
CSCS XK PE Workshop March 6-7, 2012

 When code is network bound
•  Look at collective time, excluding sync time: this goes up as network

becomes a problem
•  Look at point-to-point wait times: if these go up, network may be a

problem

 When MPI starts leveling off
•  Too much memory used, even if on-node shared communication is

available
•  As the number of MPI ranks increases, more off-node communication

can result, creating a network injection issue

 When contention of shared resources increases

March 6-7, 2012 Cray Inc. Proprietary

  Reduce number of MPI ranks per node

  Add parallelism to MPI ranks to take advantage of cores
within a node while minimizing network injection contention

 Maximize on-node communication between MPI ranks

  Relieve on-node shared resource contention by pairing
threads or processes that perform different work (for example
computation with off-node communication) on the same node

  Accelerate work intensive parallel loops

March 6-7, 2012 Cray Inc. Proprietary

  Determine where to add additional levels of parallelism
•  Assumes MPI application is functioning correctly on X86
•  Find top work-intensive loops (perftools + CCE loop work estimates)

  Split loop work among threads
•  Do parallel analysis and restructuring on targeted high level loops
•  Use CCE loopmark feedback, Reveal loopmark and source browsing

  Add parallel directives and acceleration extensions
•  Insert OpenMP directives (Reveal scoping assistance)
•  Run on X86 to verify application and check for performance

improvements
•  Convert desired OpenMP directives to OpenACC

March 6-7, 2012 Cray Inc. Proprietary

  Run on X86 + GPU and get performance feedback
•  perftools profiling analysis

  Optimize for data locality and copies to the GPU
•  perftools accelerator statistics

  Optimize kernel on GPU
•  perftools GPU counter statistics
•  perftools Kernel statistics

  Optimize core performance on CPU
•  Automatic profiling analysis with CPU HW counter threshold feedback

March 6-7, 2012 Cray Inc. Proprietary

  Helps identify loops to optimize (parallelize serial loops):
•  Loop timings approximate how much work exists within a loop
•  Trip counts can be used to approximate work and help carve up loop

on GPU

  Enabled with CCE –h profile_generate option

•  Should be done as separate experiment – compiler optimizations are
restricted with this feature

  Loop statistics reported by default in pat_report table

  Coming soon: integrated loop information in profile
•  Get exclusive times and loops attributed to functions

March 6-7, 2012 Cray Inc. Proprietary

  Access CCE and perftools software
module load PrgEnv-cray perftools!

  Compile AND link with –h profile_generate
cc –h profile_generate –c my_program.c!
cc –h profile_generate –o my_program my_program.o!

  Instrument binary for tracing
pat_build –u my_program OR!
pat_build –w my_program!

  Run application
  Create report with loop statistics

pat_report my_program+pat.xf > loops_report!

March 6-7, 2012 Cray Inc. Proprietary

Table 1: Profile by Function Group and Function!

 Time% | Time | Imb. | Imb. | Calls |Group!

 | | Time | Time% | | Function!

 | | | | | PE=HIDE!

 | | | | | Thread=HIDE!

!

 100.0% | 176.687480 | -- | -- | 17108.0 |Total!

|--!

| 85.3% | 150.789559 | -- | -- | 8.0 |USER!

||---!

| 85.0% | 150.215785 | 24.876709 | 14.4% | 2.0 | jacobi_.LOOPS!

||===!

| 12.2% | 21.600616 | -- | -- | 16071.0 |MPI!

||---!

| 11.9% | 21.104488 | 41.016738 | 67.1% | 3009.0 | mpi_waitall!

||===!

| 2.4% | 4.297301 | -- | -- | 1007.0 |MPI_SYNC!

||---!

| 2.4% | 4.166092 | 4.135016 | 99.3% | 1004.0 | mpi_allreduce_(sync)!

|==!

March 6-7, 2012 Cray Inc. Proprietary

Table 3: Inclusive Loop Time from -hprofile_generate!

!

 Loop Incl | Loop | Loop | Loop |Function=/.LOOP[.]!

 Time | Hit | Trips | Trips | PE=HIDE!

 Total | | Min | Max |!

|---!

…!

| 175.676881 | 2 | 0 | 1003 |jacobi_.LOOP.07.li.267!

| 0.917107 | 1003 | 0 | 260 |jacobi_.LOOP.08.li.276!

| 0.907515 | 129888 | 0 | 260 |jacobi_.LOOP.09.li.277!

| 0.446784 | 1003 | 0 | 260 |jacobi_.LOOP.10.li.288!

| 0.425763 | 129888 | 0 | 516 |jacobi_.LOOP.11.li.289!

| 0.395003 | 1003 | 0 | 260 |jacobi_.LOOP.12.li.300!

| 0.374206 | 129888 | 0 | 516 |jacobi_.LOOP.13.li.301!

| 126.250610 | 1003 | 0 | 256 |jacobi_.LOOP.14.li.312!

| 126.223035 | 127882 | 0 | 256 |jacobi_.LOOP.15.li.313!

| 124.298650 | 16305019 | 0 | 512 |jacobi_.LOOP.16.li.314!

| 20.875086 | 1003 | 0 | 256 |jacobi_.LOOP.17.li.336!

| 20.862715 | 127882 | 0 | 256 |jacobi_.LOOP.18.li.337!

| 19.428085 | 16305019 | 0 | 512 |jacobi_.LOOP.19.li.338!

|===

!
March 6-7, 2012 Cray Inc. Proprietary

  Generate compiler program library with whole program
analysis for more in-depth inter-procedural analysis
•  % cc –hwp –h pl=/path_to_my_program_library/!

  Generate loopmark information, view .lst files
•  % cc –rm –c my_program.c!

  Use Reveal to view loopmark information, compiler
messages, browse source

March 6-7, 2012 Cray Inc. Proprietary

New code restructuring and analysis assistant…
•  Uses both the performance toolset and CCE’s program library

functionality to provide static and runtime analysis information
•  Assists user with the code optimization phase by correlating source

code with analysis to help identify which areas are key candidates for
optimization

  Key Features
•  Annotated source code with compiler optimization information

  Feedback on critical dependencies that prevent optimizations
•  Scoping analysis

  Identify, shared, private and ambiguous arrays
o  Allow user to privatize ambiguous arrays
o  Allow user to override dependency analysis

•  Source code navigation based on performance data collected through
CrayPat

March 6-7, 2012 Cray Inc. Proprietary

March 6-7, 2012

Compiler	
feedback	

Compiler	
feedback	

Performance	
feedback	

Cray Inc. Proprietary

March 6-7, 2012 Cray Inc. Proprietary

  Navigate by profile call tree with loops
  Initiate scoping analysis from within Reveal (no omp_analyze

directives or compiler command-line option)
  Directive generation and insertion into source
  Focus on loops with unknowns
  Create OpenMP or OpenAcc directives
  Highlight “interesting” compiler feedback

•  Was call site flattened or not?
•  Was loop flattened or not?
•  Was loop or region pattern-matched?

March 6-7, 2012 Cray Inc. Proprietary

  Use cce 8.0.3 or later
  Start with clean build
  Collect loop statistics with cce and perftools to identify loops

to parallelize

  Add !dir$ omp_analyze_loop directive before each loop to
parallelize
•  This directive only works with serial loops. Add –x omp or –x acc to

your cce compile options if loop is already parallel

  Compile application for scoping analysis
•  % ftn -homp_analyze -hwp -hpl=/full_path/program.pl!

  Launch reveal:
•  % reveal program.pl!

!March 6-7, 2012 Cray Inc. Proprietary

  Expand files and functions to look for loops with scoping
information (highlighted green)

  Scope any unknowns

  Dump scoping information to stderr (where you launched
reveal) to copy and past into a directive in your source by
clicking “Dump Data”

March 6-7, 2012 Cray Inc. Proprietary

Blue Waters PE Workshop December 13-16, 2011

