
Best Practices in HPC: Application and Programming Environment Testing
CSCS User Lab Day 2020

Vasileios Karakasis, Scientific Computing Support Group Lead, CSCS

August 31, 2020

Enabling science at CSCS

◾ Allow scientists to focus on their science, minimizing distractions from
system issues, offering them a sane environment with all the tools they need

◾ Help scientists understand the system and how it affects their code’s
functionality and performance and help them optimize it for the system

◾ Work with scientists for implementing and better supporting their workflows

◾ Onboard the scientists to new HPC technologies and help them make the
best out of them

CSCS User Lab Day 2020 – Virtual Meeting ∣ 2

Providing a sane environment to scientists

◾ How can we ensure that the user experience is unaffected after a system
upgrade or after an “innocent” change somewhere in the system?

◾ How testing of such complex systems can be made sustainable?
– Consistency
– Maintainability
– Portability
– Automation
– Efficiency

CSCS User Lab Day 2020 – Virtual Meeting ∣ 3

Testing: a big challenge overall!

◾ Writing proper tests require the same level of engineering effort as the
application they test!
◾ Much less attractive to write
◾ As opposed to features, the value of tests is seldom visible in the short term
◾ Testing has several levels
◾ Automating tests becomes essential as projects grow
◾ Testing can never be complete for real-world applications

CSCS User Lab Day 2020 – Virtual Meeting ∣ 4

HPC system testing challenges

◾ Multiple interacting components
◾ Multiple programming environments
◾ Multiple libraries
◾ Multiple applications
◾ Multiple architectures
◾ Multiple clusters
◾ Functionality and performance are both important

CSCS User Lab Day 2020 – Virtual Meeting ∣ 5

A (very) simplified view of the scientific software stack

Scientific Libraries

H/W

NIC Drivers CUDA Driver I/O Drivers

Low-level comm. libraries

MPI, Kokkos, HPX etc.

O/S

Low-level I/O

HDF5 NetCDF
Parallel
program

launchers

SlurmDebugging
and

Performance
Tools

Container
Runtimes

TBB, OpenMP, OpenACC etc.

Low-level threading

CSCS HPC Software Stack

O/S

User
Space

Scientific Applications / CSCS User Lab

Python, R, Julia

Compilers, CUDA, OpenCL etc.

CSCS User Lab Day 2020 – Virtual Meeting ∣ 6

The HPC system testing landscape

◾ No or minimal testing; users discover the problems and open tickets

◾ Manual testing by the center’s staff

◾ Ad-hoc, very site-specific “frameworks”
– Non-portable tests
– Lots of unnecessary test code
– High maintenance costs
– Low test coverage

CSCS User Lab Day 2020 – Virtual Meeting ∣ 7

The CSCS solution – ReFrame

ReFrame is a generic HPC testing
framework that…

◾ allows writing portable HPC
regression tests in Python,
◾ abstracts away the system
interaction details,
◾ lets users focus solely on the logic
of their test,
◾ provides a runtime for running
efficiently the regression tests.

CSCS User Lab Day 2020 – Virtual Meeting ∣ 8

Design goals

◾ Productivity

◾ Portability

◾ Speed and Ease of Use

◾ Robustness

CSCS User Lab Day 2020 – Virtual Meeting ∣ 9

ReFrame timeline

3/16 12/16 4/17 2/18 8/20

New testing
framework starts
as a pilot project

Framework
moves in
production

ReFrame
publicly
released

Development
moves on Github ReFrame 3.1

47 forks
74 stargazers
26 contributors

Documentation readers in 2020.

CSCS User Lab Day 2020 – Virtual Meeting ∣ 10

Key features

◾ Support for cycling through programming environments and system partitions
◾ Support for different WLMs, parallel job launchers and modules systems
◾ Support for sanity and performance tests
◾ Support for test factories
◾ Support for container runtimes
◾ Support for test dependencies
◾ Concurrent execution of regression tests
◾ Progress and result reports
◾ Performance logging
◾ Clean internal APIs that allow the easy extension of the framework’s functionality

CSCS User Lab Day 2020 – Virtual Meeting ∣ 11

ReFrame’s architecture

RegressionTest	API

System	abstractions Environment	abstractions

WLMs Parallel
launchers Build	systems Environment

modules

O/S

ReFrame	Runtime

ReFrame	Frontend

@rfm.simple_test
class	MyTest(rfm.RegressionTest):reframe	<options>	-r

Container	abstractions

Singularity,	Sarus,	Docker

CSCS User Lab Day 2020 – Virtual Meeting ∣ 12

How ReFrame executes tests
All tests go through a well-defined pipeline.

Setup Build Run Sanity Perf. Cleanup

The regression test pipeline

SE BU RU SA PE CLIdling SE BU RU SA PE CLIdling

Serial execution policy

SE BU RU SA PE CLSE BU RU SE BU RU SA PE CL SA PE CL

Asynchronous execution policy

CSCS User Lab Day 2020 – Virtual Meeting ∣ 13

How ReFrame executes tests
All tests go through a well-defined pipeline.

Setup Build Run Sanity Perf. Cleanup

The regression test pipeline

SE BU RU SA PE CLIdling SE BU RU SA PE CLIdling

Serial execution policy

SE BU RU SA PE CLSE BU RU SE BU RU SA PE CL SA PE CL

Asynchronous execution policy

CSCS User Lab Day 2020 – Virtual Meeting ∣ 13

How ReFrame executes tests
All tests go through a well-defined pipeline.

Setup Build Run Sanity Perf. Cleanup

The regression test pipeline

SE BU RU SA PE CLIdling SE BU RU SA PE CLIdling

Serial execution policy

SE BU RU SA PE CLSE BU RU SE BU RU SA PE CL SA PE CL

Asynchronous execution policy

CSCS User Lab Day 2020 – Virtual Meeting ∣ 13

A “Hello, World!” ReFrame test
import reframe as rfm

import reframe.utility.sanity as sn

@rfm.simple_test

class HelloTest(rfm.RegressionTest):

def __init__(self):

self.valid_systems = ['*']

self.valid_prog_environs = ['*']

self.sourcepath = 'hello.c'

self.sanity_patterns = sn.assert_found(r'Hello, World\!', self.stdout)

See ReFrame tutorials for all the details: https://reframe-hpc.readthedocs.io/en/
stable/tutorials.html

$ reframe -c tutorials/basics/hello/hello1.py -r

...

[==========] Running 1 check(s)

[==========] Started on Fri Jul 24 11:05:46 2020

[----------] started processing HelloTest (HelloTest)

[RUN] HelloTest on generic:default using builtin

[----------] finished processing HelloTest (HelloTest)

[----------] waiting for spawned checks to finish

[OK] (1/1) HelloTest on generic:default using builtin [compile: 0.378s run: 0.299s total: 0.712s]

[----------] all spawned checks have finished

[PASSED] Ran 1 test case(s) from 1 check(s) (0 failure(s))

[==========] Finished on Fri Jul 24 11:05:47 2020

CSCS User Lab Day 2020 – Virtual Meeting ∣ 14

https://reframe-hpc.readthedocs.io/en/stable/tutorials.html
https://reframe-hpc.readthedocs.io/en/stable/tutorials.html

A “Hello, World!” ReFrame test
import reframe as rfm

import reframe.utility.sanity as sn

@rfm.simple_test

class HelloTest(rfm.RegressionTest):

def __init__(self):

self.valid_systems = ['*']

self.valid_prog_environs = ['*']

self.sourcepath = 'hello.c'

self.sanity_patterns = sn.assert_found(r'Hello, World\!', self.stdout)

See ReFrame tutorials for all the details: https://reframe-hpc.readthedocs.io/en/
stable/tutorials.html

$ reframe -c tutorials/basics/hello/hello1.py -r

...

[==========] Running 1 check(s)

[==========] Started on Fri Jul 24 11:05:46 2020

[----------] started processing HelloTest (HelloTest)

[RUN] HelloTest on generic:default using builtin

[----------] finished processing HelloTest (HelloTest)

[----------] waiting for spawned checks to finish

[OK] (1/1) HelloTest on generic:default using builtin [compile: 0.378s run: 0.299s total: 0.712s]

[----------] all spawned checks have finished

[PASSED] Ran 1 test case(s) from 1 check(s) (0 failure(s))

[==========] Finished on Fri Jul 24 11:05:47 2020

CSCS User Lab Day 2020 – Virtual Meeting ∣ 14

https://reframe-hpc.readthedocs.io/en/stable/tutorials.html
https://reframe-hpc.readthedocs.io/en/stable/tutorials.html

A “Hello, World!” ReFrame test
import reframe as rfm

import reframe.utility.sanity as sn

@rfm.simple_test

class HelloTest(rfm.RegressionTest):

def __init__(self):

self.valid_systems = ['*']

self.valid_prog_environs = ['*']

self.sourcepath = 'hello.c'

self.sanity_patterns = sn.assert_found(r'Hello, World\!', self.stdout)

See ReFrame tutorials for all the details: https://reframe-hpc.readthedocs.io/en/
stable/tutorials.html

$ reframe -c tutorials/basics/hello/hello1.py -r

...

[==========] Running 1 check(s)

[==========] Started on Fri Jul 24 11:05:46 2020

[----------] started processing HelloTest (HelloTest)

[RUN] HelloTest on generic:default using builtin

[----------] finished processing HelloTest (HelloTest)

[----------] waiting for spawned checks to finish

[OK] (1/1) HelloTest on generic:default using builtin [compile: 0.378s run: 0.299s total: 0.712s]

[----------] all spawned checks have finished

[PASSED] Ran 1 test case(s) from 1 check(s) (0 failure(s))

[==========] Finished on Fri Jul 24 11:05:47 2020

CSCS User Lab Day 2020 – Virtual Meeting ∣ 14

https://reframe-hpc.readthedocs.io/en/stable/tutorials.html
https://reframe-hpc.readthedocs.io/en/stable/tutorials.html

Performance monitoring
◾ Every time a performance test is run, ReFrame can log its performance
through several channels (normal files, Syslog, Graylog)

CSCS User Lab Day 2020 – Virtual Meeting ∣ 15

Continuous software stack and system testing

ReFrame
repository

Jenkins

Test
repository

pull pull

login

Piz	Daint

Piz	Keschlogin

ReFrame

ReFrame

Notify	roster	on	failure

Graylog

Elastic
Search

Scheduled
daily

Tsa ReFrame
login

Several test categories identified by tags:
◾ Cray PE tests: only PE functionality
◾ Production tests: entire HPC software stack
◾ Maintenance tests: selection of tests for running

before/after maintenance sessions
◾ Benchmarks
◾ > 350 tests reused across systems

Experiences from Piz Daint:
◾ Enabling ReFrame as early as possible during a

system upgrade streamlines the process
◾ Reveals several regressions in the programming

environment that need to be fixed
◾ Builds confidence when finally everything is GREEN
◾ During production operation, it highlights possible

system problems

CSCS User Lab Day 2020 – Virtual Meeting ∣ 16

Continuous software stack and system testing

ReFrame
repository

Jenkins

Test
repository

pull pull

login

Piz	Daint

Piz	Keschlogin

ReFrame

ReFrame

Notify	roster	on	failure

Graylog

Elastic
Search

Scheduled
daily

Tsa ReFrame
login

Several test categories identified by tags:
◾ Cray PE tests: only PE functionality
◾ Production tests: entire HPC software stack
◾ Maintenance tests: selection of tests for running

before/after maintenance sessions
◾ Benchmarks
◾ > 350 tests reused across systems

Experiences from Piz Daint:
◾ Enabling ReFrame as early as possible during a

system upgrade streamlines the process
◾ Reveals several regressions in the programming

environment that need to be fixed
◾ Builds confidence when finally everything is GREEN
◾ During production operation, it highlights possible

system problems

CSCS User Lab Day 2020 – Virtual Meeting ∣ 16

CSCS ReFrame test suite
◾ HPC applications: Amber, CP2K, CPMD, QuantumEspresso, GROMACS, LAMMPS, NAMD,
OpenFoam, Paraview, TensorFlow

◾ Libraries: Boost, GridTools, HPX, HDF5, NetCDF, Magma, Scalapack, Trilinos, PETSc
◾ Programming environment: GPU, MPI, MPI+X functionality, OpenACC, CPU affinity
◾ Slurm functionality
◾ Performance and debugging tools
◾ I/O tests: IOR
◾ Microbenchmarks: CUDA, CPU, MPI
◾ Container runtime checks
◾ OpenStack: S3 API

– Check the “cscs-checks/” directory @ https://github.com/eth-cscs/reframe
– Debugger and performance tools https://github.com/eth-cscs/hpctools

CSCS User Lab Day 2020 – Virtual Meeting ∣ 17

https://github.com/eth-cscs/reframe
https://github.com/eth-cscs/hpctools

ReFrame at other sites
◾ National Energy Research Scientific Computing Center, USA

– Software stack validation
– Performance testing and benchmarking
– Integration with Gitlab CI/CD solution developed within ECP
– V. Karakasis et al., “Enabling Continuous Testing of HPC Systems using ReFrame”,
HUST’19

◾ Ohio Supercomputing Center, USA
– Software stack validation
– Integration with CI/CD
– S. Khuvis et al., “A Continuous Integration-Based Framework for Software
Management”, PEARC’19

◾ KAUST (SA), PAWSEY (AUS), NIWA (NZ), GATech (USA), Univ. of
Birmingham (UK) and many more.

CSCS User Lab Day 2020 – Virtual Meeting ∣ 18

Advanced application testing and performance analysis

◾ The hpctools repository showcases
how to use ReFrame together with
HPC tools. It is designed to

– contribute to CSCS effort in
automated regression testing,

– demonstrate the usage of
debuggers and performance
tools,

– share ReFrame checks.

https://github.com/eth-cscs/hpctools

CSCS User Lab Day 2020 – Virtual Meeting ∣ 19

https://github.com/eth-cscs/hpctools

Application CI testing with ReFrame
◾ SIRIUS library uses ReFrame for running its verification tests

– Tests are located in the repository
– Tests are triggered on very PR as a separate step in the CI pipeline
– ReFrame is fetched on-the-fly and runs the tests
– The same tests can be easily reused for different target systems

https://github.com/electronic-structure/SIRIUS

CSCS User Lab Day 2020 – Virtual Meeting ∣ 20

https://github.com/electronic-structure/SIRIUS

ReFrame community

◾ Mailing list (25 members): reframe@cscs.ah

◾ Slack channel (59 members): https://reframe-slack.herokuapp.com/

◾ ReFrame test repositories: https://github.com/reframe-hpc

CSCS User Lab Day 2020 – Virtual Meeting ∣ 21

reframe@cscs.ah
https://reframe-slack.herokuapp.com/
https://github.com/reframe-hpc

Contributing tests for Piz Daint

◾ CSCS users, particularly those with large allocations, are welcome to
contribute ReFrame tests that exercise their application or workflow

– The tests will become part of our test battery that runs on upgrades
– The tests should be short, self-contained and tested on Piz Daint
– Users should maintain their tests
– Users can contribute through a pull request in the project’s repository or
contact us at help@cscs.ch

◾ ReFrame is already installed and configured on Piz Daint
– module load reframe

– https://user.cscs.ch/tools/reframe/

CSCS User Lab Day 2020 – Virtual Meeting ∣ 22

help@cscs.ch
https://user.cscs.ch/tools/reframe/

Conclusions

ReFrame is a powerful tool that allows you to continuously test an HPC
environment without having to deal with the low-level system interaction details.
◾ High-level tests written in Python
◾ Portability across HPC system platforms
◾ Comprehensive reports and reproducible methods
◾ Easy integration with CI/CD workflows

– Bug reports, feature requests, help @ https://github.com/eth-cscs/reframe

CSCS User Lab Day 2020 – Virtual Meeting ∣ 23

https://github.com/eth-cscs/reframe

Thank you for your attention
reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

