
HPC Containers at CSCS – New features & enhancements

CSCS User Lab Day – Meet the Swiss National Supercomputing Center

Manitaras Theofilos-Ioannis, CSCS

August 31, 2020



Outline

• Container Basics

• Introduction to Docker

• Using Sarus at CSCS

• Using Singularity at CSCS

• Conclusions

2



Container Basics



Containers in a nutshell

What are Containers?

• Wikipedia (general container): A container is any receptacle or enclosure for 

holding a product used in storage, packaging, and shipping. Things kept inside 

of a container are protected by being inside of its structure

• Docker: A container is a standard unit of software that packages up code and 

all its dependencies, so the application runs quickly and reliably from one 

computing environment to another

• Google Cloud: Containers offer a logical packaging mechanism in which 

applications can be abstracted from the environment in which they actually run

• AWS: Containers are a method of operating system virtualization that allow 

you to run an application and its dependencies in resource-isolated processes

4

https://en.wikipedia.org/wiki/Container
https://www.docker.com/resources/what-container
https://cloud.google.com/containers
https://aws.amazon.com/solutionspace/containers/


Linux Containers under the hood

5

• Linux namespaces: Control what 

the process (container) can "see"

• cgroups: limit and monitor the resources 

that the process (container) can use

Security

• SELinux: Security-Enhanced Linux

• Linux capabilities: restrict allowed syscalls

• seccomp: Secure Computing

namespaces

Cgroups

SELinux
Linux 

Capabilities

seccomp

Linux Containers

http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://selinuxproject.org/page/Main_Page
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man2/seccomp.2.html


Linux Namespaces

The Linux namespaces used in containers are:

• Mount namespace

• UTS namespace

• IPC namespace

• Network namespace

• Pid namespace

• User namespace

▪ There are additional namespaces and new ones might be introduced

6



Containers vs Virtual Machines

7

Container Runtime

Host OS

Binaries 1

Libraries 1

App1

Containers

Host OS

Binaries 1

Libraries 1

App1

Virtual Machines

Hypervisor

Guest 

OS 1

Binaries 2

Libraries 2

App2

Binaries 3

Libraries 3

App3
Binaries 2

Libraries 2

App2

Guest 

OS 2

Binaries 3

Libraries 3

App3

Guest

OS 3



Image registries, repositories, tags

• An image registry is a service where container images are stored,

(e.g DockerHub, Nvidia Container Registry, Quay)

• Image repositories are collections of different images sharing the same name

• Image repositories can be grouped under organizations

• Image tags are used to differentiate between the different image versions

• A specific image, is identified using the following convention:

[registry url]/[organization]/<repository>:[tag] (fields inside square brackets are optional)

e.g from Nvidia Container Registry (nvcr.io/nvidia/tensorflow:20.03-tf2-py3)

➢ If no registry is specified, Docker uses DockerHub

➢ If no tag is given, Docker assumes the “latest” tag

8



Container images vs running containers

9

RO Layer

RO Layer

RO Layer

RO Layer

Image

RW Layer

Container

Container creation

A container image consists of a 

series of read-only layers, each of 

them corresponding to a step 

during the image build.

When a new container is created, a 

new writable layer (container layer) is 

added on top of the underlying layers.



Introduction to Docker



What is Docker?

Docker is a container "ecosystem" including various software components:

• Docker Engine for building-running-shipping containers

• DockerHub the main container registry

• Docker-compose for multi-container scenarios

• Docker Swarm for container orchestration

Furthermore, it defines:

• A container image format

• A container registry api

• The Docker Engine API

11

https://www.docker.com/


Docker Hello-World

12



All running containers use the host kernel

13

Here we use: docker run --name <container_name> <image> <command>



Running containers interactively

In order to run a container interactively, use: docker run -it <image>

14

Running ubuntu container interactively Running python container interactively



Useful Docker cli commands

• List running containers: docker ps

• List all containers: docker ps -a

• List all the images: docker images

• Remove an image: docker rmi <image_name>

• Pull an image from DockerHub (default to tag "latest"):

docker pull <image_name>

• Run a container with a specified name:

docker run --name <container_name> <image_name>

• Save an image as a tar archive:

docker save <image_name> -o <image_arhive.tar>

15



HPC Containers with Sarus



Introduction to Sarus

• Sarus is an OCI-compatible container engine for HPC

• It is developed at CSCS and is driven by the specific requirements of HPC 

systems

• It is extensible via OCI hooks to take advantage of custom hardware and achieve 

native performance

• Compatible with the workload managers used in HPC systems

• Allows pulling container images from registries adopting the OCI Distribution 

Specification or the Docker Registry HTTP API V2 protocol

• Can import images from image archives (e.g those created via docker save)

• Supports creation of container filesystems tailored for diskless nodes and parallel 

filesystems

17

https://github.com/eth-cscs/sarus


Pulling images from container registries

Sarus can pull container images directly from registries using the sarus pull 

command. If no registry is specified, sarus pulls from DockerHub:

18



Running a container using Sarus

In order to run a container based on an image that is already pulled, the command 

sarus run is used. 

The full syntax of the command is: sarus run <image_name> <command>

19



Loading images from Docker archives

Sarus can load container images from docker tar archives using sarus load:

20



Sample Dockerfile (GPU)

21

FROM nvidia/cuda:10.1-devel

RUN apt-get update && \

apt-get install -y git -q && \

git clone https://github.com/NVIDIA/cuda-samples.git /usr/local/cuda_samples && \

cd /usr/local/cuda_samples && \

git fetch origin --tags && \

git checkout 10.1.2 && \

make

CMD /usr/local/cuda_samples/Samples/deviceQuery/deviceQuery

https://github.com/NVIDIA/cuda-samples.git


Running a GPU container

Running a gpu-enabled container is straightforward, since sarus mounts the 

required drivers inside the container:

22



Sample Dockerfile (MPI)

23

FROM debian:jessie

RUN apt-get update && \

apt-get install -y ca-certificates file g++ gcc gfortran make gdb strace realpath wget --no-install-recommends

RUN wget -q http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz && \

tar xf mpich-3.1.4.tar.gz && \

cd mpich-3.1.4 && ./configure --disable-fortran --enable-fast=all,O3 --prefix=/usr && \

make -j$(nproc) && make install && ldconfig

RUN wget -q http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.3.2.tar.gz && \

tar xf osu-micro-benchmarks-5.3.2.tar.gz && \

cd osu-micro-benchmarks-5.3.2 && \

./configure --prefix=/usr/local CC=$(which mpicc) CFLAGS=-O3 && \

make && make install && cd .. && \

rm -rf osu-micro-benchmarks-5.3.2 && \

rm osu-micro-benchmarks-5.3.2.tar.gz

CMD /usr/local/libexec/osu-micro-benchmarks/mpi/pt2pt/osu_bw

http://www.mpich.org/static/downloads/3.1.4/mpich-3.1.4.tar.gz
http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.3.2.tar.gz


Running an mpi-based container

In order to run an mpi-based container, the --mpi command line option should be 

used. Sarus is going to replace the mpi dynamic library of the image with the host 

one:

24



Additional Sarus features

• Sarus supports pulling container images from container registries requiring 

authentication via the --login option of sarus pull. The user is then required to 

enter the credentials for the specific registry.

• It is straightforward to mount host directories inside a running container using the 

--mount command line option of sarus run:

(e.g sarus run --mount=type=bind,src=<src_dir>,target=<target_dir>)

• To list the images currently downloaded, use: sarus images

• To remove an image use: sarus rmi <image_name>

• For more information on Sarus, refer to the official documentation and the Sarus 

Cookbook which contains representative HPC use cases

25

https://sarus.readthedocs.io/en/stable/
https://sarus.readthedocs.io/en/stable/cookbook/index.html


HPC Containers with Singularity



Introduction to Singularity

27

• Singularity is a container platform created to run applications on HPC clusters in 

a simple, portable and reproducible way

• Singularity is open source and it's official repository is available on GitHub

• It is developed with security in mind, "allowing untrusted users to run untrusted 

containers in a trusted way"

• It uses the Singularity Image Format(SIF) making container images easy to 

transport and share

• It allows you to build container images using Singularity Definition Files (not 

supported on Piz Daint)

• It supports pulling OCI-based images and converts them to the SIF format

https://sylabs.io/singularity/
https://github.com/hpcng/singularity


Pulling container images from image registries

Singularity can pull container images directly from registries using various forms of 

the singularity pull command, e.g :

28



Building container images using Singularity definition files(1/2)

Singularity allows building container images based on Singularity definition files. 

This in general requires elevated privileges and is not supported on Piz Daint:

29

Bootstrap: docker

From: nvidia/cuda:10.1-devel

%post

apt-get update -q
apt-get install -y git -q

git clone https://github.com/NVIDIA/cuda-samples.git /usr/local/cuda_samples

cd /usr/local/cuda_samples

git fetch origin --tags

git checkout 10.1.2
make

%runscript

/usr/local/cuda_samples/Samples/deviceQuery/deviceQuery

https://github.com/NVIDIA/cuda-samples.git


Building container images using Singularity definition files(2/2)

To build an image based on a Singularity definition file the singularity build 

command is used (requiring elevated privileges):

30



Running Gpu-enabled containers

To run an Cuda-enabled container the --nv command line option of singularity run 

has to be used:

31



Running mpi-based containers

CSCS offers the module singularity/3.5.3-daint which defines the bind mounts and 

the environment variables to mount the host mpi in the container:

32



Conclusions



Conclusions

• Containers bundle software and dependencies in a single portable package

• Easier, predictable and automation friendly deployment

• Reproducible behavior in different computing environments

• Fast start-up (milliseconds-few seconds vs seconds-minutes for VMs)

• Sarus and Singularity address the specific requirements of HPC environments

• Using the above applications, you can develop your software on your local 

computer and run at scale on Piz Daint

34



Thank you for your attention.


