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Motivation

Modern supercomputers equipped with multicore CPUs distributed to many nodes

Hybridly — OpenMP + MPI — or pure MPI programmed, focus on MPI only

Collective communication operations provide fast message transfers for certain
communication patterns

Assumption of a fully connected network, described by latency and bandwidth

For small messages store and forward algorithms, e.g., Bruck’s algorithm

Persistent but blocking collectives → “plan” routines and separate execution routine
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Message passing library

Mostly MPI used, currend version 3.1 plus more recent drafts

Established implementations MPICH, MVAPICH, OpenMPI

Supports blocking and non-blocking collective communication, e.g. MPI Alltoall, MPI Ialltoall

Persistent collectives as experimental feature, according to the standard non-blocking
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Basic shared memory algorithm (all-to-all)

Communication on the node using shared memory

Communication between nodes done by multiple (e.g. all) cores

Setup before execution (generation of bytecode)

Execution of bytecode
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Application programming interface

Routines are written in ANSI C with C and Fortran interfaces
C/C++ : C interface

int EXT_MPI_Alltoall_init_general (void *sendbuf , int sendcount ,

MPI_Datatype sendtype , void *recvbuf , int recvcount , MPI_Datatype

recvtype , MPI_Comm comm_row , int cores_per_node_row , MPI_Comm

comm_column , int cores_per_node_column , int *handle);

int EXT_MPI_Alltoall_init (void *sendbuf , int sendcount , MPI_Datatype

sendtype , void *recvbuf , int recvcount , MPI_Datatype recvtype ,

MPI_Comm comm , int *handle);

int EXT_MPI_Exec (int handle);

int EXT_MPI_Done (int handle);
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Advanced features

Multiple collective communication, e.g. for FFTs with pencil decomposition tasks
communicate in multiple groups independent from each other

CUDA aware support for part of our collectives
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Supported collective operations

Alltoall, Alltoallv

Scatter, Gather (wrappers to Alltoallv)

Allgather, Allgatherv, Reduce scatter, Reduce scatter block

Bcast, Reduce (wrappers to Allgatherv and Reduce scatter)

Allreduce

Scan, Exscan
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Benchmarks
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Alltoall on 156 nodes with 12 tasks per node
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Alltoall on Infiniband (Meteoswiss) 5 nodes with 12 cores per node (left) and on Cray using CUDA aware MPI on 12 nodes with 12 cores per node (right), Cray
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Availability of the code

Work in progress

ETH-CSCS GitHub — repository “ext mpi collectives”

On request “andreas.jocksch at cscs.ch”
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Conclusions and outlook

Collective communication can be higher optimised than the established default case if
implemented as persistent communication

Shared memory on the nodes and complex algorithmic features can be exploited since the
setup is hidden in an initalisation phase

Prototype implementation of collective communication is persistent and blocking
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