

Programming GPU Devices Using OpenACC Directives on the Cray XK6 Platform Luiz DeRose, Alistair Hart, Heidi Poxon, & Adrian Tate Cray Inc.

Patrick Wohlschlegel Allinea

Cray Inc. Proprietary

Agenda – Day 1 (March 6, 2012)

- 09:00 09:15 Welcome / Introductions (Luiz DeRose)
- 09:15 09:30 Overview of the Cray XK system (Luiz DeRose)
- 09:30 10:30 Steps to create a hybrid code (Heidi Poxon)
- 10:30 11:00 Break
- 11:00 12:00 OpenACC (Alistair Hart)
 - Execution and memory models
 - OpenACC Directives
 - CUDA Interoperability
 - CCE Support status
- 12:00 13:00 Lunch
- 13:00 13:30 User experiences talks on the Cray XK6 system
 - Tim Ewart, (U Geneva)
- 13:30 14:30 Use case examples (Alistair Hart)
- 14:30 15:00 Break
- 15:00 15:30 How to build/run existing CUDA and OpenCL on the Cray XK6 (Alistair Hart)
- 15:30 17:30 Lab (Cray / CSCS)

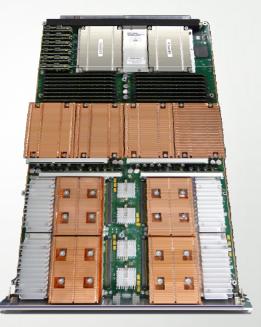
Agenda – Day 2 (March 7, 2012)

- 09:00 09:45 Performance Tools for the Cray XK (Heidi Poxon)
- 09:45 10:30 DDT debugger for the XK6 (Patrick Wohlschlegel)

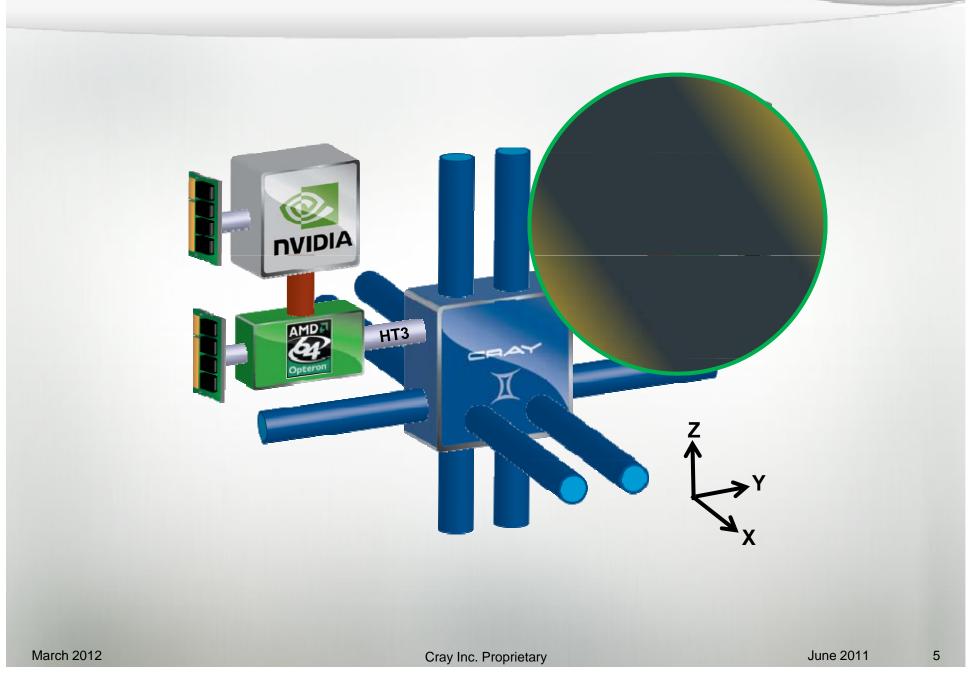
10:30 - 11:00 Break

- 11:00 11:30 Cray libsci_acc (Adrian Tate)
- 11:30 12:00 OpenACC future (Luiz DeRose)
 - New features (functionality and performance)
 - Standardization
 - Support for other architectures
- 12:00 13:00 Lunch
- 13:00 14:30 User experiences talks on the Cray XK6 system
 - Xavier Lapillonne (MeteoSwiss)
 - Joachim Stadel (U. Zurich)
 - Matthias Christen (USI)

14:30 - 15:00 Break


15:00 - 17:30 Lab (Cray / CSCS / Allinea)

Cray XK6 Overview


- The Cray XK6
 - Next generation NVIDIA Fermi X2090 GPU
 - > 20% better performance than 2070
 - > compute: 448 \rightarrow 512 cores; 1.15 \rightarrow 1.30 GHz clock
 - memory: 6GB; 138 GB/s bandwidth
 - AMD Interlagos CPU
 - Cray Gemini interconnect
 high bandwidth/low latency scalability
 - Fully compatible with Cray XE6 product line
 - Fully upgradeable from Cray XT/XE systems

Cray XK6 Compute Node

Cray Vision for Accelerated Computing

Most important hurdle for widespread adoption of accelerated computing is programming difficulty

• Need a single programming model that is **portable across machine types**

- Portable expression of heterogeneity and multi-level parallelism
- Programming model and optimization should not be significantly different for "accelerated" nodes and multi-core x86 processors
- > Allow users to maintain a single code base
- Cray's approach to Accelerator Programming is to provide an ease of use tightly coupled high level programming environment with compilers, libraries, and tools that will hide the complexity of the system
 - Focus on integration and differentiation
 - Target ease of use with extended functionality and increased automation

Ease of use is possible with

- Compiler making it feasible for users to write applications in Fortran, C, C++
- Tools to help users port and optimize for accelerators
- Auto-tuned scientific libraries

Unified X86/GPU Programming Environment

- The Cray XK6 includes the first-generation of the Cray Unified X86/GPU Programming Environment
- Why is Cray putting so much effort into this?
 - It is hard to get good performance from hybrid systems
 - Opens up GPU computing to a larger user base
 - A good Programming Environment narrows the gap between observed and achievable performance
- The Cray XK6 PE supports three classes of users:
 - 1. "Hardcore" GPU programmers with existing CUDA ports
 - 2. Users with parallel codes, ideally with some OpenMP experience, but less GPU knowledge
 - **3.** Users with serial codes looking for portable parallel performance with and without GPUs

Programming for a Node with Accelerator

- Fortran, C, and C++ compilers
 - Directives to drive compiler optimization
 - Compiler does the "heavy lifting" to split off the work destined for the accelerator and perform the necessary data transfers
 - Compiler optimizations to take advantage of accelerator and multi-core X86 hardware appropriately
 - Advanced users can mix CUDA functions with compiler-generated accelerator code
 - Debugger support with DDT
- Cray Reveal, built upon an internal compiler database containing a representation of the application (the CCE Program Library)
 - Source code browsing tool that provides interface between the user, the compiler, and the performance analysis tool
 - Scoping tool to help users port and optimize applications
 - Performance measurement and analysis information for porting and optimization
- Scientific Libraries support
 - Adaptive Auto-tuned libraries (using Cray Auto-Tuning Framework)

Accelerator Programming

- Why a new model? There are already many ways to program:
 - CUDA and OpenCL
 - All are quite low-level and closely coupled to the GPU
 - PGI CUDA Fortran
 - > Still CUDA just in a better base language
 - PGI accelerator directives, CAPS HMPP
 - First steps in the right direction Needed standardization
- User needs to write specialized kernels:
 - Hard to write and debug
 - Hard to optimize for specific GPU
 - Hard to update (porting/functionality)

Directives provide high-level approach

- Simple programming model for heterogeneous systems
- Based on original source code
 - Easier to maintain/port/extend code
 - > The same source code can be compiled for multicore CPU
- Possible performance sacrifice
 - > A small performance gap is acceptable (do you still hand-code in assembler?)
 - > Goal is to provide at least 90% of the performance obtained with hand coded CUDA
 - Already seeing this in many cases, more tuning ongoing

OpenACC.

DIRECTIVES FOR ACCELERATORS

- A common directive programming model for today's GPUs
 - Announced at SC11 conference
 - Offers portability between compilers
 - Drawn up by: NVIDIA, Cray, PGI
 - Works for Fortran, C, C++
 - Standard available at <u>www.OpenACC-standard.org</u>
 - Initially implementations targeted at NVIDIA GPUs
- Current version: 1.0 (November 2011)
- Compiler support:
 - Cray CCE: partial now, complete in 2012
 - PGI Accelerator: released product in 2012

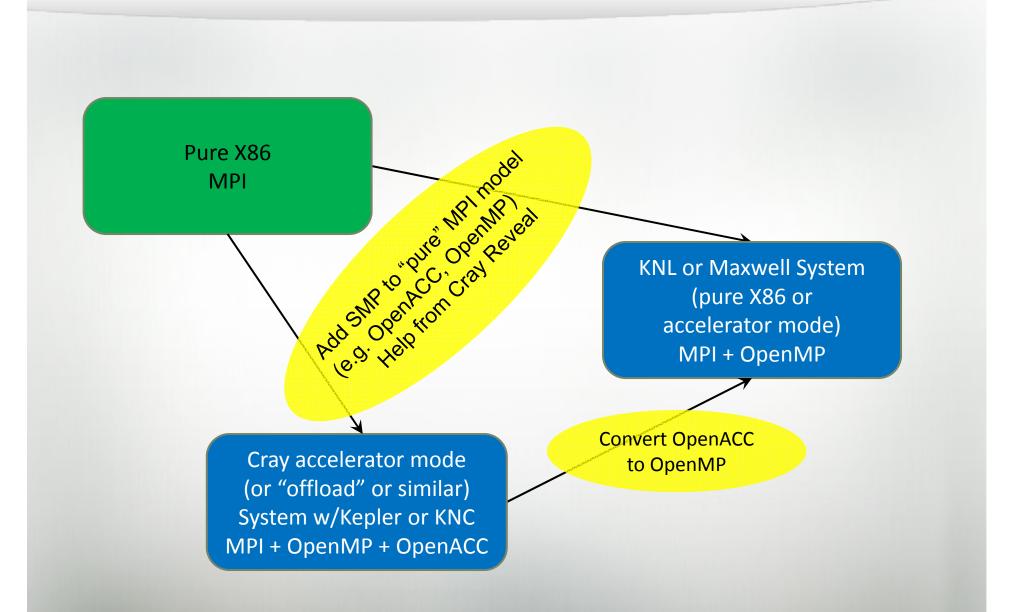
COMPANY

Cray Inc. Proprietary

• CAPS: released product in Q1 2012

NVIDIA. The Portland Group

CAP


OpenACC Accelerator Directives

- Compiler directives provide a simple programming model for heterogeneous systems
 - Can compile in the presence or absence of an accelerator
- An open standard is the most attractive for developers
 - Portability; multiple compilers for debugging; permanence
 - Helps programmer tools proliferation
 - Provides faster time to adoption of accelerators
- Proposed to the OpenMP Language Committee
 - Subcommittee of OpenMP ARB, aiming for OpenMP 4.0
 - Includes most major vendors
 - Co-chaired by Cray

Likely Application Migration Paths

Cray Inc. Proprietary