
1

Adrian Tate

XK6 / openACC workshop

Manno, Mar6-7 2012

 Overview & Philosophy
 Two modes of usage

 Contents
 Present contents

 Upcoming releases

 Optimization of libsci_acc
 Autotuning

 Adaptation

 Asynchronous blocking schemes

 Usage
 General usage

 Using the simple interface

DGEMM

 Using LAPACK

 Libsci_acc and openACC

 Advanced controls
 Pinned memory

 Performance
 Hybrid dgemm

 Autotuned dgemm kernel

 LU

 Cholesky

 DGESDD

2

 Provide basic scientific libraries optimized for hybrid CPU and
accelerator systems (XK6)

 Independent to, but fully compatible with openACC

 Designed to augment the existing choices (MAGMA, CUBLAS,
CULA)

 Dual goal :

1. Base performance of GPU with minimal (or no) code
change

 libsci_acc simple interface

2. Advanced performance of the GPU with controls for data
movement

 libsci_acc device interface

does not imply that always need expert interfaces to get great
performance 3

 Supports the standard API in original form

 Will perform all GPU dirty-work for you
 Initialize data structures on GPU

 Split your problem into a CPU portion and GPU portion

 Copy data to the GPU memory from CPU memory

 Perform GPU and CPU operations

 Copy data back to CPU memory

 Library-heavy codes can use GPUs with no code change

 Is not only a tool for simple usage
 If you don’t need the data on GPU afterwards, use the simple interface

 Simple API has automatic adaptation

4

 You can pass either host pointers or device pointers to simple
interface

 A is host memory

 dgetrf(M, N, A, lda, ipiv, &info)

 if problem is too small, performs host operation

 Otherwise, performs hybrid LU operation on CPU and GPU

 Pass Device memory

 dgetrf(M, N, d_A, lda, ipiv, &info)

 Performace LU on the device

User Application

Libsci_acc
DGEMM_ACC

dgemm ();

6

where is
the data?

On GPU

On Host

Libsci_acc
Hybrid DGEMM

Large
enough?

Libsci
DGEMM

User Application

Libsci_acc
DGEMV_ACC

dgemv ();

7

where is
the data?

On GPU

On Host

Libsci DGEMV

 Device interface gives higher degrees of control

 Requires that you have already copied your data to
the device memory

 API

 Every routine in libsci has a version with _acc suffix

 E.g. dgetrf_acc

 This resembles standard API except for the suffix
and the device pointers

8

 Sometimes apps may want to force ops on the CPU

 Need to preserve GPU memory

 Want to perform something in parallel

 Don’t want to incur transfer cost for a small op

 can force any operation to occur on CPU with _cpu
version

 Every routine has a _cpu entry-point

 API is exactly standard otherwise

9

 BLAS
 [s,d,c,z]GEMM

 [s,d,c,z]TRSM

10

 LAPACK

 [d,z]GETRF

 [d,z]GETRS

 [d,z]POTRF

 [d,z]POTRS

Key - HYBRID

 BLAS
 [s,d,c,z]GEMM

 [s,d,c,z]TRSM

 [z,c]HEMM

 [s,d]SYMM

 [s,d,c,z]SYRK

 [z,d]HERK

 [s,d,c,z]SYR2K

 [s,d,c,z]TRMM

 ALL level 2 BLAS

 All level 1 BLAS

11

 LAPACK

 [d,z]GETRF

 [d,z]GETRS

 [d,z]POTRF

 [d,z]POTRS

 [d,z]GESDD

 [d,z]GESDD

 [d,z]GEBRD

 [d,z]GEQRF

 [d,z]GELQF

Key - NEW

 BLAS
 [s,d,c,z]GEMM

 [s,d,c,z]TRSM

 [z,c]HEMM

 [s,d]SYMM

 [s,d,c,z]SYRK

 [z,d]HERK

 [s,d,c,z]SYR2K

 [s,d,c,z]TRMM

 ALL level 2 BLAS

 All level 1 BLAS

12

 LAPACK

 [d,z]GETRF

 [d,z]GETRS

 [d,z]POTRF

 [d,z]POTRS

 [d,z]GESDD

 [d,z]GEBRD

 [d,z]GEQRF

 [d,z]GELQF

AUTOTUNED-HYBRID HYBRID Simple, device and CPU

Host

pointers

run

on the cpu

 Cray Autotuning framework has been built to tune all BLAS for
accelerators
 GPU kernel codes are built using code generator

 Enormous offline autotuning is used to build a map of performance to
input

 An adaptive library is built from the results of the autotuning

 At run-time, your code is mapped to training set of input

 Best kernel for your problem is used

 All the BLAS and LAPACK schemes have been rebuilt using a block-
asynchronous methodology

 Partition matrix for CPU and GPU

 Re-block original host matrix, send part of data to device

 Begin computation on device, and simultaneous bring more data

 Continue, and fine tune so that the whole transfer is hidden

 Supports Cray, GNU and PGI compilers.

 Fortran and C interfaces (column-major assumed)

 Load the module craype-accel-nvidia20.

 Compile as normal (dynamic libraries will be used)

 To enable threading in the CPU library, set
OMP_NUM_THREADS

 E.g. export OMP_NUM_THREADS=16

 Assign 1 single MPI process per node
 Multiple processes cannot share the single GPU

 Execute your code as normal

14

 Use existing methods of transferring data to device
memory (e.g. CUDA., openACC)

 Supply pointers to devide meomry

 dgetrf_acc(M, N, d_A, lda, ipiv, &info)

 Data must already exist in device at address d_A!

15

 Pinned memory is a CUDA feature that allows you to
perform asynchronous data transfer

 As of feb2012, within the simple interface – pinned
memory is essential for performance

 Libsci_ACC provides tools to allow you to pin memory
 libsci_acc_HostAlloc

 libsci_acc_FreeHost

 You can use simple interface without pinning
memory, but performance will be poor

In a future release, pinned memory will not be a
requirement

16

 libsci_acc is independent to libsci_acc but fully
compatible with it

 Use data and host_data directives to manage data
transfer and memory allocation on GPU.

 For BLAS, copy all matrix and vector arrays to GPU

 Scalar variables must stay on CPU

 Because simple interface can accept either device or
host pointers you can use standard compliant calls

17

!$acc data copy(c), copyin(a,b)

!$acc host_data use_device(a,b,c)

 call dgemm_acc('n','n',m,n,k,alpha,a,lda,

& b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

Functionaly equivalent to

18

#pragma acc data copy(A[0:n*lda])

{

#pragma acc host_data use_device(A)

 {

 dgetrf_acc(&M, &N, A, &lda, ipiv,

&info);

 }

}

19

20

0

50

100

150

200

250

300

350

400

450

500

0 5000 10000 15000 20000 25000 30000 35000

G
Fl

o
p

s

Matrix dimension M & N (K=1024)

 Simple interface DGEMM Performance

Libsci_acc GPU+16 CPU threads

Libsci 16 CPU threads

21

0

50

100

150

200

250

300

350

400

1
4

4

2
0

8

2
7

2

3
3

6

4
0

0

4
6

4

5
2

8

5
9

2

6
5

6

7
2

0

7
8

4

8
4

8

9
1

2

9
7

6

1
0

4
0

1
1

0
4

1
1

6
8

1
2

3
2

G
FL

O
P

S

Matrix dimensions M, N

Auto-tuned DGEMM kernel comparison on XK6 - K=256

CUBLAS

LIBSCI_ACC

22

0

50

100

150

200

250

300

1024 1536 2048 2560 3072 3584 4096 8064 9024 9984

G
FL

O
P

S
DGETRF Comparison

libsci_acc dgetrf(default)

libsci_acc dgetrf (ca version)

MAGMA dgetrf

23

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000

G
FL

O
P

S

Matrix Size

DPOTRF on XK6 (with 16 CPU threads)

Magma

CULA

Libsci

24

0

50

100

150

200

250

300

350

400

450

1024 2048 3072 4032 5184 6016 7040 8064

Se
co

n
d

s

Matrix Size

DGESDD Performance comparision on XK6

DGESDD LIBSCI

DGESDD Libsci_ACC

CULA DGESDD

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000

G
Fl

o
p

s

Matrix Size (M=N)

DGEQRF on XK6 (with 16 CPU threads)

Libsci

Libsci_ACC

 You don’t need a fancy version of HPL for the GPU

 With 3 minor code changes you can use stock HPL code :

1. Add #include “libsci_acc.h“

2. Replace 1 instance of malloc with libsci_acc_HostAllocc

3. replace 1 free with libsci_acc_FreeHost

 I can provide more details of where/what to change

 Then run HPL as normal :

By June 2012 release you won’t need to make any code change
 26

T/V N NB P Q Time Gflops

--

WR11R4L2 39096 1024 1 1 126.66 3.146e+02

27

0

50

100

150

200

250

300

350

5000 10000 11520 15000 16128 23040 27648 32256 36096 39096

G
FL

O
P

S

Matrix dimension

HPL Performance on XK6
PxQ=1x1, NB=1024

CPU HPL

CPU HPL + Libsci_ACC

CPU_HPL + Libsci_ACC +
Pinned Memory

 Hybrid BLAS for Unpinned Memory

 CUDA 5 support

 Auto-tuned BLAS for all precisions

 Auto-tuned BLAS for TN, NT, TT cases

 Auto-tuned SYMM/HEMM_ACC

 Eigenvalue solvers

 More hybrid Level 3 BLAS

 Requests?

 Small matrix problems?

 /users/cours01/CSCS_XK6_Co
urse_2012/Day2/Tutorials

 LIBSCI_Acc_examples.tar

 HYBRID_DGEMM

 dgetrf_CCE

 dgetrf_F90

 dgetrf_GNU

 hpl-2.0

 hpl-2.0-xk6

 hpl-2.0-xk6-pinned

 OpenACC_DGEMM

30

 Use functions and data types from iso_c_binding to enable
libsci_acc_hostalloc

 Enables hybrid computing with a few lines of modification

! Enable C pointer

use iso_c_binding

! Declare C pointer

type(C_PTR)::cptr_A

complex*16, pointer, dimension (:,:) :: A

! Initialize libsci_acc

call libsci_acc_init()

! Allocate pinned memory to C pointer

ierr = libsci_acc_hostalloc(cptr_A, INT8(16*max_dim*max_dim))

! Convert the C pointer to Fortran pointer for 2 dimensional array

call c_f_pointer(cptr_A,A,(/lda,max_dim/))

31

 More LAPACK routines support

 A few lines of code change.

 Controls algorithm choice and data transfer mode through environment variables
 setenv LIBSCI_LAPACK_ZGESV_RHSONLY 1

do iblk=nblk,2,-1

 m=n

 ioff=joff

 n=blk_sz(iblk-1)

 joff=joff-n

 call zgesv(m, ioff, a(ioff+1,ioff+1),lda, ipvt, a(ioff+1,1),lda,info)

! call zgetrf(m,m,a(ioff+1,ioff+1),lda, ipvt,info)

! call zgetrs('n',m,ioff,a(ioff+1,ioff+1),lda,ipvt, a(ioff+1,1),lda,info)

 if(iblk.gt.2) then

 call zgemm('n','n',n,ioff-k+1,na-ioff,cmone,a(joff+1,ioff+1),lda,

 & a(ioff+1,k),lda,cone,a(joff+1,k),lda)

 call zgemm('n','n',joff,n,na-ioff,cmone,a(1,ioff+1),lda,

 & a(ioff+1,joff+1),lda,cone,a(1,joff+1),lda)

 endif

end do
32

