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 Accelerator directives 

 Why do we need them? 

 What do they look like? 
 OpenACC now, OpenMP in the future 

 How do we use them? 

 Support status in CCE v8.0 

 Use Cases:  

 How do we port a full application? 

 How do they perform? 

 Case studies in directive-based optimisation on GPU 
 S3D: performance 

 Himeno: porting a parallel benchmark 

 MultiGrid: now it’s your turn 

 Running an existing CUDA or OpenCL application 

 Overview of MultiGrid tutorial example 

Contents 
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 Why do we need a new GPU programming model? 

 Aren’t there enough ways already? 

 CUDA (incl. NVIDIA CUDA-C & PGI CUDA-Fortran) 

 OpenCL  

 Stream 

 hiCUDA ... 

 All are quite low-level and closely coupled to the GPU 

 User needs to rewrite kernels in specialist language: 
 Hard to write and debug 

 Hard to optimise for specific GPU 

 Hard to port to new accelerator 

 Multiple versions of kernels in codebase 
 Hard to add new functionality 

 

Accelerator programming 
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 If you work hard, you can get good parallel performance 

 Ludwig Lattice Boltzmann code rewritten in CUDA 

 Reordered all the data structures (structs of arrays) 

 Pack halos on the GPU 

 Streams to overlap compute,  

    PCIe comms, MPI halo swaps 

 10 cabinets of Cray XK6 

 936 GPUs (nodes) 

 Only 4% deviation from  

    perfect weak scaling between  

    8 and 936 GPUs. 

 Application sustaining 40+ Tflop/s 
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 Most scientific applications will not have this level of 
developer support (Ludwig was special research case) 

 Directives provide high-level approach 

+ Based on original source code (e.g. Fortran, C, C++) 
+ Easier to maintain/port/extend code 

+ Users with (for instance) OpenMP experience find it a familiar programming model 

+ Compiler handles repetitive boilerplate code (cudaMalloc, cudaMemcpy...) 

+ Compiler handles default scheduling; user can step in with clauses where needed 

– Possible performance sacrifice 
– Important to quantify this 

– Can then tune the compiler 

– Small performance sacrifice is an acceptable trade-off for portability and productivity 

– Who handcodes in assembler these days? 

 Two relevant performance comparisons: 

 How does the performance compare to CUDA? 

 Can I justify buying a GPU instead of another CPU? 

Directive-based programming 
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 Is there a performance gap relative to explicit low-level 
programming model? Typically 10-15%, sometimes none. 

 Is the performance gap acceptable? Yes. 

 e.g. S3D comp_heat kernel (ORNL application readiness): 
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 Does accelerated parallel application performance justify 
buying a GPU (Cray XK6) rather than another CPU (Cray XE6)? 

 For many codes, yes.  
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 A common directive programming model for today’s GPUs 

 Announced at SC11 conference 

 Offers portability between compilers 
 Drawn up by: NVIDIA, Cray, PGI, CAPS 

 Multiple compilers offer portability, debugging, permanence 

 Works for Fortran, C, C++ 
 Standard available at www.OpenACC-standard.org 

 Initially implementations targeted at NVIDIA GPUs 

 Current version: 1.0 (November 2011) 

 Compiler support: 

 Cray CCE: partial now, complete in 2012 

 PGI Accelerator: released product in 2012 

 CAPS: released product in Q1 2012 
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 A common programming model for tomorrow’s accelerators 

 An established open standard is the most attractive 
 portability; multiple compilers for debugging; permanence 

 Subcommittee of OpenMP ARB 

 includes most major vendors + others (e.g. EPCC) 

 co-chaired by Cray (James Beyer) 

 aiming for OpenMP 4 (2012?) 

 Targets Fortran, C, C++ 

 Current version: draft 

 Cray compiler provides reference implementation for ARB 

 Of draft standard at present (CCE 8.0) 

 Will track the standard as it evolves 

 Converting from OpenACC to OpenMP will be straightforward 

accelerator directives 
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 Host-directed execution with attached GPU 

 Main program executes on “host” (i.e. CPU) 
 Compute intensive regions offloaded to the accelerator device 

 under control of the host.  

 “device” (i.e. GPU) executes parallel regions 
 typically contain “kernels” (i.e. work-sharing loops), or 

 kernels regions, containing one or more loops which are executed as kernels.   

 Host must orchestrate the execution by:  
 allocating memory on the accelerator device,  

 initiating data transfer,  

 sending the code to the accelerator,  

 passing arguments to the parallel region,  

 queuing the device code,  

 waiting for completion,  

 transferring results back to the host, and  

 deallocating memory.   

 Host can usually queue a sequence of operations  
 to be executed on the device, one after the other. 

19 



 Memory spaces on the host and device distinct 

 Different locations, different address space 

 Data movement performed by host using runtime library 
calls that explicitly move data between the separate  

 GPUs have a weak memory model 

 No synchronisation between different execution units (SMs) 
 Unless explicit memory barrier 

 Can write OpenACC kernels with race conditions 
 Giving inconsistent execution results 

 Compiler will catch most errors, but not all (no user-managed barriers) 

 OpenACC 

 data movement between the memories implicit 
 managed by the compiler, 

 based on directives from the programmer. 

 Device memory caches are managed by the compiler  
 with hints from the programmer in the form of directives.  20 



 Modify original source code with directives 

 Non-executable statements (comments, pragmas) 
 Can be ignored by non-accelerating compiler 

 CCE -hnoacc also supresses compilation 

 Sentinel: !$acc 

 Fortran:  
 Usually paired with !$acc end * 

 C/C++:  
 Structured block {...} avoids need for end directives 

 Continuation to extra lines allowed 

 CPP macro defined to allow extra conditional compilation 

 E.g. around calls to runtime API functions 
 _OPENACC == yyyymm (currently 201111) 

Accelerator directives 

21 

! Fortran example 
!$acc * 
<structured block> 
!$acc end * 

/* C/C++ example */ 
#pragma acc * 
{structured block} 



Execute a loop nest on the GPU 

 Compiler does the work: 

 Data movement 
 allocates/frees GPU memory at  

 start/end of region 

 moves of data to/from GPU 

 Loop schedule: spreading loop iterations over PEs of GPU 
 Parallelism NVIDIA GPU  SMT node (not supported!) 

 gang:  a threadblock  CPU 

 worker:  warp (32 threads)  CPU core 

 vector:   SIMT group of threads SIMD instructions (SSE, AVX) 

 Caching (explicitly use GPU shared memory for reused data) 
 automatic caching (e.g. NVIDIA Fermi) important 

 Tune default behaviour with optional clauses on directives 

 

A first example 
!$acc parallel loop !OpenACC 
DO j = 1,M 
  DO i = 2,N-1 
    c(i,j) = a(i,j) + b(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel loop 

read-only write-only 



 Array a(:) unnecessarily moved from and to GPU between 
kernels 

 Code still compile-able for CPU 
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PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
  <stuff> 
END PROGRAM main 

 Two accelerator parallel regions 

 Compiler creates two kernels 
 Loop iterations automatically divided 

across gangs, workers, vectors 

 Breaking parallel region acts as barrier 

 First kernel initialises array 
 Compiler will determine copyout(a) 

 Second kernel updates array 
 Compiler will determine copy(a) 

 Breaking parallel region=barrier 
 No barrier directive (global or within SM) 



 No automatic synchronisation of copies within data region 

 User-directed synchronisation via update directive 
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PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copyout(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
!$acc end data 
  <stuff> 
END PROGRAM main 

 Now added a data region 

 Specified arrays only moved at 
boundaries of data region 

 Unspecified arrays moved by 
each kernel 

 No compiler-determined 
movements for data regions 

 Data region can contain host code 
and accelerator regions 

 Copies of arrays independent 

 



 One of the kernels now in subroutine (maybe in separate file) 

 CCE supports function calls inside parallel regions 
 Compiler will automatically inline (maybe need -Oipafrom or use program library) 

 The present clause uses version of b on GPU without data copy 

 Can also call double_array() from outside a data region 
 Replace present with present_or_copy (can be shortened to pcopy) 

 Original calltree structure of program can be preserved 
25 

SUBROUTINE double_array(b) 
  INTEGER :: b(N) 
!$acc parallel loop present(b) 
  DO i = 1,N 
   b(i) = double_scalar(b(i)) 
  ENDDO 
!$acc end parallel loop 
END SUBROUTINE double_array 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copy(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
  CALL double_array(a) 
!$acc end data 
  <stuff> 
END PROGRAM main 

INTEGER FUNCTION double_scalar(c) 
  INTEGER :: c 
  double_scalar = 2*c 
END FUNCTION double_scalar 



 Data clauses: 

 copy, copyin, copyout 
 copy moves data "in" to GPU at start of region and/or "out" to CPU at end 

 supply list of arrays or array sections (using Fortran ":" notation) 

 create 
 No copyin/out – useful for shared temporary arrays in loopnests 

 private: scalars private by default 

 present, present_or_copy*: described previously 

 Tuning clauses: 

 !$acc loop [gang] [worker] [vector] 
 Targets specific loop (or loops using collapse clause) at specific level of hardware 

 num_gang, num_workers, vector_length 
 Tunes the amount of parallelism used (threadblocks, threads/block...) 

 seq: loop executed sequentially 

 independent: compiler hint (also use CCE !dir$ directives) 

Clauses for !$acc parallel loop 
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 Other !$acc parallel loop clauses: 

 if(logical) 
 Executes on GPU if .TRUE. at runtime, otherwise on CPU 

 reduction: as in OpenMP 

 cache: specified data held in software-managed data cache 
 e.g. explicit blocking to shared memory on NVIDIA GPUs 

 !$acc update [host|device] 

 Copy specified arrays (slices) within data region  

 async[(handle)] clause for parallel, update directives 
 Launch accelerator region/data transfer asynchronously: allows CPU/GPU overlap 

 Operations with same handle will execute sequentially (as in CUDA streams) 

 !$acc wait[(handles)]: waits for completion 

 Runtime library functions can also be used to test/wait for completion 

 Will be supported in CCE v8.1 
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 host_data region exposes accelerator memory address on host 

 nested inside data region 

 Call CUDA-C wrapper (compiled with nvcc; linked with CCE) 
 must include cudaThreadSynchronize() 

 Before: so asynchronous accelerator kernels definitely finished 

 After: so CUDA kernel definitely finished 

 CUDA kernel written as usual 

 Or use same mechanism to call existing CUDA library 
28 

__global__ void dbl_knl(int *c) { 
  int i = \ 
       blockIdx.x*blockDim.x+threadIdx.x; 
  if (i < N) c[i] *= 2; 
} 
 
extern "C" void dbl_cuda_(int *b_d) { 
  cudaThreadSynchronize(); 
  dbl_knl<<<NBLOCKS,BSIZE>>>(b_d); 
  cudaThreadSynchronize(); 
} 
 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copy(a) 
! <Populate a(:) on device 
!  as before> 
!$acc host_data use_device(a) 
  CALL dbl_cuda(a) 
!$acc end host_data 
!$acc end data 
  <stuff> 
END PROGRAM main 



 parallel 

 Supported: num_coarse, num_fine, vector_length, all data clauses 

 Unsupported: async, if 

 kernel 

 Unsupported 

 loop 

 Supported: collapse, coarse, fine, vector, reduction, private, seq 

 Unsupported: independent 

 data 

 Supported: all data clauses 

 Unsupported: async, if 

 host_data  

 Supported 

 acc_update 

 Supported: host, device 

 Unsupported: async, if 

 Unsupported 

 Directives : wait, cache, declare 

 All runtime routines 
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 Preparation: add checksum(s) and high-res timer to code 
 Check for correctness very frequently 

 Profile code on the host 
 Use representative-sized problem, map calltree,  

 Ideally resolve profile by loopnest and measure typical loop iteration counts 

 First optimise the data movements 

 Start in subprograms at bottom of callchain 
 Accelerate individual loopnests using parallel regions 

 Concentrate initially on most computationally expensive 

 Add data regions in subprograms 

 Minimise data movements, use create clause where possible 

 May need to accelerate insignificant loopnests to avoid data copies 

 Use available feedback to understand data movement 
 Compiler messages: -ra for CCE 

 Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE 

 NVIDIA compute profiler: export COMPUTE_PROFILE=1 

 CrayPAT performance measurement and analysis tool (Cray PE only) 

 Code is probably going quite slowly at this point 
30 



 Move progressively up callchain, adding data regions 
 Aim to further reduce data movements 

 No problem nesting data regions: use present clause on inner ones 

 May need to port insignificant subprograms to avoid data transfers 

 Use update for essential data transfers (e.g. data for halo swaps) 

 Now optimise kernel performance (often trial and error) 

 Perfect loop nests schedule better than imperfect ones 
 e.g. Remove temporary arrays by manually inlining (eliminate array b) 

 Or manually privatise arrays and break loopnest (make b(i,j)) 
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DO j = 1,N 
 DO i = 0,M+1 
  b(i) = a(i,j+1) + a(i,j-1) 
 ENDDO 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 

DO j = 1,N 
 DO i = 1,M 
  c(i,j) = a(i+1,j+1) + a(i+1,j-1) & 
         + a(i-1,j+1) + a(i-1,j-1) 
 ENDDO 
ENDDO DO j = 1,N 

 DO i = 0,M+1 
  b(i,j) = a(i,j+1) + a(i,j-1) 
 ENDDO 
ENDDO 
DO j = 1,N 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 



 Now look at tweaking the loop scheduling 

 Quick wins 
 Optimise loop scheduling 

 Make sure the right loops are vectorised (for coalesced memory loads) 

 And that they are vectorisable 

 Choose number of workers per gang (threads/block) 

 This number will vary by kernel and by problem size 

 Collapsing or blocking of loops may help (though compilers already do that) 

 See if caching can be used to reduce data loads from device memory 

 Longer term: can loops be migrated up the callchain? 
 E.g. Loop over sites, or blocks of sites (“blocking for cache”) 

 If so, parallelise (gangs) over these 

 Consider overlap of compute and communications using async 

 Don’t do this until everything working 

 May require application restructuring 
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1. S3D turbulent combustion code 

2. Himeno 

3. MultiGrid code (NAS & SPEC benchmarks) 

Three example applications  
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 Parallel 3D Poisson equation solver 

 19-point stencil 

 MPI or CAF and/or OpenMP 

 available from here  

 ~600 lines of Fortran 

 Fully ported to accelerator using 27 directive pairs 

 XL configuration:  

 1024 x 512 x 512 

 Strong scaling 

 More kernel tuning 

 No use of async yet 
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 The stencil is applied to 
pressure array p 

 Updated pressure values are 
saved to temporary array 
wrk2 

 Control value wgosa is 
computed 

 In the benchmark this kernel 
is iterated a fixed number of 
times (nn) 

DO K=2,kmax-1 

 DO J=2,jmax-1 

  DO I=2,imax-1 

   S0=a(I,J,K,1)*p(I+1,J, K )  

     +a(I,J,K,2)*p(I, J+1,K ) & 

     +a(I,J,K,3)*p(I, J, K+1) & 

     +b(I,J,K,1)*(p(I+1,J+1,K )-p(I+1,J-1,K ) & 

                 -p(I-1,J+1,K )+p(I-1,J-1,K )) & 

     +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) & 

                 -p(I, J+1,K-1)+p(I, J-1,K-1)) & 

     +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) & 

                 -p(I+1,J, K-1)+p(I-1,J, K-1)) & 

     +c(I,J,K,1)*p(I-1,J, K ) & 

     +c(I,J,K,2)*p(I, J-1,K ) & 

     +c(I,J,K,3)*p(I, J, K-1) & 

     + wrk1(I,J,K) 

 

   SS=(S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K) 

   WGOSA=WGOSA+SS*SS 

   wrk2(I,J,K)=p(I,J,K)+OMEGA *SS 

  ENDDO 

 ENDDO 

ENDDO 
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 Outer loop executed fixed number 
of times 

 Jacobi kernel is executed and new 
pressure array wrk2 and control 
value wgosa computed 

 array is updated with the new 
pressure values 

 halo region values are exchanged 
between neighbour PEs 

 Send/receive buffers are used 

 The maximum control value is 
computed with an ALLREDUCE 
operation across all the PEs 

DO loop = 1, nn 

   compute Jacobi kernel  wrk2,wgosa 

 

   copy back wrk2 into p 

 

   pack halo from p into send buffers 

 

   exchange halos with neighbour PEs 

 

   unpack halo into p from recv buffers  

 

   Allreduce to sum wgosa across PEs 

ENDDO 
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 Several versions tested, with communication implemented in 
MPI or Fortran coarrays 

 GPU version using OpenACC ccelerator directives 

 Comparing Cray XK6 timings with best Cray XE6 results (hybrid 
MPI/OpenMP) 

 Arrays reside permanently on the GPU memory 

 Data transfers between host and GPU are: 

 Communication buffers for the halo exchange 

 Control value 
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 Arrays are allocated on the GPU 
memory in the main program with 
the data directive 

 In the subroutines the data 
directive is replicated with the 
present clause, to use the data 
already present in the GPU 
memory and avoid extra 
allocations 

 Since present clause is used, no 
copy* clauses are used, and data 
transfers to/from host are 
implemented by update directives 

PROGRAM himenobmtxp 

... 

!$acc data create         & 

!$acc&  (p,a,b,c,wrk1,wrk2,bnd,     & 

!$acc&  sendbuffx_up,sendbuffx_dn, & 

!$acc&  sendbuffy_up,sendbuffy_dn, & 

!$acc&  sendbuffz_up,sendbuffz_dn) 

... 

!$acc end data 

 

SUBROUTINE jacobi(nn,gosa) 

!$acc data present          & 

!$acc&  (p,a,b,c,wrk1,wrk2,bnd,     & 

!$acc&  sendbuffx_up,sendbuffx_dn, & 

!$acc&  sendbuffy_up,sendbuffy_dn, & 

!$acc&  sendbuffz_up,sendbuffz_dn) 
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 The GPU kernel for the main loop 
is created with the parallel 
loop directive 

 The scoping of the main variables 
is specified earlier with the data 
directive - no need to replicated it 
in here 

 wgosa is computed by specifying 
the reduction clause, as in a 
standard OpenMP parallel loop 

 vector_length clause is used to 
indicate the number of threads 
within a threadblock (compiler 
default 128) 

DO loop=1,nn 

  gosa = 0 

  wgosa = 0 

!$acc parallel loop              & 

!$acc&  private(s0,ss)             & 

!$acc&  reduction(+:wgosa)         & 

!$acc&  vector_length(256) 

  DO K=2,kmax-1 

    DO J=2,jmax-1 

      DO I=2,imax-1 

        S0=a(I,J,K,1)*p(I+1,J, K ) & 

        ... 

        wgosa = wgosa + SS*SS 

      ENDDO 

    ENDDO 

  ENDDO 
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 Halo values are extracted from the 
wrk2 array and packed into the 
send buffers, on the GPU 

 A global parallel region is 
specified and buffers in the X, Y, 
and Z directions are packed within 
loop blocks 

 The send buffers are copied to host 
memory with update 

 In the same way, after the halo 
exchange, the recv buffers are 
transferred to the GPU memory 
and used to update the array p 

 N.B. Currently it’s not possible to 
include non-contiguous array 
sections in update 

 buffers are necessary 

!$acc parallel 

!$acc loop 

DO j = 2,jmax-1 

  DO i = 2,imax-1 

    sendbuffz_dn(i,j)= wrk2(i,j,2) 

    sendbuffz_up(i,j)= wrk2(i,j,kmax-1) 

  ENDDO 

ENDDO 

!$acc end loop 

 ... 

!$acc loop 

!$acc end loop 

!$acc end parallel 

 

!$acc update & 

!$acc&  host(sendbuffz_dn,sendbuffz_up) 
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 Coarrays are used to perform the 
halo exchange 

 Non-blocking communication 
needs pgas defer_sync 
directive 

 Programmer now responsible for 
data synchronization 

 By deferring sync point, network 
comms can be overlapped with 
CPU or GPU activity 

 Updating p from wrk2 (on GPU) 
overlapped with halo exchange 

 N.B. no sync all: CAF intrinsic 
COSUM has loose synchronisation 
(so do need sync memory first).  

!dir$ pgas defer_sync 

recvbuffz_up(:,:)[myx,myy,myz-1] = & 

   sendbuffz_dn(:,:) 

 ... 

!$acc parallel loop 

DO k = 2,kmax-1 

  DO j = 2,jmax-1 

    DO i = 2,imax-1 

      p(i,j,k) = wrk2(i,j,k) 

    ENDDO 

  ENDDO 

ENDDO 

!$acc end parallel loop 

sync memory 

gosa = COSUM(wgosa) 

!$acc update & 

!$omp& acc(recvbuffz_dn,recvbuffz_up) 
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 Coarrays are used to perform the 
halo exchange 

 Non-blocking communication 
needs pgas defer_sync 
directive 

 Programmer now responsible for 
data synchronization 

 By deferring sync point, network 
comms can be overlapped with 
CPU or GPU activity 

 Updating p from wrk2 (on GPU) 
overlapped with halo exchange 

 N.B. no sync all: CAF intrinsic 
COSUM has loose synchronisation 
(so do need sync memory first).  

!dir$ pgas defer_sync 

recvbuffz_up(:,:)[myx,myy,myz-1] = & 

   sendbuffz_dn(:,:) 

 ... 

!$omp acc_region_loop 

DO k = 2,kmax-1 

  DO j = 2,jmax-1 

    DO i = 2,imax-1 

      p(i,j,k) = wrk2(i,j,k) 

    ENDDO 

  ENDDO 

ENDDO 

!$omp end acc_region_loop 

sync memory 

gosa = COSUM(wgosa) 

!$omp acc_update & 

!$omp& acc(recvbuffz_dn,recvbuffz_up) 
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Compiler does not currently support using 
coarrays in an accelerator region,  

so this does not work! 
 

You need to make a local copy of the coarray 
buffers to  non-coarray buffers and then transfer 

them to GPU memory. 
 

This affects the performance, by increasing the 
host CPU time. 



 Total number of lines in the original Himeno  
MPI-Fortran code:     629 

 Total number lines in the modified version  
with coarrays and accelerator directives:  554 

  don't need MPI_CART_CREATE and the like 

 Total number of accelerator directives:      27 

 plus 18 "end" directives 
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 NAS Parallel Benchmarks, also SPEC suite 

 MG (multigrid) solves Laplacian on 3D grid 

 1500 lines of Fortran or C, many subroutines 

 Three main hotspots:  
 resid (50% of runtime), psinv (25%), rprj3 (9%) 

 Data arrays passed to/from subroutines at every iteration 

 GPU (just less than) 2x faster than CPU (16 cores) 

 Fully accelerated using 25 directive pairs (present essential) 

 You will look at this code in the tutorial this afternoon 

 MPI-parallel version also ported using OpenACC 

 Further optimisations coming 

 Further use of shared memory 

 async clause support coming 
 CCE already launches kernels and data transfers asynchronously 

Example: MultiGrid benchmark 
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 CUDA codes can be compiled and run as usual on the Cray XK6 

 Ludwig parallel code was run across 936 GPUs (10 cabinets) 

 Compilation: 
 module load craype-accel-nvidia20 

 Main CPU code compiled with PrgEnv "cc" wrapper 
 either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc 

 GPU CUDA-C kernels compiled with nvcc 
 nvcc -O3 -arch=sm_20 

 PrgEnv "cc" wrapper used for linking 
 Only GPU flag needed: -lcudart 

 e.g. no CUDA -L flags needed (added in cc wrapper) 

 Submission: 

 submit job as usual (SLURM, aprun): 
  Use 1 MPI rank per node 

 NVIDIA drivers for Cray XK6 optimise GPU/CPU/Gemini 
pipeline.  
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 Compilation: 
 module load craype-accel-nvidia20 

 Main CPU code compiled with PrgEnv "cc" wrapper 
 either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc 

 GPU OpenCL kernels compiled with nvcc 
 nvcc -O3 -arch=sm_20 

 PrgEnv "cc" wrapper used for linking 
 Only GPU flag needed: -lOpenCL 

  Alternatively: 

 Use PrgEnv-gnu for all compilation 
 still need -lOpenCL at linktime 

 Submission: 

 submit job as usual (SLURM, aprun): 
  Use 1 MPI rank per node 
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 Hybrid multicore has arrived and is here to stay 

 Fat nodes are getting fatter 

 GPUs have leapt into the top500 and accelerated nodes 

 Programming accelerators efficiently is hard 

 When done well can give good performance (Ludwig) 

 Accelerator directives offer a good alternative 

 Attractive (and familiar) programming model 

 Open standards for portability 

 Use original Fortran, C and C++ codes 

 Presented a strategy for porting large codes 

 The performance penalty is small 

 The portability and productivity bonuses are huge 

 Directives play nicely with (some) other programming models 

 so you don’t need to throw away your prize CUDA kernels 

In conclusion... 
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 Tutorial leads you through porting entire MultiGrid code 

 Structure resembles SciEng application in only 1500 lines 
 More useful than over-simplistic "Hello World" examples 

 Tutorial covers:  
 code preparation 

 profiling and scoping 

 steps to progressively port to GPU using OpenACC 

 Code examples and Makefiles provided 
 Both Fortran and C versions (no C for 01, 02) 

 VERSION=00 Original CPU code 

 VERSION=01 CPU version for profiling with CrayPAT 

 VERSION=02 CPU version for variable scoping with Cray Reveal 

 VERSION=03 First OpenACC kernel 

 VERSION=04 OpenACC for all significant kernels 

 VERSION=05 OpenACC for insignificant kernels as well 

 VERSION=06 Data region to eliminate major data movements 

 VERSION=07 Tuned OpenACC region 

 VERSION=08 OpenACC interoperating with CUDA kernel 
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