
CSCS XK PE Workshop March 6-7, 2012 



 When code is network bound 
•  Look at collective time, excluding sync time:  this goes up as network 

becomes a problem 
•  Look at point-to-point wait times: if these go up, network may be a 

problem 

 When MPI starts leveling off 
•  Too much memory used, even if on-node shared communication is 

available 
•  As the number of MPI ranks increases, more off-node communication 

can result, creating a network injection issue 
 

 When contention of shared resources increases 
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  Reduce number of MPI ranks per node 

  Add parallelism to MPI ranks to take advantage of cores 
within a node while minimizing network injection contention 

 Maximize on-node communication between MPI ranks 

  Relieve on-node shared resource contention by pairing 
threads or processes that perform different work (for example 
computation with off-node communication) on the same node 

  Accelerate work intensive parallel loops 
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  Determine where to add additional levels of parallelism 
•  Assumes MPI application is functioning correctly on X86 
•  Find top work-intensive loops (perftools + CCE loop work estimates) 

  Split loop work among threads 
•  Do parallel analysis and restructuring on targeted high level loops 
•  Use CCE loopmark feedback, Reveal loopmark and source browsing 

  Add parallel directives and acceleration extensions 
•  Insert OpenMP directives (Reveal scoping assistance) 
•  Run on X86 to verify application and check for performance 

improvements 
•  Convert desired OpenMP directives to OpenACC 
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  Run on X86 + GPU and get performance feedback 
•  perftools profiling analysis 

  Optimize for data locality and copies to the GPU 
•  perftools accelerator statistics 
 

  Optimize kernel on GPU 
•  perftools GPU counter statistics 
•  perftools Kernel statistics 

  Optimize core performance on CPU 
•  Automatic profiling analysis with CPU HW counter threshold feedback 
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  Helps identify loops to optimize (parallelize serial loops): 
•  Loop timings approximate how much work exists within a loop 
•  Trip counts can be used to approximate work and help carve up loop 

on GPU 

 
  Enabled with CCE –h profile_generate option 

•  Should be done as separate experiment – compiler optimizations are 
restricted with this feature 

  Loop statistics reported by default in pat_report table 

  Coming soon: integrated loop information in profile 
•  Get exclusive times and loops attributed to functions 
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  Access CCE and perftools software 
module load PrgEnv-cray perftools!

  Compile AND link with –h profile_generate 
cc –h profile_generate –c my_program.c!
cc –h profile_generate –o my_program my_program.o!

  Instrument binary for tracing 
pat_build –u my_program   OR!
pat_build –w my_program!

  Run application 
  Create report with loop statistics 

pat_report my_program+pat.xf > loops_report!
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Table 1:  Profile by Function Group and Function!

 Time%  |      Time  |     Imb.  |  Imb.  |  Calls  |Group!

        |            |     Time  | Time%  |         | Function!

        |            |           |        |         |  PE=HIDE!

        |            |           |        |         |   Thread=HIDE!

!

 100.0% | 176.687480 |        -- |     -- | 17108.0 |Total!

|------------------------------------------------------------------------!

|  85.3% | 150.789559 |        -- |     -- |     8.0 |USER!

||-----------------------------------------------------------------------!

|  85.0% | 150.215785 | 24.876709 |  14.4% |     2.0 | jacobi_.LOOPS!

||=======================================================================!

|  12.2% |  21.600616 |        -- |     -- | 16071.0 |MPI!

||-----------------------------------------------------------------------!

|  11.9% |  21.104488 | 41.016738 |  67.1% |  3009.0 | mpi_waitall!

||=======================================================================!

|   2.4% |   4.297301 |        -- |     -- |  1007.0 |MPI_SYNC!

||-----------------------------------------------------------------------!

|   2.4% |   4.166092 |  4.135016 |  99.3% |  1004.0 | mpi_allreduce_(sync)!

|========================================================================!
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Table 3:  Inclusive Loop Time from -hprofile_generate!

!

 Loop Incl  |    Loop  |  Loop  |  Loop  |Function=/.LOOP[.]!

      Time  |     Hit  | Trips  | Trips  | PE=HIDE!

     Total  |          |   Min  |   Max  |!

|---------------------------------------------------------------!

…!

| 175.676881 |        2 |      0 |   1003 |jacobi_.LOOP.07.li.267!

|   0.917107 |     1003 |      0 |    260 |jacobi_.LOOP.08.li.276!

|   0.907515 |   129888 |      0 |    260 |jacobi_.LOOP.09.li.277!

|   0.446784 |     1003 |      0 |    260 |jacobi_.LOOP.10.li.288!

|   0.425763 |   129888 |      0 |    516 |jacobi_.LOOP.11.li.289!

|   0.395003 |     1003 |      0 |    260 |jacobi_.LOOP.12.li.300!

|   0.374206 |   129888 |      0 |    516 |jacobi_.LOOP.13.li.301!

| 126.250610 |     1003 |      0 |    256 |jacobi_.LOOP.14.li.312!

| 126.223035 |   127882 |      0 |    256 |jacobi_.LOOP.15.li.313!

| 124.298650 | 16305019 |      0 |    512 |jacobi_.LOOP.16.li.314!

|  20.875086 |     1003 |      0 |    256 |jacobi_.LOOP.17.li.336!

|  20.862715 |   127882 |      0 |    256 |jacobi_.LOOP.18.li.337!

|  19.428085 | 16305019 |      0 |    512 |jacobi_.LOOP.19.li.338!

|========================================================================= 

!
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  Generate compiler program library with whole program 
analysis for more in-depth inter-procedural analysis 
•  % cc –hwp –h pl=/path_to_my_program_library/!

  Generate loopmark information, view .lst files 
•  % cc –rm –c my_program.c!

  Use Reveal to view loopmark information, compiler 
messages, browse source 
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New code restructuring and analysis assistant… 
•  Uses both the performance toolset and CCE’s program library 

functionality to provide static and runtime analysis information  
•  Assists user with the code optimization phase by correlating source 

code with analysis to help identify which areas are key candidates for 
optimization 

 

  Key Features 
•  Annotated source code with compiler optimization information 

  Feedback on critical dependencies that prevent optimizations 
•  Scoping analysis 

  Identify, shared, private and ambiguous arrays 
o  Allow user to privatize ambiguous arrays 
o  Allow user to override dependency analysis 

•  Source code navigation based on performance data collected through 
CrayPat 
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  Navigate by profile call tree with loops 
  Initiate scoping analysis from within Reveal (no omp_analyze 

directives or compiler command-line option) 
  Directive generation and insertion into source 
  Focus on loops with unknowns 
  Create OpenMP or OpenAcc directives 
  Highlight “interesting” compiler feedback 

•  Was call site flattened or not? 
•  Was loop flattened or not? 
•  Was loop or region pattern-matched? 
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  Use cce 8.0.3 or later 
  Start with clean build 
  Collect loop statistics with cce and perftools to identify loops 

to parallelize 

  Add !dir$ omp_analyze_loop directive before each loop to 
parallelize 
•  This directive only works with serial loops.  Add –x omp or –x acc to 

your cce compile options if loop is already parallel 

  Compile application for scoping analysis 
•  % ftn -homp_analyze -hwp -hpl=/full_path/program.pl!

  Launch reveal: 
•  % reveal program.pl!
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  Expand files and functions to look for loops with scoping 
information (highlighted green) 

  Scope any unknowns 

  Dump scoping information to stderr (where you launched 
reveal) to copy and past into a directive in your source by 
clicking “Dump Data” 
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