
21‐May‐12

1

Programming the Cray XMT
John Feo

Director
Center for Adaptive Supercomputing Software

May 21, 2012 1

What is parallel computing?

Using multiple computing elements to solve a problem faster

Parallel computing is becoming ubiquitous due to power constraints
Multiple cores rather than faster clock speeds

Since cores share memory and programming cores as separate
computing elements is too heavy weight, shared memory programming
will become ubiquitous

Intel 48‐core
x86 processor

www.pcper.com/reviews/Processors/Intel‐Shows‐48‐core‐x86‐Processor‐Single‐chip‐Cloud‐Computer

Multiple systems
Multiple nodes

Multiple processors
Multiple cores

AMD Athlon X2 6400+ dual‐core
en.wikipedia.org/wiki/Multi‐core_processor

Shared memory

The Good
Read and write any data item

No partitioning
No message passing

Reads and write performed by
hardware

Little overhead lower latency,
higher bandwidth

The Bad
Read and write any data item

Race conditions

.C1

L1

L2

Cn

L1

L2

L3

Memory

Hiding memory latencies

Memory hierarchy

Reduce latency by storing some data nearby

Vectors

Amortize latency by fetching N words at a time

Parallelism

Hide latency by switching tasks
Can also hide other forms of latencies

4

21‐May‐12

2

Barrel processor

5

Many threads per processor core

Thread-level context switch at every instruction cycle

registers

program
counter

ALU

COTS Multithreaded

“stream”

Multithreading

Hide latencies via parallelism

Maintain multiple active threads per processor, so that gaps
introduced by long latency operations in one thread are filled by
instructions in other threads

6

FOR ALL ELEMENTS, A[i, j] // ORDER N^2 PARALLELISM

Data parallelism

Loop over data elements

Work on each element in parallel

Best source of parallelism in almost all programs

Always think data parallel first

FOR ALL GUESTS, GUESTS[i]

FOR ALL ATOMS, ATOMS[i]

FOR ALL NODES, GRAPH[i]

FOR ALL DOCUMENTS, LIBRARY[i]

Simple example

for (i = 0; i < n; i++) {c[i] = a[i] + b[i];}

Single thread

Parallel Region Multiple threads

Barrier

21‐May‐12

3

Fork-join model

Master

Master

Master

Parallel Region

Parallel Region

Workers

Workers

Barrier

Barrier

10

Loops

The compiler can automatically parallelize 3 kinds of loops:

• Loops without loop-carried dependences,

• First-order linear recurrences, and

• Reductions.

This is our basic palette and we strive to express all our programs in
these forms.

11

Inductive Loops

Before the compiler will consider parallelizing a loop, the loop must be
inductive.

• Single entrance and single exit,

• Controlled by a linear induction variable (incremented by an
invariant amount each iteration), and

• Exit is controlled by comparing the induction variable against an
invariant.

The key here is that the compiled code must be able to determine, a
priori, how many iterations will be executed.

Examples of for loops

for (i = 0; i < n; i++) b[i] = (a[i] + a[i + 1])) / 2;

for (i = 0; i < n; i*=2) b[i] = (a[i] + a[i + 1])) / 2;

for (i = 0; i < n; i++)
if (c[i] == 0] break; else d[i] = 1.0 / c[i];

for (i = 0; i < n; i++)
for (j = 0; j < A[i]; j++)
B[i,j] = C[i] + D[j];

Which loops are legal ??

21‐May‐12

4

Matrix multiplication

void matmult(int n, int m, double **a, double **b, double **c) {

for (int i = 0; i < n; i ++) {
for (int j = 0; j < n; j ++) {

double sum = 0.0;
for (int k = 0; k < m; k++) sum += a[i][k] * b[k][j];

c[i][j] = sum;

} } }

Check compilation

| for (int i = 0; i < n; i ++) {

| for (int j = 0; j < n; j ++) {

3 -- | double sum = 0.0;

5 --P:$ | for (int k = 0; k < m; k++) sum += a[i][k] * b[k][j];

3 -- +

** reduction moved out of 1 loop

3 SS | c[i][j] = sum;

| } } }

May 21, 2012 14

Need to use pragmas

void matmult(int n, int m, double **a, double **b, double **c) {

#pragma mta assert no dependence
for (int i = 0; i < n; i ++) {

#pragma mta assert no dependence
for (int j = 0; j < n; j ++) {

double sum = 0.0;
for (int k = 0; k < m; k++) sum += a[i][k] * b[k][j];

c[i][j] = sum;

} } }

What you want to see

| #pragma mta assert no dependence

| for (int i = 0; i < n; i ++) {

| #pragma mta assert no dependence

| for (int j = 0; j < n; j ++) {

4 PP | double sum = 0.0;

5 PP- | for (int k = 0; k < m; k++) sum += a[i][k] * b[k][j];

4 PP +

4 PP | c[i][j] = sum;

| } } }

May 21, 2012 16

21‐May‐12

5

Loop information

Loop 2 in matmult in region 1

In parallel phase 1

Dynamically scheduled, variable chunks, min size = 1

Compiler generated

Loop 3 in matmult in loop 2

Loop unrolled 1 times

Compiler generated

Parallel section of loop from level 1

Loop 4 in matmult at line 12 in loop 3

Loop unrolled 2 times

Parallel section of loop from level 2

Loop 5 in matmult at line 13 in loop 4

Loop summary: 6 loads, 0 stores, 12 floating point operations

6 instructions, needs 45 streams for full utilization
pipelined

May 21, 2012 17 18

Canal

19

Semantic assertions

The various semantic assertions are used to provide information to the
compiler (to make promises) about things it can’t prove automatically.

#pragma mta assert parallel

#pragma mta assert local <variable‐list>

#pragma mta assert no dependence <variable‐list>

and
#pragma mta assert noalias <variable‐list>

20

Recurrences

Some loops use values computed by early iterations in later iterations.
These recurrences usually prevent parallelization.

The compiler recognizes first-order linear recurrences and rewrites
them so they can be solved in parallel. For example:

for (i = 2; i < n; i++) {
X[i] = X[i – 1] + Y[i];

}

21‐May‐12

6

21

Reductions

A particularly simple form of recurrence is the reduction.
double s = 0.0;
for (i = 1; i < n; i++) {
s = s + X[i] * Y[i];

}

double Max = X[0];
for (i = 1; i < n; i++) {
if (X[i] > Max) Max = X[i];

}

int ndx = 0;
double Max = X[0];
for (i = 1; i < n; i++) {
if (X[i] > Max) {Max = X[i]; ndx = i;}

}

Example of atomic

for (i = 0; i < nBonds; i++) {
int headNode = Bond[i][0];
int tailNode = Bond[i][1];

double X_Force = … x force calculation;
double Y_Force = … y force calculation;
double Z_Force = … z force calculation;

Force[headNode][0] += X_Force;
Force[headNode][1] += Y_Force;
Force[headNode][2] += Z_Force;

Force[tailNode][0] += X_Force;
Force[tailNode][1] += Y_Force;
Force[tailNode][2] += Z_Force;

} /* End of parallel regions -- */

Synchronized memory operations

Every memory has a full-and-empty bit

normal loads and stores disregard the full-empty bit

sync loads wait for the full-empty bit to be full, then set it full
(multiple readers) or empty (single reader)

readff(&addr) readfe(&addr)

sync stores wait for the full-empty bit to empty, then set it full

writeef(&addr, value)

sync and normal memory operations take the “same time”

Waiting consumes no processor cycles

23 24

Keeping the machine busy

To help keep the machine busy, we like to exploit multiple levels of
parallelism. Consider a matrix-vector product:

for (i = 1; i < m; i++) {
for (j = 1; j < n; j++) {
Y[i] = Y[i] + X[j] * A[i][j];

} }

If we (or the compiler) run the outer loop in parallel, we’ll do well when
m is large, but poorly when m is small.

Similarly, if we run the inner loop in parallel, we’ll do well only when n is
large.

21‐May‐12

7

25

Nested parallelism

The compiler handles such cases by collapsing the loops, yielding code
that looks something like this:

for (ij = 1; ij < m*n; ij++) {
i = ij / n;
j = ij % n;
Y[i] = Y[i] + X[j] * A[i][j];

}

By using this approach, we get good parallelism whenever m * n is
large.

Recursion

Recursion is a parallel programming method that can quickly saturate the
machine.

XMT programming model supports futures

Easy and cost effective; however, each spawn must have enough work
to justify the overhead.

Terminate recursion at low levels with insufficient work

26

The future construct

future x$(i) {
…
…
…

}

the statement purges x$ (sets empty)

arguments are passed by value

enqueued and executed asynchronously in ~FIFO order

the return value is stored to x$

27 28

struct Tree {
Tree *llink;
Tree *rlink;
int data;

};

int search_tree(Tree *root, int target) {
future int left$, right$;
if (root == 0) return 0;

future left$(root, target)
{ return search_tree(root->llink, target); }

future right$(root, target)
{ return search_tree(root->rlink, target); }

int sum = (root->data == target);
return sum + left$ + right$;

}

Tree search (simple)

21‐May‐12

8

29

Tree search (better)

struct Tree {
Tree *llink;
Tree *rlink;
int data;

};

int search_tree(Tree *root, int target) {
future int left$;
if (root == 0) return 0;

future left$(root, target)
{ return search_tree(root->llink, target); }

int right = search_tree(root->rlink, target);

int sum = (root->data == target);
return sum + left$ + right$;

}

30

Tree search (best)

struct Tree {
Tree *llink;
Tree *rlink;
int data;

};

int search_tree(Tree *root, int target) {
future int left$;
if (root == 0) return 0;

future left$(root, target)
{ return search_tree(root->llink, target); }

int right = search_tree(root->rlink, target);

int sum = (root->data == target);
return sum + touch(left$) + right$;

}

