

CSCS – Tuesday 6.Mar.12

ahart@cray.com

Alistair Hart†,

Roberto Ansaloni.

(†Cray Exascale Research Initiative Europe)

mailto:ahart@cray.com

 Accelerator directives

 Why do we need them?

 What do they look like?
 OpenACC now, OpenMP in the future

 How do we use them?

 Support status in CCE v8.0

 Use Cases:

 How do we port a full application?

 How do they perform?

 Case studies in directive-based optimisation on GPU
 S3D: performance

 Himeno: porting a parallel benchmark

 MultiGrid: now it’s your turn

 Running an existing CUDA or OpenCL application

 Overview of MultiGrid tutorial example

Contents

2

 Why do we need a new GPU programming model?

 Aren’t there enough ways already?

 CUDA (incl. NVIDIA CUDA-C & PGI CUDA-Fortran)

 OpenCL

 Stream

 hiCUDA ...

 All are quite low-level and closely coupled to the GPU

 User needs to rewrite kernels in specialist language:
 Hard to write and debug

 Hard to optimise for specific GPU

 Hard to port to new accelerator

 Multiple versions of kernels in codebase
 Hard to add new functionality

Accelerator programming

8

9

 If you work hard, you can get good parallel performance

 Ludwig Lattice Boltzmann code rewritten in CUDA

 Reordered all the data structures (structs of arrays)

 Pack halos on the GPU

 Streams to overlap compute,

 PCIe comms, MPI halo swaps

 10 cabinets of Cray XK6

 936 GPUs (nodes)

 Only 4% deviation from

 perfect weak scaling between

 8 and 936 GPUs.

 Application sustaining 40+ Tflop/s

0

5

10

15

20

25

30

35

40

45

0 256 512 768 1024

P
e

rf
o

rm
an

ce
 (

Tf
lo

p
/s

)

Nodes

XK6
x86

 Most scientific applications will not have this level of
developer support (Ludwig was special research case)

 Directives provide high-level approach

+ Based on original source code (e.g. Fortran, C, C++)
+ Easier to maintain/port/extend code

+ Users with (for instance) OpenMP experience find it a familiar programming model

+ Compiler handles repetitive boilerplate code (cudaMalloc, cudaMemcpy...)

+ Compiler handles default scheduling; user can step in with clauses where needed

– Possible performance sacrifice
– Important to quantify this

– Can then tune the compiler

– Small performance sacrifice is an acceptable trade-off for portability and productivity

– Who handcodes in assembler these days?

 Two relevant performance comparisons:

 How does the performance compare to CUDA?

 Can I justify buying a GPU instead of another CPU?

Directive-based programming

13

 Is there a performance gap relative to explicit low-level
programming model? Typically 10-15%, sometimes none.

 Is the performance gap acceptable? Yes.

 e.g. S3D comp_heat kernel (ORNL application readiness):

14

0.01

0.1

1

10

0 8 16 24 32

Ti
m

e
 (

se
co

n
d

s)

Cores on Host

OpenMP

CUDA Fortran (PGI)

OpenACC (CCE)

 Does accelerated parallel application performance justify
buying a GPU (Cray XK6) rather than another CPU (Cray XE6)?

 For many codes, yes.

15

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

Pe
rf

o
rm

an
ce

 (
TF

lo
p

/s
)

Number of nodes

Himeno Benchmark - XL configuration
MPI/OMP MPI/ACC CAF/ACC

 A common directive programming model for today’s GPUs

 Announced at SC11 conference

 Offers portability between compilers
 Drawn up by: NVIDIA, Cray, PGI, CAPS

 Multiple compilers offer portability, debugging, permanence

 Works for Fortran, C, C++
 Standard available at www.OpenACC-standard.org

 Initially implementations targeted at NVIDIA GPUs

 Current version: 1.0 (November 2011)

 Compiler support:

 Cray CCE: partial now, complete in 2012

 PGI Accelerator: released product in 2012

 CAPS: released product in Q1 2012

16

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

 A common programming model for tomorrow’s accelerators

 An established open standard is the most attractive
 portability; multiple compilers for debugging; permanence

 Subcommittee of OpenMP ARB

 includes most major vendors + others (e.g. EPCC)

 co-chaired by Cray (James Beyer)

 aiming for OpenMP 4 (2012?)

 Targets Fortran, C, C++

 Current version: draft

 Cray compiler provides reference implementation for ARB

 Of draft standard at present (CCE 8.0)

 Will track the standard as it evolves

 Converting from OpenACC to OpenMP will be straightforward

accelerator directives

17

http://openmp.org/wp/

 Host-directed execution with attached GPU

 Main program executes on “host” (i.e. CPU)
 Compute intensive regions offloaded to the accelerator device

 under control of the host.

 “device” (i.e. GPU) executes parallel regions
 typically contain “kernels” (i.e. work-sharing loops), or

 kernels regions, containing one or more loops which are executed as kernels.

 Host must orchestrate the execution by:
 allocating memory on the accelerator device,

 initiating data transfer,

 sending the code to the accelerator,

 passing arguments to the parallel region,

 queuing the device code,

 waiting for completion,

 transferring results back to the host, and

 deallocating memory.

 Host can usually queue a sequence of operations
 to be executed on the device, one after the other.

19

 Memory spaces on the host and device distinct

 Different locations, different address space

 Data movement performed by host using runtime library
calls that explicitly move data between the separate

 GPUs have a weak memory model

 No synchronisation between different execution units (SMs)
 Unless explicit memory barrier

 Can write OpenACC kernels with race conditions
 Giving inconsistent execution results

 Compiler will catch most errors, but not all (no user-managed barriers)

 OpenACC

 data movement between the memories implicit
 managed by the compiler,

 based on directives from the programmer.

 Device memory caches are managed by the compiler
 with hints from the programmer in the form of directives. 20

 Modify original source code with directives

 Non-executable statements (comments, pragmas)
 Can be ignored by non-accelerating compiler

 CCE -hnoacc also supresses compilation

 Sentinel: !$acc

 Fortran:
 Usually paired with !$acc end *

 C/C++:
 Structured block {...} avoids need for end directives

 Continuation to extra lines allowed

 CPP macro defined to allow extra conditional compilation

 E.g. around calls to runtime API functions
 _OPENACC == yyyymm (currently 201111)

Accelerator directives

21

! Fortran example
!$acc *
<structured block>
!$acc end *

/* C/C++ example */
#pragma acc *
{structured block}

Execute a loop nest on the GPU

 Compiler does the work:

 Data movement
 allocates/frees GPU memory at

 start/end of region

 moves of data to/from GPU

 Loop schedule: spreading loop iterations over PEs of GPU
 Parallelism NVIDIA GPU SMT node (not supported!)

 gang: a threadblock CPU

 worker: warp (32 threads) CPU core

 vector: SIMT group of threads SIMD instructions (SSE, AVX)

 Caching (explicitly use GPU shared memory for reused data)
 automatic caching (e.g. NVIDIA Fermi) important

 Tune default behaviour with optional clauses on directives

A first example
!$acc parallel loop !OpenACC
DO j = 1,M
 DO i = 2,N-1
 c(i,j) = a(i,j) + b(i,j)
 ENDDO
ENDDO
!$acc end parallel loop

read-only write-only

 Array a(:) unnecessarily moved from and to GPU between
kernels

 Code still compile-able for CPU

23

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
 <stuff>
END PROGRAM main

 Two accelerator parallel regions

 Compiler creates two kernels
 Loop iterations automatically divided

across gangs, workers, vectors

 Breaking parallel region acts as barrier

 First kernel initialises array
 Compiler will determine copyout(a)

 Second kernel updates array
 Compiler will determine copy(a)

 Breaking parallel region=barrier
 No barrier directive (global or within SM)

 No automatic synchronisation of copies within data region

 User-directed synchronisation via update directive

24

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
!$acc end data
 <stuff>
END PROGRAM main

 Now added a data region

 Specified arrays only moved at
boundaries of data region

 Unspecified arrays moved by
each kernel

 No compiler-determined
movements for data regions

 Data region can contain host code
and accelerator regions

 Copies of arrays independent

 One of the kernels now in subroutine (maybe in separate file)

 CCE supports function calls inside parallel regions
 Compiler will automatically inline (maybe need -Oipafrom or use program library)

 The present clause uses version of b on GPU without data copy

 Can also call double_array() from outside a data region
 Replace present with present_or_copy (can be shortened to pcopy)

 Original calltree structure of program can be preserved
25

SUBROUTINE double_array(b)
 INTEGER :: b(N)
!$acc parallel loop present(b)
 DO i = 1,N
 b(i) = double_scalar(b(i))
 ENDDO
!$acc end parallel loop
END SUBROUTINE double_array

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
 CALL double_array(a)
!$acc end data
 <stuff>
END PROGRAM main

INTEGER FUNCTION double_scalar(c)
 INTEGER :: c
 double_scalar = 2*c
END FUNCTION double_scalar

 Data clauses:

 copy, copyin, copyout
 copy moves data "in" to GPU at start of region and/or "out" to CPU at end

 supply list of arrays or array sections (using Fortran ":" notation)

 create
 No copyin/out – useful for shared temporary arrays in loopnests

 private: scalars private by default

 present, present_or_copy*: described previously

 Tuning clauses:

 !$acc loop [gang] [worker] [vector]
 Targets specific loop (or loops using collapse clause) at specific level of hardware

 num_gang, num_workers, vector_length
 Tunes the amount of parallelism used (threadblocks, threads/block...)

 seq: loop executed sequentially

 independent: compiler hint (also use CCE !dir$ directives)

Clauses for !$acc parallel loop

26

 Other !$acc parallel loop clauses:

 if(logical)
 Executes on GPU if .TRUE. at runtime, otherwise on CPU

 reduction: as in OpenMP

 cache: specified data held in software-managed data cache
 e.g. explicit blocking to shared memory on NVIDIA GPUs

 !$acc update [host|device]

 Copy specified arrays (slices) within data region

 async[(handle)] clause for parallel, update directives
 Launch accelerator region/data transfer asynchronously: allows CPU/GPU overlap

 Operations with same handle will execute sequentially (as in CUDA streams)

 !$acc wait[(handles)]: waits for completion

 Runtime library functions can also be used to test/wait for completion

 Will be supported in CCE v8.1

27

 host_data region exposes accelerator memory address on host

 nested inside data region

 Call CUDA-C wrapper (compiled with nvcc; linked with CCE)
 must include cudaThreadSynchronize()

 Before: so asynchronous accelerator kernels definitely finished

 After: so CUDA kernel definitely finished

 CUDA kernel written as usual

 Or use same mechanism to call existing CUDA library
28

__global__ void dbl_knl(int *c) {
 int i = \
 blockIdx.x*blockDim.x+threadIdx.x;
 if (i < N) c[i] *= 2;
}

extern "C" void dbl_cuda_(int *b_d) {
 cudaThreadSynchronize();
 dbl_knl<<<NBLOCKS,BSIZE>>>(b_d);
 cudaThreadSynchronize();
}

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
! <Populate a(:) on device
! as before>
!$acc host_data use_device(a)
 CALL dbl_cuda(a)
!$acc end host_data
!$acc end data
 <stuff>
END PROGRAM main

 parallel

 Supported: num_coarse, num_fine, vector_length, all data clauses

 Unsupported: async, if

 kernel

 Unsupported

 loop

 Supported: collapse, coarse, fine, vector, reduction, private, seq

 Unsupported: independent

 data

 Supported: all data clauses

 Unsupported: async, if

 host_data

 Supported

 acc_update

 Supported: host, device

 Unsupported: async, if

 Unsupported

 Directives : wait, cache, declare

 All runtime routines

29

 Preparation: add checksum(s) and high-res timer to code
 Check for correctness very frequently

 Profile code on the host
 Use representative-sized problem, map calltree,

 Ideally resolve profile by loopnest and measure typical loop iteration counts

 First optimise the data movements

 Start in subprograms at bottom of callchain
 Accelerate individual loopnests using parallel regions

 Concentrate initially on most computationally expensive

 Add data regions in subprograms

 Minimise data movements, use create clause where possible

 May need to accelerate insignificant loopnests to avoid data copies

 Use available feedback to understand data movement
 Compiler messages: -ra for CCE

 Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE

 NVIDIA compute profiler: export COMPUTE_PROFILE=1

 CrayPAT performance measurement and analysis tool (Cray PE only)

 Code is probably going quite slowly at this point
30

 Move progressively up callchain, adding data regions
 Aim to further reduce data movements

 No problem nesting data regions: use present clause on inner ones

 May need to port insignificant subprograms to avoid data transfers

 Use update for essential data transfers (e.g. data for halo swaps)

 Now optimise kernel performance (often trial and error)

 Perfect loop nests schedule better than imperfect ones
 e.g. Remove temporary arrays by manually inlining (eliminate array b)

 Or manually privatise arrays and break loopnest (make b(i,j))

31

DO j = 1,N
 DO i = 0,M+1
 b(i) = a(i,j+1) + a(i,j-1)
 ENDDO
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

DO j = 1,N
 DO i = 1,M
 c(i,j) = a(i+1,j+1) + a(i+1,j-1) &
 + a(i-1,j+1) + a(i-1,j-1)
 ENDDO
ENDDO DO j = 1,N

 DO i = 0,M+1
 b(i,j) = a(i,j+1) + a(i,j-1)
 ENDDO
ENDDO
DO j = 1,N
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

 Now look at tweaking the loop scheduling

 Quick wins
 Optimise loop scheduling

 Make sure the right loops are vectorised (for coalesced memory loads)

 And that they are vectorisable

 Choose number of workers per gang (threads/block)

 This number will vary by kernel and by problem size

 Collapsing or blocking of loops may help (though compilers already do that)

 See if caching can be used to reduce data loads from device memory

 Longer term: can loops be migrated up the callchain?
 E.g. Loop over sites, or blocks of sites (“blocking for cache”)

 If so, parallelise (gangs) over these

 Consider overlap of compute and communications using async

 Don’t do this until everything working

 May require application restructuring

32

1. S3D turbulent combustion code

2. Himeno

3. MultiGrid code (NAS & SPEC benchmarks)

Three example applications

33

0

1

2

3

4

5

Kernel A Kernel B Kernel C S3D

Ti
m

e
 (

se
co

n
d

s)

OpenMP (full node)

OpenACC (CCE)

 Parallel 3D Poisson equation solver

 19-point stencil

 MPI or CAF and/or OpenMP

 available from here

 ~600 lines of Fortran

 Fully ported to accelerator using 27 directive pairs

 XL configuration:

 1024 x 512 x 512

 Strong scaling

 More kernel tuning

 No use of async yet

34

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

Pe
rf

o
rm

an
ce

 (
TF

lo
p

/s
)

Number of nodes

Himeno Benchmark - XL configuration
MPI/OMP MPI/ACC CAF/ACC

http://accc.riken.jp/HPC_e/himenobmt_e.html

 The stencil is applied to
pressure array p

 Updated pressure values are
saved to temporary array
wrk2

 Control value wgosa is
computed

 In the benchmark this kernel
is iterated a fixed number of
times (nn)

DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K)

 +a(I,J,K,2)*p(I, J+1,K) &

 +a(I,J,K,3)*p(I, J, K+1) &

 +b(I,J,K,1)*(p(I+1,J+1,K)-p(I+1,J-1,K) &

 -p(I-1,J+1,K)+p(I-1,J-1,K)) &

 +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) &

 -p(I, J+1,K-1)+p(I, J-1,K-1)) &

 +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) &

 -p(I+1,J, K-1)+p(I-1,J, K-1)) &

 +c(I,J,K,1)*p(I-1,J, K) &

 +c(I,J,K,2)*p(I, J-1,K) &

 +c(I,J,K,3)*p(I, J, K-1) &

 + wrk1(I,J,K)

 SS=(S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K)

 WGOSA=WGOSA+SS*SS

 wrk2(I,J,K)=p(I,J,K)+OMEGA *SS

 ENDDO

 ENDDO

ENDDO

35

fw
d

 n
.n

.
b

k
w

d
 n

.n
.

n
.n

.n
.

 Outer loop executed fixed number
of times

 Jacobi kernel is executed and new
pressure array wrk2 and control
value wgosa computed

 array is updated with the new
pressure values

 halo region values are exchanged
between neighbour PEs

 Send/receive buffers are used

 The maximum control value is
computed with an ALLREDUCE
operation across all the PEs

DO loop = 1, nn

 compute Jacobi kernel wrk2,wgosa

 copy back wrk2 into p

 pack halo from p into send buffers

 exchange halos with neighbour PEs

 unpack halo into p from recv buffers

 Allreduce to sum wgosa across PEs

ENDDO

36

 Several versions tested, with communication implemented in
MPI or Fortran coarrays

 GPU version using OpenACC ccelerator directives

 Comparing Cray XK6 timings with best Cray XE6 results (hybrid
MPI/OpenMP)

 Arrays reside permanently on the GPU memory

 Data transfers between host and GPU are:

 Communication buffers for the halo exchange

 Control value

37

 Arrays are allocated on the GPU
memory in the main program with
the data directive

 In the subroutines the data
directive is replicated with the
present clause, to use the data
already present in the GPU
memory and avoid extra
allocations

 Since present clause is used, no
copy* clauses are used, and data
transfers to/from host are
implemented by update directives

PROGRAM himenobmtxp

...

!$acc data create &

!$acc& (p,a,b,c,wrk1,wrk2,bnd, &

!$acc& sendbuffx_up,sendbuffx_dn, &

!$acc& sendbuffy_up,sendbuffy_dn, &

!$acc& sendbuffz_up,sendbuffz_dn)

...

!$acc end data

SUBROUTINE jacobi(nn,gosa)

!$acc data present &

!$acc& (p,a,b,c,wrk1,wrk2,bnd, &

!$acc& sendbuffx_up,sendbuffx_dn, &

!$acc& sendbuffy_up,sendbuffy_dn, &

!$acc& sendbuffz_up,sendbuffz_dn)

38

 The GPU kernel for the main loop
is created with the parallel
loop directive

 The scoping of the main variables
is specified earlier with the data
directive - no need to replicated it
in here

 wgosa is computed by specifying
the reduction clause, as in a
standard OpenMP parallel loop

 vector_length clause is used to
indicate the number of threads
within a threadblock (compiler
default 128)

DO loop=1,nn

 gosa = 0

 wgosa = 0

!$acc parallel loop &

!$acc& private(s0,ss) &

!$acc& reduction(+:wgosa) &

!$acc& vector_length(256)

 DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K) &

 ...

 wgosa = wgosa + SS*SS

 ENDDO

 ENDDO

 ENDDO

39

 Halo values are extracted from the
wrk2 array and packed into the
send buffers, on the GPU

 A global parallel region is
specified and buffers in the X, Y,
and Z directions are packed within
loop blocks

 The send buffers are copied to host
memory with update

 In the same way, after the halo
exchange, the recv buffers are
transferred to the GPU memory
and used to update the array p

 N.B. Currently it’s not possible to
include non-contiguous array
sections in update

 buffers are necessary

!$acc parallel

!$acc loop

DO j = 2,jmax-1

 DO i = 2,imax-1

 sendbuffz_dn(i,j)= wrk2(i,j,2)

 sendbuffz_up(i,j)= wrk2(i,j,kmax-1)

 ENDDO

ENDDO

!$acc end loop

 ...

!$acc loop

!$acc end loop

!$acc end parallel

!$acc update &

!$acc& host(sendbuffz_dn,sendbuffz_up)

40

 Coarrays are used to perform the
halo exchange

 Non-blocking communication
needs pgas defer_sync
directive

 Programmer now responsible for
data synchronization

 By deferring sync point, network
comms can be overlapped with
CPU or GPU activity

 Updating p from wrk2 (on GPU)
overlapped with halo exchange

 N.B. no sync all: CAF intrinsic
COSUM has loose synchronisation
(so do need sync memory first).

!dir$ pgas defer_sync

recvbuffz_up(:,:)[myx,myy,myz-1] = &

 sendbuffz_dn(:,:)

 ...

!$acc parallel loop

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 p(i,j,k) = wrk2(i,j,k)

 ENDDO

 ENDDO

ENDDO

!$acc end parallel loop

sync memory

gosa = COSUM(wgosa)

!$acc update &

!$omp& acc(recvbuffz_dn,recvbuffz_up)

41

 Coarrays are used to perform the
halo exchange

 Non-blocking communication
needs pgas defer_sync
directive

 Programmer now responsible for
data synchronization

 By deferring sync point, network
comms can be overlapped with
CPU or GPU activity

 Updating p from wrk2 (on GPU)
overlapped with halo exchange

 N.B. no sync all: CAF intrinsic
COSUM has loose synchronisation
(so do need sync memory first).

!dir$ pgas defer_sync

recvbuffz_up(:,:)[myx,myy,myz-1] = &

 sendbuffz_dn(:,:)

 ...

!$omp acc_region_loop

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 p(i,j,k) = wrk2(i,j,k)

 ENDDO

 ENDDO

ENDDO

!$omp end acc_region_loop

sync memory

gosa = COSUM(wgosa)

!$omp acc_update &

!$omp& acc(recvbuffz_dn,recvbuffz_up)

42

Compiler does not currently support using
coarrays in an accelerator region,

so this does not work!

You need to make a local copy of the coarray
buffers to non-coarray buffers and then transfer

them to GPU memory.

This affects the performance, by increasing the
host CPU time.

 Total number of lines in the original Himeno
MPI-Fortran code: 629

 Total number lines in the modified version
with coarrays and accelerator directives: 554

 don't need MPI_CART_CREATE and the like

 Total number of accelerator directives: 27

 plus 18 "end" directives

43

 NAS Parallel Benchmarks, also SPEC suite

 MG (multigrid) solves Laplacian on 3D grid

 1500 lines of Fortran or C, many subroutines

 Three main hotspots:
 resid (50% of runtime), psinv (25%), rprj3 (9%)

 Data arrays passed to/from subroutines at every iteration

 GPU (just less than) 2x faster than CPU (16 cores)

 Fully accelerated using 25 directive pairs (present essential)

 You will look at this code in the tutorial this afternoon

 MPI-parallel version also ported using OpenACC

 Further optimisations coming

 Further use of shared memory

 async clause support coming
 CCE already launches kernels and data transfers asynchronously

Example: MultiGrid benchmark

44

 CUDA codes can be compiled and run as usual on the Cray XK6

 Ludwig parallel code was run across 936 GPUs (10 cabinets)

 Compilation:
 module load craype-accel-nvidia20

 Main CPU code compiled with PrgEnv "cc" wrapper
 either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc

 GPU CUDA-C kernels compiled with nvcc
 nvcc -O3 -arch=sm_20

 PrgEnv "cc" wrapper used for linking
 Only GPU flag needed: -lcudart

 e.g. no CUDA -L flags needed (added in cc wrapper)

 Submission:

 submit job as usual (SLURM, aprun):
 Use 1 MPI rank per node

 NVIDIA drivers for Cray XK6 optimise GPU/CPU/Gemini
pipeline.

45

 Compilation:
 module load craype-accel-nvidia20

 Main CPU code compiled with PrgEnv "cc" wrapper
 either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc

 GPU OpenCL kernels compiled with nvcc
 nvcc -O3 -arch=sm_20

 PrgEnv "cc" wrapper used for linking
 Only GPU flag needed: -lOpenCL

 Alternatively:

 Use PrgEnv-gnu for all compilation
 still need -lOpenCL at linktime

 Submission:

 submit job as usual (SLURM, aprun):
 Use 1 MPI rank per node

46

 Hybrid multicore has arrived and is here to stay

 Fat nodes are getting fatter

 GPUs have leapt into the top500 and accelerated nodes

 Programming accelerators efficiently is hard

 When done well can give good performance (Ludwig)

 Accelerator directives offer a good alternative

 Attractive (and familiar) programming model

 Open standards for portability

 Use original Fortran, C and C++ codes

 Presented a strategy for porting large codes

 The performance penalty is small

 The portability and productivity bonuses are huge

 Directives play nicely with (some) other programming models

 so you don’t need to throw away your prize CUDA kernels

In conclusion...

47

 Tutorial leads you through porting entire MultiGrid code

 Structure resembles SciEng application in only 1500 lines
 More useful than over-simplistic "Hello World" examples

 Tutorial covers:
 code preparation

 profiling and scoping

 steps to progressively port to GPU using OpenACC

 Code examples and Makefiles provided
 Both Fortran and C versions (no C for 01, 02)

 VERSION=00 Original CPU code

 VERSION=01 CPU version for profiling with CrayPAT

 VERSION=02 CPU version for variable scoping with Cray Reveal

 VERSION=03 First OpenACC kernel

 VERSION=04 OpenACC for all significant kernels

 VERSION=05 OpenACC for insignificant kernels as well

 VERSION=06 Data region to eliminate major data movements

 VERSION=07 Tuned OpenACC region

 VERSION=08 OpenACC interoperating with CUDA kernel

48

Thank you to those that helped us get to grips with directives:

 Cray Exascale Research Initiative Europe team

 Harvey Richardson, Jason Beech-Brandt

 Roberto Ansaloni

 EPCC Exascale Technology Centre team

 Alan Gray

 Cray PE R&D team

 Luiz DeRose, Heidi Poxon, Suzanne LaCroix, James Beyer,
David Oehmke...

 ORNL team

 John Levesque, Jeff Larkin

 OpenMP subcommittee

For further info, ahart@cray.com

Acknowledgments

mailto:ahart@cray.com

