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 Accelerator directives 

 Why do we need them? 

 What do they look like? 
 OpenACC now, OpenMP in the future 

 How do we use them? 

 Support status in CCE v8.0 

 Use Cases:  

 How do we port a full application? 

 How do they perform? 

 Case studies in directive-based optimisation on GPU 
 S3D: performance 

 Himeno: porting a parallel benchmark 

 MultiGrid: now it’s your turn 

 Running an existing CUDA or OpenCL application 

 Overview of MultiGrid tutorial example 

Contents 

2 



 Why do we need a new GPU programming model? 

 Aren’t there enough ways already? 

 CUDA (incl. NVIDIA CUDA-C & PGI CUDA-Fortran) 

 OpenCL  

 Stream 

 hiCUDA ... 

 All are quite low-level and closely coupled to the GPU 

 User needs to rewrite kernels in specialist language: 
 Hard to write and debug 

 Hard to optimise for specific GPU 

 Hard to port to new accelerator 

 Multiple versions of kernels in codebase 
 Hard to add new functionality 

 

Accelerator programming 
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 If you work hard, you can get good parallel performance 

 Ludwig Lattice Boltzmann code rewritten in CUDA 

 Reordered all the data structures (structs of arrays) 

 Pack halos on the GPU 

 Streams to overlap compute,  

    PCIe comms, MPI halo swaps 

 10 cabinets of Cray XK6 

 936 GPUs (nodes) 

 Only 4% deviation from  

    perfect weak scaling between  

    8 and 936 GPUs. 

 Application sustaining 40+ Tflop/s 
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 Most scientific applications will not have this level of 
developer support (Ludwig was special research case) 

 Directives provide high-level approach 

+ Based on original source code (e.g. Fortran, C, C++) 
+ Easier to maintain/port/extend code 

+ Users with (for instance) OpenMP experience find it a familiar programming model 

+ Compiler handles repetitive boilerplate code (cudaMalloc, cudaMemcpy...) 

+ Compiler handles default scheduling; user can step in with clauses where needed 

– Possible performance sacrifice 
– Important to quantify this 

– Can then tune the compiler 

– Small performance sacrifice is an acceptable trade-off for portability and productivity 

– Who handcodes in assembler these days? 

 Two relevant performance comparisons: 

 How does the performance compare to CUDA? 

 Can I justify buying a GPU instead of another CPU? 

Directive-based programming 
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 Is there a performance gap relative to explicit low-level 
programming model? Typically 10-15%, sometimes none. 

 Is the performance gap acceptable? Yes. 

 e.g. S3D comp_heat kernel (ORNL application readiness): 
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 Does accelerated parallel application performance justify 
buying a GPU (Cray XK6) rather than another CPU (Cray XE6)? 

 For many codes, yes.  
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 A common directive programming model for today’s GPUs 

 Announced at SC11 conference 

 Offers portability between compilers 
 Drawn up by: NVIDIA, Cray, PGI, CAPS 

 Multiple compilers offer portability, debugging, permanence 

 Works for Fortran, C, C++ 
 Standard available at www.OpenACC-standard.org 

 Initially implementations targeted at NVIDIA GPUs 

 Current version: 1.0 (November 2011) 

 Compiler support: 

 Cray CCE: partial now, complete in 2012 

 PGI Accelerator: released product in 2012 

 CAPS: released product in Q1 2012 
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 A common programming model for tomorrow’s accelerators 

 An established open standard is the most attractive 
 portability; multiple compilers for debugging; permanence 

 Subcommittee of OpenMP ARB 

 includes most major vendors + others (e.g. EPCC) 

 co-chaired by Cray (James Beyer) 

 aiming for OpenMP 4 (2012?) 

 Targets Fortran, C, C++ 

 Current version: draft 

 Cray compiler provides reference implementation for ARB 

 Of draft standard at present (CCE 8.0) 

 Will track the standard as it evolves 

 Converting from OpenACC to OpenMP will be straightforward 

accelerator directives 
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 Host-directed execution with attached GPU 

 Main program executes on “host” (i.e. CPU) 
 Compute intensive regions offloaded to the accelerator device 

 under control of the host.  

 “device” (i.e. GPU) executes parallel regions 
 typically contain “kernels” (i.e. work-sharing loops), or 

 kernels regions, containing one or more loops which are executed as kernels.   

 Host must orchestrate the execution by:  
 allocating memory on the accelerator device,  

 initiating data transfer,  

 sending the code to the accelerator,  

 passing arguments to the parallel region,  

 queuing the device code,  

 waiting for completion,  

 transferring results back to the host, and  

 deallocating memory.   

 Host can usually queue a sequence of operations  
 to be executed on the device, one after the other. 
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 Memory spaces on the host and device distinct 

 Different locations, different address space 

 Data movement performed by host using runtime library 
calls that explicitly move data between the separate  

 GPUs have a weak memory model 

 No synchronisation between different execution units (SMs) 
 Unless explicit memory barrier 

 Can write OpenACC kernels with race conditions 
 Giving inconsistent execution results 

 Compiler will catch most errors, but not all (no user-managed barriers) 

 OpenACC 

 data movement between the memories implicit 
 managed by the compiler, 

 based on directives from the programmer. 

 Device memory caches are managed by the compiler  
 with hints from the programmer in the form of directives.  20 



 Modify original source code with directives 

 Non-executable statements (comments, pragmas) 
 Can be ignored by non-accelerating compiler 

 CCE -hnoacc also supresses compilation 

 Sentinel: !$acc 

 Fortran:  
 Usually paired with !$acc end * 

 C/C++:  
 Structured block {...} avoids need for end directives 

 Continuation to extra lines allowed 

 CPP macro defined to allow extra conditional compilation 

 E.g. around calls to runtime API functions 
 _OPENACC == yyyymm (currently 201111) 

Accelerator directives 
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! Fortran example 
!$acc * 
<structured block> 
!$acc end * 

/* C/C++ example */ 
#pragma acc * 
{structured block} 



Execute a loop nest on the GPU 

 Compiler does the work: 

 Data movement 
 allocates/frees GPU memory at  

 start/end of region 

 moves of data to/from GPU 

 Loop schedule: spreading loop iterations over PEs of GPU 
 Parallelism NVIDIA GPU  SMT node (not supported!) 

 gang:  a threadblock  CPU 

 worker:  warp (32 threads)  CPU core 

 vector:   SIMT group of threads SIMD instructions (SSE, AVX) 

 Caching (explicitly use GPU shared memory for reused data) 
 automatic caching (e.g. NVIDIA Fermi) important 

 Tune default behaviour with optional clauses on directives 

 

A first example 
!$acc parallel loop !OpenACC 
DO j = 1,M 
  DO i = 2,N-1 
    c(i,j) = a(i,j) + b(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel loop 

read-only write-only 



 Array a(:) unnecessarily moved from and to GPU between 
kernels 

 Code still compile-able for CPU 
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PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
  <stuff> 
END PROGRAM main 

 Two accelerator parallel regions 

 Compiler creates two kernels 
 Loop iterations automatically divided 

across gangs, workers, vectors 

 Breaking parallel region acts as barrier 

 First kernel initialises array 
 Compiler will determine copyout(a) 

 Second kernel updates array 
 Compiler will determine copy(a) 

 Breaking parallel region=barrier 
 No barrier directive (global or within SM) 



 No automatic synchronisation of copies within data region 

 User-directed synchronisation via update directive 
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PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copyout(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = 2*a(i) 
  ENDDO 
!$acc end parallel loop 
!$acc end data 
  <stuff> 
END PROGRAM main 

 Now added a data region 

 Specified arrays only moved at 
boundaries of data region 

 Unspecified arrays moved by 
each kernel 

 No compiler-determined 
movements for data regions 

 Data region can contain host code 
and accelerator regions 

 Copies of arrays independent 

 



 One of the kernels now in subroutine (maybe in separate file) 

 CCE supports function calls inside parallel regions 
 Compiler will automatically inline (maybe need -Oipafrom or use program library) 

 The present clause uses version of b on GPU without data copy 

 Can also call double_array() from outside a data region 
 Replace present with present_or_copy (can be shortened to pcopy) 

 Original calltree structure of program can be preserved 
25 

SUBROUTINE double_array(b) 
  INTEGER :: b(N) 
!$acc parallel loop present(b) 
  DO i = 1,N 
   b(i) = double_scalar(b(i)) 
  ENDDO 
!$acc end parallel loop 
END SUBROUTINE double_array 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copy(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
  CALL double_array(a) 
!$acc end data 
  <stuff> 
END PROGRAM main 

INTEGER FUNCTION double_scalar(c) 
  INTEGER :: c 
  double_scalar = 2*c 
END FUNCTION double_scalar 



 Data clauses: 

 copy, copyin, copyout 
 copy moves data "in" to GPU at start of region and/or "out" to CPU at end 

 supply list of arrays or array sections (using Fortran ":" notation) 

 create 
 No copyin/out – useful for shared temporary arrays in loopnests 

 private: scalars private by default 

 present, present_or_copy*: described previously 

 Tuning clauses: 

 !$acc loop [gang] [worker] [vector] 
 Targets specific loop (or loops using collapse clause) at specific level of hardware 

 num_gang, num_workers, vector_length 
 Tunes the amount of parallelism used (threadblocks, threads/block...) 

 seq: loop executed sequentially 

 independent: compiler hint (also use CCE !dir$ directives) 

Clauses for !$acc parallel loop 
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 Other !$acc parallel loop clauses: 

 if(logical) 
 Executes on GPU if .TRUE. at runtime, otherwise on CPU 

 reduction: as in OpenMP 

 cache: specified data held in software-managed data cache 
 e.g. explicit blocking to shared memory on NVIDIA GPUs 

 !$acc update [host|device] 

 Copy specified arrays (slices) within data region  

 async[(handle)] clause for parallel, update directives 
 Launch accelerator region/data transfer asynchronously: allows CPU/GPU overlap 

 Operations with same handle will execute sequentially (as in CUDA streams) 

 !$acc wait[(handles)]: waits for completion 

 Runtime library functions can also be used to test/wait for completion 

 Will be supported in CCE v8.1 
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 host_data region exposes accelerator memory address on host 

 nested inside data region 

 Call CUDA-C wrapper (compiled with nvcc; linked with CCE) 
 must include cudaThreadSynchronize() 

 Before: so asynchronous accelerator kernels definitely finished 

 After: so CUDA kernel definitely finished 

 CUDA kernel written as usual 

 Or use same mechanism to call existing CUDA library 
28 

__global__ void dbl_knl(int *c) { 
  int i = \ 
       blockIdx.x*blockDim.x+threadIdx.x; 
  if (i < N) c[i] *= 2; 
} 
 
extern "C" void dbl_cuda_(int *b_d) { 
  cudaThreadSynchronize(); 
  dbl_knl<<<NBLOCKS,BSIZE>>>(b_d); 
  cudaThreadSynchronize(); 
} 
 

PROGRAM main 
  INTEGER :: a(N) 
  <stuff> 
!$acc data copy(a) 
! <Populate a(:) on device 
!  as before> 
!$acc host_data use_device(a) 
  CALL dbl_cuda(a) 
!$acc end host_data 
!$acc end data 
  <stuff> 
END PROGRAM main 



 parallel 

 Supported: num_coarse, num_fine, vector_length, all data clauses 

 Unsupported: async, if 

 kernel 

 Unsupported 

 loop 

 Supported: collapse, coarse, fine, vector, reduction, private, seq 

 Unsupported: independent 

 data 

 Supported: all data clauses 

 Unsupported: async, if 

 host_data  

 Supported 

 acc_update 

 Supported: host, device 

 Unsupported: async, if 

 Unsupported 

 Directives : wait, cache, declare 

 All runtime routines 
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 Preparation: add checksum(s) and high-res timer to code 
 Check for correctness very frequently 

 Profile code on the host 
 Use representative-sized problem, map calltree,  

 Ideally resolve profile by loopnest and measure typical loop iteration counts 

 First optimise the data movements 

 Start in subprograms at bottom of callchain 
 Accelerate individual loopnests using parallel regions 

 Concentrate initially on most computationally expensive 

 Add data regions in subprograms 

 Minimise data movements, use create clause where possible 

 May need to accelerate insignificant loopnests to avoid data copies 

 Use available feedback to understand data movement 
 Compiler messages: -ra for CCE 

 Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE 

 NVIDIA compute profiler: export COMPUTE_PROFILE=1 

 CrayPAT performance measurement and analysis tool (Cray PE only) 

 Code is probably going quite slowly at this point 
30 



 Move progressively up callchain, adding data regions 
 Aim to further reduce data movements 

 No problem nesting data regions: use present clause on inner ones 

 May need to port insignificant subprograms to avoid data transfers 

 Use update for essential data transfers (e.g. data for halo swaps) 

 Now optimise kernel performance (often trial and error) 

 Perfect loop nests schedule better than imperfect ones 
 e.g. Remove temporary arrays by manually inlining (eliminate array b) 

 Or manually privatise arrays and break loopnest (make b(i,j)) 
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DO j = 1,N 
 DO i = 0,M+1 
  b(i) = a(i,j+1) + a(i,j-1) 
 ENDDO 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 

DO j = 1,N 
 DO i = 1,M 
  c(i,j) = a(i+1,j+1) + a(i+1,j-1) & 
         + a(i-1,j+1) + a(i-1,j-1) 
 ENDDO 
ENDDO DO j = 1,N 

 DO i = 0,M+1 
  b(i,j) = a(i,j+1) + a(i,j-1) 
 ENDDO 
ENDDO 
DO j = 1,N 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 



 Now look at tweaking the loop scheduling 

 Quick wins 
 Optimise loop scheduling 

 Make sure the right loops are vectorised (for coalesced memory loads) 

 And that they are vectorisable 

 Choose number of workers per gang (threads/block) 

 This number will vary by kernel and by problem size 

 Collapsing or blocking of loops may help (though compilers already do that) 

 See if caching can be used to reduce data loads from device memory 

 Longer term: can loops be migrated up the callchain? 
 E.g. Loop over sites, or blocks of sites (“blocking for cache”) 

 If so, parallelise (gangs) over these 

 Consider overlap of compute and communications using async 

 Don’t do this until everything working 

 May require application restructuring 
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1. S3D turbulent combustion code 

2. Himeno 

3. MultiGrid code (NAS & SPEC benchmarks) 

Three example applications  
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 Parallel 3D Poisson equation solver 

 19-point stencil 

 MPI or CAF and/or OpenMP 

 available from here  

 ~600 lines of Fortran 

 Fully ported to accelerator using 27 directive pairs 

 XL configuration:  

 1024 x 512 x 512 

 Strong scaling 

 More kernel tuning 

 No use of async yet 
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 The stencil is applied to 
pressure array p 

 Updated pressure values are 
saved to temporary array 
wrk2 

 Control value wgosa is 
computed 

 In the benchmark this kernel 
is iterated a fixed number of 
times (nn) 

DO K=2,kmax-1 

 DO J=2,jmax-1 

  DO I=2,imax-1 

   S0=a(I,J,K,1)*p(I+1,J, K )  

     +a(I,J,K,2)*p(I, J+1,K ) & 

     +a(I,J,K,3)*p(I, J, K+1) & 

     +b(I,J,K,1)*(p(I+1,J+1,K )-p(I+1,J-1,K ) & 

                 -p(I-1,J+1,K )+p(I-1,J-1,K )) & 

     +b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) & 

                 -p(I, J+1,K-1)+p(I, J-1,K-1)) & 

     +b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) & 

                 -p(I+1,J, K-1)+p(I-1,J, K-1)) & 

     +c(I,J,K,1)*p(I-1,J, K ) & 

     +c(I,J,K,2)*p(I, J-1,K ) & 

     +c(I,J,K,3)*p(I, J, K-1) & 

     + wrk1(I,J,K) 

 

   SS=(S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K) 

   WGOSA=WGOSA+SS*SS 

   wrk2(I,J,K)=p(I,J,K)+OMEGA *SS 

  ENDDO 

 ENDDO 

ENDDO 

35 

fw
d

 n
.n

. 
b

k
w

d
 n

.n
. 

n
.n

.n
. 



 Outer loop executed fixed number 
of times 

 Jacobi kernel is executed and new 
pressure array wrk2 and control 
value wgosa computed 

 array is updated with the new 
pressure values 

 halo region values are exchanged 
between neighbour PEs 

 Send/receive buffers are used 

 The maximum control value is 
computed with an ALLREDUCE 
operation across all the PEs 

DO loop = 1, nn 

   compute Jacobi kernel  wrk2,wgosa 

 

   copy back wrk2 into p 

 

   pack halo from p into send buffers 

 

   exchange halos with neighbour PEs 

 

   unpack halo into p from recv buffers  

 

   Allreduce to sum wgosa across PEs 

ENDDO 
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 Several versions tested, with communication implemented in 
MPI or Fortran coarrays 

 GPU version using OpenACC ccelerator directives 

 Comparing Cray XK6 timings with best Cray XE6 results (hybrid 
MPI/OpenMP) 

 Arrays reside permanently on the GPU memory 

 Data transfers between host and GPU are: 

 Communication buffers for the halo exchange 

 Control value 
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 Arrays are allocated on the GPU 
memory in the main program with 
the data directive 

 In the subroutines the data 
directive is replicated with the 
present clause, to use the data 
already present in the GPU 
memory and avoid extra 
allocations 

 Since present clause is used, no 
copy* clauses are used, and data 
transfers to/from host are 
implemented by update directives 

PROGRAM himenobmtxp 

... 

!$acc data create         & 

!$acc&  (p,a,b,c,wrk1,wrk2,bnd,     & 

!$acc&  sendbuffx_up,sendbuffx_dn, & 

!$acc&  sendbuffy_up,sendbuffy_dn, & 

!$acc&  sendbuffz_up,sendbuffz_dn) 

... 

!$acc end data 

 

SUBROUTINE jacobi(nn,gosa) 

!$acc data present          & 

!$acc&  (p,a,b,c,wrk1,wrk2,bnd,     & 

!$acc&  sendbuffx_up,sendbuffx_dn, & 

!$acc&  sendbuffy_up,sendbuffy_dn, & 

!$acc&  sendbuffz_up,sendbuffz_dn) 
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 The GPU kernel for the main loop 
is created with the parallel 
loop directive 

 The scoping of the main variables 
is specified earlier with the data 
directive - no need to replicated it 
in here 

 wgosa is computed by specifying 
the reduction clause, as in a 
standard OpenMP parallel loop 

 vector_length clause is used to 
indicate the number of threads 
within a threadblock (compiler 
default 128) 

DO loop=1,nn 

  gosa = 0 

  wgosa = 0 

!$acc parallel loop              & 

!$acc&  private(s0,ss)             & 

!$acc&  reduction(+:wgosa)         & 

!$acc&  vector_length(256) 

  DO K=2,kmax-1 

    DO J=2,jmax-1 

      DO I=2,imax-1 

        S0=a(I,J,K,1)*p(I+1,J, K ) & 

        ... 

        wgosa = wgosa + SS*SS 

      ENDDO 

    ENDDO 

  ENDDO 
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 Halo values are extracted from the 
wrk2 array and packed into the 
send buffers, on the GPU 

 A global parallel region is 
specified and buffers in the X, Y, 
and Z directions are packed within 
loop blocks 

 The send buffers are copied to host 
memory with update 

 In the same way, after the halo 
exchange, the recv buffers are 
transferred to the GPU memory 
and used to update the array p 

 N.B. Currently it’s not possible to 
include non-contiguous array 
sections in update 

 buffers are necessary 

!$acc parallel 

!$acc loop 

DO j = 2,jmax-1 

  DO i = 2,imax-1 

    sendbuffz_dn(i,j)= wrk2(i,j,2) 

    sendbuffz_up(i,j)= wrk2(i,j,kmax-1) 

  ENDDO 

ENDDO 

!$acc end loop 

 ... 

!$acc loop 

!$acc end loop 

!$acc end parallel 

 

!$acc update & 

!$acc&  host(sendbuffz_dn,sendbuffz_up) 
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 Coarrays are used to perform the 
halo exchange 

 Non-blocking communication 
needs pgas defer_sync 
directive 

 Programmer now responsible for 
data synchronization 

 By deferring sync point, network 
comms can be overlapped with 
CPU or GPU activity 

 Updating p from wrk2 (on GPU) 
overlapped with halo exchange 

 N.B. no sync all: CAF intrinsic 
COSUM has loose synchronisation 
(so do need sync memory first).  

!dir$ pgas defer_sync 

recvbuffz_up(:,:)[myx,myy,myz-1] = & 

   sendbuffz_dn(:,:) 

 ... 

!$acc parallel loop 

DO k = 2,kmax-1 

  DO j = 2,jmax-1 

    DO i = 2,imax-1 

      p(i,j,k) = wrk2(i,j,k) 

    ENDDO 

  ENDDO 

ENDDO 

!$acc end parallel loop 

sync memory 

gosa = COSUM(wgosa) 

!$acc update & 

!$omp& acc(recvbuffz_dn,recvbuffz_up) 
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 Coarrays are used to perform the 
halo exchange 

 Non-blocking communication 
needs pgas defer_sync 
directive 

 Programmer now responsible for 
data synchronization 

 By deferring sync point, network 
comms can be overlapped with 
CPU or GPU activity 

 Updating p from wrk2 (on GPU) 
overlapped with halo exchange 

 N.B. no sync all: CAF intrinsic 
COSUM has loose synchronisation 
(so do need sync memory first).  

!dir$ pgas defer_sync 

recvbuffz_up(:,:)[myx,myy,myz-1] = & 

   sendbuffz_dn(:,:) 

 ... 

!$omp acc_region_loop 

DO k = 2,kmax-1 

  DO j = 2,jmax-1 

    DO i = 2,imax-1 

      p(i,j,k) = wrk2(i,j,k) 

    ENDDO 

  ENDDO 

ENDDO 

!$omp end acc_region_loop 

sync memory 

gosa = COSUM(wgosa) 

!$omp acc_update & 

!$omp& acc(recvbuffz_dn,recvbuffz_up) 
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Compiler does not currently support using 
coarrays in an accelerator region,  

so this does not work! 
 

You need to make a local copy of the coarray 
buffers to  non-coarray buffers and then transfer 

them to GPU memory. 
 

This affects the performance, by increasing the 
host CPU time. 



 Total number of lines in the original Himeno  
MPI-Fortran code:     629 

 Total number lines in the modified version  
with coarrays and accelerator directives:  554 

  don't need MPI_CART_CREATE and the like 

 Total number of accelerator directives:      27 

 plus 18 "end" directives 
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 NAS Parallel Benchmarks, also SPEC suite 

 MG (multigrid) solves Laplacian on 3D grid 

 1500 lines of Fortran or C, many subroutines 

 Three main hotspots:  
 resid (50% of runtime), psinv (25%), rprj3 (9%) 

 Data arrays passed to/from subroutines at every iteration 

 GPU (just less than) 2x faster than CPU (16 cores) 

 Fully accelerated using 25 directive pairs (present essential) 

 You will look at this code in the tutorial this afternoon 

 MPI-parallel version also ported using OpenACC 

 Further optimisations coming 

 Further use of shared memory 

 async clause support coming 
 CCE already launches kernels and data transfers asynchronously 

Example: MultiGrid benchmark 
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 CUDA codes can be compiled and run as usual on the Cray XK6 

 Ludwig parallel code was run across 936 GPUs (10 cabinets) 

 Compilation: 
 module load craype-accel-nvidia20 

 Main CPU code compiled with PrgEnv "cc" wrapper 
 either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc 

 GPU CUDA-C kernels compiled with nvcc 
 nvcc -O3 -arch=sm_20 

 PrgEnv "cc" wrapper used for linking 
 Only GPU flag needed: -lcudart 

 e.g. no CUDA -L flags needed (added in cc wrapper) 

 Submission: 

 submit job as usual (SLURM, aprun): 
  Use 1 MPI rank per node 

 NVIDIA drivers for Cray XK6 optimise GPU/CPU/Gemini 
pipeline.  
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 Compilation: 
 module load craype-accel-nvidia20 

 Main CPU code compiled with PrgEnv "cc" wrapper 
 either PrgEnv-gnu for gcc; or PrgEnv-cray for craycc 

 GPU OpenCL kernels compiled with nvcc 
 nvcc -O3 -arch=sm_20 

 PrgEnv "cc" wrapper used for linking 
 Only GPU flag needed: -lOpenCL 

  Alternatively: 

 Use PrgEnv-gnu for all compilation 
 still need -lOpenCL at linktime 

 Submission: 

 submit job as usual (SLURM, aprun): 
  Use 1 MPI rank per node 
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 Hybrid multicore has arrived and is here to stay 

 Fat nodes are getting fatter 

 GPUs have leapt into the top500 and accelerated nodes 

 Programming accelerators efficiently is hard 

 When done well can give good performance (Ludwig) 

 Accelerator directives offer a good alternative 

 Attractive (and familiar) programming model 

 Open standards for portability 

 Use original Fortran, C and C++ codes 

 Presented a strategy for porting large codes 

 The performance penalty is small 

 The portability and productivity bonuses are huge 

 Directives play nicely with (some) other programming models 

 so you don’t need to throw away your prize CUDA kernels 

In conclusion... 
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 Tutorial leads you through porting entire MultiGrid code 

 Structure resembles SciEng application in only 1500 lines 
 More useful than over-simplistic "Hello World" examples 

 Tutorial covers:  
 code preparation 

 profiling and scoping 

 steps to progressively port to GPU using OpenACC 

 Code examples and Makefiles provided 
 Both Fortran and C versions (no C for 01, 02) 

 VERSION=00 Original CPU code 

 VERSION=01 CPU version for profiling with CrayPAT 

 VERSION=02 CPU version for variable scoping with Cray Reveal 

 VERSION=03 First OpenACC kernel 

 VERSION=04 OpenACC for all significant kernels 

 VERSION=05 OpenACC for insignificant kernels as well 

 VERSION=06 Data region to eliminate major data movements 

 VERSION=07 Tuned OpenACC region 

 VERSION=08 OpenACC interoperating with CUDA kernel 
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