

CSCS – Tuesday 6.Mar.12

ahart@cray.com

Alistair Hart†,

Roberto Ansaloni.

(†Cray Exascale Research Initiative Europe)

mailto:ahart@cray.com

 Accelerator directives

 Why do we need them?

 What do they look like?
 OpenACC now, OpenMP in the future

 How do we use them?

 Support status in CCE v8.0

 Use Cases:

 How do we port a full application?

 How do they perform?

 Case studies in directive-based optimisation on GPU
 S3D: performance

 Himeno: porting a parallel benchmark

 MultiGrid: now it’s your turn

 Running an existing CUDA or OpenCL application

 Overview of MultiGrid tutorial example

Contents

2

 Why do we need a new GPU programming model?

 Aren’t there enough ways already?

 CUDA (incl. NVIDIA CUDA-C & PGI CUDA-Fortran)

 OpenCL

 Stream

 hiCUDA ...

 All are quite low-level and closely coupled to the GPU

 User needs to rewrite kernels in specialist language:
 Hard to write and debug

 Hard to optimise for specific GPU

 Hard to port to new accelerator

 Multiple versions of kernels in codebase
 Hard to add new functionality

Accelerator programming

8

9

 If you work hard, you can get good parallel performance

 Ludwig Lattice Boltzmann code rewritten in CUDA

 Reordered all the data structures (structs of arrays)

 Pack halos on the GPU

 Streams to overlap compute,

 PCIe comms, MPI halo swaps

 10 cabinets of Cray XK6

 936 GPUs (nodes)

 Only 4% deviation from

 perfect weak scaling between

 8 and 936 GPUs.

 Application sustaining 40+ Tflop/s

0

5

10

15

20

25

30

35

40

45

0 256 512 768 1024

P
e

rf
o

rm
an

ce
 (

Tf
lo

p
/s

)

Nodes

XK6
x86

 Most scientific applications will not have this level of
developer support (Ludwig was special research case)

 Directives provide high-level approach

+ Based on original source code (e.g. Fortran, C, C++)
+ Easier to maintain/port/extend code

+ Users with (for instance) OpenMP experience find it a familiar programming model

+ Compiler handles repetitive boilerplate code (cudaMalloc, cudaMemcpy...)

+ Compiler handles default scheduling; user can step in with clauses where needed

– Possible performance sacrifice
– Important to quantify this

– Can then tune the compiler

– Small performance sacrifice is an acceptable trade-off for portability and productivity

– Who handcodes in assembler these days?

 Two relevant performance comparisons:

 How does the performance compare to CUDA?

 Can I justify buying a GPU instead of another CPU?

Directive-based programming

13

 Is there a performance gap relative to explicit low-level
programming model? Typically 10-15%, sometimes none.

 Is the performance gap acceptable? Yes.

 e.g. S3D comp_heat kernel (ORNL application readiness):

14

0.01

0.1

1

10

0 8 16 24 32

Ti
m

e
 (

se
co

n
d

s)

Cores on Host

OpenMP

CUDA Fortran (PGI)

OpenACC (CCE)

 Does accelerated parallel application performance justify
buying a GPU (Cray XK6) rather than another CPU (Cray XE6)?

 For many codes, yes.

15

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

Pe
rf

o
rm

an
ce

 (
TF

lo
p

/s
)

Number of nodes

Himeno Benchmark - XL configuration
MPI/OMP MPI/ACC CAF/ACC

 A common directive programming model for today’s GPUs

 Announced at SC11 conference

 Offers portability between compilers
 Drawn up by: NVIDIA, Cray, PGI, CAPS

 Multiple compilers offer portability, debugging, permanence

 Works for Fortran, C, C++
 Standard available at www.OpenACC-standard.org

 Initially implementations targeted at NVIDIA GPUs

 Current version: 1.0 (November 2011)

 Compiler support:

 Cray CCE: partial now, complete in 2012

 PGI Accelerator: released product in 2012

 CAPS: released product in Q1 2012

16

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

 A common programming model for tomorrow’s accelerators

 An established open standard is the most attractive
 portability; multiple compilers for debugging; permanence

 Subcommittee of OpenMP ARB

 includes most major vendors + others (e.g. EPCC)

 co-chaired by Cray (James Beyer)

 aiming for OpenMP 4 (2012?)

 Targets Fortran, C, C++

 Current version: draft

 Cray compiler provides reference implementation for ARB

 Of draft standard at present (CCE 8.0)

 Will track the standard as it evolves

 Converting from OpenACC to OpenMP will be straightforward

accelerator directives

17

http://openmp.org/wp/

 Host-directed execution with attached GPU

 Main program executes on “host” (i.e. CPU)
 Compute intensive regions offloaded to the accelerator device

 under control of the host.

 “device” (i.e. GPU) executes parallel regions
 typically contain “kernels” (i.e. work-sharing loops), or

 kernels regions, containing one or more loops which are executed as kernels.

 Host must orchestrate the execution by:
 allocating memory on the accelerator device,

 initiating data transfer,

 sending the code to the accelerator,

 passing arguments to the parallel region,

 queuing the device code,

 waiting for completion,

 transferring results back to the host, and

 deallocating memory.

 Host can usually queue a sequence of operations
 to be executed on the device, one after the other.

19

 Memory spaces on the host and device distinct

 Different locations, different address space

 Data movement performed by host using runtime library
calls that explicitly move data between the separate

 GPUs have a weak memory model

 No synchronisation between different execution units (SMs)
 Unless explicit memory barrier

 Can write OpenACC kernels with race conditions
 Giving inconsistent execution results

 Compiler will catch most errors, but not all (no user-managed barriers)

 OpenACC

 data movement between the memories implicit
 managed by the compiler,

 based on directives from the programmer.

 Device memory caches are managed by the compiler
 with hints from the programmer in the form of directives. 20

 Modify original source code with directives

 Non-executable statements (comments, pragmas)
 Can be ignored by non-accelerating compiler

 CCE -hnoacc also supresses compilation

 Sentinel: !$acc

 Fortran:
 Usually paired with !$acc end *

 C/C++:
 Structured block {...} avoids need for end directives

 Continuation to extra lines allowed

 CPP macro defined to allow extra conditional compilation

 E.g. around calls to runtime API functions
 _OPENACC == yyyymm (currently 201111)

Accelerator directives

21

! Fortran example
!$acc *
<structured block>
!$acc end *

/* C/C++ example */
#pragma acc *
{structured block}

Execute a loop nest on the GPU

 Compiler does the work:

 Data movement
 allocates/frees GPU memory at

 start/end of region

 moves of data to/from GPU

 Loop schedule: spreading loop iterations over PEs of GPU
 Parallelism NVIDIA GPU SMT node (not supported!)

 gang: a threadblock CPU

 worker: warp (32 threads) CPU core

 vector: SIMT group of threads SIMD instructions (SSE, AVX)

 Caching (explicitly use GPU shared memory for reused data)
 automatic caching (e.g. NVIDIA Fermi) important

 Tune default behaviour with optional clauses on directives

A first example
!$acc parallel loop !OpenACC
DO j = 1,M
 DO i = 2,N-1
 c(i,j) = a(i,j) + b(i,j)
 ENDDO
ENDDO
!$acc end parallel loop

read-only write-only

 Array a(:) unnecessarily moved from and to GPU between
kernels

 Code still compile-able for CPU

23

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
 <stuff>
END PROGRAM main

 Two accelerator parallel regions

 Compiler creates two kernels
 Loop iterations automatically divided

across gangs, workers, vectors

 Breaking parallel region acts as barrier

 First kernel initialises array
 Compiler will determine copyout(a)

 Second kernel updates array
 Compiler will determine copy(a)

 Breaking parallel region=barrier
 No barrier directive (global or within SM)

 No automatic synchronisation of copies within data region

 User-directed synchronisation via update directive

24

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copyout(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
!$acc parallel loop
 DO i = 1,N
 a(i) = 2*a(i)
 ENDDO
!$acc end parallel loop
!$acc end data
 <stuff>
END PROGRAM main

 Now added a data region

 Specified arrays only moved at
boundaries of data region

 Unspecified arrays moved by
each kernel

 No compiler-determined
movements for data regions

 Data region can contain host code
and accelerator regions

 Copies of arrays independent

 One of the kernels now in subroutine (maybe in separate file)

 CCE supports function calls inside parallel regions
 Compiler will automatically inline (maybe need -Oipafrom or use program library)

 The present clause uses version of b on GPU without data copy

 Can also call double_array() from outside a data region
 Replace present with present_or_copy (can be shortened to pcopy)

 Original calltree structure of program can be preserved
25

SUBROUTINE double_array(b)
 INTEGER :: b(N)
!$acc parallel loop present(b)
 DO i = 1,N
 b(i) = double_scalar(b(i))
 ENDDO
!$acc end parallel loop
END SUBROUTINE double_array

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
 CALL double_array(a)
!$acc end data
 <stuff>
END PROGRAM main

INTEGER FUNCTION double_scalar(c)
 INTEGER :: c
 double_scalar = 2*c
END FUNCTION double_scalar

 Data clauses:

 copy, copyin, copyout
 copy moves data "in" to GPU at start of region and/or "out" to CPU at end

 supply list of arrays or array sections (using Fortran ":" notation)

 create
 No copyin/out – useful for shared temporary arrays in loopnests

 private: scalars private by default

 present, present_or_copy*: described previously

 Tuning clauses:

 !$acc loop [gang] [worker] [vector]
 Targets specific loop (or loops using collapse clause) at specific level of hardware

 num_gang, num_workers, vector_length
 Tunes the amount of parallelism used (threadblocks, threads/block...)

 seq: loop executed sequentially

 independent: compiler hint (also use CCE !dir$ directives)

Clauses for !$acc parallel loop

26

 Other !$acc parallel loop clauses:

 if(logical)
 Executes on GPU if .TRUE. at runtime, otherwise on CPU

 reduction: as in OpenMP

 cache: specified data held in software-managed data cache
 e.g. explicit blocking to shared memory on NVIDIA GPUs

 !$acc update [host|device]

 Copy specified arrays (slices) within data region

 async[(handle)] clause for parallel, update directives
 Launch accelerator region/data transfer asynchronously: allows CPU/GPU overlap

 Operations with same handle will execute sequentially (as in CUDA streams)

 !$acc wait[(handles)]: waits for completion

 Runtime library functions can also be used to test/wait for completion

 Will be supported in CCE v8.1

27

 host_data region exposes accelerator memory address on host

 nested inside data region

 Call CUDA-C wrapper (compiled with nvcc; linked with CCE)
 must include cudaThreadSynchronize()

 Before: so asynchronous accelerator kernels definitely finished

 After: so CUDA kernel definitely finished

 CUDA kernel written as usual

 Or use same mechanism to call existing CUDA library
28

__global__ void dbl_knl(int *c) {
 int i = \
 blockIdx.x*blockDim.x+threadIdx.x;
 if (i < N) c[i] *= 2;
}

extern "C" void dbl_cuda_(int *b_d) {
 cudaThreadSynchronize();
 dbl_knl<<<NBLOCKS,BSIZE>>>(b_d);
 cudaThreadSynchronize();
}

PROGRAM main
 INTEGER :: a(N)
 <stuff>
!$acc data copy(a)
! <Populate a(:) on device
! as before>
!$acc host_data use_device(a)
 CALL dbl_cuda(a)
!$acc end host_data
!$acc end data
 <stuff>
END PROGRAM main

 parallel

 Supported: num_coarse, num_fine, vector_length, all data clauses

 Unsupported: async, if

 kernel

 Unsupported

 loop

 Supported: collapse, coarse, fine, vector, reduction, private, seq

 Unsupported: independent

 data

 Supported: all data clauses

 Unsupported: async, if

 host_data

 Supported

 acc_update

 Supported: host, device

 Unsupported: async, if

 Unsupported

 Directives : wait, cache, declare

 All runtime routines

29

 Preparation: add checksum(s) and high-res timer to code
 Check for correctness very frequently

 Profile code on the host
 Use representative-sized problem, map calltree,

 Ideally resolve profile by loopnest and measure typical loop iteration counts

 First optimise the data movements

 Start in subprograms at bottom of callchain
 Accelerate individual loopnests using parallel regions

 Concentrate initially on most computationally expensive

 Add data regions in subprograms

 Minimise data movements, use create clause where possible

 May need to accelerate insignificant loopnests to avoid data copies

 Use available feedback to understand data movement
 Compiler messages: -ra for CCE

 Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE

 NVIDIA compute profiler: export COMPUTE_PROFILE=1

 CrayPAT performance measurement and analysis tool (Cray PE only)

 Code is probably going quite slowly at this point
30

 Move progressively up callchain, adding data regions
 Aim to further reduce data movements

 No problem nesting data regions: use present clause on inner ones

 May need to port insignificant subprograms to avoid data transfers

 Use update for essential data transfers (e.g. data for halo swaps)

 Now optimise kernel performance (often trial and error)

 Perfect loop nests schedule better than imperfect ones
 e.g. Remove temporary arrays by manually inlining (eliminate array b)

 Or manually privatise arrays and break loopnest (make b(i,j))

31

DO j = 1,N
 DO i = 0,M+1
 b(i) = a(i,j+1) + a(i,j-1)
 ENDDO
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

DO j = 1,N
 DO i = 1,M
 c(i,j) = a(i+1,j+1) + a(i+1,j-1) &
 + a(i-1,j+1) + a(i-1,j-1)
 ENDDO
ENDDO DO j = 1,N

 DO i = 0,M+1
 b(i,j) = a(i,j+1) + a(i,j-1)
 ENDDO
ENDDO
DO j = 1,N
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

 Now look at tweaking the loop scheduling

 Quick wins
 Optimise loop scheduling

 Make sure the right loops are vectorised (for coalesced memory loads)

 And that they are vectorisable

 Choose number of workers per gang (threads/block)

 This number will vary by kernel and by problem size

 Collapsing or blocking of loops may help (though compilers already do that)

 See if caching can be used to reduce data loads from device memory

 Longer term: can loops be migrated up the callchain?
 E.g. Loop over sites, or blocks of sites (“blocking for cache”)

 If so, parallelise (gangs) over these

 Consider overlap of compute and communications using async

 Don’t do this until everything working

 May require application restructuring

32

1. S3D turbulent combustion code

2. Himeno

3. MultiGrid code (NAS & SPEC benchmarks)

Three example applications

33

0

1

2

3

4

5

Kernel A Kernel B Kernel C S3D

Ti
m

e
 (

se
co

n
d

s)

OpenMP (full node)

OpenACC (CCE)

 Parallel 3D Poisson equation solver

 19-point stencil

 MPI or CAF and/or OpenMP

 available from here

 ~600 lines of Fortran

 Fully ported to accelerator using 27 directive pairs

 XL configuration:

 1024 x 512 x 512

 Strong scaling

 More kernel tuning

 No use of async yet

34

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

Pe
rf

o
rm

an
ce

 (
TF

lo
p

/s
)

Number of nodes

Himeno Benchmark - XL configuration
MPI/OMP MPI/ACC CAF/ACC

http://accc.riken.jp/HPC_e/himenobmt_e.html

 The stencil is applied to
pressure array p

 Updated pressure values are
saved to temporary array
wrk2

 Control value wgosa is
computed

 In the benchmark this kernel
is iterated a fixed number of
times (nn)

DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K)

 +a(I,J,K,2)*p(I, J+1,K) &

 +a(I,J,K,3)*p(I, J, K+1) &

 +b(I,J,K,1)*(p(I+1,J+1,K)-p(I+1,J-1,K) &

 -p(I-1,J+1,K)+p(I-1,J-1,K)) &

 +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) &

 -p(I, J+1,K-1)+p(I, J-1,K-1)) &

 +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) &

 -p(I+1,J, K-1)+p(I-1,J, K-1)) &

 +c(I,J,K,1)*p(I-1,J, K) &

 +c(I,J,K,2)*p(I, J-1,K) &

 +c(I,J,K,3)*p(I, J, K-1) &

 + wrk1(I,J,K)

 SS=(S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K)

 WGOSA=WGOSA+SS*SS

 wrk2(I,J,K)=p(I,J,K)+OMEGA *SS

 ENDDO

 ENDDO

ENDDO

35

fw
d

 n
.n

.
b

k
w

d
 n

.n
.

n
.n

.n
.

 Outer loop executed fixed number
of times

 Jacobi kernel is executed and new
pressure array wrk2 and control
value wgosa computed

 array is updated with the new
pressure values

 halo region values are exchanged
between neighbour PEs

 Send/receive buffers are used

 The maximum control value is
computed with an ALLREDUCE
operation across all the PEs

DO loop = 1, nn

 compute Jacobi kernel  wrk2,wgosa

 copy back wrk2 into p

 pack halo from p into send buffers

 exchange halos with neighbour PEs

 unpack halo into p from recv buffers

 Allreduce to sum wgosa across PEs

ENDDO

36

 Several versions tested, with communication implemented in
MPI or Fortran coarrays

 GPU version using OpenACC ccelerator directives

 Comparing Cray XK6 timings with best Cray XE6 results (hybrid
MPI/OpenMP)

 Arrays reside permanently on the GPU memory

 Data transfers between host and GPU are:

 Communication buffers for the halo exchange

 Control value

37

 Arrays are allocated on the GPU
memory in the main program with
the data directive

 In the subroutines the data
directive is replicated with the
present clause, to use the data
already present in the GPU
memory and avoid extra
allocations

 Since present clause is used, no
copy* clauses are used, and data
transfers to/from host are
implemented by update directives

PROGRAM himenobmtxp

...

!$acc data create &

!$acc& (p,a,b,c,wrk1,wrk2,bnd, &

!$acc& sendbuffx_up,sendbuffx_dn, &

!$acc& sendbuffy_up,sendbuffy_dn, &

!$acc& sendbuffz_up,sendbuffz_dn)

...

!$acc end data

SUBROUTINE jacobi(nn,gosa)

!$acc data present &

!$acc& (p,a,b,c,wrk1,wrk2,bnd, &

!$acc& sendbuffx_up,sendbuffx_dn, &

!$acc& sendbuffy_up,sendbuffy_dn, &

!$acc& sendbuffz_up,sendbuffz_dn)

38

 The GPU kernel for the main loop
is created with the parallel
loop directive

 The scoping of the main variables
is specified earlier with the data
directive - no need to replicated it
in here

 wgosa is computed by specifying
the reduction clause, as in a
standard OpenMP parallel loop

 vector_length clause is used to
indicate the number of threads
within a threadblock (compiler
default 128)

DO loop=1,nn

 gosa = 0

 wgosa = 0

!$acc parallel loop &

!$acc& private(s0,ss) &

!$acc& reduction(+:wgosa) &

!$acc& vector_length(256)

 DO K=2,kmax-1

 DO J=2,jmax-1

 DO I=2,imax-1

 S0=a(I,J,K,1)*p(I+1,J, K) &

 ...

 wgosa = wgosa + SS*SS

 ENDDO

 ENDDO

 ENDDO

39

 Halo values are extracted from the
wrk2 array and packed into the
send buffers, on the GPU

 A global parallel region is
specified and buffers in the X, Y,
and Z directions are packed within
loop blocks

 The send buffers are copied to host
memory with update

 In the same way, after the halo
exchange, the recv buffers are
transferred to the GPU memory
and used to update the array p

 N.B. Currently it’s not possible to
include non-contiguous array
sections in update

 buffers are necessary

!$acc parallel

!$acc loop

DO j = 2,jmax-1

 DO i = 2,imax-1

 sendbuffz_dn(i,j)= wrk2(i,j,2)

 sendbuffz_up(i,j)= wrk2(i,j,kmax-1)

 ENDDO

ENDDO

!$acc end loop

 ...

!$acc loop

!$acc end loop

!$acc end parallel

!$acc update &

!$acc& host(sendbuffz_dn,sendbuffz_up)

40

 Coarrays are used to perform the
halo exchange

 Non-blocking communication
needs pgas defer_sync
directive

 Programmer now responsible for
data synchronization

 By deferring sync point, network
comms can be overlapped with
CPU or GPU activity

 Updating p from wrk2 (on GPU)
overlapped with halo exchange

 N.B. no sync all: CAF intrinsic
COSUM has loose synchronisation
(so do need sync memory first).

!dir$ pgas defer_sync

recvbuffz_up(:,:)[myx,myy,myz-1] = &

 sendbuffz_dn(:,:)

 ...

!$acc parallel loop

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 p(i,j,k) = wrk2(i,j,k)

 ENDDO

 ENDDO

ENDDO

!$acc end parallel loop

sync memory

gosa = COSUM(wgosa)

!$acc update &

!$omp& acc(recvbuffz_dn,recvbuffz_up)

41

 Coarrays are used to perform the
halo exchange

 Non-blocking communication
needs pgas defer_sync
directive

 Programmer now responsible for
data synchronization

 By deferring sync point, network
comms can be overlapped with
CPU or GPU activity

 Updating p from wrk2 (on GPU)
overlapped with halo exchange

 N.B. no sync all: CAF intrinsic
COSUM has loose synchronisation
(so do need sync memory first).

!dir$ pgas defer_sync

recvbuffz_up(:,:)[myx,myy,myz-1] = &

 sendbuffz_dn(:,:)

 ...

!$omp acc_region_loop

DO k = 2,kmax-1

 DO j = 2,jmax-1

 DO i = 2,imax-1

 p(i,j,k) = wrk2(i,j,k)

 ENDDO

 ENDDO

ENDDO

!$omp end acc_region_loop

sync memory

gosa = COSUM(wgosa)

!$omp acc_update &

!$omp& acc(recvbuffz_dn,recvbuffz_up)

42

Compiler does not currently support using
coarrays in an accelerator region,

so this does not work!

You need to make a local copy of the coarray
buffers to non-coarray buffers and then transfer

them to GPU memory.

This affects the performance, by increasing the
host CPU time.

 Total number of lines in the original Himeno
MPI-Fortran code: 629

 Total number lines in the modified version
with coarrays and accelerator directives: 554

 don't need MPI_CART_CREATE and the like

 Total number of accelerator directives: 27

 plus 18 "end" directives

43

 NAS Parallel Benchmarks, also SPEC suite

 MG (multigrid) solves Laplacian on 3D grid

 1500 lines of Fortran or C, many subroutines

 Three main hotspots:
 resid (50% of runtime), psinv (25%), rprj3 (9%)

 Data arrays passed to/from subroutines at every iteration

 GPU (just less than) 2x faster than CPU (16 cores)

 Fully accelerated using 25 directive pairs (present essential)

 You will look at this code in the tutorial this afternoon

 MPI-parallel version also ported using OpenACC

 Further optimisations coming

 Further use of shared memory

 async clause support coming
 CCE already launches kernels and data transfers asynchronously

Example: MultiGrid benchmark

44

 CUDA codes can be compiled and run as usual on the Cray XK6

 Ludwig parallel code was run across 936 GPUs (10 cabinets)

 Compilation:
 module load craype-accel-nvidia20

 Main CPU code compiled with PrgEnv "cc" wrapper
 either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc

 GPU CUDA-C kernels compiled with nvcc
 nvcc -O3 -arch=sm_20

 PrgEnv "cc" wrapper used for linking
 Only GPU flag needed: -lcudart

 e.g. no CUDA -L flags needed (added in cc wrapper)

 Submission:

 submit job as usual (SLURM, aprun):
 Use 1 MPI rank per node

 NVIDIA drivers for Cray XK6 optimise GPU/CPU/Gemini
pipeline.

45

 Compilation:
 module load craype-accel-nvidia20

 Main CPU code compiled with PrgEnv "cc" wrapper
 either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc

 GPU OpenCL kernels compiled with nvcc
 nvcc -O3 -arch=sm_20

 PrgEnv "cc" wrapper used for linking
 Only GPU flag needed: -lOpenCL

 Alternatively:

 Use PrgEnv-gnu for all compilation
 still need -lOpenCL at linktime

 Submission:

 submit job as usual (SLURM, aprun):
 Use 1 MPI rank per node

46

 Hybrid multicore has arrived and is here to stay

 Fat nodes are getting fatter

 GPUs have leapt into the top500 and accelerated nodes

 Programming accelerators efficiently is hard

 When done well can give good performance (Ludwig)

 Accelerator directives offer a good alternative

 Attractive (and familiar) programming model

 Open standards for portability

 Use original Fortran, C and C++ codes

 Presented a strategy for porting large codes

 The performance penalty is small

 The portability and productivity bonuses are huge

 Directives play nicely with (some) other programming models

 so you don’t need to throw away your prize CUDA kernels

In conclusion...

47

 Tutorial leads you through porting entire MultiGrid code

 Structure resembles SciEng application in only 1500 lines
 More useful than over-simplistic "Hello World" examples

 Tutorial covers:
 code preparation

 profiling and scoping

 steps to progressively port to GPU using OpenACC

 Code examples and Makefiles provided
 Both Fortran and C versions (no C for 01, 02)

 VERSION=00 Original CPU code

 VERSION=01 CPU version for profiling with CrayPAT

 VERSION=02 CPU version for variable scoping with Cray Reveal

 VERSION=03 First OpenACC kernel

 VERSION=04 OpenACC for all significant kernels

 VERSION=05 OpenACC for insignificant kernels as well

 VERSION=06 Data region to eliminate major data movements

 VERSION=07 Tuned OpenACC region

 VERSION=08 OpenACC interoperating with CUDA kernel

48

Thank you to those that helped us get to grips with directives:

 Cray Exascale Research Initiative Europe team

 Harvey Richardson, Jason Beech-Brandt

 Roberto Ansaloni

 EPCC Exascale Technology Centre team

 Alan Gray

 Cray PE R&D team

 Luiz DeRose, Heidi Poxon, Suzanne LaCroix, James Beyer,
David Oehmke...

 ORNL team

 John Levesque, Jeff Larkin

 OpenMP subcommittee

For further info, ahart@cray.com

Acknowledgments

mailto:ahart@cray.com

