threads (2) 



Multi-threading programming
02/2011 24

Restarting and exiting GDB 



Multi-threading programming
02/2011 25

● Questions ?
● Hands-on exercises
● Thank you for your attention



Multi-threading programming
02/2011 26

Hands-on exercise1 
Data race condition

● A data race occurs under the following 
conditions:

● 2 or more threads in a process 
concurrently access the same memory 
location,

● At least one of the threads is accessing 
the memory location for writing, and

● The threads are not using any exclusive 
locks to control their accesses to that 
memory.

● When these three conditions hold, the order 
of accesses is non-deterministic. Therefore 
each run can give different results depending 
on the order of the accesses. Some data 
races may be harmless (for example, when 
the memory access is used for a busy-wait), 
but many data races are either bugs or 
caused by bugs in the program.

The object of this exercise is to determine 
whether it's safe to parallelise every DO loop 
that you see. Follow these steps :

● copy loopy.f90 to your directory.

● compile the code sequentially (that is with no 
'-fopenmp' flag) and determine the correct 
result.

● parallelise every loop and run the program on 
2, 6, 12 and 24 threads (you can do this 
interactively) and compare these results with 
those from above.

● What's wrong ?

● Rewrite your parallelised code to give the 
correct results irrespective of the number of 
threads used.



Multi-threading programming
02/2011 27

Hands-on exercise2 
Segmentation faults

● Default thread stack size  can be easy to 
exhaust. OpenMP thread stack size is an 
implementation dependent resource. In this 
case, the array is too large to fit into the 
thread stack space and causes the 
segmentation fault.

● The OpenMP standard does not specify how 
much stack space a thread should have. 
Consequently, implementations will differ  in 
the default thread stack size.

● Default thread stack size can also be non-
portable between compilers. Threads that 
exceed their stack allocation may or may not 
seg fault. An application may continue to run 
while data is being corrupted. 

● OMP_STACKSIZE  (OMP/3.0) : controls the 
size of the stack for (non-master) threads.

● Set the default thread stack size (in kilobytes 
by default) or B, K, M or G (bytes, kilobytes, 
megabytes or gigabytes).

The object of this exercise is to use the 
debuggers to find the origin of the 
segmentation fault. Follow these steps :

● copy crash.f to your directory.

●  module load PrgEnv-gnu gdb

● compile  (with '-g -fopenmp' flag) and run the 
code with any number of threads.

● What's wrong ?



Multi-threading programming
02/2011 28

If OMP_STACKSIZE is not set, the initial 
value of the stacksize-var internal 
control variable is set to the default 
value. 

MemoryScape only shows information 
for the main thread’s stack.

Hands-on exercise2 



Multi-threading programming
02/2011 29

Hands-on exercise3 

Deadlock

● Deadlock describes a condition where two or more 
threads are blocked (hang) forever, waiting for each 
other. Suppose we have a process with two or 
more threads. A deadlock occurs when the 
following three conditions hold :

➔ Threads already holding locks request new locks, 

➔ The requests are made concurrently, and

➔ Two or more threads form a circular chain where 
each thread waits for a lock that the next thread in 
the chain holds.

● Here is an example of a deadlock condition:

➔ Thread 1: holds lock A, requests lock B

➔ Thread 2: holds lock B, requests lock A

● A deadlock can be of two types: A "potential deadlock" 
or an "actual deadlock". A potential deadlock is a 
deadlock that did not occur in a given run, but can occur 
in different runs of the program depending on the 
timings of the requests for locks by the threads. An 
actual deadlock is one that actually occured in a given 
run of the program. An actual deadlock causes the 
threads involved to hang, but may or may not cause the 
whole process to hang. 



Multi-threading programming
02/2011 30

KO


