
CSCS XK PE Workshop March 6-7, 2012

 When code is network bound
•  Look at collective time, excluding sync time: this goes up as network

becomes a problem
•  Look at point-to-point wait times: if these go up, network may be a

problem

 When MPI starts leveling off
•  Too much memory used, even if on-node shared communication is

available
•  As the number of MPI ranks increases, more off-node communication

can result, creating a network injection issue

 When contention of shared resources increases

March 6-7, 2012 Cray Inc. Proprietary

  Reduce number of MPI ranks per node

  Add parallelism to MPI ranks to take advantage of cores
within a node while minimizing network injection contention

 Maximize on-node communication between MPI ranks

  Relieve on-node shared resource contention by pairing
threads or processes that perform different work (for example
computation with off-node communication) on the same node

  Accelerate work intensive parallel loops

March 6-7, 2012 Cray Inc. Proprietary

  Determine where to add additional levels of parallelism
•  Assumes MPI application is functioning correctly on X86
•  Find top work-intensive loops (perftools + CCE loop work estimates)

  Split loop work among threads
•  Do parallel analysis and restructuring on targeted high level loops
•  Use CCE loopmark feedback, Reveal loopmark and source browsing

  Add parallel directives and acceleration extensions
•  Insert OpenMP directives (Reveal scoping assistance)
•  Run on X86 to verify application and check for performance

improvements
•  Convert desired OpenMP directives to OpenACC

March 6-7, 2012 Cray Inc. Proprietary

  Run on X86 + GPU and get performance feedback
•  perftools profiling analysis

  Optimize for data locality and copies to the GPU
•  perftools accelerator statistics

  Optimize kernel on GPU
•  perftools GPU counter statistics
•  perftools Kernel statistics

  Optimize core performance on CPU
•  Automatic profiling analysis with CPU HW counter threshold feedback

March 6-7, 2012 Cray Inc. Proprietary

  Helps identify loops to optimize (parallelize serial loops):
•  Loop timings approximate how much work exists within a loop
•  Trip counts can be used to approximate work and help carve up loop

on GPU

  Enabled with CCE –h profile_generate option

•  Should be done as separate experiment – compiler optimizations are
restricted with this feature

  Loop statistics reported by default in pat_report table

  Coming soon: integrated loop information in profile
•  Get exclusive times and loops attributed to functions

March 6-7, 2012 Cray Inc. Proprietary

  Access CCE and perftools software
module load PrgEnv-cray perftools!

  Compile AND link with –h profile_generate
cc –h profile_generate –c my_program.c!
cc –h profile_generate –o my_program my_program.o!

  Instrument binary for tracing
pat_build –u my_program OR!
pat_build –w my_program!

  Run application
  Create report with loop statistics

pat_report my_program+pat.xf > loops_report!

March 6-7, 2012 Cray Inc. Proprietary

Table 1: Profile by Function Group and Function!

 Time% | Time | Imb. | Imb. | Calls |Group!

 | | Time | Time% | | Function!

 | | | | | PE=HIDE!

 | | | | | Thread=HIDE!

!

 100.0% | 176.687480 | -- | -- | 17108.0 |Total!

|--!

| 85.3% | 150.789559 | -- | -- | 8.0 |USER!

||---!

| 85.0% | 150.215785 | 24.876709 | 14.4% | 2.0 | jacobi_.LOOPS!

||===!

| 12.2% | 21.600616 | -- | -- | 16071.0 |MPI!

||---!

| 11.9% | 21.104488 | 41.016738 | 67.1% | 3009.0 | mpi_waitall!

||===!

| 2.4% | 4.297301 | -- | -- | 1007.0 |MPI_SYNC!

||---!

| 2.4% | 4.166092 | 4.135016 | 99.3% | 1004.0 | mpi_allreduce_(sync)!

|==!

March 6-7, 2012 Cray Inc. Proprietary

Table 3: Inclusive Loop Time from -hprofile_generate!

!

 Loop Incl | Loop | Loop | Loop |Function=/.LOOP[.]!

 Time | Hit | Trips | Trips | PE=HIDE!

 Total | | Min | Max |!

|---!

…!

| 175.676881 | 2 | 0 | 1003 |jacobi_.LOOP.07.li.267!

| 0.917107 | 1003 | 0 | 260 |jacobi_.LOOP.08.li.276!

| 0.907515 | 129888 | 0 | 260 |jacobi_.LOOP.09.li.277!

| 0.446784 | 1003 | 0 | 260 |jacobi_.LOOP.10.li.288!

| 0.425763 | 129888 | 0 | 516 |jacobi_.LOOP.11.li.289!

| 0.395003 | 1003 | 0 | 260 |jacobi_.LOOP.12.li.300!

| 0.374206 | 129888 | 0 | 516 |jacobi_.LOOP.13.li.301!

| 126.250610 | 1003 | 0 | 256 |jacobi_.LOOP.14.li.312!

| 126.223035 | 127882 | 0 | 256 |jacobi_.LOOP.15.li.313!

| 124.298650 | 16305019 | 0 | 512 |jacobi_.LOOP.16.li.314!

| 20.875086 | 1003 | 0 | 256 |jacobi_.LOOP.17.li.336!

| 20.862715 | 127882 | 0 | 256 |jacobi_.LOOP.18.li.337!

| 19.428085 | 16305019 | 0 | 512 |jacobi_.LOOP.19.li.338!

|===

!
March 6-7, 2012 Cray Inc. Proprietary

  Generate compiler program library with whole program
analysis for more in-depth inter-procedural analysis
•  % cc –hwp –h pl=/path_to_my_program_library/!

  Generate loopmark information, view .lst files
•  % cc –rm –c my_program.c!

  Use Reveal to view loopmark information, compiler
messages, browse source

March 6-7, 2012 Cray Inc. Proprietary

New code restructuring and analysis assistant…
•  Uses both the performance toolset and CCE’s program library

functionality to provide static and runtime analysis information
•  Assists user with the code optimization phase by correlating source

code with analysis to help identify which areas are key candidates for
optimization

  Key Features
•  Annotated source code with compiler optimization information

  Feedback on critical dependencies that prevent optimizations
•  Scoping analysis

  Identify, shared, private and ambiguous arrays
o  Allow user to privatize ambiguous arrays
o  Allow user to override dependency analysis

•  Source code navigation based on performance data collected through
CrayPat

March 6-7, 2012 Cray Inc. Proprietary

March 6-7, 2012

Compiler	

feedback	

Compiler	

feedback	

Performance	

feedback	

Cray Inc. Proprietary

March 6-7, 2012 Cray Inc. Proprietary

  Navigate by profile call tree with loops
  Initiate scoping analysis from within Reveal (no omp_analyze

directives or compiler command-line option)
  Directive generation and insertion into source
  Focus on loops with unknowns
  Create OpenMP or OpenAcc directives
  Highlight “interesting” compiler feedback

•  Was call site flattened or not?
•  Was loop flattened or not?
•  Was loop or region pattern-matched?

March 6-7, 2012 Cray Inc. Proprietary

  Use cce 8.0.3 or later
  Start with clean build
  Collect loop statistics with cce and perftools to identify loops

to parallelize

  Add !dir$ omp_analyze_loop directive before each loop to
parallelize
•  This directive only works with serial loops. Add –x omp or –x acc to

your cce compile options if loop is already parallel

  Compile application for scoping analysis
•  % ftn -homp_analyze -hwp -hpl=/full_path/program.pl!

  Launch reveal:
•  % reveal program.pl!

!March 6-7, 2012 Cray Inc. Proprietary

  Expand files and functions to look for loops with scoping
information (highlighted green)

  Scope any unknowns

  Dump scoping information to stderr (where you launched
reveal) to copy and past into a directive in your source by
clicking “Dump Data”

March 6-7, 2012 Cray Inc. Proprietary

Blue Waters PE Workshop December 13-16, 2011

