
1

Adrian Tate

XK6 / openACC workshop

Manno, Mar6-7 2012

 Overview & Philosophy
 Two modes of usage

 Contents
 Present contents

 Upcoming releases

 Optimization of libsci_acc
 Autotuning

 Adaptation

 Asynchronous blocking schemes

 Usage
 General usage

 Using the simple interface

DGEMM

 Using LAPACK

 Libsci_acc and openACC

 Advanced controls
 Pinned memory

 Performance
 Hybrid dgemm

 Autotuned dgemm kernel

 LU

 Cholesky

 DGESDD

2

 Provide basic scientific libraries optimized for hybrid CPU and
accelerator systems (XK6)

 Independent to, but fully compatible with openACC

 Designed to augment the existing choices (MAGMA, CUBLAS,
CULA)

 Dual goal :

1. Base performance of GPU with minimal (or no) code
change

 libsci_acc simple interface

2. Advanced performance of the GPU with controls for data
movement

 libsci_acc device interface

does not imply that always need expert interfaces to get great
performance 3

 Supports the standard API in original form

 Will perform all GPU dirty-work for you
 Initialize data structures on GPU

 Split your problem into a CPU portion and GPU portion

 Copy data to the GPU memory from CPU memory

 Perform GPU and CPU operations

 Copy data back to CPU memory

 Library-heavy codes can use GPUs with no code change

 Is not only a tool for simple usage
 If you don’t need the data on GPU afterwards, use the simple interface

 Simple API has automatic adaptation

4

 You can pass either host pointers or device pointers to simple
interface

 A is host memory

 dgetrf(M, N, A, lda, ipiv, &info)

 if problem is too small, performs host operation

 Otherwise, performs hybrid LU operation on CPU and GPU

 Pass Device memory

 dgetrf(M, N, d_A, lda, ipiv, &info)

 Performace LU on the device

User Application

Libsci_acc
DGEMM_ACC

dgemm ();

6

where is
the data?

On GPU

On Host

Libsci_acc
Hybrid DGEMM

Large
enough?

Libsci
DGEMM

User Application

Libsci_acc
DGEMV_ACC

dgemv ();

7

where is
the data?

On GPU

On Host

Libsci DGEMV

 Device interface gives higher degrees of control

 Requires that you have already copied your data to
the device memory

 API

 Every routine in libsci has a version with _acc suffix

 E.g. dgetrf_acc

 This resembles standard API except for the suffix
and the device pointers

8

 Sometimes apps may want to force ops on the CPU

 Need to preserve GPU memory

 Want to perform something in parallel

 Don’t want to incur transfer cost for a small op

 can force any operation to occur on CPU with _cpu
version

 Every routine has a _cpu entry-point

 API is exactly standard otherwise

9

 BLAS
 [s,d,c,z]GEMM

 [s,d,c,z]TRSM

10

 LAPACK

 [d,z]GETRF

 [d,z]GETRS

 [d,z]POTRF

 [d,z]POTRS

Key - HYBRID

 BLAS
 [s,d,c,z]GEMM

 [s,d,c,z]TRSM

 [z,c]HEMM

 [s,d]SYMM

 [s,d,c,z]SYRK

 [z,d]HERK

 [s,d,c,z]SYR2K

 [s,d,c,z]TRMM

 ALL level 2 BLAS

 All level 1 BLAS

11

 LAPACK

 [d,z]GETRF

 [d,z]GETRS

 [d,z]POTRF

 [d,z]POTRS

 [d,z]GESDD

 [d,z]GESDD

 [d,z]GEBRD

 [d,z]GEQRF

 [d,z]GELQF

Key - NEW

 BLAS
 [s,d,c,z]GEMM

 [s,d,c,z]TRSM

 [z,c]HEMM

 [s,d]SYMM

 [s,d,c,z]SYRK

 [z,d]HERK

 [s,d,c,z]SYR2K

 [s,d,c,z]TRMM

 ALL level 2 BLAS

 All level 1 BLAS

12

 LAPACK

 [d,z]GETRF

 [d,z]GETRS

 [d,z]POTRF

 [d,z]POTRS

 [d,z]GESDD

 [d,z]GEBRD

 [d,z]GEQRF

 [d,z]GELQF

AUTOTUNED-HYBRID HYBRID Simple, device and CPU

Host

pointers

run

on the cpu

 Cray Autotuning framework has been built to tune all BLAS for
accelerators
 GPU kernel codes are built using code generator

 Enormous offline autotuning is used to build a map of performance to
input

 An adaptive library is built from the results of the autotuning

 At run-time, your code is mapped to training set of input

 Best kernel for your problem is used

 All the BLAS and LAPACK schemes have been rebuilt using a block-
asynchronous methodology

 Partition matrix for CPU and GPU

 Re-block original host matrix, send part of data to device

 Begin computation on device, and simultaneous bring more data

 Continue, and fine tune so that the whole transfer is hidden

 Supports Cray, GNU and PGI compilers.

 Fortran and C interfaces (column-major assumed)

 Load the module craype-accel-nvidia20.

 Compile as normal (dynamic libraries will be used)

 To enable threading in the CPU library, set
OMP_NUM_THREADS

 E.g. export OMP_NUM_THREADS=16

 Assign 1 single MPI process per node
 Multiple processes cannot share the single GPU

 Execute your code as normal

14

 Use existing methods of transferring data to device
memory (e.g. CUDA., openACC)

 Supply pointers to devide meomry

 dgetrf_acc(M, N, d_A, lda, ipiv, &info)

 Data must already exist in device at address d_A!

15

 Pinned memory is a CUDA feature that allows you to
perform asynchronous data transfer

 As of feb2012, within the simple interface – pinned
memory is essential for performance

 Libsci_ACC provides tools to allow you to pin memory
 libsci_acc_HostAlloc

 libsci_acc_FreeHost

 You can use simple interface without pinning
memory, but performance will be poor

In a future release, pinned memory will not be a
requirement

16

 libsci_acc is independent to libsci_acc but fully
compatible with it

 Use data and host_data directives to manage data
transfer and memory allocation on GPU.

 For BLAS, copy all matrix and vector arrays to GPU

 Scalar variables must stay on CPU

 Because simple interface can accept either device or
host pointers you can use standard compliant calls

17

!$acc data copy(c), copyin(a,b)

!$acc host_data use_device(a,b,c)

 call dgemm_acc('n','n',m,n,k,alpha,a,lda,

& b,ldb,beta,c,ldc)

!$acc end host_data

!$acc end data

Functionaly equivalent to

18

#pragma acc data copy(A[0:n*lda])

{

#pragma acc host_data use_device(A)

 {

 dgetrf_acc(&M, &N, A, &lda, ipiv,

&info);

 }

}

19

20

0

50

100

150

200

250

300

350

400

450

500

0 5000 10000 15000 20000 25000 30000 35000

G
Fl

o
p

s

Matrix dimension M & N (K=1024)

 Simple interface DGEMM Performance

Libsci_acc GPU+16 CPU threads

Libsci 16 CPU threads

21

0

50

100

150

200

250

300

350

400

1
4

4

2
0

8

2
7

2

3
3

6

4
0

0

4
6

4

5
2

8

5
9

2

6
5

6

7
2

0

7
8

4

8
4

8

9
1

2

9
7

6

1
0

4
0

1
1

0
4

1
1

6
8

1
2

3
2

G
FL

O
P

S

Matrix dimensions M, N

Auto-tuned DGEMM kernel comparison on XK6 - K=256

CUBLAS

LIBSCI_ACC

22

0

50

100

150

200

250

300

1024 1536 2048 2560 3072 3584 4096 8064 9024 9984

G
FL

O
P

S
DGETRF Comparison

libsci_acc dgetrf(default)

libsci_acc dgetrf (ca version)

MAGMA dgetrf

23

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000

G
FL

O
P

S

Matrix Size

DPOTRF on XK6 (with 16 CPU threads)

Magma

CULA

Libsci

24

0

50

100

150

200

250

300

350

400

450

1024 2048 3072 4032 5184 6016 7040 8064

Se
co

n
d

s

Matrix Size

DGESDD Performance comparision on XK6

DGESDD LIBSCI

DGESDD Libsci_ACC

CULA DGESDD

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000 6000 7000 8000

G
Fl

o
p

s

Matrix Size (M=N)

DGEQRF on XK6 (with 16 CPU threads)

Libsci

Libsci_ACC

 You don’t need a fancy version of HPL for the GPU

 With 3 minor code changes you can use stock HPL code :

1. Add #include “libsci_acc.h“

2. Replace 1 instance of malloc with libsci_acc_HostAllocc

3. replace 1 free with libsci_acc_FreeHost

 I can provide more details of where/what to change

 Then run HPL as normal :

By June 2012 release you won’t need to make any code change
 26

T/V N NB P Q Time Gflops

--

WR11R4L2 39096 1024 1 1 126.66 3.146e+02

27

0

50

100

150

200

250

300

350

5000 10000 11520 15000 16128 23040 27648 32256 36096 39096

G
FL

O
P

S

Matrix dimension

HPL Performance on XK6
PxQ=1x1, NB=1024

CPU HPL

CPU HPL + Libsci_ACC

CPU_HPL + Libsci_ACC +
Pinned Memory

 Hybrid BLAS for Unpinned Memory

 CUDA 5 support

 Auto-tuned BLAS for all precisions

 Auto-tuned BLAS for TN, NT, TT cases

 Auto-tuned SYMM/HEMM_ACC

 Eigenvalue solvers

 More hybrid Level 3 BLAS

 Requests?

 Small matrix problems?

 /users/cours01/CSCS_XK6_Co
urse_2012/Day2/Tutorials

 LIBSCI_Acc_examples.tar

 HYBRID_DGEMM

 dgetrf_CCE

 dgetrf_F90

 dgetrf_GNU

 hpl-2.0

 hpl-2.0-xk6

 hpl-2.0-xk6-pinned

 OpenACC_DGEMM

30

 Use functions and data types from iso_c_binding to enable
libsci_acc_hostalloc

 Enables hybrid computing with a few lines of modification

! Enable C pointer

use iso_c_binding

! Declare C pointer

type(C_PTR)::cptr_A

complex*16, pointer, dimension (:,:) :: A

! Initialize libsci_acc

call libsci_acc_init()

! Allocate pinned memory to C pointer

ierr = libsci_acc_hostalloc(cptr_A, INT8(16*max_dim*max_dim))

! Convert the C pointer to Fortran pointer for 2 dimensional array

call c_f_pointer(cptr_A,A,(/lda,max_dim/))

31

 More LAPACK routines support

 A few lines of code change.

 Controls algorithm choice and data transfer mode through environment variables
 setenv LIBSCI_LAPACK_ZGESV_RHSONLY 1

do iblk=nblk,2,-1

 m=n

 ioff=joff

 n=blk_sz(iblk-1)

 joff=joff-n

 call zgesv(m, ioff, a(ioff+1,ioff+1),lda, ipvt, a(ioff+1,1),lda,info)

! call zgetrf(m,m,a(ioff+1,ioff+1),lda, ipvt,info)

! call zgetrs('n',m,ioff,a(ioff+1,ioff+1),lda,ipvt, a(ioff+1,1),lda,info)

 if(iblk.gt.2) then

 call zgemm('n','n',n,ioff-k+1,na-ioff,cmone,a(joff+1,ioff+1),lda,

 & a(ioff+1,k),lda,cone,a(joff+1,k),lda)

 call zgemm('n','n',joff,n,na-ioff,cmone,a(1,ioff+1),lda,

 & a(ioff+1,joff+1),lda,cone,a(1,joff+1),lda)

 endif

end do
32

