
Collective communication for message-passing systems
CSCS User Lab Day
Andreas Jocksch (CSCS)
1th September, 2020



Optimised all-to-all communication | 2



Collective communication for message-passing systems

Motivation
The message passing interface (MPI)
Collective communication: blocking,

non-blocking, persistent
Shared memory on the node
Our prototype library
Benchmarks
Conclusions and outlook

Optimised all-to-all communication | 3



Motivation

Modern supercomputers equipped with multicore CPUs distributed to many nodes

Hybridly — OpenMP + MPI — or pure MPI programmed, focus on MPI only

Collective communication operations provide fast message transfers for certain
communication patterns

Assumption of a fully connected network, described by latency and bandwidth

For small messages store and forward algorithms, e.g., Bruck’s algorithm

Persistent but blocking collectives → “plan” routines and separate execution routine

Optimised all-to-all communication | 4



Message passing library

Mostly MPI used, currend version 3.1 plus more recent drafts

Established implementations MPICH, MVAPICH, OpenMPI

Supports blocking and non-blocking collective communication, e.g. MPI Alltoall, MPI Ialltoall

Persistent collectives as experimental feature, according to the standard non-blocking

Optimised all-to-all communication | 5



Basic shared memory algorithm (all-to-all)

Communication on the node using shared memory

Communication between nodes done by multiple (e.g. all) cores

Setup before execution (generation of bytecode)

Execution of bytecode

Optimised all-to-all communication | 6



Application programming interface

Routines are written in ANSI C with C and Fortran interfaces
C/C++ : C interface

int EXT_MPI_Alltoall_init_general (void *sendbuf , int sendcount ,

MPI_Datatype sendtype , void *recvbuf , int recvcount , MPI_Datatype

recvtype , MPI_Comm comm_row , int cores_per_node_row , MPI_Comm

comm_column , int cores_per_node_column , int *handle);

int EXT_MPI_Alltoall_init (void *sendbuf , int sendcount , MPI_Datatype

sendtype , void *recvbuf , int recvcount , MPI_Datatype recvtype ,

MPI_Comm comm , int *handle);

int EXT_MPI_Exec (int handle);

int EXT_MPI_Done (int handle);

Optimised all-to-all communication | 7



Advanced features

Multiple collective communication, e.g. for FFTs with pencil decomposition tasks
communicate in multiple groups independent from each other

CUDA aware support for part of our collectives

Optimised all-to-all communication | 8



Supported collective operations

Alltoall, Alltoallv

Scatter, Gather (wrappers to Alltoallv)

Allgather, Allgatherv, Reduce scatter, Reduce scatter block

Bcast, Reduce (wrappers to Allgatherv and Reduce scatter)

Allreduce

Scan, Exscan

Optimised all-to-all communication | 9



Benchmarks

 0

 50

 100

 150

 200

 250

 0  500  1000  1500  2000

c
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

 i
n

 1
0

0
0

0
 /

 s

message size in bytes

Cray MPI
optimised

Alltoall on 156 nodes with 12 tasks per node

Optimised all-to-all communication | 10



Benchmarks

 0

 2

 4

 6

 8

 10

 0  500  1000  1500  2000

c
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

 i
n

 1
0

0
0

0
 /

 s

message size in bytes

MVAPICH
optimised

 0

 5

 10

 15

 20

 25

 0  500  1000  1500  2000

c
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

 i
n

 1
0

0
0

0
 /

 s

message size in bytes

Cray MPI
optimised

Alltoall on Infiniband (Meteoswiss) 5 nodes with 12 cores per node (left) and on Cray using CUDA aware MPI on 12 nodes with 12 cores per node (right), Cray

Optimised all-to-all communication | 11



Literature

Andreas Jocksch, Noe Ohana and Emmanuel Lanti and Vasileios Karakasis and Laurent
Villard: Towards an optimal allreduce communication in message-passing systems,
EuroMPI/USA’20, 2020, accepted

Andreas Jocksch, Noe Ohana and Emmanuel Lanti and Vasileios Karakasis and Laurent
Villard: Optimised allgatherv, reduce scatter and allreduce communication in
message-passing systems, arXiv, 2020

Andreas Jocksch, Matthias Kraushaar and David Daverio: Optimised all-to-all
communication on multicore architectures applied to FFTs with pencil decomposition,
Concurrency Computat Pract Exper., 2018

Optimised all-to-all communication | 12



Availability of the code

Work in progress

ETH-CSCS GitHub — repository “ext mpi collectives”

On request “andreas.jocksch at cscs.ch”

Optimised all-to-all communication | 13



Conclusions and outlook

Collective communication can be higher optimised than the established default case if
implemented as persistent communication

Shared memory on the nodes and complex algorithmic features can be exploited since the
setup is hidden in an initalisation phase

Prototype implementation of collective communication is persistent and blocking

Optimised all-to-all communication | 14



Thank you for your attention.


	Motivation
	The message passing interface (MPI)
	Collective communication: blocking, non-blocking, persistent
	Shared memory on the node
	Our prototype library
	Benchmarks
	Conclusions and outlook

