CRANY

THE SUPERCOMPUTER COMPANY

Programming GPU Devices using
OpenACC directives on the
Cray XK6 platform

L

Alistair Hart",
Roberto Ansaloni.

{\
J
)
(i

—
=

——— — X

S———— =S =

W
W)
)
i
y
“
o
S
o‘,‘“‘ S

2

A
O
XY
\‘:“
e
R

A/

i

WA
go

h

o
X8
S
SR
S0
PR
B

OO

/XX

(XXX

AN

AN
W
X

0
)
)
%

(X
W
(X)
()
W

\

CSCS - Tuesday 6.Mar.12

ahart@cray.com

mailto:ahart@cray.com

CRANY

THE SUPERCOMPUTER COMPANY

Contents

e Accelerator directives
e Why do we need them?
e What do they look like?

e OpenACC now, OpenMP in the future
e How do we use them?

e Support status in CCE v8.0

e Use Cases:
* How do we port a full application?
e How do they perform?
e Case studies in directive-based optimisation on GPU

e S3D: performance
e Himeno: porting a parallel benchmark
e MultiGrid: now it’s your turn

® Running an existing CUDA or OpenCL application
e Overview of MultiGrid tutorial example

Accelerator programming

e Why do we need a new GPU programming model?

e Aren’t there enough ways already?
e CUDA (incl. NVIDIA CUDA-C & PGI CUDA-Fortran)
e OpenCL
e Stream
e hiCUDA ...

e All are quite low-level and closely coupled to the GPU
e User needs to rewrite kernels in specialist language:

e Hard to write and debug
e Hard to optimise for specific GPU
e Hard to port to new accelerator

e Multiple versions of kernels in codebase
e Hard to add new functionality

CUDAonCrayXke —omeesee

e |f you work hard, you can get good parallel performance

e Ludwig Lattice Boltzmann code rewritten in CUDA
* Reordered all the data structures (structs of arrays)
* Pack halos on the GPU 45

e Streams to overlap compute, 40 4 —-XK6
PCle comms, MPI halo swaps %35 | “*x86 /’

* 10 cabinets of Cray XK6 -§ 30
e 936 GPUs (nodes) 525
e Only 4% deviation from g i(s)
perfect weak scaling between ‘% 10
8 and 936 GPUs. =5
» Application sustaining 40+ Tflop/s 0

0 256 512 768 1024
Nodes

CRANY

THE SUPERCOMPUTER COMPANY

Directive-based programming

e Most scientific applications will not have this level of
developer support (Ludwig was special research case)
e Directives provide high-level approach
+ Based on original source code (e.g. Fortran, C, C++)

Easier to maintain/port/extend code

-+

Users with (for instance) OpenMP experience find it a familiar programming model

+

=+

Compiler handles repetitive boilerplate code (cudaMalloc, cudaMemcpy...)

+

Compiler handles default scheduling; user can step in with clauses where needed

— Possible performance sacrifice

— Important to quantify this

— Can then tune the compiler

— Small performance sacrifice is an acceptable trade-off for portability and productivity
— Who handcodes in assembler these days?

e Two relevant performance comparisons:
* How does the performance compare to CUDA?
» Can | justify buying a GPU instead of another CPU?

Performance compared to CUDA

THE SUPERCOMPUTER COMPANY

* |s there a performance gap relative to explicit low-level
programming model? Typically 10-15%, sometimes none.

e |s the performance gap acceptable? Yes.
e.g. S3D comp_heat kernel (ORNL application readiness):

Time (seconds)

10

-
|

<
=
I

0.01

ap=0OpenMP
e==(CUDA Fortran (PGl)
e=0penACC (CCE)

Cores on Host

Node-for-node performance comparison

e Does accelerated parallel application performance justify
buying a GPU (Cray XK6) rather than another CPU (Cray XE6)?

e For many codes, yes.

Himeno Benchmark - XL configuration

=—-MPI/OMP -m-MPI/ACC CAF/ACC
5.0

&
o

w
o

Performance (TFlop/s)

%

0.0

0 32 64 96 128
Number of nodes

CRANY

OpenACC.

DIRECTIVES FOR ACCELERATORS

e A common directive programming model for today’s GPUs
* Announced at SC11 conference

. : The
o Offers portability between compilers OUchg’E’FE',:ACC’”API
Eg
e Drawn up by: NVIDIA, Cray, PGI, CAPS a:iliﬁijs”f*ffAnm,ca.-mp,,g, s
e Multiple compilers offer portability, debugging, permanence C o J”s,"dioo'srﬂf,”’“

e Works for Fortran, C, C++

e Standard available at www.OpenACC-standard.org

e Initially implementations targeted at NVIDIA GPUs

e Current version: 1.0 (November 2011)

e Compiler support:
e Cray CCE: partial now, complete in 2012
* PGl Accelerator: released product in 2012
* CAPS: released product in Q1 2012

ey 4 '
CAPS CRANY @& NVIDIA. The Portland Group

THE SUPERCOMPUTER COMPANY

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

OpenMP accelerator directives

e A common programming model for tomorrow’s accelerators

e An established open standard is the most attractive

« portability; multiple compilers for debugging; permanence
e Subcommittee of OpenMP ARB
e includes most major vendors + others (e.g. EPCC)
e co-chaired by Cray (James Beyer)
* aiming for OpenMP 4 (20127)
e Targets Fortran, C, C++

e Current version: draft

e Cray compiler provides reference implementation for ARB
e Of draft standard at present (CCE 8.0)
o Will track the standard as it evolves

e Converting from OpenACC to OpenMP will be straightforward

http://openmp.org/wp/

CRANY

THE SUPERCOMPUTER COMPANY

OpenACC Execution model

e Host-directed execution with attached GPU
* Main program executes on “host” (i.e. CPU)

e Compute intensive regions offloaded to the accelerator device
e under control of the host.

e “device” (i.e. GPU) executes parallel regions

e typically contain “kernels” (i.e. work-sharing loops), or
e kernels regions, containing one or more loops which are executed as kernels.

* Host must orchestrate the execution by:

e allocating memory on the accelerator device,
e initiating data transfer,

e sending the code to the accelerator,

e passing arguments to the parallel region,

e queuing the device code,

e waiting for completion,

e transferring results back to the host, and

e deallocating memory.

» Host can usually queue a sequence of operations

* to be executed on the device, one after the other.

CRANY

THE SUPERCOMPUTER COMPANY

OpenACC Memory model

e Memory spaces on the host and device distinct
* Different locations, different address space

e Data movement performed by host using runtime library
calls that explicitly move data between the separate

e GPUs have a weak memory model
* No synchronisation between different execution units (SMs)

e Unless explicit memory barrier

e Can write OpenACC kernels with race conditions

e Giving inconsistent execution results
e Compiler will catch most errors, but not all (no user-managed barriers)

e OpenACC
e data movement between the memories implicit

e managed by the compiler,
e based on directives from the programmer.

* Device memory caches are managed by the compiler

e with hints from the programmer in the form of directives.

CRANY

THE SUPERCOMPUTER COMPANY

Accelerator directives

e Modify original source code with directives
* Non-executable statements (comments, pragmas)

e Can beignored by non-accelerating compiler

- I Fortran example
e CCE -hnoacc also supresses compilation

_ I$acc *
e Sentinel: !Sacc <structured block>
e Fortran: '$acc end *

e Usually paired with !Sacc end * /* C/C++ example */

o C/C++: #pragma acc *
e Structured block {...} avoids need for end directives {structured block}

e Continuation to extra lines allowed

® CPP macro defined to allow extra conditional compilation

e E.g. around calls to runtime API functions
e OPENACC == yyyymm (currently 201111)

A first example

Execute a loop nest on the GPU

e Compiler does the work:
e Data movement

¢ allocates/frees GPU memory at
start/end of region
e moves of data to/from GPU

CRANY

THE SUPERCOMPUTER COMPANY

I$acc parallel loop !OpenACC
DO j = 1,M
DO i = 2,N-1

read-only

write-only

e Loop schedule: spreading loop iterations over PEs of GPU

NVIDIA GPU
a threadblock

e Parallelism

* gang:
e worker: warp (32 threads)
e vector: SIMT group of threads

SMT node (not supported!)
CPU

CPU core

SIMD instructions (SSE, AVX)

e Caching (explicitly use GPU shared memory for reused data)

e automatic caching (e.g. NVIDIA Fermi) important

* Tune default behaviour with optional clauses on directives

CRANY

A first OpenACC program: "Hello World"

PROGRAM main
INTEGER :: a(N)
<stuff>
I$acc parallel loop
DO i = 1,N
a(i) = 1
ENDDO
I$acc end parallel loop
I$acc parallel loop

DO i = 1,N
a(i) = 2*a(i)
ENDDO

I$acc end parallel loop
<stuff>
END PROGRAM main

e Two accelerator parallel regions
e Compiler creates two kernels

e Loop iterations automatically divided
across gangs, workers, vectors

e Breaking parallel region acts as barrier

e First kernel initialises array

e Compiler will determine copyout(a)

e Second kernel updates array

e Compiler will determine copy(a)

e Breaking parallel region=Dbarrier

* No barrier directive (global or within SM)

e Array a(:) unnecessarily moved from and to GPU between

kernels

e Code still compile-able for CPU

A second version

PROGRAM main
INTEGER :: a(N)
<stuff>
I$acc data copyout(a)
I$acc parallel loop

DO i = 1,N
a(i) = 1
ENDDO

I$acc end parallel loop
I$acc parallel loop

DO i = 1,N
a(i) = 2*a(i)
ENDDO

I$acc end parallel loop
I$acc end data

<stuff>
END PROGRAM main

CRANY

THE SUPERCOMPUTER COMPANY

e Now added a data region

e Specified arrays only moved at
boundaries of data region

e Unspecified arrays moved by
each kernel

* No compiler-determined
movements for data regions

e Data region can contain host code
and accelerator regions

e Copies of arrays independent

e No automatic synchronisation of copies within data region
» User-directed synchronisation via update directive

CRANY

THE SUPERCOMPUTER COMPANY

Sharing GPU data between subprograms

PROGRAM main SUBROUTINE double array(b)

INTEGER :: a(N) INTEGER :: b(N)

<stuff> I$acc parallel loop present(b)
I$acc data copy(a) DO i = 1,N
I$acc parallel loop b(i) = double scalar(b(i))

DO i = 1,N ENDDO

a(i) = 1 I$acc end parallel loop

ENDDO END SUBROUTINE double array
I$acc end parallel loop

CALL double_array(a) INTEGER FUNCTION double scalar(c)
I$acc end data INTEGER :: c

<stuff> double scalar = 2*c
END PROGRAM main END FUNCTION double scalar

* One of the kernels now in subroutine (maybe in separate file)
e CCE supports function calls inside parallel regions

e Compiler will automatically inline (maybe need -Oipafrom or use program library)
e The present clause uses version of b on GPU without data copy
* Can also call double_array() from outside a data region

e Replace present with present_or_copy (can be shortened to pcopy)

* Original calltree structure of program can be preserved

Clauses for !Sacc parallel loop

CRANY

THE SUPERCOMPUTER COMPANY

e Data clauses:

® COopy, copyin, copyout
e copy moves data "in" to GPU at start of region and/or "out" to CPU at end

e supply list of arrays or array sections (using Fortran ":" notation)

® create
e No copyin/out — useful for shared temporary arrays in loopnests

e private: scalars private by default
e present, present_or_copy*: described previously

* Tuning clauses:

e ISacc loop [gang] [worker] [vector]
e Targets specific loop (or loops using collapse clause) at specific level of hardware

e num_gang, num_workers, vector _length
e Tunes the amount of parallelism used (threadblocks, threads/block...)

* seq: loop executed sequentially
» independent: compiler hint (also use CCE !dir$S directives)

s

CRANY

THE SUPERCOMPUTER COMPANY

More OpenACC directives

e Other !Sacc parallel loop clauses:
e if(logical)

e Executes on GPU if .TRUE. at runtime, otherwise on CPU
e reduction: as in OpenMP

e cache: specified data held in software-managed data cache
e e.g. explicit blocking to shared memory on NVIDIA GPUs

e ISacc update [host|device]
» Copy specified arrays (slices) within data region

e async[(handle)] clause for parallel, update directives
e Launch accelerator region/data transfer asynchronously: allows CPU/GPU overlap
e Operations with same handle will execute sequentially (as in CUDA streams)
e ISacc wait[(handles)]: waits for completion
e Runtime library functions can also be used to test/wait for completion
e Will be supported in CCE v8.1

CRANY

Interoperability with CUDA
PROGRAM main ~_global void dbl knl(int *c) {
INTEGER :: a(N) int i =\
<stuff> blockIdx.x*blockDim.x+threadIdx.x;
I$acc data copy(a) if (i < N) c[i] *= 2;
I <Populate a(:) on device }
I as before>
I$acc host _data use _device(a) extern "C" void dbl_cuda_(int *b_d) {
CALL dbl cuda(a) cudaThreadSynchronize();
I$acc end host_data dbl knl<<<NBLOCKS,BSIZE>>>(b_d);
I$acc end data cudaThreadSynchronize();
<stuff> }
END PROGRAM main

e host data region exposes accelerator memory address on host
* nested inside data region

e Call CUDA-C wrapper (compiled with nvcc; linked with CCE)

* must include cudaThreadSynchronize()
e Before: so asynchronous accelerator kernels definitely finished
e After: so CUDA kernel definitely finished

*» CUDA kernel written as usual
* Or use same mechanism to call existing CUDA library

OpenACC support status in CCE v8.0

para

kern

([J
loop

([J

([J
data

([J

llel

Supported: num_coarse, num_fine, vector_length, all data clauses

Unsupported: async, if

el
Unsupported

Supported: collapse, coarse, fine, vector, reduction, private, seq

Unsupported: independent

Supported: all data clauses
Unsupported: async, if

host_data

Supported

acc_update

Supported: host, device
Unsupported: async, if

Unsupported

Directives : wait, cache, declare
All runtime routines

CRANY

THE SUPERCOMPUTER COMPANY

CRANY

THE SUPERCOMPUTER COMPANY

A porting strategy

* Preparation: add checksum(s) and high-res timer to code

e Check for correctness very frequently

e Profile code on the host

e Use representative-sized problem, map calltree,
e |deally resolve profile by loopnest and measure typical loop iteration counts

e First optimise the data movements
e Start in subprograms at bottom of callchain

e Accelerate individual loopnests using parallel regions
e Concentrate initially on most computationally expensive
e Add data regions in subprograms
e Minimise data movements, use create clause where possible
* May need to accelerate insignificant loopnests to avoid data copies

e Use available feedback to understand data movement

e Compiler messages: -ra for CCE

e Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE

e NVIDIA compute profiler: export COMPUTE_PROFILE=1

e CrayPAT performance measurement and analysis tool (Cray PE only)

* Code is probably going quite slowly at this point

A porting strategy (2)

CRANY

THE SUPERCOMPUTER COMPANY

e Move progressively up callchain, adding data regions

e Aim to further reduce data movements

* No problem nesting data regions: use present clause on inner ones

e May need to port insignificant subprograms to avoid data transfers

e Use update for essential data transfers (e.g. data for halo swaps)

e Now optimise kernel performance (often trial and error)
e Perfect loop nests schedule better than imperfect ones

e e.g. Remove temporary arrays by manually inlining (eliminate array b)

e Or manually privatise arrays and break loopnest (make b(i,j))

DO j = 1,N

DO i = 0,M+1
b(i) = a(i,j+1) + a(i,j-1)
ENDDO

DO i = 1,M
c(i,j) = b(i+1) + b(i-1)
ENDDO

ENDDO

DO j = 1,N
DO i = 1,M
c(i,j) = a(i+1,j+1) + a(i+1,j-1) &

ENDDO
ENDDO

+ a(i-1,j+1) + a(i-1,j-1)

DO j = 1,N
DO i = O,M+1
b(i,j) = a(i,j+1) + a(i,j-1)
ENDDO
ENDDO
DO j = 1,N
DO i = 1,M
c(i,j) = b(i+1l) + b(i-1)
ENDDO
ENDDO

CRANY

THE SUPERCOMPUTER COMPANY

A porting strategy (3)

e Now look at tweaking the loop scheduling

* Quick wins
e Optimise loop scheduling
e Make sure the right loops are vectorised (for coalesced memory loads)
e And that they are vectorisable
e Choose number of workers per gang (threads/block)
e This number will vary by kernel and by problem size
e Collapsing or blocking of loops may help (though compilers already do that)
e See if caching can be used to reduce data loads from device memory

e Longer term: can loops be migrated up the callchain?

e E.g. Loop over sites, or blocks of sites (“blocking for cache”)
e If so, parallelise (gangs) over these

e Consider overlap of compute and communications using async
* Don’t do this until everything working
* May require application restructuring

Three example applications

1. S3D turbulent combustion code
2. Himeno

3. MultiGrid code (NAS & SPEC benchmarks)

10
=p=0penMP
«==(UDA Fortran (PGI)
7 J
c 1 4 e=s0OpenACC (CCE)
(=]
g J
0.1 4
£ —o
0.01 ; ; ' ; _<
0 8 16 24 32
ores

B OpenMP (full node)

Time (ds)
Y
W/

Ul

N

B OpenACC (CCE)

w

N

Time (seconds)

[N

o

Kernel A Kernel B Kernel C S3D

Example: The Himeno Benchmark

e Parallel 3D Poisson equation solver O,O/O
e 19-point stencil

e MPI or CAF and/or OpenMP o/o/oo’poﬂo
e available from here
e ~600 lines of Fortran O o/dO

e Fully ported to accelerator using 27 directive pairs

Himeno Benchmark - XL configuration

e XL configuration:
e 1024 x512x512 *°
e Strong scaling

—e—MPI/OMP -m-MPI/ACC CAF/ACC

B
o

w
o

e More kernel tuning

* No use of async yet

Performance (TFlop/s)

i

P
—

32 64 96 128
Number of nodes

o
o
o

http://accc.riken.jp/HPC_e/himenobmt_e.html

CRANY

THE SUPERCOMPUTER COMPANY

The Jacobi computational kernel

DO K=2,kmax-1

DO J=2, jmax-1

e The stencil is applied to DO =2, imax-1 = | e
S0=a(I,J,K,1)*p(I+1,J, K) =
pressure array p +a(1,3,K,2)%p (1, J+L,K) & - S
+a(I,J,K,3)*p(I, J, K+1) & _ ;
e Updated pressure values are #(1,3,K,1)%(p (141,341, K)-p(141,3-1,K) & | |
-p(I-1,J+1,K)+p(I-1,J-1,K)) &
saved to temporary array tb(1,3,K,2)% (6 (T, J+1,K41)-p (T, I-1,K41) & c
-p(I, J+1,K-1)+p(I, J-1,K-1)) & o C
erz +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) & S
e Control value wgosa is AR
Computed +c(I,J,K,2)*p(I, J-1,K) & HEe
+c(I,J,K,3)*p(I, J, K-1) & E
* |n the benchmark this kernel L) o
is iterated a fixed number of $5=(S0%a (1,3, 4) -p (I, 3,K)) *bnd (1, 3,K)
h WGOSA=WGOSA+SS*SS
times (nn) ek2 (,3,K)2p (1, 3,K) HOMBGA 88
ENDDO
ENDDO

ENDDO

CRANY

THE SUPERCOMPUTER COMPANY

Distributed implementation

e Quter loop executed fixed number
Of times DO loop =1, nn

e Jacobi kernel is executed and new compute Jacobi kernel — wrk2, wgosa
pressure array wrk2 and control

copy back wrk2 into p
value wgosa computed

e array is updated with the new pack halo from p into send buffers
pressure values

exchange halos with neighbour PEs

e halo region values are exchanged
between neigthur PEs unpack halo into p from recv buffers

e Send/receive buffers are used

Allreduce to sum wgosa across PEs

e The maximum control value is ENDDO
computed with an ALLREDUCE
operation across all the PEs

Porting Himeno to the Cray XK6 ————

e Several versions tested, with communication implemented in
MPI or Fortran coarrays

e GPU version using OpenACC ccelerator directives

e Comparing Cray XK6 timings with best Cray XE6 results (hybrid
MPI1/OpenMP)

e Arrays reside permanently on the GPU memory

e Data transfers between host and GPU are:
e Communication buffers for the halo exchange
e Control value

CRANY

THE SUPERCOMPUTER COMPANY

Allocating arrays on the GPU

e Arrays are allocated on the GPU PROGRAM himenobmtxp
memory in the main program with
the data directive 'Jacc data create &
1Saccé (p,a,b,c,wrkl,wrk2,bnd, &

e In the subroutines the data '$accs sendbuffx up,sendbuffx dn, &
directive is replicated with the '$accs sendbuffy up,sendbuffy dn, &
present clause, to use the data '$accé sendbuffz up,sendbuffz_dn)
already present in the GPU
memory and avoid extra

tSacc end data

allocations SUBROUTINE jacobi (nn,gosa)
e Since present clause is used, no '3acc data present ¢
copy* clauses are used, and data t7acce (p,a,b,c,wrkl,wrk2,bnd, -

'$accé dbuff ,sendbuffx dn, &
transfers to/from host are eek senchuniE fp, senchutiE on

_]] !$acc& sendbuffy up,sendbuffy dn, &
implemented by update directives

'$acc& sendbuffz up,sendbuffz dn)

: CRANY
Jacobi kernel on the GPU

e The GPU kernel for the main loop
is created with the parallel PO loop=l,nn
loop directive gosa = 0

wgosa = 0
e The scoping of the main variables '$acc parallel loop P
is specified earlier with the data '$accs private(s0,ss) &
directive - no need to replicated it t3accé reduction(+:wgosa) &
! !1Saccé& vector length(256)
in here -
DO K=2,kmax-1
e wgosa is computed by specifying DO J=2,jmax-1
the reduction clause, asin a DO I=2,imax-1
standard OpenMP parallel loop S0=a(1,J,K,1)*p(1+1,J, K) &
e vector length clause is used to wgosa = wgosa + SS*SS
indicate the number of threads ENDDO
within a threadblock (compiler ENDDO

default 128) ENDDO

CRANY

THE SUPERCOMPUTER COMPANY

Halo region buffers

Halo values are extracted from the
wrk?2 array and packed into the
send buffers, on the GPU

A global parallel regionis
specified and buffers in the X, Y,
and Z directions are packed within
loop blocks

The send buffers are copied to host
memory with update

In the same way, after the halo
exchange, the recv buffers are
transferred to the GPU memory
and used to update the array p

N.B. Currently it’s not possible to
include non-contiguous array
sections in update

» buffers are necessary

B

!$Sacc parallel
!$Sacc loop
DO j = 2,jmax-1
DO i = 2,imax-1
sendbuffz dn(i,j)= wrk2(i,]j,2)
sendbuffz up(i,j)= wrk2(i,]j, kmax-1)
ENDDO
ENDDO

!$Sacc end loop

!Sacc loop
!$Sacc end loop

!Sacc end parallel

!Sacc update &

'Saccé host (sendbuffz dn,sendbuffz up)

CRANY

THE SUPERCOMPUTER COMPANY

Coarray implementation

e Coarrays are used to perform the
halo exchange

e Non-blocking communication 'dir$ pgas defer_sync
needs pgas de.Fer\ SynC recvbuffz up(:,:) [myx, myy, myz-1] = &
directive S sendbuffz dn(:,:)

* Programmer now responsible for '$acc parallel loop
data synchronization DO k = 2,kmax-1

e By deferring sync point, network PO 3 = 2,max-1

comms can be overlapped with o(3,3,k) = wrk2 (i,5,%)
CPU or GPU activity ENDDO

ENDDO

DO i = 2,imax-1

e Updating p from wrk2 (on GPU)

overlapped with halo exchange =R

!Sacc end parallel loop
e N.B.nosync all: CAF intrinsic sync memory

COSUM has loose synchronisation gosa = COSUM(wgosa)
(so do need sync memory first). '$ace update &

!Sompé& acc (recvbuffz dn,recvbuffz up)

CRANY

THE SUPERCOMPUTER COMPANY

Coarray implementation

e Coarrays are used te

halo exchange Compiler does not currently support using

coarrays in an accelerator region,

* Non-blocking so this does not work!
needs pga
directive You need to make a local copy of the coarray

buffers to non-coarray buffers and then transfer

® Programme
5 them to GPU memory.

data synchrd

* By deferring s This affects the performance, by increasing the
comms can be ow host CPU time.

CPU or GPU activity

e Updating p from wrk2 (on GPT
overlapped with halo exchange

,o

gosa = COSUMNwgosa)
e N.B.nosync all: CAF intrinsic !$omp acc_update &
COSUM has IOOSE synchronisation 'Somp& acd(recvbuffz dn,recvbuffz up

(so do need sync memory first).

OpenMP for Accelerator GPU version

e Total number of lines in the original Himeno

MPI-Fortran code: 629
e Total number lines in the modified version
with coarrays and accelerator directives: 554
e don't need MPI_CART_CREATE and the like
e Total number of accelerator directives: 27

e plus 18 "end" directives

THE SUPERCOMPUTER COMPANY

CRANY

THE SUPERCOMPUTER COMPANY

Example: MultiGrid benchmark

e NAS Parallel Benchmarks, also SPEC suite
e MG (multigrid) solves Laplacian on 3D grid

e 1500 lines of Fortran or C, many subroutines

e Three main hotspots:
e resid (50% of runtime), psinv (25%), rprj3 (9%)

e Data arrays passed to/from subroutines at every iteration
e GPU (just less than) 2x faster than CPU (16 cores)

e Fully accelerated using 25 directive pairs (present essential)
e You will look at this code in the tutorial this afternoon
e MPI-parallel version also ported using OpenACC

* Further optimisations coming
* Further use of shared memory
* async clause support coming

e CCE already launches kernels and data transfers asynchronously

Running existing CUDA applications

e CUDA codes can be compiled and run as usual on the Cray XK6
e Ludwig parallel code was run across 936 GPUs (10 cabinets)

e Compilation:
e module load craype-accel-nvidia20

* Main CPU code compiled with PrgEnv "cc" wrapper

e either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc

e GPU CUDA-C kernels compiled with nvcc

e nvcc -03 -arch=sm_20

* PrgEnv "cc" wrapper used for linking

e Only GPU flag needed: -1cudart
e e.g.no CUDA -L flags needed (added in cc wrapper)

e Submission:

e submit job as usual (SLURM, aprun):
e Use 1 MPI rank per node

» NVIDIA drivers for Cray XK6 optimise GPU/CPU/Gemini
pipeline.

Running existing OpenCL applications

e Compilation:

e module load craype-accel-nvidia20

e Main CPU code compiled with PrgEnv "cc" wrapper

e either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc

e GPU OpenCL kernels compiled with nvcc

e nvcc -03 -arch=sm_20

® PrgEnv "cc" wrapper used for linking
e Only GPU flag needed: -10penCL

e Alternatively:

e Use PrgEnv-gnu for all compilation
e still need -10penCL at linktime

e Submission:

* submit job as usual (SLURM, aprun):
e Use 1 MPI rank per node

In conclusion...

e Hybrid multicore has arrived and is here to stay

e Fat nodes are getting fatter

e GPUs have leapt into the top500 and accelerated nodes
* Programming accelerators efficiently is hard

* When done well can give good performance (Ludwig)
e Accelerator directives offer a good alternative =

e Attractive (and familiar) programming model ey
e Open standards for portability
e Use original Fortran, C and C++ codes (' :

* Presented a strategy for porting large codes
* The performance penalty is small

e The portability and productivity bonuses are huge

Directives play nicely with (some) other programming models
» so you don’t need to throw away your prize CUDA kernels

<

CRANY

THE SUPERCOMPUTER COMPANY

Tutorial overview

e Tutorial leads you through porting entire MultiGrid code
e Structure resembles SciEng application in only 1500 lines

e More useful than over-simplistic "Hello World" examples

e Tutorial covers:

e code preparation
e profiling and scoping
e steps to progressively port to GPU using OpenACC
e Code examples and Makefiles provided

e Both Fortran and C versions (no C for 01, 02)

e VERSION=00 Original CPU code

e VERSION=01 CPU version for profiling with CrayPAT

e VERSION=02 CPU version for variable scoping with Cray Reveal
e VERSION=03 First OpenACC kernel

e VERSION=04 OpenACC for all significant kernels

e VERSION=05 OpenACC for insignificant kernels as well

e VERSION=06 Data region to eliminate major data movements
e VERSION=07 Tuned OpenACC region

e VERSION=08 OpenACC interoperating with CUDA kernel

B

Acknowledgments

Thank you to those that helped us get to grips with directives:
e Cray Exascale Research Initiative Europe team

* Harvey Richardson, Jason Beech-Brandt CREST@

e Roberto Ansaloni

e EPCC Exascale Technology Centre team
e Alan Gray

e Cray PE R&D team

e Luiz DeRose, Heidi Poxon, Suzanne LaCroix, James Beyer,
David Oehmke...

e ORNL team
* John Levesque, Jeff Larkin

e OpenMP subcommittee

For further info, ahart@cray.com

mailto:ahart@cray.com

